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Objective: Registering a preoperative 3D model of an organ with its actual 
anatomy viewed from an intraoperative video is a fundamental challenge in 
computer-assisted surgery, especially for surgical augmented reality. To address 
this, we present a benchmark of state-of-the-art deep learning point-cloud 
registration methods, offering a transparent evaluation of their generalizability to 
surgical scenarios and establishing a robust guideline for developing advanced 
non-rigid algorithms.
Methods: We systematically evaluate traditional and deep learning GMM-
based, correspondence-based, correspondence-free, matching-based, and 
liver-specific point cloud registration approaches on two surgical datasets: a 
deformed IRCAD liver set and DePoll dataset. We also propose our complete-
to-partial point cloud registration framework that leverages keypoint extraction, 
overlap estimation, and a Transformer-based architecture, culminating in 
competitive registration results.
Results: Experimental evaluations on deformed IRCAD tests reveal that 
most deep learning methods achieve good registration performances with 
TRE<10 mm, MAE(R) < 4 and MAE(t)<5 mm. On DePoll, however, performance 
drops dramatically due to the large deformations.
Conclusion: In conclusion, deep-learning rigid registration methods remain 
reliable under small deformations and varying partiality but lose accuracy when 
faced with severe non-rigid changes. To overcome this, future work should 
focus on building non-rigid registration architectures that preserve the strengths 
of self-, cross-attention and overlap modules while enhancing correspondence 
estimation to handle large deformations in laparoscopic surgery.
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1 Introduction

Augmented Reality (AR) integrates computer-generated 
images with the real world to enhance the user’s perception. 
In surgery, AR systems overlay patient-specific 3D models (for 
example, organs, tumours, and vessels) directly onto the operative 
view, giving surgeons persistent, intuitive access to preoperative 
imaging information. This can aid intraoperative tasks such as 
tumour localisation, margin assessment, and avoidance of critical 
vasculature, with potential benefits including shorter operative times 
and fewer complications when AR is used effectively (Prasad et al., 
2024). In recent years, AR has been progressively adopted in 
various surgical settings, including neurosurgery, orthopaedics, 
and laparoscopy (Bernhardt et al., 2017). However, challenges 
arise from the dynamic nature of organ tissues, in particular 
in abdominal surgery, patient positioning, pneumoperitoneum 
insufflation, and physiological motion all cause global shifts, while 
direct instrument–tissue interactions produce highly localized 
and often large deformations (Bernhardt et al., 2017). These 
factors can cause the intraoperative images to differ from the 
preoperative images, which capture the anatomy prior to surgery. 
Aligning preoperative models with intraoperative images during 
laparoscopy remains a key focus of research, with many challenges 
still unresolved (Neri et al., 2025a).

Conventional surface-based methods align the preoperative 
model (surface mesh or point cloud) with intraoperative data 
using geometric shape information. This process relies on 
computer vision algorithms to reconstruct the intraoperative 3D 
surface and typically employs techniques like Iterative Closest 
Point (ICP) (Besl and McKay, 1992), along with tracking and 
matching algorithms (Puerto-Souza et al., 2014), to perform 
the registration. However, it faces challenges such as incomplete 
reconstructions due to occlusions and lack of distinctive features, 
further worsened by complex, texture-less, and deformable scenes 
(Marques et al., 2015). To address the limitations of traditional 
surface-based methods, various algorithms are being developed 
incorporating Deep Learning (DL). One approach involves 
hybrid DL methods, which enhance conventional surface-based 
techniques by integrating DL at specific stages, thereby improving 
registration effectiveness and outcomes. For instance, DL can be 
applied to tasks such as image segmentation (Zhang et al., 2022), 
intraoperative surface reconstruction (Luo et al., 2020), or feature 
extraction (Labrunie et al., 2022). Alternatively, fully DL-based 
algorithms, such as end-to-end networks for point cloud registration 
(Huang et al., 2021), have been employed. These networks take two 
point clouds as inputs and generate the transformation required to 
align them (Figure 1).

Recently, a limited number of studies have been published in 
this last category. They can mainly be divided into two classes: 
correspondence-free, which do not require the prediction of one-
to-one point correspondences, and correspondence-based, which 
explicitly predict such correspondences.

A correspondence-free approach is (Guan et al., 2023), 
which introduced the first deep learning-based approach 
for 3D-3D laparoscopic liver registration. The method 
builds on OMNet (Xu et al., 2021) and does not utilise Transformers, 
instead leveraging local and global feature extraction to learn 
overlapping masks from the preoperative 3D model and the 

intraoperative reconstruction. These masks are used to filter 
out non-overlapping regions and standardise the point clouds 
before aligning the overlapping areas. Thus, this method directly 
predicts the final transformation without estimating the point 
correspondences.

LiverMatch (Yang et al., 2023) is a correspondence-based 
method to register complete-to-partial synthetic point clouds of 
liver anatomy. The method consists of a transformer encoder-
decoder network that learns feature descriptors, which are then fed 
to a matching module that predicts point correspondences. The 
promising results suggest that estimating correspondences between 
sets of point cloud descriptors leads to good registration results, even 
in the presence of small deformations.

Dai et al. (2025) introduce a correspondence-based method 
that uses a Transformer encoder–decoder architecture. Unlike 
LiverMatch, which applies the Transformer to encoder features, they 
employ a geometric Transformer (Qin et al., 2023) on decoded 
features and complement it with deep graph matching guided by 
overlap masks to refine correspondence quality.

Finally, Zhang et al. (2024) propose KCR-Net, a correspondence-
based method built on an encoder-only Transformer. KCR-Net 
first extracts keypoint descriptors using a Neighbourhood Feature 
Fusion Module (NFFM) that employs both self- and cross-attention, 
and then estimates keypoint correspondences. Unlike (Yang et al., 
2023) and (Dai et al., 2025), which recover the final transform from 
dense correspondences, KCR-Net computes the transformation just 
from the sparse keypoint matches.

Among these, LiverMatch is the only open-source algorithm.
These approaches are applicable to surgical guidance, since point 

clouds can be extracted from both preoperative images (e.g., CT 
scans) and intraoperative images (e.g., stereo cameras), as shown 
in Figure 1. However, although these point clouds represent the 
same organ geometry, they differ not only due to deformations, 
but also because of varying levels of partiality and noise. For 
instance, the registration to be solved is complete-to-partial; in 
fact, point clouds derived from CTs (obtained from well-established 
segmentation techniques (Isensee et al., 2021)) are complete, noise-
free and dense. In contrast, stereo-camera point clouds are partial, 
capturing only the surface regions visible to the camera (≈30% of the 
organ (Koo et al., 2022)), and typically noisy, even with the latest 3D 
reconstruction methods (Zha et al., 2023).

As presented in (Neri et al., 2025a), various end-to-end 
rigid registration approaches exist, but current evaluations remain 
restricted mainly to partial-to-partial experiments on classical vision 
datasets such as ModelNet40 (Wu et al., 2015), which contains rigid, 
noise-free objects; consequently, little is known about how these 
methods behave under the conditions that characterise surgical 
point clouds. To address this gap, we provide the first systematic 
benchmarking of state-of-the-art registration networks in a surgical 
scenario, assessing their robustness and limitations in synthetic 
intraoperative settings, including complete-to-partial matches, 
noise and soft-tissue deformation. Among the methods compared, 
we introduce a refined correspondence-based registration method 
with an improved overlap-estimation module that yields more 
accurate correspondences and competitive performance against 
current baselines. Although all tested algorithms perform rigid 
registration while the underlying problem is non-rigid, rigid 
alignment is a useful intermediate step: (i) it brings the two 
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FIGURE 1
DL-based point cloud registration methods use organ point clouds extracted from the preoperative model and intraoperative stereo-video as inputs 
and estimate the transformation that aligns the two point clouds, allowing the creation of the AR image for surgical navigation.

clouds into closer correspondence for a subsequent non-rigid 
refinement, and (ii) rigid architectures provide a convenient 
backbone that can be extended to predict dense deformations. 
Because the solution quality depends strongly on the magnitude 
of deformation, our evaluation progresses from small deformations 
across varying levels of partiality to the extreme cases represented in 
the DePoll dataset (Modrzejewski et al., 2019) (large deformations). 
Overall, the benchmark isolates the essential building blocks for 
reliable registration and provides a practical guideline for developing 
new methods in surgical scenarios. 

2 Benchmarking protocol

2.1 Problem formulation

Let X ∈ ℝM×3 be the complete point cloud of the organ of interest 
(from preoperative planning), and let Y ∈ ℝN×3 be a partial point 
cloud of the same organ (e.g., captured using an endoscopic camera), 
where N≪M. We define Xvisible ⊂ X as the subset of points in X
that correspond to the partial cloud Y, so that Xvisible ≈ Y. The 
goal of point cloud registration is to determine the unknown rigid 
transformation, composed of a rotation R ∈ SO(3) and a translation 
t ∈ ℝ3, that aligns X with Y, i.e., we seek a transformation T  such 
that T (Xvisible) = (RXvisible + t) ≈ Y. 

2.2 Competing methods

The following sections present the state-of-the-art open-source 
methods we evaluated to identify the baseline that best generalizes 
to real surgical scenarios. To ensure fair comparisons we selected 
methods according to three criteria: (a) they operate on 3D point 
clouds (rather than multi-modal pipelines that require image-
based tracking or fiducials); (b) their implementations are open-
source and can be adapted to the complete-to-partial evaluation 

setting; and (c) they produce the same output object (a global 
rigid transformation) so that all methods can be assessed with 
the same metrics. Accordingly, the following sections first review 
traditional (non-deep learning) registration techniques and then 
cover deep learning approaches. Because publicly available, deep 
learning complete-to-partial registration methods are scarce (e.g., 
LiverMatch is an exception), we primarily selected partial-to-
partial algorithms. This category is the closest available match 
to our complete-to-partial scenario and can be adapted to our 
benchmark under the constraints above. Table 1 summarizes all the 
selected methods.

2.2.1 Traditional Methods
We classify “Traditional Methods” as those that do not 

rely on deep learning. Among these, we have selected several 
popular approaches, including Iterative Closest Point (ICP) (Besl 
and McKay, 1992), Coherent Point Drift (CPD) (Myronenko 
and Song, 2010), and Gaussian Mixture Models Point Set 
Registration (GMMReg) (Jian and Vemuri, 2011). 

2.2.1.1 ICP
ICP is a widely used rigid registration algorithm that aligns 

two point clouds by iteratively minimizing the distance between 
corresponding points. In each iteration, the algorithm identifies the 
nearest neighbours between the datasets and computes the optimal 
transformation that reduces the alignment error. 

2.2.1.2 CPD
CPD is a probabilistic point cloud registration algorithm 

that treats one point set as centroids of a Gaussian mixture 
model while aligning it to the other point set. It enforces 
smooth motion by assuming nearby points to move coherently, 
which helps maintain local geometric structure during the
transformation. 
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TABLE 1  Summary of the methods compared.

Name Registration type Approach Main components

ICP Rigid Iterative Point-to-Point

DCP Rigid Iterative, Probabilistic 1 GMM

GMMReg Rigid Iterative, Probabilistic 2 GMM

OGMM Rigid GMM-Based Transformers, Overlap Score, 2 GMM

OMNet Rigid Correspondence-Free Overlap Masks, Global Features

Lepard Matching Correspondence-Based Transformers, Repositioning

LiverMatch Matching Correspondence-Based Transformers, Visibility Score

Ours Rigid Correspondence-Based Transformers, Overlap Score

2.2.1.3 GMMReg
GMMReg is a probabilistic framework representing both input 

point sets as Gaussian mixture models. In this formulation, the point 
set registration task is transformed into aligning the two mixtures to 
minimize a statistical discrepancy measure between them. 

2.2.2 Deep learning methods
According to the classification proposed in (Neri et al., 

2025a), we selected deep learning point cloud registration methods 
belonging to different categories such as: correspondence-free, 
GMM-based, correspondence-based and liver-specific. 

2.2.2.1 Correspondence-free, OMNet
We selected OMNet (Xu et al., 2021) to represent 

correspondence-free deep learning methods. Its core concept 
involves using overlapping masks to discard non-overlapping points, 
thereby retaining only the overlapping regions that are most useful 
for estimating the transformation through global feature regression. 
Notably, OMNet inspired the work of Guan et al. (2023), which 
improved OMNet local feature extraction following the RPMNet 
(Yew and Lee, 2020) model. Despite that, Guan et al. (2023) 
closed-source nature led us to opt for testing OMNet instead. 

2.2.2.2 GMM-based, OGMM
OGMM (Mei et al., 2023) introduces an overlap-guided 

probabilistic registration approach that estimates the optimal 
transformation by matching Gaussian Mixture Model parameters. 
Similarly to GMMReg, the method reformulates registration 
by aligning two Gaussian mixtures to minimize statistical 
discrepancies. Additionally, a Transformer-based detection module 
is employed to identify overlapping regions, using the resulting 
overlap scores to guide the GMM representation and alignment of 
the input point clouds. 

2.2.2.3 Correspondence-based, lepard
Lepard (Li and Harada, 2022) is a learning-based method 

for partial point cloud matching in rigid and deformable scenes, 
predicting correspondences that are later registered using ICP or N-
ICP. Its architecture combines a fully convolutional feature extractor 

(KPFCN) with a Transformer employing self- and cross-attention 
to compute a differentiable similarity matrix. A repositioning 
module further refines the relative positions between point clouds, 
enhancing cross-attention and matching effectiveness, which makes 
Lepard one of the leading methods in non-rigid point cloud 
registration. 

2.2.2.4 Liver-specific, liver match
LiverMatch (Yang et al., 2023) stands out as one of the 

few open-source deep-learning approaches designed explicitly for 
surgical laparoscopic registration. It employs an encoder-decoder 
architecture enriched with self- and cross-attention mechanisms to 
extract point features that are then used to compute a similarity 
matrix. This matrix, in combination with a visibility score, is utilized 
to predict correspondences between the two point clouds. Following 
correspondence determination, registration is carried out using ICP. 
To train the network to handle deformations, the authors generated a 
synthetic dataset by applying deformations and cropping techniques 
to 16 livers from the 3D-IRCADb-01 dataset (Soler et al., 2010). 

2.2.2.5 Refined RegTR (ours)
We extend RegTR (Yew and Lee, 2022) with a refined 

overlap-estimation module designed to enhance the accuracy in 
predicting the final transformation (Figure 2). RegTR leverages 
keypoint features, which are fundamental since correspondences 
are determined among these keypoints rather than using all points. 
A KPConv backbone is employed to extract a reduced set of 
keypoints (KX ∈ ℝM′×3, KY ∈ ℝN′×3) and their associated features 
(FKX
∈ ℝM′×D, FKY

∈ ℝN′×D) from the input clouds, which are 
then projected to a lower dimension (256) and enriched with 
sinusoidal positional encoding. These components are fed into a 
transformer cross-encoder, using both self-attention (within each 
cloud) and cross-attention (across clouds), to produce conditioned 
features (CKX

∈ ℝM′×d and CKY
∈ ℝN′×d) that effectively identify 

accurate correspondences and filter outliers, serving a role similar 
to RANSAC in traditional approaches.

The conditioned features are fed into a two-layer MLP to 
predict the transformed keypoint coordinates (K̂X ∈ ℝM′×3 and K̂Y ∈
ℝM′×3).
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FIGURE 2
The network leverages KPConv to extract keypoints and their associated features. These features are further refined using self- and cross-attention 
mechanisms and then passed to the decoder, which predicts overlap scores and the corresponding keypoints. This information is ultimately used to 
estimate the final transformation.

Overlap Module. In parallel with the decoder, overlap scores 
for the two point clouds are predicted. The overlap score, denoted 
as ̂s = [ ̂sKX

, ̂sKY
], represents the probability that a keypoint belongs 

to the overlap region. Unlike (Yew and Lee, 2022), where overlap 
scores are predicted for both point clouds, our method predicts the 
overlap score only for the complete point cloud X. Indeed, since 
the problem we are solving is a complete-to-partial registration, we 
know by definition that the partial point cloud is fully contained 
within the complete one (Xvisible ⊂ X and Y ≈ Xvisible). Consequently, 
every point in Y belongs to the overlap area, and its overlap score 
is 1. Therefore, predicting overlap scores for the partial cloud 
provides no additional information but does introduce an extra 
source of estimator error: imperfect predictions on Y can produce 
false negatives or false positives that harm the overall performance.

To predict which points of the complete model are observed 
in the partial scan, we apply a linear fully-connected layer with an 
elementwise sigmoid activation to produce per-point overlap scores 
as follows (Equation 1):

̂s =
{
{
{

̂sKX
= 1/(1+ e−(CKXw1+b1))

̂sKY
= 1N′ = (1,1,…,1)⊤ ∈ ℝN′×1

(1)

where w1 and b1 are learnable weights and biases parameters and 
CKX

 are the conditioned features. ̂sKY
= 1N′  ensures that all points in 

the partial cloud are part of the overlap region (i.e., overlap score =
1).

Transformation prediction. Finally, the predicted transformed 
keypoint coordinates are concatenated to form correspondence 
pairs. Unlike methods such as Lepard and LiverMatch, which rely 
on similarity matrices and matching losses, RegTR directly predicts 
the transformed coordinates and treats them as correspondences 
for final transform estimation; therefore, it does not construct a 
similarity matrix or depend on correspondence supervision. The 
rigid transformation is estimated by leveraging the correspondences 
and overlap scores and minimizing the weighted sum of squared 
distances between the corresponding points. We solved it using 
a weighted variant (Gojcic et al., 2020) of the Kabsch-Umeyama 
algorithm (Umeyama, 1991).

Losses and Optimization. Our method employs a weighted sum 
of three losses similar to (Yew and Lee, 2022): (i) a registration 

loss that minimizes the error between the predicted transformed 
keypoint positions and their ground truth counterparts, weighted 
by the overlap confidence; (ii) a conditioned feature loss that 
encourages the network to consider geometric properties and to 
distinguish correct correspondences from incorrect ones in the 
context of feature matching; and (iii) an overlap loss designed to 
optimize the overlap scores, which measure the confidence that a 
keypoint from X has a valid correspondence in the overlapping 
region of Y. Early stopping is applied: training terminates if 
the validation loss does not improve for 12 consecutive epochs. 
On an NVIDIA Tesla V100 GPU, the full training run takes 
approximately 5 h. 

2.3 Dataset and pre-processing

We employed two datasets with different deformation 
magnitudes to assess how rigid registration algorithms generalize to 
non-rigid scenarios. First, we generated a customized complete-to-
partial version of the 3D-IRCADb-01 dataset, incorporating small 
random deformations, noise, and varying levels of partiality. To 
further stress-test the algorithms, we also used the DePoll dataset, 
which features large deformations, irregular noise, and severe 
partiality. 

2.3.1 Deformed IRCAD
The original IRCAD dataset (Soler et al., 2010) consists of 3D 

CT scans from 10 women and 10 men, with hepatic tumors present 
in 75% of the cases. The dataset also contains the VTK models 
of each liver. For each VTK, we extracted the point cloud that 
describes its surface and sampled 3,500 points, which provided a 
balance between geometric detail and GPU memory constraints. 
The points were normalized in the range [-1, 1] across all three 
axes, producing 20 different source point clouds. Subsequently, 
inspired by the approaches proposed by Livermatch (Yang et al., 
2023) and (Dai et al., 2025), we generate several corresponding 
partial, deformed targets for each source point cloud. Differently 
from them, our pipeline employs the As-Rigid-As-Possible (ARAP) 
deformation algorithm from Open3D (Sorkine and Alexa, 2007), 
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FIGURE 3
An example of synthetic deformation applied to the complete 
preoperative liver (red), where the right lobe is shifted upward (blue). 
The final intraoperative cloud is then cropped from the deformed 
model (blue).

which lets us deform the liver mesh via user-defined control and 
anchor points (Neri et al., 2025b). Specifically, we randomly choose 
one of the two liver lobes and apply a random translation of up to 
±25 mm along both the x and z-axes. This range, corresponding to 
2.5 cm in real scale, was selected empirically to simulate small yet 
realistic liver deformations (Figure 3); considering that an adult liver 
measures roughly 20 cm in width (Jones J and Walizai, 2009).

To simulate realistic endoscopic views, we place a virtual camera 
aimed at the organ’s visible surface. We sample random camera 
positions in spherical coordinates, constraining polar and azimuthal 
angles to match typical intraoperative ranges. For each point on the 
surface, we compute the dot product between the camera direction 
and the point normal, retaining only 15% of points whose angle to 
the camera is less than 80°(empirically found). Finally, we apply a 
random rigid transformation to the target, with a rotation up to 
45°and a translation in the [-50 mm, 50 mm] range. We add element-
wise Gaussian noise with zero mean and a standard deviation of 0.01 
to each point in every dimension. Regarding seed management, a 
random seed is assigned to each training pair. This seed controls the 
generation of all stochastic parameters, including the selected lobe 
to deform, the magnitude of its displacement, the camera viewpoint, 
the applied rigid transformation, and the noise level.

For the training set, we used 17 livers (i.e., livers numbered 
3 through 20) as source point clouds and generated 560 partial 
target clouds for each, yielding a total of 10,080 pairs. Using the 
same workflow, we created 4 testsets based on the remaining 2 
livers (i.e., liver 1 and 2). Each set includes 50 partial targets 
per source (100 pairs total). The variation arises from the crop 
ratio: 5%, 10%, 15%, or 25%, chosen to mimic different levels of 
intraoperative organ exposure, and from the random deformations 
generated as in training. The selected levels of partiality reflect 
the surgical context, where the algorithm must handle varying 
exposure of the organ to provide AR guidance. In practice, 
surgeons typically expose only about 20%–30% of the organ 
surface during a procedure (Koo et al., 2022; Benincasa et al., 
2008); we therefore included lower partiality levels ( < 20%) 
to stress-test the robustness of the evaluated algorithms under 
particularly challenging visibility conditions. Partiality below 20% 
poses challenges due to insufficient discriminative features in 

the intraoperative point cloud (Benincasa et al., 2008). Although 
surgeons generally expose as much of the organ as possible before 
resection, visibility rarely exceeds 50% of the surface area, as the 
opposite side remains occluded.

Because these datasets are synthetically generated, we retain 
complete ground-truth annotations, including the applied rigid 
transformations, known point correspondences, and overlap scores. 
Finally, to enable the computation of the Target Registration Error 
(TRE), we choose n landmark points on the original (source) mesh 
and identify their exact correspondences on the deformed (target) 
mesh. To ensure these points are not part of the input clouds 
provided to the registration algorithm, we select them from the 
cropped-out regions, applying farthest point sampling.

Code and data to reproduce our deformed IRCAD dataset 
are available at: https://github.com/Alberto-Neri/Laparoscopic_
Organ_Deformation_wARAP. 

2.3.2 DePoll
DePoll (Deformable Porcine Laparoscopic Liver) dataset 

(Modrzejewski et al., 2019) comprises preoperative and 
intraoperative pig liver surface point cloud data under different 
deformation states. Specifically, it includes a preoperative point 
cloud of the pig liver, which is complete and derived from a CT scan. 
Regarding the intraoperative data, there are 13 cases of the same liver 
under various deformation conditions. Each case contains a partial 
point cloud extracted from an intraoperative CT scan and a partial 
point cloud obtained from video reconstruction. Figures 4a–c show 
one representative case, displaying the complete preoperative liver 
point cloud alongside two corresponding intraoperative partial 
reconstructions–one from CT and one from video. To normalize the 
points in the range [-1, 1], we applied min-max normalization using 
the maximum and minimum values of the complete preoperative 
point cloud. The dataset authors obtained the ground truth 
registration using pre- and intraoperative markers and the point 
clouds are provided pre-registered. Moreover, since the data come 
from two different sensors (i.e., CT scan and endoscope), they 
already exhibit noise and density variations. For this reason, the 
only pre-processing we applied was generating a random rigid 
transformation within the range proposed for IRCAD dataset.

2.4 Metrics

To evaluate the rigid registration quality, we compute the mean 
absolute error (MAE (R), MAE ( t)) between the predicted and the 
ground truth values for both the rotation angle and translation. 
All methods directly estimate a rigid transformation, except Lepard 
and LiverMatch, which output point-to-point correspondences. 
For these two, we recover the rigid pose by feeding their 
correspondences into Open3D’s RANSAC-ICP routine, as proposed 
by LiverMatch. We set the max_correspondence_distance parameter 
to 0.05, producing the best alignment results.

We also report the TRE (mm) for each experiment. For 
the IRCAD dataset, we use the landmark coordinates identified 
during preprocessing (see Section 2.3.1), while for DePoll we rely 
on the preoperative and intraoperative markers provided by the 
dataset authors. 
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FIGURE 4
(a) The complete preoperative pig liver point cloud with segmented lobes. (b) The intraoperative video reconstructed point cloud (partial), relative to 
case 1. (c) The intraoperative CT scan point cloud (partial), relative to case 1. (d) Point cloud (a) and (b) registered with the ground truth rigid 
transformation. The dark red stars represent the surface marker on the preoperative anatomy; the blue stars represent the same surface markers on the 
intraoperative anatomy (after non-rigid deformations). The black arrows show the displacements between the corresponding markers, representing 
the effect of non-rigid deformation. The GT TRE is computed as the sum of the distances indicated by the black arrows. For simplicity, the figure shows 
only surface markers and the two clouds with a lower resolution.

2.5 Experimental setup

ICP was run with an identity initialization, a convergence 
threshold of 0.001, and a maximum of 30 iterations. CPD was 
configured with the same threshold and up to 50 iterations. For 
GMMReg, the number of Gaussian components was set equal to the 
number of points in the target cloud.

All deep learning models were trained on our deformed 
IRCAD dataset (15% crop ratio), with minor code adjustments 
and hyperparameter tuning to ensure optimal convergence. For 
OMNet, which expects two partial point cloud of equal size, we 
padded the smaller target clouds to preserve its input structure 
and replaced all BatchNorm layers with GroupNorm to stabilize 
training with our small batch sizes. We also substituted the authors’ 
overlap score estimation with our ground-truth overlap scores, 
which are better suited to deformed data. Each of these adjustments 
led to significantly improved convergence. Similar modifications 
were applied to OGMM, yielding performance gains but still less 
optimal convergence; in this case, we opted not to introduce 
further changes to respect the original design. Finally, we improved 
Lepard and LiverMatch’s convergence by setting the hyperparameter 
first_subsampling_dl to 0.03.

All algorithms were evaluated on our four IRCAD deformed 
test sets, each defined by a different crop ratio (5%, 10%, 
15%, and 25%), to mimic varying levels of intraoperative 
organ exposure. We also tested each algorithm on the 
DePoll dataset for further generalization evaluation on large
deformations. 

3 Results

3.1 Evaluation on the IRCAD deformed 
dataset

Figure 5 presents the algorithms’ qualitative results at varying 
partiality levels.

Table 2 shows the performance (mean ± std) of the algorithms 
on the IRCAD deformed test set at the four partiality levels analyzed.

The last table row describes the ground truth error, which for 
TRE represents the residual non-rigid component. In particular, the 
TRE remains nonzero because it is measured between preoperative 
markers and their intraoperative counterparts, which have 
undergone both a rigid transformation and non-rigid deformation. 
Since all evaluated algorithms perform solely rigid registration, they 
inherently cannot correct for the non-rigid component, resulting 
in a residual error consistent with this ground-truth baseline (same 
concept of Figure 4D representing DePoll dataset). While TRE may 
not fully capture performance under our scenario, it remains the 
primary metric in surgical applications. Therefore, we include TRE 
results for all rigid registration methods to transparently evaluate 
their performance and highlight their inherent limitations under 
these challenging conditions.

We first analyze the 15% partiality test set, which uses the 
same level of partiality as the training data but with different 
liver anatomies. In this scenario, our method achieves the third-
lowest TRE (8.49mm± 2.62mm) yet remains highly competitive, as 
evidenced by its lower standard deviation and best performance 
across other rigid registration metrics (i.e.,: MAE(R) = 2.58°± 1.32°
and MAE(t) = 2.60mm± 1.13mm).

Across the remaining partiality levels, models must generalize 
not only to new liver anatomies but also to varying crop ratios. Our 
method remains highly robust, consistently ranking first or second, 
while conventional rigid techniques struggle with the complete-
to-partial registration challenge. In particular, GMMReg at 25% 
partiality shows TRE = 55.72mm± 33.22mm, MAE(R) = 19.62°±
13.09° and MAE(t) = 21.69mm± 7.98mm. Even deep learning 
partial-to-partial approaches exhibit limited generalizability, with 
OGMM showing the greatest performance drop (at 25% partiality: 
TRE = 31.14mm± 17.91mm, MAE(R) = 9.03°± 3.57° and MAE(t) =
10.41mm± 5.55mm). All methods degrade at low visibility (small 
target area), whereas higher partiality (e.g., 25%) yields noticeably 
better registration accuracy. For instance, at 25% partiality, our 
method achieves TRE = 6.78mm± 2.08mm, MAE(R) = 2.33°± 1.06°
and MAE(t) = 2.86mm± 0.87mm.

Examining the qualitative results in Figure 5, we observe that 
some predictions closely match the ground truth; however, the 
models often fail to capture non-rigid deformations and instead bias 
the target’s contours to match the preoperative edges. 

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1702360
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Neri et al. 10.3389/frobt.2025.1702360

FIGURE 5
Each model’s qualitative results were evaluated under four distinct levels of partiality (i.e., 5%, 10%, 15% and 25%). The first column illustrates the initial 
conditions (i.e., after pre-processing), the following shows the predicted registration, and the last provides the ground truth registration.

3.2 Evaluation on the DePoll dataset

To further assess generalization, we evaluated each model across 
all 13 cases in the DePoll dataset using the same weights trained 
on the deformed IRCAD data. Differently from previous studies 
that register the intraoperative CT–derived point cloud to the 
video-based reconstruction ((Guan et al., 2023; Zhang et al., 2024; 
Dai et al., 2025)), we perform complete-to-partial registration by 
treating the preoperative CT–derived liver model as the “complete” 
source and the video-based reconstruction as the “partial” target. 
The critical difference is the source cloud: the intraoperative 
CT scans deliver a partial and non-rigidly deformed liver 
model (Figure 4C), whereas the preoperative model (Figure 4A) 
describes the full organ before any deformation. Although 
these conditions are more demanding, we believe they more 
accurately reflect surgical practice, where a complete preoperative 
3D model is registered to a partial, intraoperative surface
reconstruction.

Figure 6 shows some qualitative registration results produced by 
each algorithm tested. Table 3 presents the quantitative results as the 
mean ± std on the 13 test cases.

Although our approach outperforms existing methods, its 
performance remains insufficient to overcome this challenge 
entirely. With a MAE(R) of 14.66°± 5.52° and MAE(t) of 12.22mm±
5.52mm, residual misalignments are frequently large enough to be 
visually perceptible. The first row of Figure 6 shows one of the best 
examples: both our method and OMNet approximate the ground 
truth, although a noticeable rotational offset remains. This case also 
highlights how intraoperative anatomy can differ substantially from 
the preoperative scan: achieving the target alignment here requires 
a large leftward displacement of all three liver lobes. In contrast, the 

second row depicts only minor lobe deformation, leading to better 
registration accuracy. 

3.3 Discussion

The motivation for this benchmark is to transparently assess 
how far rigid registration methods can address the inherently 
non-rigid challenges of the surgical scenario. This evaluation not 
only highlights the strengths and limitations of rigid approaches 
but also establishes a robust guideline for developing more 
advanced non-rigid algorithms to fill the current gaps in surgical
applications.

On the deformed IRCAD dataset, generic computer-vision 
algorithms stay competitive when trained on small deformations. 
They also remain robust under various partiality conditions, but 
performance degrades when partiality is excessive; for example, at 
5%, the target point cloud may not contain enough information 
to perform the registration. Thus, partiality plays a critical role 
in overall robustness. However, by incorporating self- and cross-
attention modules with overlap/visibility scoring, the network can 
explicitly identify and weigh corresponding regions between the 
two clouds, making this combination particularly effective for 
handling variations in point cloud visibility. In contrast, OGMM 
and traditional registration methods struggle to align complete-to-
partial point clouds in low-overlap scenarios.

In the DePoll registration task, the required generalization level 
exceeds the current algorithms’ capabilities. This challenge arises 
from large deformations, anatomical differences, and significant 
noise. In our experiments, the models trained for rigid registration 
on deformed data still failed under DePoll conditions. The extreme 
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FIGURE 6
Qualitative registration results on the DePoll dataset, each row represents a different case. The inputs used were the preoperative complete point cloud 
and the intraoperative partial point cloud reconstructed from the video.

TABLE 3  Average performance metrics on DePoll dataset.

Algorithm TRE (mm) MAE(R) (°) MAE(t) (mm)

ICP 60.16± 28.96 24.09± 7.78 21.61± 6.31

CPD 58.09± 26.81 25.47± 7.90 16.48± 6.70

GMMReg 56.23± 28.55 21.41± 5.45 14.98± 7.10

OGMM 68.57± 38.05 28.61± 22.55 27.20± 12.54

OMNet 42.85 ± 25.65 16.05 ± 5.68 11.28± 3.94

Lepard 72.47± 32.06 24.09± 7.78 22.08± 8.44

LiverMatch 54.47± 28.54 17.87± 6.19 17.11± 8.44

Ours 42.10± 23.74 14.66± 5.52 12.22 ± 5.52

GT 29.58± 22.38 0.00± 0.00 0.00± 0.00

Bold represents best values, underline represents second best values.

magnitude of non-rigid deformations severely impairs the models’ 
ability to establish correct correspondences and achieve accurate 
registration, demonstrating that current algorithms cannot solve 
this complete-to-partial task. Moreover, the pig liver’s three-lobe 
structure and irregular reconstruction noise differ from the human 
training data and increase the task’s difficulty.

Overall, our results show that when deformations are limited 
and the exposed intraoperative surface covers more than 10% of 
the organ, TREs below 10 mm can be achieved, approaching the 
5 mm accuracy typically required in surgery (Doornbos et al., 
2024). Moreover, when the exposed surface increases to 25%, the 
TRE decreases to approximately 5 mm, reaching an acceptable 
level for surgical practice. Conversely, in the presence of large 
deformations, rigid registration alone cannot achieve low TREs. 
However, it remains valuable as an initialization step to bring the 
two point clouds into closer alignment before non-rigid refinement, 
or as a backbone architecture that can be extended to deformation 
prediction.

Both our proposed solution and LiverMatch provide a solid 
foundation for addressing the challenge of large deformations. 
These architectures predict correspondences between point 
clouds, which can subsequently be leveraged by external 
algorithms (e.g., N-ICP (Amberg et al., 2007)) to perform non-
rigid registration. However, their current limitation lies in the 
low quality of the estimated correspondences, which hinders 
accurate deformation prediction. For example, in our IRCAD 
experiments with 10% partiality, LiverMatch achieved 37% 
recall and 51% precision, meaning that out of 525 ground-
truth correspondences, the algorithm predicts on average 380 
matches, but only 194 of these are correct. In this case, it 
is crucial to maximize recall and precision because incorrect 
correspondences severely degrade the registration. To achieve this, 
future work should focus on improving the modules responsible 
for correspondence estimation, such as exploring novel feature-
processing or extraction strategies. One promising direction 
could be to leverage semantic cues (e.g., colour information) 
within the point clouds to generate more discriminative and
accurate matches.

An alternative strategy to improve inference performance is 
patient-specific training. Current state-of-the-art methods typically 
rely on an agnostic approach, training on large heterogeneous 
datasets to generalize to unseen cases. However, this paradigm may 
not be optimal in surgical contexts, where anatomical variability 
between patients might be substantial. Since preoperative CT images 
are routinely acquired, synthetic datasets of deformations for each 
patient’s organ could be generated and used to train or fine-tune 
the network. In this way, the model is trained and tested on the 
same anatomy, reducing the burden of inter-patient generalization 
and requiring it to adapt only to intraoperative factors such as 
deformation and noise. 

4 Conclusion

In this work, we have benchmarked deep-learning and 
traditional approaches for point cloud registration, offering a 
transparent assessment of their generalizability to real-world
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surgical applications. The approach involves registering two input 
point clouds: a complete one extracted from a preoperative 3D 
organ model (derived from CT or MRI scans) and a partial 
one reconstructed from the intraoperative stereoscopic video. 
Our comparison covered GMM-based, correspondence-based, 
correspondence-free, matching-based, and liver-specific methods, 
aiming to identify the shared modules that lead to top performance.

Secondly, we leveraged the backbone of one of the state-of-
the-art partial-to-partial registration models, and we implemented 
its complete-to-partial version by incorporating the estimation 
of overlap points only for the complete point cloud, which led 
to improved performance. We included our algorithm in the 
benchmark, demonstrating its competitive results under different 
partialities and deformations.

To stress the experimental setup, we intentionally applied 
rigid registration algorithms to scenarios in which the underlying 
anatomy may undergo non-rigid tissue deformations, to 
evaluate how well rigid approaches generalize beyond their 
modelling assumptions. Remarkably, despite this mismatch, 
deep learning–based rigid registration methods remain robust 
across a wide range of partiality levels when deformations are 
small. We attribute this resilience to combining self- and cross-
attention modules with overlap scoring. However, these same 
methods struggle to handle large, non-rigid deformations, as the 
DePoll experiment shows. Addressing such cases will require 
developing non-rigid registration algorithms that retain the effective 
components of rigid models while enhancing correspondence 
estimation to accommodate more extreme deformations.
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