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An Editorial on the Frontiers in Science Lead Article

Adapting crops for climate change: regaining lost abiotic stress tolerance
in crops

Key points

- Abiotic stress restricts crop production and will increase with climate
change, impacting negatively on future food security.

- Optimized agronomy, genetic improvement of current germplasm, and
diversification of crops under cultivation will contribute to enhanced
crop production under future adverse environments.

- Development of resistant and high-yielding new crops and varieties may
be achieved by de novo domestication of under-utilized crops, wild
relatives of crops, and ancestral germplasm.

Demands for food production

Global food production is dominated by a few major crops such as maize, wheat, and
rice. Historically, the breeding of these crops has focused primarily on increasing yield
potential and, secondarily, on enhancing biotic and abiotic resistance to help achieve and
protect that potential. Although agricultural outputs have increased in modern times due to
both genetic gain and improvements in agronomy, the current rates of yield improvement
for most crops will almost certainly be insufficient to meet projected future food demands.
Climate change is already having a negative impact on agriculture by creating local
conditions that are suboptimal for current agricultural practice and germplasm. This will
be exacerbated given future projections of global climate change. One study projected that
maize yields could decline by 24% under a high greenhouse gas emission scenario due to
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increases in temperature and shifts in rainfall patterns, among other
factors (1). Step changes in increases in local and global production,
either from germplasm improvement or modified agronomic
practice, are required, but such major improvements have been
implemented infrequently. A notable example of a step change
toward increasing crop yields is the pioneering work of Norman
Borlaug, credited with being the father of the first green revolution.
As part of a whole systems approach, Borlaug introduced dwarfing
genes into modern crops, preventing lodging tendencies and
increasing the harvest index, and thereby allowing much greater
yields driven by higher inputs of nitrogen (2). However, boosting
crop yields by adding large amounts of nitrogen and water, for
example, is not a sustainable approach. In fact, inefficient use
of nitrogen can have serious environmental consequences. While
it is an essential element to enhance plant development and
growth, nitrogen fertilizer that is not taken up by crops but instead
leaks into the ecosystem can lead to negative consequences such
as water pollution, the release of greenhouse gases, and soil
acidification (3).

Furthermore, high-yielding cropping systems may be
particularly susceptible to abiotic and biotic stresses as driven by
changing climatic conditions, leading to variable harvests and,
hence, compromised yield stability. Present and future food
security will depend on improving current crops and cropping
systems toward increased intrinsic yield potential and higher
resistance to environmental stressors. This is particularly relevant
when we need to raise production in naturally low-yielding
environments across the globe or to extend cropping areas where
conditions are currently suboptimal. It requires embracing a wide
variety of novel approaches to crop improvement, including but not
limited to exploiting genetic diversity in breeding programs,
exploitation of under-utilized crops, de novo domestication of
resistant but low-yielding germplasm, and potentially, precision
breeding technologies of gene transformation and genome editing.

Environmental stressors limiting
crop production

In recent years, many abiotic stresses associated with non-
optimal temperature and precipitation patterns during the
growing season have become more widespread and extreme due
to climate change. Suggestions of a future positive “fertilizer” effect
of increasing atmospheric carbon dioxide levels on yield (4) will
most likely be offset by changing influences of temperature and rain
patterns, as shown, for example, for wheat (5), with both ambient
and extreme events having negative impacts on crop metabolism,
development, fertility, and productivity. Furthermore, such abiotic
stressors influence biotic interactions, often enhancing pathogen
abundance, spread, and efficacy. In addition, changing climatic
conditions can have numerous impacts on soil health, including
waterlogging, drying, and affecting soil biodiversity. In many
regions, extreme climate events, such as more frequent and
intense droughts, severely limit productivity, often due to
restricted water availability. Lack of water can be overcome by
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irrigation systems; however, in many cases this process raises soil
salt content, leading to a new, anthropogenically created, soil
salinity stress. Soil salinity has a major negative impact on crop
production and regions affected by salinity stress, specifically due to
irrigation activities, are increasing worldwide (6). While most major
crops have minimal tolerance to saline environments, there are
many salt-tolerant plants, but these are generally not cultivated as
crops due to their limited economic value or lack of desirable
agricultural traits.

Consequently, the yield potentials of most crops are seldom
achieved in most areas of the globe, due to one or more biotic or
abiotic environmental stresses, often made worse by climate change.
This failure to achieve yield potential results in a “yield gap”, that is,
the difference between theoretical achievable yield with a defined
germplasm compared to what is practically achieved by a farmer.
This difference is often substantial, impacting on farmer income
and food security. Furthermore, these yield gaps appear to be
steadily increasing for many crops (7).

Rewilding domesticated crops

Yield and productivity are extremely complex multigenic traits
involving multiple physiological and developmental processes and
are inevitably underpinned by a large number of genes. Interactions
with abiotic stressors are likely to be just as complex. Furthermore,
tolerance and resistance to most stressors are conferred by multiple
mechanisms. Direct engineering of such traits via targeted gene
manipulation is possible in exceptional circumstances, namely
where only a limited number of genes are required to confer
enhanced resistance. In such cases, it is feasible to introduce
genes or alleles from ancestral resistant germplasm in a so-called
“rewilding” approach using targeted or precision breeding. In their
lead article published in Frontiers in Science, Palmgren and Shabala
(8) discuss the rewilding approach by bringing lost genes from wild
ancestors back to domesticated crops in order to increase salt
tolerance or resistance.

More commonly, an approach of selection of improved varieties
by conventional breeding is taken. However, conventional breeding,
which can be slow and complex, will always be limited by the
genetic variation and gene pool size that exists for a crop, although
recent work in wheat suggests that only a fraction of available
diversity in landraces is utilized in the modern breeding pool (9).
Wider crossing with ancestral relatives may provide even further
diversity, including greater tolerance to many unfavorable
conditions (10, 11). Nonetheless, even with increased diversity,
resilience to environmental stressors within the gene pools of
common crop species may still be rather limited.

De novo domestication of crops

A radical alternative approach to adapting crop production to
adverse cultivation conditions would be to diversify our present
food sources and increase the use of some of the many under-
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utilized crops, whose current wide adoption is mainly limited by
low vyields. Such species should be chosen based on their natural
resistance to extreme temperatures, limited water availability, and
increased salinity—environmental phenomena that are already
affecting current agricultural output and are anticipated to
become an even greater threat for future production. The main
challenge would be to improve the yield potential of these plants.
While domestication of most major crops has taken many
thousands of years, this process may be replicated in a targeted
and accelerated approach utilizing our modern knowledge of the
minimal genes required to produce cultivatable crops in a process
termed de novo domestication (8, 12). For this to be successful,
identification of the key traits that enable acceptable yield to be
obtained under cultivation is required. Such traits include harvest
index, size of the harvested component (e.g. grain, fruit, and fiber),
characteristics of seeds to facilitate collection, for example seed
harvestability through lack of shattering, and adaptation to local
environments in terms of photoperiod and thermal temperature
requirements throughout the growing season. Many of the genes or
loci required for domestication are already well known in cultivated
species and artificially engineering these domestication traits in the
stress-resistant wild species, using genome editing or genetic
manipulation, is within the reach of current technology. Farming
will need to adapt to the cultivation of novel crops, requiring
substantial financial investment, and therefore ensuring consumer
acceptance will be paramount to economic viability.

Conclusion

Food security is currently the most pressing challenge for
society and will be solved primarily by agriculture. Historically,
both plant breeding and optimized agronomic practice have
resulted in steady incremental improvements in agricultural
outputs, including greater resistance to abiotic and biotic
stressors. However, meeting the ever-increasing demands for
production while resisting the increasingly extreme impacts of
various stressors—often enhanced by climate change and driven
by the needs to farm in less optimal environments—will require new
and novel technologies, including advanced plant breeding.
Key among such technologies, as outlined by Palmgren and
Shabala (8), are rewilding by reintroducing lost traits and de novo
domestication of wild species with inherent resistance.
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