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Abstract

Of the numerous anthropogenic pressures that are being exerted on ecosystems globally, plastic pollution and climate change are potentially the most pressing. This is particularly true when they co-occur as joint stressors. These are interlinked with respect to their root cause (the overconsumption of finite resources) and their effects in natural and anthropogenic systems and processes. This review focuses on a growing area of research into how climate change can, by transforming plastic pollution from a reversible to a poorly reversible contaminant, exacerbate the abundance, distribution, exposure, and impacts of plastics and associated chemicals in our waters, soils, biota, and atmosphere. There is a growing body of evidence suggesting that climate change and plastic pollution can have significant and often interactive ecological effects, particularly among the higher trophic levels within the food web. The rational response to confront these effects is to address the pollution at source by rapidly and meaningfully reducing emissions into the environment. We discuss challenges but also solutions, through future research, policies and public awareness, that must harness the same enthusiasm that made plastic a fundamental cornerstone of the modern world in the first place. The threat that plastics produced, used and discarded today could cause global-scale impacts in the future is compelling motivation to take appropriate action now.
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Key points

 

	Ample evidence now exists that climate change conditions are contributing to the abundance, distribution, exposure, and impacts of plastic in the environment.

	Investigations into the ecotoxicity of plastic pollution under climate change are still in their infancy, but studies have already demonstrated interactive effects on terrestrial, freshwater and marine biota and ecosystems, suggesting that these become stronger at higher trophic levels.

	While large, long-lived aquatic organisms high in the food chain may be among the most vulnerable species to intensifying plastic pollution under climate change, thereby representing promising bioindicators of the impacts of both stressors, species lower in the food web appear much less sensitive to both stressors and many even exhibit positive responses.

	Impacts of climate–plastic interactions within terrestrial ecosystems are typically more complex and harder to predict than those in aquatic ecosystems, with evidence ranging from antagonistic to additive and synergistic effects.

	The integration of micro- and nanoplastic pollution with climate stressors offers a way to steer, coordinate and prioritize research and monitoring, along with policy and action.








Introduction

Anthropogenic climate change and plastic pollution constitute major and growing global threats, and both are novel stressors that first arose in the 20th century due to the consumption of fossil fuels (Figure 1). The former is already affecting every region of the world, with consequences that include rising temperatures, intense droughts, wildfires, rising sea levels, melting polar ice and catastrophic storms that are causing widespread ecological and socioeconomic harm and impacting human health (4, 5). Plastic pollution constitutes highly persistent waste that is accumulating rapidly in both managed systems and the natural environment, with ecological impacts that can span multiple levels of biological organization—from genes to ecosystems (6, 7). Although both stressors have traditionally been treated as two distinct issues and, at times, have vied for public and policy attention (8, 9), there is growing recognition that they are in fact closely interlinked, with respect to their ultimate origin, increasing threat level, and the potential for (non-additive) synergistic impacts to arise in combination. The magnitude of plastic production, use, and disposal is such that it is considered, alongside the climate crisis, an exemplar of the Anthropocene, with the potential to breach the “planetary boundaries” that define the safe operating space for humanity (10).
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Figure 1 | Comparison of global mean temperature [orange (1)], carbon dioxide emissions [blue (2)] and plastic production [turquoise (3)].

To date, research, media, and policy discussions on the relationship between these stressors have primarily focused on how plastics contribute to climate change (11–13): over 98% of plastics are made from chemicals sourced from fossil fuels (coal, oil and natural gas) (14), with current manufacturing accounting for 12% of global oil consumption (15). Moreover, greenhouse gases (GHGs) are emitted at every stage of the plastic life cycle, from the extraction and transportation of fossil fuel feedstocks through production to end-of-life processes (16). In 2019, GHG emissions across the plastics life cycle were estimated to be 1.8 gigatons (Gt) of carbon dioxide (CO2) equivalents—approximately 3.7% of global GHG emissions and higher than the total net emissions of the majority of the individual countries (17). The contribution of pre-production phases to plastics’ total carbon footprint includes emissions associated with land clearance, release of methane during gas extraction, and transportation of feedstocks to production facilities. The greatest fraction of GHG emissions (approximately 90%) comes from energy-intensive production processes such as cracking, which breaks down saturated hydrocarbons into smaller, often unsaturated ones that are made into plastic resins. The carbon footprint associated with plastic manufacturing has doubled since 1995 (18). End-of-life processes account for the remaining 10% of plastics’ GHG emissions (16). Incineration is considered to have the greatest climate impact, accounting for approximately 70% of all end-of-life GHG emissions, followed by recycling and landfill (16). Of the plastics tested, polyethylene is the highest emitter of GHGs, methane and ethylene, during degradation and weathering processes, in addition to being the most produced and discarded synthetic polymer globally (19). Investigations into the direct radiative effects of airborne microplastics have also begun (20). Other types of atmospheric aerosols, such as mineral dust and sulfates, scatter radiation and thus exert a cooling effect, whereas black carbon absorbs radiation and warms the atmosphere. Initial calculations, based on pure (i.e., non-colored) fragments and fibers and a global mean concentration of one microplastic particle per cubic meter, revealed that the influence of airborne microplastics on the global climate is currently small and that a cooling effect dominates. However, this will be strongly dependent upon the geographical and vertical distribution of microplastics in the atmosphere, which is currently not well understood (20). Further uncertainties due to the current lack of data include the influence of microplastic–cloud interactions and the wavelength-dependent refractive index, which depend on properties such as composition and color resulting from pigments and other additives that are bound to the polymer, along with organic coatings that can accumulate in the environment. The current global mean concentration of microplastics in the atmosphere is low, but given projections of a doubling of plastic waste over the coming decades, their abundance and impact on Earth’s climate system will continue to increase. Indeed, microplastics may already be influencing local/regional climate in urban environments, where concentrations are in the order of hundreds to thousands of microplastic particles per cubic meter (21, 22).

How climate change contributes to plastic pollution and ecological hazards, by exacerbating its abundance, distribution, exposure, and impacts has received less attention. Nevertheless, this is not only a growing area of research, but it is also subject to international negotiations advocating for integrated approaches that recognize the relationship between plastic production and climate change, highlighting the necessity of comprehensive global action and policies to mitigate their combined impacts (23). Here we review the current evidence and identify key knowledge gaps that will need to be addressed on a future Earth that will be both warmer and more polluted.





About plastics

Plastics are complex, highly heterogeneous, synthetic or semi-synthetic materials comprising a carbon-based polymer backbone composed of hundreds or thousands of monomers that are linked by strong covalent bonds. They are usually mixed with a wide range of additives to introduce color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance (24). However, many of these additives are highly toxic and include carcinogens, neurotoxicants and endocrine disruptors. The unique properties of plastics include a high strength-to-weight ratio, high moldability, impermeability to liquids, and affordability, making it versatile, durable and the signature material of the modern age (25). Its ability to substitute for other materials (e.g., glass, wood, metal, and natural fibers) has supported significant advances in construction, vehicle parts, electronics, aerospace, and medicine, and thus plastics are both ubiquitous and essential for society, the economy and our everyday lives. In fact, the benefits of plastics, such as lightweighting and reducing food spoilage through product packaging, play a vital part in reducing GHG emissions and thus mitigating climate change (26, 27).




Production

Annual plastic production volume has grown from under 2 million tons (Mt) in 1950, when large-scale manufacturing began, to over 400 Mt in 2023 (3). Emerging economies have largely driven the significant growth in recent global plastic production: more than half of all plastics ever produced (equating to 8.3 billion tons) have been made since 2002 (28). Single-use plastics currently account for 35% of current plastic production and are the most rapidly growing manufacturing sector (29). The versatility of plastics stems from the vast array of polymers that can be produced, with polypropylene (16%), fibers (e.g., polyester and nylon; 13%), high-density polyethylene (12%), and low-density polyethylene (12%) predominating (30). Demand continues to accelerate with production predicted to triple to 1,231 Mt by 2060 (31).





Disposal and recycling inefficiencies

Plastic disposal strategies include controlled and uncontrolled landfilling, open burning, thermal conversion, and exporting from high- to low-income countries that often have poor management systems. The three traditional strategies to reduce, reuse, and recycle for waste management programs have proven highly effective for glass, paper and aluminum, but have largely failed for plastics. Aluminum, container glass, and paper achieve global recycling rates of approximately 76%, 68% and 32%, respectively. While the former two are infinitely recyclable without loss of quality, paper can be recycled 5 to 7 times and for all three materials, less energy is needed to recycle a product versus creating one de novo. Plastics, however, cannot be recycled repeatedly as they quickly degrade in quality, and in many cases recycling is more costly and energy-intensive than creating them from raw materials. These challenges contribute to recycling rates as low as 9%, which, in combination with the rapid growth in production, results in an estimated 22 Mt of plastic waste (the majority of which has a short life span or is single-use) entering our environment each year. Due to their longevity, plastics accumulate, adding to the 6 billion tons of plastic pollution that have accumulated in our soils, surface waters, biota, and atmosphere since 1950 (28), and in addition it is often transformed from large macroparticles into progressively smaller particles and breakdown products that are more mobile and potentially much more biologically harmful.





Transport, weathering and accumulation of plastics in the natural environment

Plastic pollution from this overspill can originate at sites where litter is directly deposited, such as roadsides, beaches, oceans, riverbanks, and urban estuaries. Theoretically, this type of pollution is reversible as it can be physically removed through local cleanup actions and littering can be reduced through public campaigns and improved waste collection infrastructure. Visible plastic waste at landfill sites can also be curtailed by improving site management to protect the environment (e.g., by dumping at high depths). However, in the absence of removal, plastic waste becomes a poorly reversible pollutant because rather than readily decomposing, it undergoes a slow process of environmental weathering that causes fragmentation into macro-, micro-, and nanoplastic particles. This creates new and potentially more harmful forms of pollution that can interact with other environmental stressors, including climate change.

Plastics are weathered through abiotic (physiochemical) and biotic (biofouling) mechanisms, both of which can be accelerated by warming, microbial metabolism, and mechanical degradation (e.g., abrasion during storm events and runoff, and transportation through terrestrial and aquatic ecosystems) (6). The long and highly uncertain half-lives of plastic pollution in the environment depend strongly on its properties (e.g., polymer chemistry, surface area/volume ratio, and the presence of stabilizers) and environmental conditions (32, 33). Physical weathering changes bulk structure via cracking, embrittlement, and flaking, while chemical degradation induces bond cleavage by the hydrolysis and oxidation of long polymer chains to form lower molecular weight polymer fragments and polar functional groups (e.g., carboxyl and carbonyl groups) (34–36), which decreases surface hydrophobicity (37). These changes, together with mineralization by microbes (38, 39), increase susceptibility to further iterations of mechanical fragmentation (32). The relative increase in surface area during fragmentation facilitates (i) the leaching of the chemical additives incorporated during plastic production (32), in addition to chemical by-products of plastic degradation (40) and (ii) the adherence of potentially harmful microbes (41) and environmental contaminants such as metals (42), pesticides, and other persistent organic pollutants, including “forever chemicals” of concern such as polyfluorinated alkyl substances (PFAS) (43, 44).





Macro-, micro- and nanoplastics

Fragmentation of plastics occurs when a product is being used, for example in synthetic textiles, and vehicle tires (45), during mechanical recycling (46), and as described above, while degrading following disposal. Macroplastic debris refers to plastic items larger than 5 mm, and their fragmentation can generate millions of smaller (secondary) microplastic fragments, fibers, films, foams, and beads (1 μm to 5 mm), which in turn degrade into nanoplastics (<1 μm) (47). Since the majority of micro- and nanoplastics stem from the degradation of a wide variety of larger plastics, they have many different morphologies and compositions that include an array of polymers and additives (48). In contrast to these derivative forms, primary microplastics (MPs) and nanoplastics are particles that are intentionally manufactured to be small from the outset (e.g., abrasives, cosmetic exfoliants, synthetic textiles, liquid detergents, and air-blasting media). Small-particle plastic pollution represents a ubiquitous and often persistent suite of chemicals and morphologies that is invisible to the human eye, but which can account for contamination of and harm to aquatic (freshwater, estuarine, and marine), terrestrial (soil), and atmospheric environments at local-to-global scales (49, 50). The global leakage of MPs into the environment in 2019 was estimated to be 2.7 Mt (30). Major sources included road transport (tire abrasion 0.7 Mt; brake wear: 0.1 Mt; eroded road markings: 0.2 Mt), dust from the abrasion of shoe soles, paint wear, construction and demolition activities, household textiles (0.8 Mt), and wastewater sludge (0.8 Mt). Plastics are now so prevalent in the environment that they are considered an integral, albeit unnatural, component of the Earth’s carbon cycle (33). The small size and often low density of MPs make them vulnerable to mobilization from soil surfaces (51) and aquatic ecosystems, after which they can then be easily carried for considerable distances by ocean currents or entrained into wind- or sea spray (52, 53). This interconnected transportation and transformation via terrestrial, aquatic, and atmospheric systems echoes the natural biogeochemical cycles of other elements and compounds. Studies have demonstrated the release of MPs from rivers into the marine environment (54, 55) and back onto land, once aerosolized through wind and wave action (56), highlighting the cumulative role of historic plastic sources in the atmosphere (57).





Potential impacts of global plastic pollution

Currently, the biotic hazards, risks, and impacts of MPs are relatively poorly understood, partly due to their heterogeneous and complex composition, combined with the host of potential direct and indirect impact pathways through the food web. Toxicity can arise from the physical (e.g., particle size and shape) and chemical properties of the polymer, leaching of chemicals from the plastic matrix (e.g., monomers, plasticizers, flame retardants, and UV stabilizers), the sorbing of environmental toxins, and varying degrees of weathering (32, 58). Gauging the bioavailability and impact of MPs is hindered by a lack of standardized methods for quantifying exposure concentrations and debated vector effects (59, 60), and the fact that ecotoxicological experimental studies tend to use high concentrations of laboratory-grade pristine, homogeneous particles of a pre-determined size, rather than the highly diverse, naturally weathered micro- and nanoplastic debris encountered in the environment.

Recent studies have unearthed a growing range of microplastic impacts, from altered soil and plant ecology on land (61–64) through to modified nutrient cycles in freshwater and marine ecosystems (65–67). Direct impacts via the ingestion of MPs by biota can lead to physical injury and compromised vital rates, including impaired physiology, feeding, growth, reproduction, and oxygen consumption (68, 69). The impacts then become increasingly indirect following the trophic transfer of microplastics and associated chemical contaminants along aquatic (70) and terrestrial (71) food chains. These impacts range from the actual physical transfer of pollutants (e.g., biomagnification) to more subtle effects such as reduced prey availability or habitat loss (72, 73).

As with climate change, a major concern about plastic pollutants is that their legacy effects may be difficult to reverse, even long after any direct toxic effects of the stressor itself have been removed from the system (32, 74). Perturbations can take a long time to play out and our ability to predict them is inversely related to the complexity of the system, in terms of both drivers and biotic responses (75). Direct effects on individual health are typically the easiest to observe and predict. However, the biggest knowledge gaps remain at larger scales and higher organizational levels, where our ability to audit and predict the full spectrum of plastic–climate interactions is still in its infancy.

In terms of the wider environmental impacts, the “global toxicity debt”, whereby plastics in the environment become more toxic over time due to fragmentation and chemical leaching, represents a potentially significant but still largely unquantified threat to ecosystem health (76).






Impact of climate change on the generation and distribution of plastic pollution

Similar to plastic pollution, climate change is a complex phenomenon that operates across multiple spatial and temporal scales, via a combination of pulsed extreme events (e.g., wildfires, droughts, floods, and storms) overlain on more gradual progressive changes (e.g., global warming and ocean acidification). Its impact also spans all levels of chemical and biological organization, from molecules to ecosystems and ultimately the entire global biosphere, with significant scope for interactions with plastic pollution, both in terms of the latter’s generation and distribution, but also in terms of modulating its biological impact (Figure 2), as discussed in the following sections.

[image: 3D plot and three linear graphs depicting the dimensions (i.e. biocomplexity, time, and space) across which climate change and plastic pollution operate. The 3D plot uses shading to show how these dimensions commonly co-vary. The linear plots illustrate the often strong correlation between the three dimensions. Triangles denote two exemplars (global sea-ice melting and local wildfires), with a legend explaining their implications.]
Figure 2 | Schematic of the three dimensions across which climate change and plastic pollution operate. An illustrative figure showing the general pattern of how spatial and temporal scaling and organizational complexity commonly co-vary in most studies to date. These tend to be small and simple, with far fewer that capture the relevant scales and levels of biocomplexity in the field. These three dimensions (i.e., space, time and biological organization) are often strongly correlated (as shown by the exemplars denoted by the triangle symbols), although exceptions can potentially arise under certain conditions (e.g., the localized but long-term impacts of bioaccumulation on long-lived sedentary organisms in urban hotspots).

Increased temperature, UV intensity, and humidity in a warming climate will intensify weathering by accelerating polymer degradation via oxidation, photodegradation, and hydrolysis (77–79), which enhance embrittlement and surface cracking, accelerating fragmentation and MP release (80, 81). A 10°C rise in temperature could double plastic degradation rates (82), with humidity and UV exposure further accelerating polymer degradation (82–84). Increased irradiation can accelerate the leaching of hazardous products (85), while warming can enhance the sorption and potential mobilization of contaminants into/from plastics (86–92). These interactions are often scale-dependent, and commonly interlinked with the level at which biological impacts are manifested: at larger temporal and spatial scales there is often a corresponding increase in biocomplexity, with larger-scale drivers and responses coming increasingly into play as we move from individual organisms to entire ecosystems (93) (Figure 2).

Within terrestrial habitats and ecosystems, at local to regional scales, droughts and wildfires are widely predicted to increase in frequency, duration, and intensity under climate change (94, 95). These extreme events have the potential to release large amounts of polymeric materials and toxicants from urban areas (96), many of which are also situated on floodplains. The latter ecotones are important terrestrial–aquatic conduits that ultimately connect with the global ocean, and MPs will be transformed by and interact with a wide range of biota and abiotic variables as they move across space and time and through the food web.

At the other extreme of the hydrological gradient associated with climate change, storms and floods operate at a similar scale to wildfires and have the potential to generate and mobilize plastic pollution via aquatic ecosystems. The rate of input and fragmentation of plastic debris from terrestrial and freshwater systems into coastal and oceanic regions, and vice versa, can be dramatically amplified by extreme storm events (97–99). For example, beach sediment concentrations in Hong Kong increased nearly fortyfold after a typhoon (100), and inshore freshwater (55, 101–103) has also exhibited marked increases following heavy rainfall (55, 102).

Flooding associated with extreme weather events and longer-term sea-level rise can (re)mobilize plastic debris trapped in coastal sediments (29, 104–109). The majority of discarded plastics end up in landfills and open dumps (110), which are especially susceptible to flooding and erosion as they are commonly positioned on low-value, low-lying flood or coastal plains close to urban centers (111). A study in the United Kingdom predicted that the erosion of just one waste cell could release up to 3,860 tons of plastics into the Thames estuary (111). The (re)mobilization of MPs is therefore likely to be especially prevalent in populous, low-lying regions dominated by floodplains (112, 113): for instance, in a recent study, Bangladesh was found to have the highest (>40 times) increase in plastic mobilization during floods (113). Novel plastic-rock complexes, which are thought to have been generated following a major flood in China (114), were identified as hotspots for further microplastic generation, with rates 4−5 orders of magnitude higher than those in landfills (115).

Moving further out to sea and increasing in scale over time and space, persistently stronger winds and changes in ocean currents and circulation patterns in a warming atmosphere (116, 117) will affect the abundance, transport, and redistribution of microplastic particles (118). High wind speeds and stronger waves increase the vertical mixing of plastic debris within the upper water column (52, 119), while previously settled debris in coastal sediments may be remobilized in the pelagic zone (120). Correlations between wind speed and the abundance of coastal MPs have been reported recently at local to regional scales (121), while surface circulation and field data have revealed the transfer of debris at oceanic scales (122).

In the global ocean, long-term sea-ice formation scavenges and concentrates man-made particulates from the water column (123). This creates a significant historic microplastic sink (124, 125), which could ultimately switch to becoming a major source as the ice melts due to global warming (126–129), although the scale of these potential future inputs is still unknown (105).

There is clearly scope for complex feedback loops to emerge between the biotic and abiotic drivers and responses to these stressors: for instance, suspended plastic particles in the global ocean, through interactions with phytoplankton and microbes, could have further potential impacts on climate by compromising carbon sequestration from the atmosphere (130), with some evidence suggesting that materials leached from plastic particles can indeed impair the photosynthetic efficiency of microalgal species (131, 132). Interactions with microbes in the lipid-rich sea surface layer could modify CO2 uptake in the ocean (133) and change the rate of carbon export to the deep sea as a consequence of more buoyant fish-produced fecal pellets containing plastic particles (134). Changes in both surface and deep-water ocean circulation predicted under future climate change could therefore have far-reaching implications for plastic pollution and how it interacts with biota on large scales in time and space. Given that plastic pollution impacts are concentration-dependent, it is unlikely that the full scope of potential impacts is already manifesting at current levels, but rather it is probable that these impacts are concentrated in hotspots, with the potential to exceed thresholds more widely in the future under business-as-usual scenarios.





Climate–plastic interactive effects

We now know that climate change stressors, individually and in combination, can have profound implications for (and feedback with) biological systems. The last 20 years have focused particularly on how warming alters individual metabolism, which ultimately sets the pace for life and drives biological processes from the molecular to the ecosystem levels of organization. A large body of metabolic theory, underpinned by growing empirical and experimental evidence, has identified temperature as a master variable that sets the pace of life, and this is now relatively well understood (75, 135). Traits that make certain types of organisms and systems especially vulnerable to warming appear to align with those associated with plastic pollution, with the strongest effects often seen among larger organisms high in the food web and in aquatic ecosystems (136).

However, how climate change interacts with other stressors, and plastics in particular, is less well understood. Nevertheless, there is growing evidence that such interactions will probably be commonplace and rarely simply additive. Antagonistic or synergistic effects, which are less or more than the sum of their parts, respectively, appear to be the rule rather than the exception (137). In the case of interactions with plastics, climate change may affect their bioaccumulation and (eco)toxicity to biota due to weathering, leaching, the emission of transformation products and the provision of novel substrates. The impacts of micro- and nanoplastics in the context of climate change has focused on lower organizational levels (individuals and populations) versus multispecies systems (communities, food webs, and ecosystems) and under laboratory rather than field conditions (138). However, as with the physical and chemical interconnections between climate change and plastic pollution, biotic impacts will also be strongly dependent on temporal and spatial scales and will differ between aquatic and terrestrial systems.




Combined impacts of climate change and plastic pollution on terrestrial and aquatic ecosystems




Agricultural systems and crop yield

In agricultural systems, heat stress (139) and microplastic pollution from mulch films can impair nitrogen cycling and reduce crop yields (140). The combination of heatwaves and MPs was found to reduce rice production and quality and increase leaching of MPs in soil, causing impaired nitrogen metabolism (141). In another study, the combined effects of elevated CO2 and plastic pollution were found to inhibit the nutrient uptake of rice (142). In a laboratory study involving soil inoculated with different fungal strains, warming combined with the addition of plastic microfibers was found to decrease the percentage of water-stable aggregates and eliminate the positive effects of rising temperature in 80% and 60% of strains respectively (143). Another study suggested that although MPs can affect maize health, soil quality, and ecosystem multifunctionality, these effects are not necessarily exacerbated by warming (144). Moreover, plastic microfibers were not found to amplify the negative effects of drought on the productivity of natural plant communities in temperate grassland ecosystems (145), the above-ground biomass of Allium cepa (146), or soil ecosystem functions (147). There may therefore be a level of contingency linked to crop type—possibly linked to underlying species-specific thermal performance curves—that merits further investigation.





Freshwater ecosystems

The interactive effects of MPs and other global warming factors have the potential to be especially potent in freshwater, an ecosystem that is already particularly vulnerable to the individual effects of both climate change and pollution (135, 148). A recent study at the base of the food web revealed that tire-derived leachate and warmer temperatures, both separately and in combination, enhanced the growth of duckweed and microbes in its microbiome but at the same time disrupted the underlying plant–microbiome mutualism (149). A comprehensive study of the freshwater alga Scenedesmus obliquus used full-factorial screening, with multiple concentrations of nanoplastics, CO2, temperature and light intensity to evaluate 2000+ combinations across current, predicted future, and extreme conditions (150): concentration-dependent inhibition of growth was consistent in the presence of nanoparticles but this was attenuated by elevated CO2 and warmer temperatures. With combined exposure to global warming events and microplastic pollution on carbon and nitrogen storage of the marine diatom, Phaeodactylum tricornutum revealed enhanced growth and increased rates of nitrogen uptake (151): metabolomics and transcriptomic analyses of this model species revealed that MPs and warming mainly promoted fatty acid metabolism, the urea cycle, glutamine and glutamate production, and the tricarboxylic acid cycle due to increased 2-oxoglutarate levels.

At the next trophic level, keystone primary consumers that shape the “green pathways” in freshwater food webs, such as the zooplankter Daphnia magna, manifested exacerbated toxicity following exposure to microplastic pollution under thermal stress (152–154). The responses of this model species included increased mortality, reduced fecundity and reduced population growth rates, and these impacts generally increased with temperature (152, 154). Another study showed how warming impacts can switch from masking (antagonistic) effects to amplification as plastic concentrations rise (155). Others found limited or no thermal impacts on microplastic toxicity in D. magna (156–158). Within the detrital “brown pathways” of the food web warming can alter the effect of MPs on the metabolic rate of benthic invertebrate detritivores (159). Other studies on primary consumers at the base of the food web (such as deposit-feeding midge larvae and filter-feeding mussels) reported that climatic stressors (e.g., elevated temperatures and salination) (160, 161) can interact antagonistically with MPs.

Given the potential for both stressors to have stronger effects on larger organisms, we might expect to see more intense effects higher in the food web. Indeed, the increased toxicity of nano- and MPs at warmer temperatures was recently reported in freshwater fishes (162–164). Synergistic responses between nanoplastics and temperature can increase toxicity via histopathological changes and DNA damage (162), alter circadian rhythm, and cause brain damage (163). In Nile tilapia, a common tropical fish species and a major aquaculture resource for human consumption, warmer temperatures were found to increase both ingestion of and toxicity from MPs (164).





Marine ecosystems

Marine ecosystems share many of the features of freshwater that also shape responses to warming and plastic pollution, including size-structured food webs dominated by ectotherms and the ability of consumers, resources, and pollutants to move across three dimensions (165, 166). There are also some important differences, however, in terms of ecosystem size, the potential for thermal inertia, pollutant dilution, and nutrient limitation, all of which are typically far more pronounced in the marine realm (93). Large-scale oceanic circulation patterns, along with the greater size and longevity of organisms at the top of the food web (typically several orders of magnitude greater than in freshwater), affect sensitivity to climate change and plastic pollution. Even within marine ecosystems the biotic, chemical, and physical environments differ markedly among habitat types and across latitudes, with shallow tropical reefs having orders of magnitude more biodiversity and productivity than the deep open ocean. At higher trophic levels, sensitivity to multiple stressors, including MPs combined with warming, can also differ among even closely related organisms within coral reefs (167–171): for instance, increased heterotrophy was seen in some coral species following thermal stress, and subsequent bleaching affected MP ingestion but was not evident in other species (168). Reduced photosynthetic activity in Acropora spp. exposed to microplastic fibers at ambient temperature showed no additional response under warming (169), whereas plastic pollution when combined with ocean warming and acidification led to upregulation of immunity in another coral species (171). Laboratory experiments demonstrated that sea anemones can ingest a range of plastic microfibers (172) and these are retained longer in consumers that have been bleached (a stress response to warming). Higher still in the food web, a recent study found that the survival of coral reef fish declined with exposure to either MPs or dead coral, but there was no evidence of synergistic effects in this case study (138).

At higher latitudes, the exposure of pteropod “sea snails,” which ultimately transport carbon to the interior of the Southern Ocean (173, 174), to nanoplastics compromised their ability to counteract ocean acidification (OA stress), leading to elevated mortality (175). In Northern temperate waters, sea urchins are keystone species in kelp forests (176, 177), echoing their functional significance in tropical coral ecosystems (176), and experiments with the former (Paracentrotus lividus) exposed to decreased pH (178) and increased temperature (179) revealed that MPs aggravate the suppression of growth and development caused by climate stressors. In contrast, microbial taxa (bacteria and algae) species that are lower in the food web appeared to be relatively insensitive to microplastic pollution under OA (178). Our understanding of the full scope of responses of these taxa and their associated plant or animal holobionts is currently limited, but new technologies suggest that they have great potential as bioindicators of multiple stressors (180).

Filter-feeding marine mussels were found to be very effective at concentrating particulates extracted from the water column, with these intermediate consumers providing a gateway into the wider food web and acting as another form of ecosystem engineer (181). The combination of MPs and OA was found to significantly inhibit their digestive enzymes (182), with polystyrene nanospheres impairing digestion (183), metabolic rate, and immune competence under hypoxia (184).

At higher trophic levels, MP-induced mortality among gobies quadrupled with a rise of just 5°C in water temperature (185). Microplastic levels in predatory Atlantic cod, which sit above smaller fishes such as gobies in the food web, reflected a shift in diet from fish to benthic invertebrates under differing levels of hypoxia: the proportion of cod with MPs in their digestive tract more than doubled when switching from feeding on the latter to the former, suggesting a potential biomagnification pathway mediated by climate change and plastic pollution (186).

Above the food web level of organization, the functioning of estuarine and marine ecosystems, which support significant cycling of carbon, nitrogen, and phosphorus (187–191), can be sensitive to the interactive effects of plastic pollution and climate change. For instance, high concentrations of plastic pollution were found to slow decomposition rates of coastal kelp and eelgrass detritus, whereas the opposite was observed at higher seawater temperatures (192). Decomposition rates in the presence of ocean warming, when combined with plastic pollution, did not differ from control conditions, i.e., both had strong individual effects, but masking occurred in combination.





Impact summary

Although there is still a shortage of studies quantifying the interactive impacts of climate change and microplastic pollution that span both spatiotemporal scales and organizational levels, some broad patterns appear to be emerging. For instance, certain traits of species and ecosystem types have the potential to experience exacerbated impacts when both stressors occur together, especially among large, long-lived organisms at the top of (aquatic) food webs. The metabolic constraints, together with the capacity for bioconcentration, bioaccumulation, and biomagnification of toxins (and of associated compounds that adsorb to particulate surfaces), as well as the strong correlation between body size and trophic status, and the prevalence of top-down control in many aquatic food webs, suggest that apex predators could suffer the most from the joint effects of these stressors. These species are also the most sensitive to extreme events, in addition to the more incremental effects of global warming. Thus, again, there is good reason to expect a convergence of impacts. In aquatic systems in general, and especially in the pelagic zone, food webs are largely structured based on gape-limitation constraints on the size of particles (or prey) ingested by consumers (93, 166)—so MPs and smaller particles have the potential to enter via multiple direct and indirect pathways. Some filter-feeding species, such as bivalves, are very effective “bioconcentrators” at intermediate trophic levels and act as conduits for pollutant transfer between pelagic and benthic habitats. Many bivalves, similar to top predators, are also often keystone species or ecosystem engineers that shape species interactions and habitats in which they operate, so any impairment to their functional roles has the potential to ripple through the wider food web. Species of global conservation concern tend to be even higher up the food chain and have a longer lifespan than either invertebrates or fish (e.g., Orcinus orca and other marine mammals), and these may be among the most vulnerable species on the planet to intensifying plastic pollution and climate change. The combination of both strong response and effect traits indicates that these species are likely to be especially promising bioindicators of the impact of both stressors. In contrast, species lower in the food web appear much less sensitive to these stressors and some even exhibit positive responses (e.g., via elevated nutrient turnover and increased surface areas favoring microbial biofilm growth, or via release from top-down control by larger consumers).

In terms of broader ecosystem-level processes driven by more basal species, such as microbial primary productivity and decomposition rates, there also appears to be some scope for masking to occur, with warming accelerating overall vital rates via elevated metabolism, but with plastic pollution exerting a retarding effect. The underlying impacts of plastic pollution may be obscured here, such that net effects may be antagonistic to those driven by elevated temperatures. This requires further study, but recent meta-analyses have suggested that warming can indeed mask the effects of other local stressors (137).

The majority of ecological concerns have focused on aquatic systems because this is where these plastics were first detected as pollutants. Having already been exposed to repeated breakdown and fragmentation processes prior to reaching aquatic ecosystems, the smallest plastic particles are particularly prevalent, relative to larger fragments, and hence should be more readily available for direct uptake into the food web. In terrestrial ecosystems, the impacts may therefore be markedly different and potentially much weaker (for a given total plastic concentration), although this is where most plastic pollution originates. If particles are less mobile and larger, they should be less prone to direct consumption by multiple consumers within the food web. Since chemical, physical, and microbial processing and in situ transformation are more likely to predominate here, understanding the processes at the base of the food web will likely be especially critical for predicting future impacts.

The combined impacts of pollution and climate change in terrestrial ecosystems are likely to be far more contingent and difficult to predict than in aquatic systems, where simpler sets of ecological rules seem to apply. Terrestrial ecosystems are typically more complex, with a greater range of species interactions and habitat types, and responses are therefore harder to predict, especially since many of those associated with high levels of plastic pollution have also been heavily modified under agriculture or urbanization. A growing body of research has revealed that climate change–plastic interactions range from antagonistic to additive and synergistic, but more work needs to be done to disentangle how, when, where and why these different impacts are manifested and whether there are clear typologies associated with artificial (agricultural and urban) versus natural systems and with the aquatic versus terrestrial realms.







Discussion

Of the numerous anthropogenic pressures that are being exerted on ecosystems globally, plastic pollution and climate change are potentially the most pressing, particularly, when they co-occur as joint stressors. Ample evidence now exists that climate change conditions are contributing to the conversion of plastics into highly persistent and ubiquitous contaminants that are continually accumulating in the natural environment. The potential impacts of this are far-reaching, encompassing geophysical and biological systems. Investigations into the ecotoxicity of plastic pollution under climate change are still in their infancy, but there is a plethora of studies that have already demonstrated interactive effects in terrestrial, freshwater, and marine ecosystems, and they suggest that these become stronger at higher trophic levels.




Solutions

The rational response to confront the potential for poorly reversible negative impacts to occur through the increased generation, mobility and toxicity of MPs is to rapidly and meaningfully reduce the emissions of plastic pollution into the environment. The efforts required to achieve this are extraordinary and require significant societal, economic, and commercial shifts (193). Therefore, it is reassuring that the consensus is that this is a largely avoidable environmental problem, insofar as the benefits of plastics to the environment and society can be retained without the need for end-of-life plastics to accumulate in the environment (194). This requires an international and coordinated approach, encompassing the manufacturing industry, sectors (including consumers) using plastics, waste management services, environmental organizations, activists, regulatory authorities, governments, world leaders, investors, and the research community in both plastics and the environment (Figure 3). The world is already responding on an impressive scale, with examples, including grassroots action (195), globally active charities, for example the Ellen MacArthur Foundation (196), national-level product bans (197), initiatives to support the management of hazardous plastic waste (198) and public–private partnerships for waste management, including the Alliance to End Plastic Waste. However, the biggest achievement and greatest hope for success would be to establish an international, legally binding Global Plastics Treaty to end plastic pollution by transforming the way it is sourced, produced, used, and disposed of (23). Unfortunately, the latest round of negotiations in Geneva in August 2025 failed to produce the Treaty, as deep disagreements, particularly over whether to cap plastic production and regulate toxic additives, led to a breakdown of consensus despite the presentation of two draft texts. Negotiations were adjourned, to be resumed at an undetermined future date (199).
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Figure 3 | Key stakeholders in the transformation of the way plastics are produced, consumed and disposed of.

Key policies and solutions to achieve systemic change must harness the same enthusiasm that made plastics into a core material of the modern world in the first place. This not only includes the three Rs—reduce, reuse, and recycle—advocated on the first Earth Day in 1970, but also more recent Rs, such as redesign, rethink, and refuse (as in to say “no”), alongside eliminate, innovate, and circulate. These stem from the transition from a linear take-waste-make model to a more circular economy for plastics (Ellen MacArthur Foundation, 200, 201; Figure 4). All these terms call for a reduction or elimination of unnecessary single-use plastics, in addition to setting global limits on the production and consumption of virgin plastics, i.e., the most efficient and cost-effective solutions to microplastic pollution (202). Similar to cleaning up an oil spill, prevention by curtailing plastic production and promoting circulation of products that cannot be eliminated is best, followed by containment before it reaches the environment and finally cleanup of legacy litter and ecological restoration. However, reducing demand for virgin polymers is being challenged by the fossil fuel industry. Oil companies are confronting the clean energy/transportation transition by shifting investment toward petrochemicals to produce more plastics (203).
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Figure 4 | Policies and principles for the transition from a linear to a circular plastic economy.

A recent perspective laid out ways to identify and uproot the deep-seated lock-ins [i.e., “technological, institutional, and behavioral phenomena that collectively hinder transformative change” (13)] designed to sustain the petrochemical industry (13). Priority must also be given to the creation of globally aligned standards for commodity plastics that are practically safe (i.e., eliminating hazardous chemicals), and reusable and recyclable by design, to keep them in the economy and out of the environment. Policies also call for the development and scaling of internationally coordinated strategies and targets for plastic processing, recycling technologies, and waste management. However, transformative shifts must take a multidimensional approach based on robust scientific evidence to evaluate any negative impact they may have on economies, social justice, the environment and human health (204). Waste-to-energy processing, despite reducing plastic waste volumes, increases GHG emissions and may cause human health impacts via toxic emissions, thereby creating social injustice (205, 206). The environmental implications, including the hindering of efforts to tackle climate change, of replacing conventional plastics with alternatives, be they non-plastic materials (26, 27), biodegradable formulations (207), or products made from plastic waste collected from the environment, must be carefully considered alongside possible advantages.

Efforts to contain plastics and cleanup of legacy litter have spawned numerous remediation technologies, ranging from household wastewater filters and laundry balls to large-scale booms, receptacles, and watercraft vehicles (208–210). While these efforts may have value in key hotspots including heavily polluted harbors, and beaches, crucial knowledge gaps remain regarding the state, transport, and fate of plastics (211, 212), along with concerns and challenges. Concerns include environmental consequences during collection and subsequent disposal, equity, and justice; scientific validation; greenwashing; and distraction from efforts to stem the flow of waste at the source (208–210). There is also the danger of more plastics being discarded into the environment if local communities wrongly perceive that cleanup technologies are solutions to remove them. Challenges include deployment location, scalability, efficiency, and associated costs when attempting to combat such a vast and complex problem. These issues have called for standardized, science-based assessment criteria and legislation to monitor the environmental impact and associated costs of these technologies (213) in addition to a framework to help stakeholders choose the most efficient and sustainable cleanup system (214).

Bioremediation, which leverages the biology of naturally occurring organisms to degrade MPs, represents a potentially more sustainable, affordable, and environmentally friendly strategy to help manage plastic pollution in aquatic and terrestrial systems (215–217). Microbes, including several bacteria and fungi, can enzymatically (through hydrolysis, oxidation, and hydroxylation) break down MPs into monomers that can be further metabolized or mineralized into CO2, nitrogen, methane, and water molecules, monomers, dimers, and oligomers (218). Biofilms are also considered potential candidates as they create an environment that protects microorganisms from harsh environmental conditions while promoting plastic degradation (219, 220). In contrast, microalgae-based bioremediation relies on adsorptive actions and physical entanglement (221). Phytoremediation is a plant-based bioremediation strategy, involving the uptake and accumulation of MPs in the tissues of plants such as seagrass and macrophytes (222). Although bioremediation is feasible, significant challenges remain that limit its practical application (223, 224). The main ones are low efficiency (slow pace and often incomplete mineralization), substrate specificity exhibited by microorganisms, optimization of environmental conditions, scalability, potential ecotoxicity, lack of standard methodologies/metrics, and an evolving regulatory landscape. Technological advances such as gene-editing tools (e.g., introducing or enhancing specific enzymes) and synthetic biology (e.g., creating novel organisms specifically tailored to degrade certain types of MPs) continue apace, however, offering potential enhancement in the plastic-degrading capabilities of naturally occurring organisms.





Future research directions

The full scope of the forms and exposure concentrations of small plastic particles that induce harmful effects in aquatic, terrestrial, and atmospheric environments is unknown: nonetheless, these pollutants may have already exceeded impact thresholds in sensitive hotspots. Challenges to our understanding arise from the heterogeneity and chemical complexity of naturally aged MPs and their ability to interact with physical stressors. In addition, an accurate assessment of exposure concentrations is compounded by the continuous fragmentation of plastics in the environment—it is predicted that even if the emission of larger plastic items to the environment were to stop immediately, we would likely still see an increase in the quantity of microplastics as a consequence of the fragmentation of larger items that are already in the environment (225). Since the influence of climate change has the potential to be significant, more realistic exposure scenarios are needed to better understand the threat posed by plastic pollution in the environment owing to the impacts of weathered plastics on biogeochemical cycling and its ecotoxicity (6). Many of the studies identified in this review utilized pristine macro/nanoplastic particles purchased from suppliers. It remains to be seen whether similar results will be generated in carefully designed laboratory and field studies that use real-world particles. A greater understanding of the mechanisms and products of polymer degradation under different climate conditions is needed to detect and ultimately predict environmental hazards. Approaches that can successfully extrapolate from short-term experiments to forecast long-term degradation pathways will be particularly valuable given the longevity of plastics (226). In situ experimental studies and observations carried out over long periods of time could supply modeling tools with the means to project future scenarios of the interactive effects in complex, multi-stressor environments.





Public understanding

Education and awareness of the problems produced by plastic pollution are important steps toward shifting behavior from using and throwing away to reducing, reusing, repurposing, and recycling. Therefore, it is encouraging that the public views plastics to be not only a serious issue for the environment but also for health, despite the risks to humans from MPs having not yet been demonstrated (227, 228). In a survey conducted in Australia to examine beliefs and attitudes, 80% of respondents showed a desire to reduce plastic use, and issues relating to plastics in the oceans and waste production/disposal received the highest mean rating for seriousness out of nine environmental issues (229). Reasons for this sensitivity may relate to several factors. For example, the view that plastic pollution is unequivocally due to human actions, decisions, and behavior (230), and that marine debris is clearly visible in coastal areas and has a measurable negative effect on people’s well-being (231, 232) spurs increasing concern over exposure to plastic-associated chemicals (233). This creates fewer “plastic pollution deniers” compared to “climate change deniers.” Largely missing from the public understanding of plastic pollution are more granular issues such as the effects of a warming climate on the abundance, distribution, exposure, and hazards of plastics in the environment, along with the potential for delayed ecotoxicological effects due to weathering-related degradation. Issues such as those discussed in this review may generate new opportunities by building on the success of mobilizing action on plastics in a way that acts as a gateway to the issue of climate change. However, awareness alone of the magnitude of the problems produced by plastic debris is unlikely to change individual behavior. Firsthand access to the issue is key since from access comes attention, from attention comes engagement and this is what galvanizes society to take an interest in the world. Further encouragement therefore stems from citizen science and outreach activities that are focused on plastic pollution (234) and successful educational initiatives with children (235) who, being the next generation of consumers, will face the long-term consequences of our current actions. Public participation can also collect data for research, one example being the lightweight, low-cost paddle trawl towed behind paddle surfers and designed to collect samples to characterize and quantify MPs in the marine environment (236).






Conclusion

A warming climate has consequences for the abundance, distribution, exposure, hazards, and impacts of plastics in the environment. Further examination of these links will help our understanding of and ability to manage the risks. The integration of micro- and nanoplastic pollution with climate stressors offers a way to steer, coordinate, and prioritize research and monitoring, in addition to policy and action. While comparability of methods is critical, and rigorous examination of the science being published is critical in all fields of research, it is of particular importance in this complex and evolving field because policy around plastic pollution is being developed in tandem. The future will not be free of plastics but going forward, it must become free of further microplastic pollution. The prospect that the plastics we produce, use and discard today could have global-scale, poorly reversible impacts in the future is compelling motivation to take the appropriate action now.
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