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Objective: Registering a preoperative 3D model of an organ with its actual
anatomy viewed from an intraoperative video is a fundamental challenge in
computer-assisted surgery, especially for surgical augmented reality. To address
this, we present a benchmark of state-of-the-art deep learning point-cloud
registration methods, offering a transparent evaluation of their generalizability to
surgical scenarios and establishing a robust guideline for developing advanced
non-rigid algorithmes.

Methods: We systematically evaluate traditional and deep learning GMM-
based, correspondence-based, correspondence-free, matching-based, and
liver-specific point cloud registration approaches on two surgical datasets: a
deformed IRCAD liver set and DePoll dataset. We also propose our complete-
to-partial point cloud registration framework that leverages keypoint extraction,
overlap estimation, and a Transformer-based architecture, culminating in
competitive registration results.

Results: Experimental evaluations on deformed IRCAD tests reveal that
most deep learning methods achieve good registration performances with
TRE<10 mm, MAE(R) < 4 and MAE(t)<5 mm. On DePoll, however, performance
drops dramatically due to the large deformations.

Conclusion: In conclusion, deep-learning rigid registration methods remain
reliable under small deformations and varying partiality but lose accuracy when
faced with severe non-rigid changes. To overcome this, future work should
focus on building non-rigid registration architectures that preserve the strengths
of self-, cross-attention and overlap modules while enhancing correspondence
estimation to handle large deformations in laparoscopic surgery.
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point cloud registration, deep learning, correspondences, computer-assisted surgery,
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1 Introduction

Augmented Reality (AR)
images with the real world to enhance the user’s perception.

integrates computer-generated
In surgery, AR systems overlay patient-specific 3D models (for
example, organs, tumours, and vessels) directly onto the operative
view, giving surgeons persistent, intuitive access to preoperative
imaging information. This can aid intraoperative tasks such as
tumour localisation, margin assessment, and avoidance of critical
vasculature, with potential benefits including shorter operative times
and fewer complications when AR is used effectively (Prasad et al.,
2024). In recent years, AR has been progressively adopted in
various surgical settings, including neurosurgery, orthopaedics,
and laparoscopy (Bernhardt et al, 2017). However, challenges
arise from the dynamic nature of organ tissues, in particular
in abdominal surgery, patient positioning, pneumoperitoneum
insufflation, and physiological motion all cause global shifts, while
direct instrument-tissue interactions produce highly localized
and often large deformations (Bernhardt et al, 2017). These
factors can cause the intraoperative images to differ from the
preoperative images, which capture the anatomy prior to surgery.
Aligning preoperative models with intraoperative images during
laparoscopy remains a key focus of research, with many challenges
still unresolved (Neri et al., 2025a).

Conventional surface-based methods align the preoperative
model (surface mesh or point cloud) with intraoperative data
using geometric shape information. This process relies on
computer vision algorithms to reconstruct the intraoperative 3D
surface and typically employs techniques like Iterative Closest
Point (ICP) (Besl and McKay, 1992), along with tracking and
matching algorithms (Puerto-Souza et al., 2014), to perform
the registration. However, it faces challenges such as incomplete
reconstructions due to occlusions and lack of distinctive features,
further worsened by complex, texture-less, and deformable scenes
(Marques et al., 2015). To address the limitations of traditional
surface-based methods, various algorithms are being developed
incorporating Deep Learning (DL). One approach involves
hybrid DL methods, which enhance conventional surface-based
techniques by integrating DL at specific stages, thereby improving
registration effectiveness and outcomes. For instance, DL can be
applied to tasks such as image segmentation (Zhang et al., 2022),
intraoperative surface reconstruction (Luo et al., 2020), or feature
extraction (Labrunie et al, 2022). Alternatively, fully DL-based
algorithms, such as end-to-end networks for point cloud registration
(Huang et al., 2021), have been employed. These networks take two
point clouds as inputs and generate the transformation required to
align them (Figure 1).

Recently, a limited number of studies have been published in
this last category. They can mainly be divided into two classes:
correspondence-free, which do not require the prediction of one-
to-one point correspondences, and correspondence-based, which
explicitly predict such correspondences.

A correspondence-free approach is (Guan et al, 2023),
which introduced the first deep learning-based approach
for 3D-3D laparoscopic liver registration. The method
builds on OMNet (Xu et al., 2021) and does not utilise Transformers,
instead leveraging local and global feature extraction to learn
overlapping masks from the preoperative 3D model and the
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intraoperative reconstruction. These masks are used to filter
out non-overlapping regions and standardise the point clouds
before aligning the overlapping areas. Thus, this method directly
predicts the final transformation without estimating the point
correspondences.

LiverMatch (Yang et al., 2023) is a correspondence-based
method to register complete-to-partial synthetic point clouds of
liver anatomy. The method consists of a transformer encoder-
decoder network that learns feature descriptors, which are then fed
to a matching module that predicts point correspondences. The
promising results suggest that estimating correspondences between
sets of point cloud descriptors leads to good registration results, even
in the presence of small deformations.

Dai et al. (2025) introduce a correspondence-based method
that uses a Transformer encoder-decoder architecture. Unlike
LiverMatch, which applies the Transformer to encoder features, they
employ a geometric Transformer (Qin et al., 2023) on decoded
features and complement it with deep graph matching guided by
overlap masks to refine correspondence quality.

Finally, Zhang et al. (2024) propose KCR-Net, a correspondence-
based method built on an encoder-only Transformer. KCR-Net
first extracts keypoint descriptors using a Neighbourhood Feature
Fusion Module (NFEM) that employs both self- and cross-attention,
and then estimates keypoint correspondences. Unlike (Yang et al.,
2023) and (Dai et al., 2025), which recover the final transform from
dense correspondences, KCR-Net computes the transformation just
from the sparse keypoint matches.

Among these, LiverMatch is the only open-source algorithm.

These approaches are applicable to surgical guidance, since point
clouds can be extracted from both preoperative images (e.g., CT
scans) and intraoperative images (e.g., stereo cameras), as shown
in Figure 1. However, although these point clouds represent the
same organ geometry, they differ not only due to deformations,
but also because of varying levels of partiality and noise. For
instance, the registration to be solved is complete-to-partial; in
fact, point clouds derived from CTs (obtained from well-established
segmentation techniques (Isensee et al., 2021)) are complete, noise-
free and dense. In contrast, stereo-camera point clouds are partial,
capturing only the surface regions visible to the camera (=30% of the
organ (Koo et al., 2022)), and typically noisy, even with the latest 3D
reconstruction methods (Zha et al., 2023).

As presented in (Neri et al., 2025a), various end-to-end
rigid registration approaches exist, but current evaluations remain
restricted mainly to partial-to-partial experiments on classical vision
datasets such as ModelNet40 (Wu et al., 2015), which contains rigid,
noise-free objects; consequently, little is known about how these
methods behave under the conditions that characterise surgical
point clouds. To address this gap, we provide the first systematic
benchmarking of state-of-the-art registration networks in a surgical
scenario, assessing their robustness and limitations in synthetic
intraoperative settings, including complete-to-partial matches,
noise and soft-tissue deformation. Among the methods compared,
we introduce a refined correspondence-based registration method
with an improved overlap-estimation module that yields more
accurate correspondences and competitive performance against
current baselines. Although all tested algorithms perform rigid
registration while the underlying problem is non-rigid, rigid
alignment is a useful intermediate step: (i) it brings the two
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FIGURE 1
DL-based point cloud registration methods use organ point clouds extracted from the preoperative model and intraoperative stereo-video as inputs

and estimate the transformation that aligns the two point clouds, allowing the creation of the AR image for surgical navigation.

Registered Clouds
AR Image

clouds into closer correspondence for a subsequent non-rigid
refinement, and (ii) rigid architectures provide a convenient
backbone that can be extended to predict dense deformations.
Because the solution quality depends strongly on the magnitude
of deformation, our evaluation progresses from small deformations
across varying levels of partiality to the extreme cases represented in
the DePoll dataset (Modrzejewski et al., 2019) (large deformations).
Overall, the benchmark isolates the essential building blocks for
reliable registration and provides a practical guideline for developing
new methods in surgical scenarios.

2 Benchmarking protocol
2.1 Problem formulation

Let X € RM* be the complete point cloud of the organ of interest
(from preoperative planning), and let Y € R¥? be a partial point
cloud of the same organ (e.g., captured using an endoscopic camera),
where N < M. We define X4, € X as the subset of points in X
that correspond to the partial cloud Y, so that X ;. =Y. The
goal of point cloud registration is to determine the unknown rigid
transformation, composed of a rotation R € SO(3) and a translation
t € R?, that aligns X with Y, i.e., we seek a transformation 7 such

that T(Xvisible) = (RXvisible + t) =Y.

2.2 Competing methods

The following sections present the state-of-the-art open-source
methods we evaluated to identify the baseline that best generalizes
to real surgical scenarios. To ensure fair comparisons we selected
methods according to three criteria: (a) they operate on 3D point
clouds (rather than multi-modal pipelines that require image-
based tracking or fiducials); (b) their implementations are open-
source and can be adapted to the complete-to-partial evaluation
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setting; and (c) they produce the same output object (a global
rigid transformation) so that all methods can be assessed with
the same metrics. Accordingly, the following sections first review
traditional (non-deep learning) registration techniques and then
cover deep learning approaches. Because publicly available, deep
learning complete-to-partial registration methods are scarce (e.g.,
LiverMatch is an exception), we primarily selected partial-to-
partial algorithms. This category is the closest available match
to our complete-to-partial scenario and can be adapted to our
benchmark under the constraints above. Table 1 summarizes all the
selected methods.

2.2.1 Traditional Methods

We classify “Traditional Methods” as those that do not
rely on deep learning. Among these, we have selected several
popular approaches, including Iterative Closest Point (ICP) (Besl
and McKay, 1992), Coherent Point Drift (CPD) (Myronenko
and Song, 2010), and Gaussian Mixture Models Point Set
Registration (GMMReg) (Jian and Vemuri, 2011).

2211 ICP
ICP is a widely used rigid registration algorithm that aligns

two point clouds by iteratively minimizing the distance between
corresponding points. In each iteration, the algorithm identifies the
nearest neighbours between the datasets and computes the optimal
transformation that reduces the alignment error.

2212 CPD
CPD is a probabilistic point cloud registration algorithm

that treats one point set as centroids of a Gaussian mixture
model while aligning it to the other point set. It enforces
smooth motion by assuming nearby points to move coherently,
which helps maintain local geometric structure during the
transformation.
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TABLE1 Summary of the methods compared.

10.3389/frobt.2025.1702360

Name Registration type Approach Main components
Icp Rigid Iterative Point-to-Point
DcCp Rigid Iterative, Probabilistic 1 GMM
GMMReg Rigid Iterative, Probabilistic 2 GMM
OGMM Rigid GMM-Based Transformers, Overlap Score, 2 GMM
OMNet Rigid Correspondence-Free Overlap Masks, Global Features
Lepard Matching Correspondence-Based Transformers, Repositioning
LiverMatch Matching Correspondence-Based Transformers, Visibility Score
Ours Rigid Correspondence-Based Transformers, Overlap Score

2.2.1.3 GMMReg

GMMReg is a probabilistic framework representing both input
point sets as Gaussian mixture models. In this formulation, the point
set registration task is transformed into aligning the two mixtures to
minimize a statistical discrepancy measure between them.

2.2.2 Deep learning methods

According to the classification proposed in (Neri et al,
2025a), we selected deep learning point cloud registration methods
belonging to different categories such as: correspondence-free,
GMM-based, correspondence-based and liver-specific.

2.2.2.1 Correspondence-free, OMNet
We selected OMNet (Xu et al, 2021) to represent

correspondence-free deep learning methods. Its core concept
involves using overlapping masks to discard non-overlapping points,
thereby retaining only the overlapping regions that are most useful
for estimating the transformation through global feature regression.
Notably, OMNet inspired the work of Guan et al. (2023), which
improved OMNet local feature extraction following the RPMNet
(Yew and Lee, 2020) model. Despite that, Guan et al. (2023)
closed-source nature led us to opt for testing OMNet instead.

2.2.2.2 GMM-based, OGMM

OGMM (Mei et al, 2023) introduces an overlap-guided
probabilistic registration approach that estimates the optimal
transformation by matching Gaussian Mixture Model parameters.
Similarly to GMMReg, the method reformulates registration
by aligning two Gaussian mixtures to minimize statistical
discrepancies. Additionally, a Transformer-based detection module
is employed to identify overlapping regions, using the resulting
overlap scores to guide the GMM representation and alignment of
the input point clouds.

2.2.2.3 Correspondence-based, lepard
Lepard (Li and Harada, 2022) is a learning-based method

for partial point cloud matching in rigid and deformable scenes,
predicting correspondences that are later registered using ICP or N-
ICP. Its architecture combines a fully convolutional feature extractor
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(KPFCN) with a Transformer employing self- and cross-attention
to compute a differentiable similarity matrix. A repositioning
module further refines the relative positions between point clouds,
enhancing cross-attention and matching effectiveness, which makes
Lepard one of the leading methods in non-rigid point cloud
registration.

2.2.2.4 Liver-specific, liver match
LiverMatch (Yang et al, 2023) stands out as one of the

few open-source deep-learning approaches designed explicitly for
surgical laparoscopic registration. It employs an encoder-decoder
architecture enriched with self- and cross-attention mechanisms to
extract point features that are then used to compute a similarity
matrix. This matrix, in combination with a visibility score, is utilized
to predict correspondences between the two point clouds. Following
correspondence determination, registration is carried out using ICP.
To train the network to handle deformations, the authors generated a
synthetic dataset by applying deformations and cropping techniques
to 16 livers from the 3D-IRCADb-01 dataset (Soler et al., 2010).

2.2.2.5 Refined RegTR (ours)
We extend RegTR (Yew and Lee, 2022) with a refined

overlap-estimation module designed to enhance the accuracy in
predicting the final transformation (Figure 2). RegTR leverages
keypoint features, which are fundamental since correspondences
are determined among these keypoints rather than using all points.
A KPConv backbone is employed to extract a reduced set of
keypoints (Ky € RM*3, K, € RV*®) and their associated features
(Fg, € RM*D, RN*P) from the input clouds, which are
then projected to a lower dimension (256) and enriched with
sinusoidal positional encoding. These components are fed into a
transformer cross-encoder, using both self-attention (within each
cloud) and cross-attention (across clouds), to produce conditioned
features (Cy_ € RM*4 and Ck, € RV*9) that effectively identify
accurate correspondences and filter outliers, serving a role similar
to RANSAC in traditional approaches.

The conditioned features are fed into a two-layer MLP to
predict the transformed keypoint coordinates (Ky € RM** and Ky, €
IRM%).
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FIGURE 2

The network leverages KPConv to extract keypoints and their associated features. These features are further refined using self- and cross-attention
mechanisms and then passed to the decoder, which predicts overlap scores and the corresponding keypoints. This information is ultimately used to

estimate the final transformation.

Overlap Module. In parallel with the decoder, overlap scores
for the two point clouds are predicted. The overlap score, denoted
as§= [éKX,éKy], represents the probability that a keypoint belongs
to the overlap region. Unlike (Yew and Lee, 2022), where overlap
scores are predicted for both point clouds, our method predicts the
overlap score only for the complete point cloud X. Indeed, since
the problem we are solving is a complete-to-partial registration, we
know by definition that the partial point cloud is fully contained
within the complete one (X1 € Xand Y = X ;1.)- Consequently,
every point in Y belongs to the overlap area, and its overlap score
is 1. Therefore, predicting overlap scores for the partial cloud
provides no additional information but does introduce an extra
source of estimator error: imperfect predictions on Y can produce
false negatives or false positives that harm the overall performance.

To predict which points of the complete model are observed
in the partial scan, we apply a linear fully-connected layer with an
elementwise sigmoid activation to produce per-point overlap scores
as follows (Equation 1):

S, = 1/(1+e Gty

(1)

§=

s, =Ly =(L,1,...,1)T e RN
where w; and b, are learnable weights and biases parameters and
Ck, are the conditioned features. 85 = 1), ensures that all points in

the partial cloud are part of the overlap region (i.e., overlap score
1).

Transformation prediction. Finally, the predicted transformed
keypoint coordinates are concatenated to form correspondence
pairs. Unlike methods such as Lepard and LiverMatch, which rely
on similarity matrices and matching losses, RegTR directly predicts
the transformed coordinates and treats them as correspondences
for final transform estimation; therefore, it does not construct a
similarity matrix or depend on correspondence supervision. The
rigid transformation is estimated by leveraging the correspondences
and overlap scores and minimizing the weighted sum of squared
distances between the corresponding points. We solved it using
a weighted variant (Gojcic et al., 2020) of the Kabsch-Umeyama
algorithm (Umeyama, 1991).

Losses and Optimization. Our method employs a weighted sum
of three losses similar to (Yew and Lee, 2022): (i) a registration
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loss that minimizes the error between the predicted transformed
keypoint positions and their ground truth counterparts, weighted
by the overlap confidence; (ii) a conditioned feature loss that
encourages the network to consider geometric properties and to
distinguish correct correspondences from incorrect ones in the
context of feature matching; and (iii) an overlap loss designed to
optimize the overlap scores, which measure the confidence that a
keypoint from X has a valid correspondence in the overlapping
region of Y. Early stopping is applied: training terminates if
the validation loss does not improve for 12 consecutive epochs.
On an NVIDIA Tesla V100 GPU, the full training run takes
approximately 5 h.

2.3 Dataset and pre-processing

We employed two datasets with different deformation
magnitudes to assess how rigid registration algorithms generalize to
non-rigid scenarios. First, we generated a customized complete-to-
partial version of the 3D-IRCADb-01 dataset, incorporating small
random deformations, noise, and varying levels of partiality. To
further stress-test the algorithms, we also used the DePoll dataset,
which features large deformations, irregular noise, and severe
partiality.

2.3.1 Deformed IRCAD

The original IRCAD dataset (Soler et al., 2010) consists of 3D
CT scans from 10 women and 10 men, with hepatic tumors present
in 75% of the cases. The dataset also contains the VIK models
of each liver. For each VTK, we extracted the point cloud that
describes its surface and sampled 3,500 points, which provided a
balance between geometric detail and GPU memory constraints.
The points were normalized in the range [-1, 1] across all three
axes, producing 20 different source point clouds. Subsequently,
inspired by the approaches proposed by Livermatch (Yang et al.,
2023) and (Dai et al., 2025), we generate several corresponding
partial, deformed targets for each source point cloud. Differently
from them, our pipeline employs the As-Rigid-As-Possible (ARAP)
deformation algorithm from Open3D (Sorkine and Alexa, 2007),
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FIGURE 3
An example of synthetic deformation applied to the complete
preoperative liver (red), where the right lobe is shifted upward (blue).
The final intraoperative cloud is then cropped from the deformed
model (blue).

which lets us deform the liver mesh via user-defined control and
anchor points (Neri et al., 2025b). Specifically, we randomly choose
one of the two liver lobes and apply a random translation of up to
+25 mm along both the x and z-axes. This range, corresponding to
2.5 cm in real scale, was selected empirically to simulate small yet
realistic liver deformations (Figure 3); considering that an adult liver
measures roughly 20 cm in width (Jones ] and Walizai, 2009).

To simulate realistic endoscopic views, we place a virtual camera
aimed at the organ’s visible surface. We sample random camera
positions in spherical coordinates, constraining polar and azimuthal
angles to match typical intraoperative ranges. For each point on the
surface, we compute the dot product between the camera direction
and the point normal, retaining only 15% of points whose angle to
the camera is less than 80°(empirically found). Finally, we apply a
random rigid transformation to the target, with a rotation up to
45°nd a translation in the [-50 mm, 50 mm] range. We add element-
wise Gaussian noise with zero mean and a standard deviation of 0.01
to each point in every dimension. Regarding seed management, a
random seed is assigned to each training pair. This seed controls the
generation of all stochastic parameters, including the selected lobe
to deform, the magnitude of its displacement, the camera viewpoint,
the applied rigid transformation, and the noise level.

For the training set, we used 17 livers (i.e., livers numbered
3 through 20) as source point clouds and generated 560 partial
target clouds for each, yielding a total of 10,080 pairs. Using the
same workflow, we created 4 testsets based on the remaining 2
livers (i.e., liver 1 and 2). Each set includes 50 partial targets
per source (100 pairs total). The variation arises from the crop
ratio: 5%, 10%, 15%, or 25%, chosen to mimic different levels of
intraoperative organ exposure, and from the random deformations
generated as in training. The selected levels of partiality reflect
the surgical context, where the algorithm must handle varying
exposure of the organ to provide AR guidance. In practice,
surgeons typically expose only about 20%-30% of the organ
surface during a procedure (Koo et al., 2022; Benincasa et al.,
2008); we therefore included lower partiality levels (< 20%)
to stress-test the robustness of the evaluated algorithms under
particularly challenging visibility conditions. Partiality below 20%
poses challenges due to insufficient discriminative features in
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the intraoperative point cloud (Benincasa et al., 2008). Although
surgeons generally expose as much of the organ as possible before
resection, visibility rarely exceeds 50% of the surface area, as the
opposite side remains occluded.

Because these datasets are synthetically generated, we retain
complete ground-truth annotations, including the applied rigid
transformations, known point correspondences, and overlap scores.
Finally, to enable the computation of the Target Registration Error
(TRE), we choose n landmark points on the original (source) mesh
and identify their exact correspondences on the deformed (target)
mesh. To ensure these points are not part of the input clouds
provided to the registration algorithm, we select them from the
cropped-out regions, applying farthest point sampling.

Code and data to reproduce our deformed IRCAD dataset
are available at: https://github.com/Alberto-Neri/Laparoscopic_
Organ_Deformation_ wARAP.

2.3.2 DePoll
DePoll (Deformable Porcine Laparoscopic Liver) dataset
(Modrzejewski et al, 2019) comprises preoperative and

intraoperative pig liver surface point cloud data under different
deformation states. Specifically, it includes a preoperative point
cloud of the pig liver, which is complete and derived from a CT scan.
Regarding the intraoperative data, there are 13 cases of the same liver
under various deformation conditions. Each case contains a partial
point cloud extracted from an intraoperative CT scan and a partial
point cloud obtained from video reconstruction. Figures 4a—c show
one representative case, displaying the complete preoperative liver
point cloud alongside two corresponding intraoperative partial
reconstructions-one from CT and one from video. To normalize the
points in the range [-1, 1], we applied min-max normalization using
the maximum and minimum values of the complete preoperative
point cloud. The dataset authors obtained the ground truth
registration using pre- and intraoperative markers and the point
clouds are provided pre-registered. Moreover, since the data come
from two different sensors (i.e., CT scan and endoscope), they
already exhibit noise and density variations. For this reason, the
only pre-processing we applied was generating a random rigid
transformation within the range proposed for IRCAD dataset.

2.4 Metrics

To evaluate the rigid registration quality, we compute the mean
absolute error (MAE (R), MAE (t)) between the predicted and the
ground truth values for both the rotation angle and translation.
All methods directly estimate a rigid transformation, except Lepard
and LiverMatch, which output point-to-point correspondences.
For these two, we recover the rigid pose by feeding their
correspondences into Open3D’s RANSAC-ICP routine, as proposed
by LiverMatch. We set the max_correspondence_distance parameter
to 0.05, producing the best alignment results.

We also report the TRE (mm) for each experiment. For
the IRCAD dataset, we use the landmark coordinates identified
during preprocessing (see Section 2.3.1), while for DePoll we rely
on the preoperative and intraoperative markers provided by the
dataset authors.
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(b)

FIGURE 4

only surface markers and the two clouds with a lower resolution.

(a) The complete preoperative pig liver point cloud with segmented lobes. (b) The intraoperative video reconstructed point cloud (partial), relative to
case 1. (c) The intraoperative CT scan point cloud (partial), relative to case 1. (d) Point cloud (a) and (b) registered with the ground truth rigid
transformation. The dark red stars represent the surface marker on the preoperative anatomy; the blue stars represent the same surface markers on the
intraoperative anatomy (after non-rigid deformations). The black arrows show the displacements between the corresponding markers, representing
the effect of non-rigid deformation. The GT TRE is computed as the sum of the distances indicated by the black arrows. For simplicity, the figure shows

(c)

2.5 Experimental setup

ICP was run with an identity initialization, a convergence
threshold of 0.001, and a maximum of 30 iterations. CPD was
configured with the same threshold and up to 50 iterations. For
GMMReg, the number of Gaussian components was set equal to the
number of points in the target cloud.

All deep learning models were trained on our deformed
IRCAD dataset (15% crop ratio), with minor code adjustments
and hyperparameter tuning to ensure optimal convergence. For
OMNet, which expects two partial point cloud of equal size, we
padded the smaller target clouds to preserve its input structure
and replaced all BatchNorm layers with GroupNorm to stabilize
training with our small batch sizes. We also substituted the authors’
overlap score estimation with our ground-truth overlap scores,
which are better suited to deformed data. Each of these adjustments
led to significantly improved convergence. Similar modifications
were applied to OGMM, yielding performance gains but still less
optimal convergence; in this case, we opted not to introduce
further changes to respect the original design. Finally, we improved
Lepard and LiverMatch’s convergence by setting the hyperparameter
first_subsampling_dl to 0.03.

All algorithms were evaluated on our four IRCAD deformed
test sets, each defined by a different crop ratio (5%, 10%,
15%, and 25%), to mimic varying levels of intraoperative
organ exposure. We also tested each algorithm on the
DePoll dataset for further generalization evaluation on large
deformations.

3 Results

3.1 Evaluation on the IRCAD deformed
dataset

Figure 5 presents the algorithms’ qualitative results at varying
partiality levels.

Table 2 shows the performance (mean * std) of the algorithms
on the IRCAD deformed test set at the four partiality levels analyzed.

Frontiers in Robotics and Al

The last table row describes the ground truth error, which for
TRE represents the residual non-rigid component. In particular, the
TRE remains nonzero because it is measured between preoperative
markers and their intraoperative counterparts, which have
undergone both a rigid transformation and non-rigid deformation.
Since all evaluated algorithms perform solely rigid registration, they
inherently cannot correct for the non-rigid component, resulting
in a residual error consistent with this ground-truth baseline (same
concept of Figure 4D representing DePoll dataset). While TRE may
not fully capture performance under our scenario, it remains the
primary metric in surgical applications. Therefore, we include TRE
results for all rigid registration methods to transparently evaluate
their performance and highlight their inherent limitations under
these challenging conditions.

We first analyze the 15% partiality test set, which uses the
same level of partiality as the training data but with different
liver anatomies. In this scenario, our method achieves the third-
lowest TRE (8.49mm + 2.62mm) yet remains highly competitive, as
evidenced by its lower standard deviation and best performance
across other rigid registration metrics (i.e.,; MAE(R) = 2.58°+ 1.32°
and MAE(t) = 2.60mm + 1.13mm).

Across the remaining partiality levels, models must generalize
not only to new liver anatomies but also to varying crop ratios. Our
method remains highly robust, consistently ranking first or second,
while conventional rigid techniques struggle with the complete-
to-partial registration challenge. In particular, GMMReg at 25%
partiality shows TRE =55.72mm +33.22mm, MAE(R) =19.62°+
13.09° and MAE(t) =21.69mm +7.98mm. Even deep learning
partial-to-partial approaches exhibit limited generalizability, with
OGMM showing the greatest performance drop (at 25% partiality:
TRE = 31.14mm + 17.91mm, MAE(R) = 9.03°+ 3.57° and MAE(t) =
10.41mm + 5.55mm). All methods degrade at low visibility (small
target area), whereas higher partiality (e.g., 25%) yields noticeably
better registration accuracy. For instance, at 25% partiality, our
method achieves TRE = 6.78mm + 2.08mm, MAE(R) = 2.33°+ 1.06°
and MAE(t) = 2.86mm + 0.87mm.

Examining the qualitative results in Figure 5, we observe that
some predictions closely match the ground truth; however, the
models often fail to capture non-rigid deformations and instead bias
the target’s contours to match the preoperative edges.
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FIGURE 5

Each model's qualitative results were evaluated under four distinct levels of partiality (i.e., 5%, 10%, 15% and 25%). The first column illustrates the initial
conditions (i.e., after pre-processing), the following shows the predicted registration, and the last provides the ground truth registration.

= Source
* Target

3.2 Evaluation on the DePoll dataset

To further assess generalization, we evaluated each model across
all 13 cases in the DePoll dataset using the same weights trained
on the deformed IRCAD data. Differently from previous studies
that register the intraoperative CT-derived point cloud to the
video-based reconstruction ((Guan et al., 2023; Zhang et al., 2024;
Dai et al., 2025)), we perform complete-to-partial registration by
treating the preoperative CT-derived liver model as the “complete”
source and the video-based reconstruction as the “partial” target.
The critical difference is the source cloud: the intraoperative
CT scans deliver a partial and non-rigidly deformed liver
model (Figure 4C), whereas the preoperative model (Figure 4A)
describes the full organ before any deformation. Although
these conditions are more demanding, we believe they more
accurately reflect surgical practice, where a complete preoperative
3D model is registered to a partial, intraoperative surface
reconstruction.

Figure 6 shows some qualitative registration results produced by
each algorithm tested. Table 3 presents the quantitative results as the
mean + std on the 13 test cases.

Although our approach outperforms existing methods, its
performance remains insufficient to overcome this challenge
entirely. With a MAE(R) of 14.66°+ 5.52°and MAE(t) of 12.22mm +
5.52mm, residual misalignments are frequently large enough to be
visually perceptible. The first row of Figure 6 shows one of the best
examples: both our method and OMNet approximate the ground
truth, although a noticeable rotational offset remains. This case also
highlights how intraoperative anatomy can differ substantially from
the preoperative scan: achieving the target alignment here requires
a large leftward displacement of all three liver lobes. In contrast, the
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second row depicts only minor lobe deformation, leading to better
registration accuracy.

3.3 Discussion

The motivation for this benchmark is to transparently assess
how far rigid registration methods can address the inherently
non-rigid challenges of the surgical scenario. This evaluation not
only highlights the strengths and limitations of rigid approaches
but also establishes a robust guideline for developing more
advanced non-rigid algorithms to fill the current gaps in surgical
applications.

On the deformed IRCAD dataset, generic computer-vision
algorithms stay competitive when trained on small deformations.
They also remain robust under various partiality conditions, but
performance degrades when partiality is excessive; for example, at
5%, the target point cloud may not contain enough information
to perform the registration. Thus, partiality plays a critical role
in overall robustness. However, by incorporating self- and cross-
attention modules with overlap/visibility scoring, the network can
explicitly identify and weigh corresponding regions between the
two clouds, making this combination particularly effective for
handling variations in point cloud visibility. In contrast, OGMM
and traditional registration methods struggle to align complete-to-
partial point clouds in low-overlap scenarios.

In the DePoll registration task, the required generalization level
exceeds the current algorithms’ capabilities. This challenge arises
from large deformations, anatomical differences, and significant
noise. In our experiments, the models trained for rigid registration
on deformed data still failed under DePoll conditions. The extreme
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FIGURE 6

and the intraoperative partial point cloud reconstructed from the video.

» Source
* Target

Qualitative registration results on the DePoll dataset, each row represents a different case. The inputs used were the preoperative complete point cloud

TABLE 3 Average performance metrics on DePoll dataset.

Algorithm TRE (mm) MAE(R) (°) MAE(t) (mm)

1Ccp 60.16 +28.96 24.09+7.78 21.61 £6.31
CPD 58.09 +26.81 25.47 +7.90 16.48 +6.70
GMMReg 56.23 +28.55 21.41+545 14.98+7.10
OGMM 68.57 +38.05 28.61+22.55 27.20+12.54
OMNet 42.85 + 25.65 16.05 + 5.68 11.28 +£3.94
Lepard 72.47 +32.06 24.09+7.78 22.08 +8.44
LiverMatch 54.47 +28.54 17.87+6.19 17.11+8.44
Ours 42.10 £23.74 14.66 +5.52 12.22 +£5.52
GT 29.58 +22.38 0.00+0.00 0.00 +0.00

Bold represents best values, underline represents second best values.

magnitude of non-rigid deformations severely impairs the models’
ability to establish correct correspondences and achieve accurate
registration, demonstrating that current algorithms cannot solve
this complete-to-partial task. Moreover, the pig liver’s three-lobe
structure and irregular reconstruction noise differ from the human
training data and increase the task’s difficulty.

Overall, our results show that when deformations are limited
and the exposed intraoperative surface covers more than 10% of
the organ, TREs below 10 mm can be achieved, approaching the
5mm accuracy typically required in surgery (Doornbos et al,
2024). Moreover, when the exposed surface increases to 25%, the
TRE decreases to approximately 5mm, reaching an acceptable
level for surgical practice. Conversely, in the presence of large
deformations, rigid registration alone cannot achieve low TREs.
However, it remains valuable as an initialization step to bring the
two point clouds into closer alignment before non-rigid refinement,
or as a backbone architecture that can be extended to deformation
prediction.

Frontiers in Robotics and Al

10

Both our proposed solution and LiverMatch provide a solid
foundation for addressing the challenge of large deformations.
These architectures predict correspondences between point
clouds, which can subsequently be leveraged by external
algorithms (e.g., N-ICP (Amberg et al., 2007)) to perform non-
rigid registration. However, their current limitation lies in the
low quality of the estimated correspondences, which hinders
accurate deformation prediction. For example, in our IRCAD
experiments with 10% partiality, LiverMatch achieved 37%
recall and 51% precision, meaning that out of 525 ground-
truth correspondences, the algorithm predicts on average 380
matches, but only 194 of these are correct. In this case, it
is crucial to maximize recall and precision because incorrect
correspondences severely degrade the registration. To achieve this,
future work should focus on improving the modules responsible
for correspondence estimation, such as exploring novel feature-
processing or extraction strategies. One promising direction
could be to leverage semantic cues (e.g., colour information)
within the point clouds to generate more discriminative and
accurate matches.

An alternative strategy to improve inference performance is
patient-specific training. Current state-of-the-art methods typically
rely on an agnostic approach, training on large heterogeneous
datasets to generalize to unseen cases. However, this paradigm may
not be optimal in surgical contexts, where anatomical variability
between patients might be substantial. Since preoperative CT images
are routinely acquired, synthetic datasets of deformations for each
patient’s organ could be generated and used to train or fine-tune
the network. In this way, the model is trained and tested on the
same anatomy, reducing the burden of inter-patient generalization
and requiring it to adapt only to intraoperative factors such as
deformation and noise.

4 Conclusion

In this work, we have benchmarked deep-learning and
traditional approaches for point cloud registration, offering a
transparent assessment of their generalizability to real-world
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surgical applications. The approach involves registering two input
point clouds: a complete one extracted from a preoperative 3D
organ model (derived from CT or MRI scans) and a partial
one reconstructed from the intraoperative stereoscopic video.
Our comparison covered GMM-based, correspondence-based,
correspondence-free, matching-based, and liver-specific methods,
aiming to identify the shared modules that lead to top performance.

Secondly, we leveraged the backbone of one of the state-of-
the-art partial-to-partial registration models, and we implemented
its complete-to-partial version by incorporating the estimation
of overlap points only for the complete point cloud, which led
to improved performance. We included our algorithm in the
benchmark, demonstrating its competitive results under different
partialities and deformations.

To stress the experimental setup, we intentionally applied
rigid registration algorithms to scenarios in which the underlying
anatomy may undergo non-rigid tissue deformations, to
evaluate how well rigid approaches generalize beyond their
modelling assumptions. Remarkably, despite this mismatch,
deep learning-based rigid registration methods remain robust
across a wide range of partiality levels when deformations are
small. We attribute this resilience to combining self- and cross-
attention modules with overlap scoring. However, these same
methods struggle to handle large, non-rigid deformations, as the
DePoll experiment shows. Addressing such cases will require
developing non-rigid registration algorithms that retain the effective
components of rigid models while enhancing correspondence
estimation to accommodate more extreme deformations.
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