& frontiers | Frontiers in Robotics and Al

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Baris Can Yalgin,
University of Luxembourg, Luxembourg

REVIEWED BY
Mehmet Iscan,

Yildiz Technical University, Turkiye
Xiangxu Lin,

Kent State University at Ashtabula,
United States

*CORRESPONDENCE
Manolis Chiou,
m.chiou@gmul.ac.uk

RECEIVED 28 August 2025
REVISED 23 October 2025
AccepTED 27 October 2025
PUBLISHED 19 November 2025

CITATION

Ruan T, Ramesh A, Wang H,
Johnstone-Morfoisse A, Altindal G, Norman P,
Nikolaou G, Stolkin R and Chiou M (2025) A
framework for semantics-based situational
awareness during mobile robot deployments.
Front. Robot. Al 12:1694123.

doi: 10.3389/frobt.2025.1694123

COPYRIGHT

© 2025 Ruan, Ramesh, Wang,
Johnstone-Morfoisse, Altindal, Norman,
Nikolaou, Stolkin and Chiou. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Robotics and Al

TYPE Original Research
PUBLISHED 19 November 2025
pol 10.3389/frobt.2025.1694123

A framework for
semantics-based situational
awareness during mobile robot
deployments

Tianshu Ruan?, Aniketh Ramesh?, Hao Wang*,
Alix Johnstone-Morfoisse?, Gokcenur Altindal?, Paul Norman?,
Grigoris Nikolaou?®, Rustam Stolkin' and Manolis Chiou**

'Extreme Robotics Lab (ERL) and National Center for Nuclear Robotics (NCNR), University of
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Deployment of robots into hazardous environments typically involves a
"human-robot teaming” (HRT) paradigm, in which a human supervisor interacts
with a remotely operating robot inside the hazardous zone. Situational
awareness (SA) is vital for enabling HRT, to support navigation, planning, and
decision-making. In this paper, we explore issues of higher-level “semantic”
information and understanding in SA. In semi-autonomous or variable-
autonomy paradigmes, different types of semantic information may be important,
in different ways, for both the human operator and an autonomous agent
controlling the robot. We propose a generalizable framework for acquiring and
combining multiple modalities of semantic-level SA during remote deployments
of mobile robots. We demonstrate the framework with an example application
of search and rescue (SAR) in disaster-response robotics. We propose a set of
“environment semantic indicators” that can reflect a variety of different types
of semantic information, such as indicators of risk or signs of human activity
(SHA), as the robot encounters different scenes. Based on these indicators, we
propose a metric to describe the overall situation of the environment, called
“Situational Semantic Richness” (SSR). This metric combines multiple semantic
indicators to summarize the overall situation. The SSR indicates whether an
information-rich, complex situation has been encountered, which may require
advanced reasoning by robots and humans and, hence, the attention of the
expert human operator. The framework is tested on a Jackal robot in a mock-
up disaster-response environment. Experimental results demonstrate that the
proposed semantic indicators are sensitive to changes in different modalities of
semantic information in different scenes, and the SSR metric reflects the overall
semantic changes in the situations encountered.

KEYWORDS

situational awareness, semantics, semantic understanding, human—robot teaming,
disaster-response robotics, search and rescue robotics
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1 Introduction

Situational awareness (SA) is vital for robots deployed in the
field to function with sufficient autonomy, resiliency, and robustness.
This is especially true for human-robot teams (HRTS) in safety-
critical applications such as disaster response, remote inspection
in unstructured environments, or nuclear operations (Chiou et al.,
2022; Ruan et al., 2022; Stolkin et al., 2023). In all cases, humans and
robots require SA to make plans or decisions in the context of HRT
(e.g., identifying a proper timing to switch control between human
operators and robots). Hence, humans and robots need to know and
share what is happening in the environment to plan and act in a safe
and coordinated manner. Humans and robots (to avoid verbosity,
we sometimes use the term “robot” synonymously with the AI or
autonomous agents controlling the robot) have distinct strengths
and weaknesses in terms of perception, sensory data interpretation,
and decision planning and execution in response to those data
in real time.

Building on low-level signals from multiple modalities of on-
board cameras and sensors, higher-level “semantic” understanding
(Ruan et al., 2022) of scenes, environments, and situations must
be developed. Often, this higher-level semantic knowledge will
be critical for determining subsequent decisions and actions.
Recent advances, especially from the computer vision community
(Longetal., 2015; Lietal., 2017), have begun to provide autonomous
agents with some elements of semantic-level perception. Meanwhile,
in real-world robotic systems at present, the intelligence of human
operators may often be necessary to correctly interpret and act upon
semantically rich situations. In this paper, we propose a framework
for robots to acquire semantically enhanced SA that combines with
human understanding in an explainable and intuitive way.

Human factors SA can be modeled in terms of three levels
of awareness (Endsley, 2017): level 1) perception of elements
in the current situation, level 2) comprehension of the current
situation, and level 3) projection of future status. In the robotics
and Al research literature, it is common to use terms such as
sensing, perception, scene understanding, semantics, and context
(Bavle et al., 2023) instead of SA. There are connections among
these related concepts; for example, the concept of perception
“elements” in SA can be linked to the “semantics” concept in AL
Hence, although the conventional SA model is designed to represent
the awareness of human operators, the SA of an autonomous
or semi-autonomous robot can be structured similarly in the
scope of semantics. Elements of level-1 SA can be objects, sensor
readings, and other low-level semantics (Ruan et al., 2022). The
comprehension of the current situation at level 2 corresponds to
high-level semantics (Ruan et al., 2022) (see Figure 1). Prediction,
planning, or decision-making based on these constitute the main
focus of level 3.

Our work aims to build a systematic framework and concepts
the following: a) make SA sharing from robot to human easier,
practical, and intuitive and b) facilitate the use of semantically
enhanced SA in HRT planning and decision-making frameworks.
We build upon our previous work that proposed a taxonomy of
semantic information (Ruan et al., 2022) and definitions of low-level
semantics, high-level semantics, and the context in robot-assisted
disaster response.
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FIGURE 1
Mobile robot semantic SA.

In this paper, we explore level-2 SA and propose the concept
of an “environment semantic indicator” along with an example
realization. Each indicator captures the understanding of an
environment’s semantics intensity, such as signs of human activity
(SHA). Furthermore, we build upon those indicators to develop an
aggregated metric, the “situational semantics richness” (SSR), which
expresses the overall intensity and plethora of semantic information
in an environment.

2 Related work

Early studies in human factors analyzed SA based on human
feedback after trials (Stanton et al, 2017), such as by using
the Situation Awareness Global Assessment Technique (SAGAT)
(Endsley, 1988) or the Situational Awareness Rating Technique
(SART) (Taylor, 2017). Endsley and Mica R. proposed a three-
level SA model, which is widely accepted (Endsley, 1995). SA is a
subjective concept based on objective reflections of the environment,
which means that everyone may understand the situation differently.
Thus, building a generalized framework to regulate understanding
is essential. A subjective scoring or weighting system that delivers
a subjective understanding is commonly used to differentiate each
situation. For instance, Hooey et al. (2011) built a heuristic scoring
system and gave weights to different “situational elements” to
model the SA obtained from aircraft pilots. McAree et al. (2018)
gave examples of formalizing some specific awareness, such as the
position and air environment (consisting of air traffic, airspace
restrictions, and weather), using a scoring system.

These works show how humans obtain SA. Elements of such
approaches can be generalized to robot SA. Some research workers
discuss combined human SA and robot SA or view the problem
from a global perspective in the context of human-robot interaction
(HRI) (Dini et al., 2017). Other research workers use ontology
to obtain the SA. Ontology concerns what kinds of things exist,
how they can be organized, and what relationships exist between
them (Huang et al., 2019; Tenorth and Beetz, 2017). Armand et al.
(2014) modeled simple situations on the road and crossroads
using ontology. Authors categorize road contexts into “mobile

»

entities,” “static entities,” and “context parameters” that describe the
relationship between entities from the spatiotemporal scope. Rules
are established for the vehicle when the combination of road contexts
changes. Ontologies are intuitively straightforward for modeling
situations and are easy to understand. However, the ontology models
are built on simplified or specific situations. They may have problems
in complex environments and unexpected situations. Hence, robots
need multiple inference methods to obtain SA (Tenorth and Beetz,

2017). Alternatively, probabilistic methods can be used to model the
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environment and generate SA (Shuang et al., 2014). Nguyen et al.
(2019) compared multiple SA measurements that formalize the SA.
Apart from a human perspective, the authors also review the SA
for unmanned aerial vehicles (UAVs). They claim that most SA
studies focus on the human perspective and indicate that there are
limited methods to frame and obtain UAV SA. Senaratne et al.
(2025) systematically discussed the dynamic nature of team SA and
the factors that affect SA. Meanwhile, our work focuses on using
high-level semantics to facilitate SA in the scope of HRT.

In general, most of these SA assessments define metrics
highlighting the flexibility and the importance of expert knowledge.
However, there are limited works on how robots perceive high-
level semantics and how robots can aggregate those semantics into
coherent and usable metrics reflecting the overall SA and context.
Unlike human SA research, most robot SA research still focuses
on addressing specific problems from one specific scope, such
as electromagnetic jamming security (Gao et al., 2020) or failure
conditions (Ginesi et al., 2020; Ghezala et al.,, 2014). In contrast,
we propose a general framework and an example realization for an
aggregated metric of SA, which enables robots to understand the
overall environmental situation and can be generalized to different
deployment tasks.

3 Problem formulation and concept
definition

Here, we assume that the deployed robots need to perform tasks
such as scanning a damaged building (Kruijff et al., 2012), surveying
and sampling contamination in a hazardous site (Nagatani et al.,
2013), remotely inspecting and monitoring facilities, or searching
for human victims (Murphy, 2014; Ruan et al., 2022) in the context
of disaster response. Robots can be tele-operated (Chiou et al.,
2022), semi-autonomous [e.g., variable autonomy (Reinmund et al.,
2024; Methnani et al., 2024), mixed-initiative (Chiou et al., 2021),
or shared control (Pappas et al., 2020) paradigms], or run fully
autonomously. In all cases, robots need SA to make plans or
decisions D in the context of HRT. Hence, there is a mapping I.S —
D between a set of environment semantics S and the decisions D.
S={5,8...,8,...8,L(n>=1,0<§;< 1)
comprises a set of different possible types of environment semantics,
such as SHA, noise for LiDAR, or detection of hazards, where

Specifically,

>

n denotes the number of semantic indicators in S. Note that S
can be configured to contain many different kinds of semantic
information, as may be appropriate to different types of robot
missions and application domains. Without the loss of generality,
in this paper, we use the example of disaster response to provide
an intuitive illustration of how this framework can be applied in a
practical task. As examples of possible S, we present experiments
in which we use the following: S, = S(noise), S, = S(risk), S; =
S(SHA), and S, = S(radiation). These are examples of environment
semantics that can be useful in disaster response and remote
inspection missions (Ruan et al., 2022).

A significant challenge is that it is nontrivial to parameterize a
framework for a mapping I, which can directly map semantics S
onto decisions D. Therefore, the key idea of this paper is to introduce
an intermediary term, which we call SSR R. The term R serves to
aggregate the environment semantics combinations in S, which can
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then assist with bridging toward the decision set D. We define the
function R = f(S;, W), where W; is a set of weights that reflects
the relative impact of each type of semantic information. Note that
this paper focuses on addressing the problem of progressing from
S to the intermediary term R. The next challenge of formulating
a relationship between R and D will form the subject of a future
paper and is out of the scope of the present paper. However, in this
paper, we show how the formulation of S, and its mapping to the
intermediary term R, is already a useful tool in its own right for
assisting SA in HRT missions.

4 Environment semantic indicator
4.1 Laser noise intensity

Many unmanned ground vehicles (UGVs) rely on lasers for
autonomous navigation. However, laser noise potentially affects the
navigation. We adapt the method to obtain laser noise variance

(o

noise
by convolving the laser map image with a 3 x 3 mask and applying

) in our previous work (Ramesh et al., 2022). It is calculated

summations on the resultant matrix. Then, we adapt the noise
variance into a sigmoid function (see Equation 1 and Ramesh et al.,
2022) to obtain the laser noise intensity S(noise). To give a rough
indication of the scale, when operating our mobile robot in our
laboratory’s mock-up disaster scene testing environment, we notice
that a olzaoise
navigation, causing the robot to stop. We use this critical value to

> =14 is sufficient to severely disrupt autonomous

help inform choices for parameters a and b to tune the system to
our robot and testing environment. Combining the preliminary test
results, the laser noise intensity is designed as follows:

1
)

noise

S(noise) =

1

1+exp(-a- +a-b)

where a =5 and b = 1, to obtain a curve that responds to medium
inputs but is not oversensitive to low or high inputs.

4.2 Risk to robots

Risk to robots can be quantified based on the hazard level and
hazard length (Soltani and Fernando, 2004). The hazard level refers
to how dangerous the hazard is to the robot, and the hazard distance
refers to the distance to the object. Furthermore, time may also
affect the risk level, such as the accumulated dose received from the
radiation sources.

In this work, we assume that the robot can detect potential
risks by detecting hazmat signs that commonly exist in hazardous
environments. In general, humans and robots face similar risks.
However, considering the slight difference between the risk to
humans and risk to robots, the categorization might differ but can
be trivially adapted to reflect human risks, expert knowledge (e.g.,
by first responders), or different scenarios. We categorize the hazmat
signs into three levels heuristically: low risk or no risk for the
robot (e.g., poison, infectious substance, nonflammable gas, and
inhalation hazard), medium risk (delayed hazard to a robot or they
can be high risks under certain occasions, e.g., corrosive, radioactive,
dangerous when wet, oxygen, and organic peroxide), and high risk
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(immediate hazard to the robot, e.g., explosives, flammable solid,
flammable gas, and spontaneously combustible material). Other
risks that are not included can also be added trivially in different
scenarios.

Intuitively, distance is a factor that relates to the risk intensity.
Referring to the relationship between the radiation strength
and distance (Voudoukis and Oikonomidis, 2017), we apply
a similar model risk to robots S(risk) by using the inverse
square law (see Equation 2):

S(risk) = z
=d

where 7 is the number of detected signs, 7 is the label of each detected
sign, d refers to the distance to the robot, j refers to the level of the

| T

J
>

2)

corresponding signs, and H; refers to the risk intensity of each level
of hazmat sign.

Then, we normalize the risk score by applying the sigmoid
function. The reason for using the sigmoid function is when the
x-axis closes to infinity, the slope of risk is low and accords with
human common understanding; that is, the environment that has
six high-risk objects has a similar S(risk) as the environment
containing five high-risk objects. The normalized score is as
follows (see Equation 3):

1

S(mSk) 1+ e—aS(risk)—b >

@)

norm —

where a and b are used for tuning the functions. In our experiments,
we set them as a=0.09 and b= —4.8 heuristically to get a
meaningful and usable curve. Experts can tune a and b for
different tasks.

4.3 Signs of human activity

Robots might not always directly detect human victims in the
environment (e.g., trapped under debris or occluded by objects).
Hence, robots must identify clues to find victims. SHA are
considered a potential factor in finding people (Yang et al., 2018). We
use human belongings, such as mobile phones, keys, and watches, as
indicators of human activity. Intuitively, the dispersion of personal
belongings makes a difference to the SHA. Thus, the SHA model is
developed from two aspects: the class of objects and the dispersion
of the objects.

We design three classes of objects to differentiate the impact of
different human belongings: i) high impact means there is a high
chance for these objects to be found on the human body (e.g., glasses,
key, cell phone, and watch); ii) medium impact means there are
chances for these objects to be found in proximity to the human
body (e.g., cap, mask, and wallet); iii) low impact means there is a
high chance for these objects not be carried on the human body (e.g.,
laptop and backpack). This heuristic classification is an example of
realization for our framework, and experts can adjust it.

Based on the above, we propose the following model to estimate
the SHA score S(SHA) (see Equation 4):

n
dispersion = Z |d;—d,

verage ls

i:1n PJ (4)
S(SHA)= ) ——,
( ) ; dispersion
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where 7 is the number of detected objects, i is the label for each
object, d; is the distance from the corresponding objects to the robot,

d

average
for objects, and P; refers to the impact of corresponding objects.

is the average distance of all the objects, j is the label of class

Similarly, we normalize the S(SHA) using the sigmoid function
(see Equation 5):

1

1 + ¢ @S(SHA)=b >

norm —

S(SHA) (5)
where a and b are used for tuning the function. In our experiments,
we used a=10 and b= -0.5 to obtain a curve that has similar
sensitivity characteristics as Equation 1. The parameters can be
adjusted when expert knowledge is involved.

4.4 Radiation

Not only humans but robots may also be affected by
radiation (Nagatani et al, 2013). The highest risk will be to
the onboard electronics, as radiation can cause disruptions,
malfunctions, or even complete failure of electronic components.
These issues can be addressed by applying appropriate shielding
and mitigation techniques or designing radiation-hardened robots.
However, radiation shielding is typically extremely heavy, leading to
large and bulky robots that may be impractical in certain tasks, such
as entering a hazardous zone with a small robot via a small door or
aperture. Alternatively, we might monitor the radiation strength in
deployment so that robots and humans can avoid exposure.

The risk associated with radiation depends on the distance
from the source and the radiation’s type, strength, and energy. It
is important to distinguish between the dose rate and the total
integrated dose. The dose rate is commonly measured in sievert
per hour (Sv/h) and microsievert per hour (uSv/h), which is the
rate at which the radiation is received at a given moment. The total
integrated dose measured in sieverts results from the accumulation
of radiation over time.

We designed a mapping I:G +— S(radiation). It translates the raw
readings that require radiation backgrounds for understanding to a
matric ranging from 0 to 1. G is a set of gamma radiation dose rates
G in puSv/h from the sensor, and S(radiation) denotes the radiation
strength. Specifically, the sigmoid function is applied in the mapping
I'to normalize the S(radiation) (see Equation 6):

1

1+e900

S(radiation) (6)

norm =
where a =8 and b = - 8. Specifically, S(radiation) = 0 refers to no
radiation, and S(radiation) = 1 refers to radiation that can instantly
damage the robot. This tuning setting takes into account the effects
of background radiation (usually under 0.4 4Sv/h) and decreases the
impact of it.

5 Situational semantics richness

With  the
framework (shown in Figure 2) that fuses the semantics of the

semantics in Section4, we propose a

environment at a higher level, that is, a metric that describes the
overall status of the environment in an aggregate representation.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1694123
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ruan et al. 10.3389/frobt.2025.1694123

Environment
Semantics

R | | | b :

p
R RGB Camera Laser Noise Detection of Gas Detection Radiation D;‘::::‘::) ¥ Infrared
Perwptlon Blinding HAZMAT Detection Sensing
) Belongings

............................................... |1 i

Comprehension
Projection
Robot Variable
Autonomy
Navigation ) N
s s System
Application

FIGURE 2

Semantics-based SA framework: the light blue box refers to low-level semantics, the cornflower blue box refers to high-level semantics, and the dark
blue box refers to context. Black dashed lines indicate the potential connections among different levels.

(b)

FIGURE 3

(a) Layout for experiment |. The dark blue box area (scenario 1) on the ground is used for laser noise or the radiation source (uranium rock). The yellow
box area (scenario 2) is used for hazmat signs or personal belongings. (b) Layout for two environment semantics scenarios of experiment Il. (c) Layout
for three environment semantics scenarios of experiment Il. In the picture, some environment semantics are covered by red barriers.

In real-world situations, if we do not have a dataset, understanding into our framework. It is common practice to
applying data-driven approaches is impractical or intractable.  build a heuristic-based system that comprises important factors
To the best of our knowledge, no dataset involves all the and expert knowledge to obtain SA. It is straightforward to
environment semantics; that is, it is not feasible to build a adjust. The SSR is proposed based on this idea. We obtain
parametric model and train an end-to-end network to assess  the score of each environment semantic indicator and adapt
the situation. Moreover, SA is a subjective understanding and it into the proposed framework by developing the SSR score,
needs to be intuitive and explainable, especially in safety-critical ~ which expresses the overall intensity and plethora of semantic
and hazardous applications. Thus, we must capture human  information from the environment.
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(a) SSR and environment semantics (radiation and noise) intensity timeline in LOW case. (b) SSR and environment semantics (radiation and SHA)
intensity timeline in MEDIUM case. (c) SSR and environment semantics (risk and noise) intensity timeline in HIGH case.
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TABLE 1 Sensitivity analysis (S1 and St) of environment semantics with
the SSR score in experiment I.

Case Semantic indicator S1 ‘ St
Radiation (red zone) 0.997 0.997
Medium
SHA (blue zone) 0.977 0.978
Noise (blue zone) 0.997 0.997
High
Risk (red zone) 0.766 0.769

Frontiers in Robotics and Al

We obtain a set of normalized metrics S from 0 to 1 in Section 4.
In different scenarios, different semantics might have different
importance. To address this, we assign an importance weight W;
for each §;. Tuning W, provides the framework extensibility to
different deployment cases and tasks while enabling leveraging
expert knowleglge. In our experiment, we adopt the exponential
weight W, = e2% to emphasize the environment semantics with a
higher score, where S; is the score of each environment semantic and
i is the label of environment semantics. The exponential weight lets
high-score semantics have a higher impact in the final SSR score.
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TABLE 2 Combinations of environment semantics in different scenarios
in experiment Il.

Scenario Radiation Risk SHA ‘ Noise
1 High — — High
2 Medium — — Medium
3 High High - _
4 Medium Medium — —
5 — High — High
6 — Medium — Medium
7 — — High High
8 — — Medium Medium
9 High — High —
10 Medium — Medium —
11 High — High High
12 Medium Medium — Medium

Then, we define the situational semantics richness R as follows (see
Equation 7):

n

R=) W;xS, ?)

i=1
where n denotes the number of environment semantics.
We normalize the R using a sigmoid function to obtain
R,orm (see Equation 8), which can enable a better understanding
of the SSR intensity by humans:

1

1+e R’

R (8)

norm —

where a and b can be set as 10 and -0.5, correspondingly, to fit the
range (0,1).

To address the effects of unreliable scores caused by noise or
false detection, we process the normalized SSR score by involving
historical data. We apply an attention mechanism regression to
comprise the past SSR scores and emphasize the impact of the
latest score. The attention mechanism was first proposed by Elizbar
A. Nadaraya (Nadaraya, 1964) and Geoffrey S. Watson (Watson,
1964), and it has been widely used for nonparametric estimation
and deep learning (Vaswani et al., 2017). It runs like the human’s
attention to indicate which value or factor deserves more focus
among the rest of the data.
case, we can obtain a set of R in time
R,={R,,Ry, ..., R}, >0, where the
current timestamp. Then, the estimated situational semantics
richness R, at time t can be defined as follows (see

In our

sequence t refers to

Equation 9):
K(t-t,)

Z;;lK(t_ tj)

XR, 9)

k=)

n
i=1
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where K is the kernel function and ¢; is the timestamp of different R,.

Hence, t — t; refers to their individual time gap to the current time. If

we apply the Gaussian kernel, which is mostly used in Equation 10,

the estimated situational semantics richness R, is (see Equation 10):
K(u) = € exp

n (10)
R = Zsoftmax(—%(t— ti)z) XR,
i=1

where u refers to ¢ —¢; in this case.

In the experiment, we selected the time window of five latest
R,, which means n=5. According to the features of the applied
attention mechanism, the older the sample is, the less impact it has
on the final score. Hence, the five latest samples are enough to refer.
Considering the sampling rate limitation from the radiation sensor
(1 Hz), the updating rate of the SSR score is synchronized to 1 Hz.
Hence, the tuned situational semantic richness R, refers to the R, in
55, and we apply the R, as the final SSR score. The time complexity
of the whole process is O(n), and the space complexity is O(n) as
well, which means that it is an efficient algorithm in the scope of
computation.

6 Experiments

We tested our framework intending to evaluate the following:
i) if the framework can accurately perceive each semantics and
their changes separately and ii) if the framework is robust and can
adapt in an environment with multiple levels and types of semantic
indicators.

We used a Jackal mobile robot with an Intel I5 CPU and
GTX 1650TT GPU onboard. The framework is built based on the
ROS Noetic system. We ran the framework directly on the Jackal
to avoid image transferring to the offsite computer. Additionally,
sensors, including a real-sense D435i camera, Velodyne vlp-16
Lidar, and Hamamatsu Gamma Sensor C12137, were mounted
on the Jackal. We applied the Yolact (Bolya et al., 2019) as our
vision model, providing object detection and instance segmentation
results. We made some modifications to the system to enable us
to attach depth data to each detected object by aligning the RGB
image and depth image. The Hamamatsu Gamma Sensor C12137
is specifically designed to measure gamma radiation in the range
0.03 MeV-2 MeV and dose rate up to 100 uSv/h. Even though
the robot would be able to detect high-strength radiation sources
from a distance, constrained by regulations from the university,
sadly, we had to use a low-strength radiation source (uranium rock)
that cannot be detected from long distances (over 10 cm). Stronger
sources are not available in our project.

We assume that the robot has a prior map from the SLAM, but
SLAM is outside the scope of this paper. The proposed environment
semantics were placed in the environment after the mapping. Then,
we predefined a set of waypoints that the robot has to navigate.
Autonomous navigation was applied because we would like to keep
similar trajectories of the robot in corresponding trials.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1694123
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ruan et al. 10.3389/frobt.2025.1694123
1.0 Semantics : Semantics
—— Radiation 1 —— Radiation
—— Noise 0.8 1 ——— Noise
0.8 —— SSR : —— SSR
1 !
1 sl
0.6 i ol
= 0.6 > ' EI
2 2 ! S,
£ 2z 1 EI
= Zo04 1 o
J ]
! o
0.2 0.2 1 =
. Se
1 S
0.0 ! 0.0 —— ]

0 5 10 15 20 25 30 35 40
Timestamp

(@)

Q
=
1.0 Semantics ! S
—— Radiation 1 2 |
—— Risk 1 21
0.8 —— SSR ! c!
1 ol
1 =11
1 Sl
> 0.6 1 Gl
= 1 1
2 1 !
1] | T
E 0.4 1
]
1
1
0.2 1
1
1
0.0 I I

0 5 10 15 20 25 30 35 40
Timestamp

©

1.0 Semantics : . Il
—— Risk 1 b1
—— Noise 1 |
0.8 —— SSR 1 l
I 1
1 21
i |
0.6 1 S
z i ,
a 1 i
] 1
2
£ 04 [
1
I
0.2
0.0

0 5 10 15 20 25 30 35 40
Timestamp

©

FIGURE 5

SSR and environment semantics intensity timeline (part 1). (a) Radiation—noise combination with high intensity(Scenario 1). (b) Radiation—noise
combination with medium intensity(Scenario 2). (c) Radiation—risk combination with high intensity(Scenario 3). (d) Radiation—risk combination with
medium intensity(Scenario 4). (e) Risk-noise combination with high intensity (Scenario 5). (f) Risk-noise combination with medium intensity(Scenario 6).

0 5 10 15 20 25 30 35
Timestamp

(b)

1.0 I §
Semantics |
—— Radiation 1
0.8 —— Risk I
®  — ssr '
1
1
0.6 I
Fr) 1
a 1
e
g 1
£ 04 I
1
1
1
0.2 1
1
1
0.0

' '
(o] 10 20 30 40
Timestamp

(D

1.0 Semantics

1 (lJl
. 1 Qi
—— Risk I ol
—— Noise 1 <1
0.8 —— SSR 1 x
1 2
1
i £
0.6 1 E
= 1
2 1
f=4
2
S04
0.2
0.0

20 30 40
Timestamp

®

6.1 Experiment |

6.1.1 Implementation

We tested the framework in the scenarios with single
environment semantics in experiment I. We set two scenarios
separately in the area (see Figure 3a). In each scenario, only one
environment semantics was added; that is, each environment
semantics is independent, and only one semantics with a big
impact can be perceived at any time.

Frontiers in Robotics and Al

Specifically, we defined three cases to differentiate the intensity
of the environment semantics: low (radiation and noise), medium
(radiation and SHA), and high (risk and noise), which correspond
to the levels of environment semantics. For instance, the high case
refers to risk and noise that can be detected at a high level and the
medium case refers to radiation and SHA detected at the medium
level. Due to the nature of the uranium rock, the high-strength
radiation scenario needed teleoperation and positioning of the robot
close to the source to simulate the situations in which the sensor
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receives a high dose rate. In addition, we applied longer distances
to simulate medium and low cases. We ran the robots 10 times in
each of the three cases.

6.1.2 Results

We collected data, including the scores of all environment
semantic indicators and timestamps. To examine if the framework

Frontiers in Robotics and Al

can differentiate environments with different levels of semantics, we
generated the timeline of the SSR score and environment semantics
in Figure 4. Note that in Figure 4c, there is a deep flat between 60
and 70 s. It was caused when the robot turns momentarily and faces
the black curtain on the left. At that point, the camera, which is
constrained by the view of the field, was unable to see the last hazmat
sign on the red barrier until it moved forward and faced the sign.
To the best of our knowledge, there is no prior baseline or dataset
to compare with. The figures from the different cases reveal that
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TABLE 3 Spearman’s rank correlation coefficient (p) of environment semantics with the SSR score and bootstrap 95% Cl in experiment 1.

Scenario Radiation Risk SHA Noise

1 0.75 [0.65, 0.82] — — 0.81 [0.74, 0.85]
2 0.86 [0.80, 0.91] — — 0.22 [0.07, 0.37]
3 0.67 [0.57, 0.75] 0.80 [0.77,0.82] — —

4 0.56 [0.45, 0.67] 0.88 [0.85, 0.90] — —

5 — 0.73 [0.68, 0.75] — 0.67 [0.56, 0.75]
6 — 0.53 [0.41,0.62] — 0.76 [0.72, 0.79]
7 — — 0.83 [0.77,0.86] 0.79 [0.75, 0.82]
8 — — 0.78 [0.71, 0.84] 0.46 [0.35, 0.56]
9 0.68 [0.58, 0.76] — 0.87 [0.83,0.89] —

10 0.67 [0.56, 0.75] — 0.79 [0.74, 0.84] —
11 0.53 [0.47, 0.60] — 0.44 [0.36, 0.54] 0.91 [0.88, 0.92]
12 0.42 [0.34, 0.50] 0.63 [0.57,0.68] — 0.50 [0.40, 0.53]

TABLE 4 Kendall's rank correlation coefficient (7) of environment semantics with the SSR score and bootstrap 95% Cl in experiment Il.

Scenario Radiation Risk SHA Noise
1 0.62 [0.54, 0.69] — — 0.60 [0.53, 0.65]
2 0.70 [0.64, 0.76] — — 0.18 [0.08, 0.28]
3 0.52 [0.45, 0.60] 0.57 [0.53,0.61] — —
4 0.43 [0.34, 0.51] 0.73 [0.69, 0.77] — —
5 — 0.53 [0.50, 0.55] — 0.51 [0.43, 0.58]
6 — 0.42 [0.36, 0.52] — 0.52 [0.48, 0.57]
7 — — 0.67 [0.62,0.71] 0.57 [0.52,0.61]
8 — — 0.63 [0.57, 0.68] 0.32[0.24, 0.39]
9 0.55 [0.46, 0.61] — 0.70 [0.65, 0.74] —
10 0.52 [0.44, 0.59] — 0.63 [0.57, 0.67] —
11 0.39 [0.35, 0.42] — 0.34 [0.26, 0.40] 0.74[0.70, 0.77]
12 0.31[0.25,0.37] 0.52 [0.47, 0.56] — 0.40 [0.29, 0.42]

the framework is capable of correctly outputting the corresponding
SSR scores in the individual environment semantics scenario.
When the robot reached the scenario, the environment semantics
indicator responded in time, and the SSR score was affected more
by the semantics with higher scores, as designed; that is, the SSR
score tracked the environment semantics with the highest score
and magnitude. When zooming in specific environment semantics
zones, we notice that low-intensity semantics do not affect the SSR
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score much if medium- or high-intensity semantics exist. We apply
variance-based sensitivity analysis (Sobol, 2001) in the medium and
high cases (see Figures 4b, c). Specifically, we calculate the global
sensitivity (first-order index S1 and total-effect index S,) of each
environment semantics indicator to the SSR score in Table 1. We skip
the low case to save space, as the low case is not that important in
real deployments as long as no significant error has been found. The
analysis showed similar S1 and S, results. The individual semantics
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of the corresponding zones show strong sensitivity (over 0.7) to
the SSR score. It indicates that the SSR score can respond quickly
and accurately to single semantics changes in the environment.
The medium- or high-intensity semantics dominate the impact and
lead the changes in the SSR score. Our framework was tested to
capture the changes in individual semantics and reflect correctly on
the SSR score.

6.2 Experiment Il

6.2.1 Implementation

We tested the frameworK’s performance in scenarios with
concurrent multi-environment semantics in experiment II. We
designed 12 scenarios in this experiment (see Table 2). Specifically,
we select all the possible two-semantics combinations with high-
and medium-level intensity and two three-semantics combinations.
The scenarios covered a wide spectrum of situations that robots may
encounter. We did not test with all of the semantics concurrently
as we were constrained by our vision system (train the hazmat and
personal belonging detection separately). Additionally, the noise
generation design (Ramesh et al., 2023) has only two levels of
intensity available. High refers to deliberately adding laser noise
into the scenario. Medium refers to no artificial laser noise being
added (e.g., normal noise caused by turning the robot). Low refers to
background noise. In the scenarios with two environment semantics,
we used the corresponding area in Figure 3b. The dark blue box on
the ground was used for laser noise or the radiation source. Hazmat
signs were put on the right red barrier, and personal belongings
were scattered in front of the right red barrier. In the scenarios with
three environment semantics, we applied laser noise in the dark blue
box, hazmat signs, and radiation source, as shown in Figure 3¢ and
personal belongings were scattered around the gray bricks. The robot
ran five times in each scenario.

6.2.2 Results

We collected data on all environment semantic indicators,
SSR scores, and timestamps in experiment II. We aligned the
data in each scenario with the timestamp to reduce the error
caused by mismatching. The processed results are shown in
Figures 5a—f, 6a—f. The shade zone reveals the range of semantic
indicators and the SSR score. The solid lines refer to the mean from
five trials.

Because of the limitation of the sensitivity analysis
(unable to reflect the sensitivity in the complex system with
multiple factors), we analyzed individual environment semantics
correlations to the SSR score. Our framework is nonlinear.
Hence, we calculate Spearman’s rank correlation coefficient
(p) with corresponding bootstrap 95% CI in Table3 and
Kendall's rank correlation coeflicient (r) with corresponding
bootstrap 95% CI in Table 4 to examine the relationship among
them. All the p-values are much lower than 0.05. So, we did not list
them in the table.

In Table 3, Spearman’s rank correlation coeflicient demonstrates
that in most scenarios, environment semantics indicators show at
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least a “weak” correlation (0.1-0.39) to the SSR score. In most
scenarios with high-intensity semantics, the correlation index is
above 0.4 and can be considered “moderate” (0.4-0.69). If the
semantics have high intensity over a long time, tables show
“strong” (0.7-0.89) correlation (Schober et al., 2018). The table
indicates that different semantics show at least moderate impacts
on the SSR score; that is, the SSR score can reflect the changes
in multiple semantics changes accordingly. If we connect to
experiment I, we find that the results are consistent in the scope
of responding to the situation changes correctly. It means our
framework shows the generality ability when adding or removing
semantic indicators.

Kendall’s rank correlation coeflicient (Chok, 2010) is robust
to outliers. Similarly, most results in Table 4 align the monotonic
relationship (at least moderate positive correlation) shown in
Table 3, which is expected. However, scenario 2 shows a “weak
positive correlation” with noise. When we check Figure 5a, the
weak correlation is reasonable. We did not use artificial noise in
that scenario. Hence, the noise score is mainly affected by the
robot’s movement, which stays at the bottom of the graph. It does
not impact the changes in the SSR score much as we expected.
A similar situation occurs in scenario 8 and results in a weak
correlation. In scenario 11, there is no environment semantics
showing a dominant impact on the SSR score from Figure 6b.
Hence, the correlation coeflicients indicate weak or moderate
correlations only.

Both Spearman’s rank correlation coeflicient and Kendall’s rank
correlation coefficient demonstrate that our framework reveals the
situation changes and can adapt the complex scenarios with multiple
semantics. These environment semantics show considerable impacts
on the SSR score that enable SSR as a trustworthy representative for
warning situation changes.

7 Discussion and future work

Multi-robot deployments are expected in the future. SA is one of
the prerequisites of prediction, planning, and decision-making. Our
framework provides a way to obtain real-time SA that is intuitive
and explainable to humans and easily usable for robots. From the
scope of the experiments, the sensitivity analysis of experiment I and
the Spearman’s and Kendal’s rank coeflicient of experiment I, along
with the analysis of the figures, reveal that our framework is sensitive
enough for individual semantics situations and responds correctly in
semantic-rich situations.

Compared with deep learning methods, our framework is
designed to apply expert knowledge instead of data-driven training,
which avoids the issue of lacking datasets. It can be potentially
explainable to a human, contrary to black box models. It enables
humans to understand what exactly happens in the framework and
makes it more intuitive for experts tuning the framework. Human
operators and robots can obtain shared SA not only from the SSR
score but also from the changes in individual semantics indicators,
which enables them to identify the exact situation onsite. This is
crucial for real-world deployments in safety-critical applications. In
addition, context and semantics can be infinite. Robots may not
be able to understand all situations with a complex combination
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of semantics. This metric can be used to make robots aware of
whether they are in a semantic-rich situation beyond their capability
to understand and whether they need help from human intelligence.
Hence, both the semantics indicators and the aggregated metric
SSR can be used in a prediction, planning, and decision-making
framework, especially from HRTs.

Regarding the flexibility and generality of our proposed
approach, experiment II indicates that the framework is flexible
enough to shift and comprises multiple environment semantics.
It will remain robust, easily explainable, and intuitive if more
environment semantics are added or removed. Depending on the
applications and mission, experts can directly adjust the parameters
to generalize the framework into a more reasonable representation
of the given scenario. For instance, experts can highlight the
weights of those semantics that are important to the goal of
the mission, which makes the framework more sensitive and
responsive to these semantics. The framework is not restricted to
UGV deployments and can be adopted from different robotics
platforms and required sensors, such as UAVs or heterogeneous
multi-robot teams.

Moreover, we apply the framework in a mock-up experiment in
a SAR task of a disaster-response mission (Ruan et al., 2025) context.
We explored VA HRT patterns when high-level semantics are
involved. Specifically, our experiments indicate that the effectiveness
of the proposed framework and displaying the proposed high-level
semantic indicators can help humans: decreasing reaction time
when switching the level of autonomy (LoA), reducing cognitive
workload, and increasing trust in their SA.

We have some limitations as well. The vision system constrains
the implementation of the framework. Considering the training
process, it is possible to fuse personal belonging detection and
hazmat detection to simplify the deployment process, or we can
adapt other state-of-the-art perception algorithms to improve the
accuracy and real-time performance. However, our framework
will scale nicely to continue being useful as the semantics
capabilities of Al and computer vision continue to grow more
powerful over time.

8 Conclusion

In this paper, we proposed a semantics-based SA framework
to represent and quantify the variety of semantic information and
the overall information richness via the concepts of environment
semantic indicators and the aggregated SSR metric. We also
provided an example implementation to process high-level
environment semantic indicators that quantify the corresponding
specific scope of the environment. Semantic perception capabilities
of AI are still in an early stage of development. This is why
we have chosen some relatively simple and robust examples
in the experiments. However, the experiments demonstrate
that our framework is capable of obtaining SA and indicate
its extensibility to semantic-rich environments and has the
The
modularized design increases the flexibility, and it should adapt

potential to involve multiple environment semantics.

nicely as these Al capabilities grow.
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