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 Deployment of robots into hazardous environments typically involves a 
“human–robot teaming” (HRT) paradigm, in which a human supervisor interacts 
with a remotely operating robot inside the hazardous zone. Situational 
awareness (SA) is vital for enabling HRT, to support navigation, planning, and 
decision-making. In this paper, we explore issues of higher-level “semantic” 
information and understanding in SA. In semi-autonomous or variable-
autonomy paradigms, different types of semantic information may be important, 
in different ways, for both the human operator and an autonomous agent 
controlling the robot. We propose a generalizable framework for acquiring and 
combining multiple modalities of semantic-level SA during remote deployments 
of mobile robots. We demonstrate the framework with an example application 
of search and rescue (SAR) in disaster-response robotics. We propose a set of 
“environment semantic indicators” that can reflect a variety of different types 
of semantic information, such as indicators of risk or signs of human activity 
(SHA), as the robot encounters different scenes. Based on these indicators, we 
propose a metric to describe the overall situation of the environment, called 
“Situational Semantic Richness” (SSR). This metric combines multiple semantic 
indicators to summarize the overall situation. The SSR indicates whether an 
information-rich, complex situation has been encountered, which may require 
advanced reasoning by robots and humans and, hence, the attention of the 
expert human operator. The framework is tested on a Jackal robot in a mock-
up disaster-response environment. Experimental results demonstrate that the 
proposed semantic indicators are sensitive to changes in different modalities of 
semantic information in different scenes, and the SSR metric reflects the overall 
semantic changes in the situations encountered.

KEYWORDS

situational awareness, semantics, semantic understanding, human–robot teaming, 
disaster-response robotics, search and rescue robotics 
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1 Introduction

Situational awareness (SA) is vital for robots deployed in the 
field to function with sufficient autonomy, resiliency, and robustness. 
This is especially true for human–robot teams (HRTs) in safety-
critical applications such as disaster response, remote inspection 
in unstructured environments, or nuclear operations (Chiou et al., 
2022; Ruan et al., 2022; Stolkin et al., 2023). In all cases, humans and 
robots require SA to make plans or decisions in the context of HRT 
(e.g., identifying a proper timing to switch control between human 
operators and robots). Hence, humans and robots need to know and 
share what is happening in the environment to plan and act in a safe 
and coordinated manner. Humans and robots (to avoid verbosity, 
we sometimes use the term “robot” synonymously with the AI or 
autonomous agents controlling the robot) have distinct strengths 
and weaknesses in terms of perception, sensory data interpretation, 
and decision planning and execution in response to those data 
in real time.

Building on low-level signals from multiple modalities of on-
board cameras and sensors, higher-level “semantic” understanding 
(Ruan et al., 2022) of scenes, environments, and situations must 
be developed. Often, this higher-level semantic knowledge will 
be critical for determining subsequent decisions and actions. 
Recent advances, especially from the computer vision community 
(Long et al., 2015; Li et al., 2017), have begun to provide autonomous 
agents with some elements of semantic-level perception. Meanwhile, 
in real-world robotic systems at present, the intelligence of human 
operators may often be necessary to correctly interpret and act upon 
semantically rich situations. In this paper, we propose a framework 
for robots to acquire semantically enhanced SA that combines with 
human understanding in an explainable and intuitive way.

Human factors SA can be modeled in terms of three levels 
of awareness (Endsley, 2017): level 1) perception of elements 
in the current situation, level 2) comprehension of the current 
situation, and level 3) projection of future status. In the robotics 
and AI research literature, it is common to use terms such as 
sensing, perception, scene understanding, semantics, and context 
(Bavle et al., 2023) instead of SA. There are connections among 
these related concepts; for example, the concept of perception 
“elements” in SA can be linked to the “semantics” concept in AI. 
Hence, although the conventional SA model is designed to represent 
the awareness of human operators, the SA of an autonomous 
or semi-autonomous robot can be structured similarly in the 
scope of semantics. Elements of level-1 SA can be objects, sensor 
readings, and other low-level semantics (Ruan et al., 2022). The 
comprehension of the current situation at level 2 corresponds to 
high-level semantics (Ruan et al., 2022) (see Figure 1). Prediction, 
planning, or decision-making based on these constitute the main 
focus of level 3.

Our work aims to build a systematic framework and concepts 
the following: a) make SA sharing from robot to human easier, 
practical, and intuitive and b) facilitate the use of semantically 
enhanced SA in HRT planning and decision-making frameworks. 
We build upon our previous work that proposed a taxonomy of 
semantic information (Ruan et al., 2022) and definitions of low-level 
semantics, high-level semantics, and the context in robot-assisted 
disaster response.

FIGURE 1
Mobile robot semantic SA.

In this paper, we explore level-2 SA and propose the concept 
of an “environment semantic indicator” along with an example 
realization. Each indicator captures the understanding of an 
environment’s semantics intensity, such as signs of human activity 
(SHA). Furthermore, we build upon those indicators to develop an 
aggregated metric, the “situational semantics richness” (SSR), which 
expresses the overall intensity and plethora of semantic information 
in an environment. 

2 Related work

Early studies in human factors analyzed SA based on human 
feedback after trials (Stanton et al., 2017), such as by using 
the Situation Awareness Global Assessment Technique (SAGAT) 
(Endsley, 1988) or the Situational Awareness Rating Technique 
(SART) (Taylor, 2017). Endsley and Mica R. proposed a three-
level SA model, which is widely accepted (Endsley, 1995). SA is a 
subjective concept based on objective reflections of the environment, 
which means that everyone may understand the situation differently. 
Thus, building a generalized framework to regulate understanding 
is essential. A subjective scoring or weighting system that delivers 
a subjective understanding is commonly used to differentiate each 
situation. For instance, Hooey et al. (2011) built a heuristic scoring 
system and gave weights to different “situational elements” to 
model the SA obtained from aircraft pilots. McAree et al. (2018) 
gave examples of formalizing some specific awareness, such as the 
position and air environment (consisting of air traffic, airspace 
restrictions, and weather), using a scoring system.

These works show how humans obtain SA. Elements of such 
approaches can be generalized to robot SA. Some research workers 
discuss combined human SA and robot SA or view the problem 
from a global perspective in the context of human–robot interaction 
(HRI) (Dini et al., 2017). Other research workers use ontology 
to obtain the SA. Ontology concerns what kinds of things exist, 
how they can be organized, and what relationships exist between 
them (Huang et al., 2019; Tenorth and Beetz, 2017). Armand et al. 
(2014) modeled simple situations on the road and crossroads 
using ontology. Authors categorize road contexts into “mobile 
entities,” “static entities,” and “context parameters” that describe the 
relationship between entities from the spatiotemporal scope. Rules 
are established for the vehicle when the combination of road contexts 
changes. Ontologies are intuitively straightforward for modeling 
situations and are easy to understand. However, the ontology models 
are built on simplified or specific situations. They may have problems 
in complex environments and unexpected situations. Hence, robots 
need multiple inference methods to obtain SA (Tenorth and Beetz, 
2017). Alternatively, probabilistic methods can be used to model the 
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environment and generate SA (Shuang et al., 2014). Nguyen et al. 
(2019) compared multiple SA measurements that formalize the SA. 
Apart from a human perspective, the authors also review the SA 
for unmanned aerial vehicles (UAVs). They claim that most SA 
studies focus on the human perspective and indicate that there are 
limited methods to frame and obtain UAV SA. Senaratne et al. 
(2025) systematically discussed the dynamic nature of team SA and 
the factors that affect SA. Meanwhile, our work focuses on using 
high-level semantics to facilitate SA in the scope of HRT.

In general, most of these SA assessments define metrics 
highlighting the flexibility and the importance of expert knowledge. 
However, there are limited works on how robots perceive high-
level semantics and how robots can aggregate those semantics into 
coherent and usable metrics reflecting the overall SA and context. 
Unlike human SA research, most robot SA research still focuses 
on addressing specific problems from one specific scope, such 
as electromagnetic jamming security (Gao et al., 2020) or failure 
conditions (Ginesi et al., 2020; Ghezala et al., 2014). In contrast, 
we propose a general framework and an example realization for an 
aggregated metric of SA, which enables robots to understand the 
overall environmental situation and can be generalized to different 
deployment tasks. 

3 Problem formulation and concept 
definition

Here, we assume that the deployed robots need to perform tasks 
such as scanning a damaged building (Kruijff et al., 2012), surveying 
and sampling contamination in a hazardous site (Nagatani et al., 
2013), remotely inspecting and monitoring facilities, or searching 
for human victims (Murphy, 2014; Ruan et al., 2022) in the context 
of disaster response. Robots can be tele-operated (Chiou et al., 
2022), semi-autonomous [e.g., variable autonomy (Reinmund et al., 
2024; Methnani et al., 2024), mixed-initiative (Chiou et al., 2021), 
or shared control (Pappas et al., 2020) paradigms], or run fully 
autonomously. In all cases, robots need SA to make plans or 
decisions D in the context of HRT. Hence, there is a mapping I:S ↦
D between a set of environment semantics S  and the decisions D.

Specifically, S = {S1,S2,…,Si,…Sn}, (n > = 1,0 < Si < 1)
comprises a set of different possible types of environment semantics, 
such as SHA, noise for LiDAR, or detection of hazards, where 
n denotes the number of semantic indicators in S . Note that S
can be configured to contain many different kinds of semantic 
information, as may be appropriate to different types of robot 
missions and application domains. Without the loss of generality, 
in this paper, we use the example of disaster response to provide 
an intuitive illustration of how this framework can be applied in a 
practical task. As examples of possible S , we present experiments 
in which we use the following: S1 = S(noise), S2 = S(risk), S3 =
S(SHA), and S4 = S(radiation). These are examples of environment 
semantics that can be useful in disaster response and remote 
inspection missions (Ruan et al., 2022).

A significant challenge is that it is nontrivial to parameterize a 
framework for a mapping I, which can directly map semantics S
onto decisions D. Therefore, the key idea of this paper is to introduce 
an intermediary term, which we call SSR R. The term R serves to 
aggregate the environment semantics combinations in S , which can 

then assist with bridging toward the decision set D. We define the 
function R = f(Si,Wi), where Wi is a set of weights that reflects 
the relative impact of each type of semantic information. Note that 
this paper focuses on addressing the problem of progressing from 
S  to the intermediary term R. The next challenge of formulating 
a relationship between R and D will form the subject of a future 
paper and is out of the scope of the present paper. However, in this 
paper, we show how the formulation of S , and its mapping to the 
intermediary term R, is already a useful tool in its own right for 
assisting SA in HRT missions. 

4 Environment semantic indicator

4.1 Laser noise intensity

Many unmanned ground vehicles (UGVs) rely on lasers for 
autonomous navigation. However, laser noise potentially affects the 
navigation. We adapt the method to obtain laser noise variance 
(σ2

noise) in our previous work (Ramesh et al., 2022). It is calculated 
by convolving the laser map image with a 3 × 3 mask and applying 
summations on the resultant matrix. Then, we adapt the noise 
variance into a sigmoid function (see Equation 1 and Ramesh et al., 
2022) to obtain the laser noise intensity S(noise). To give a rough 
indication of the scale, when operating our mobile robot in our 
laboratory’s mock-up disaster scene testing environment, we notice 
that a σ2

noise > = 1.4 is sufficient to severely disrupt autonomous 
navigation, causing the robot to stop. We use this critical value to 
help inform choices for parameters a and b to tune the system to 
our robot and testing environment. Combining the preliminary test 
results, the laser noise intensity is designed as follows:

S (noise) = 1
1+ exp(−a ⋅ σ2

noise + a ⋅ b)
, (1)

where a = 5 and b = 1, to obtain a curve that responds to medium 
inputs but is not oversensitive to low or high inputs. 

4.2 Risk to robots

Risk to robots can be quantified based on the hazard level and 
hazard length (Soltani and Fernando, 2004). The hazard level refers 
to how dangerous the hazard is to the robot, and the hazard distance 
refers to the distance to the object. Furthermore, time may also 
affect the risk level, such as the accumulated dose received from the 
radiation sources.

In this work, we assume that the robot can detect potential 
risks by detecting hazmat signs that commonly exist in hazardous 
environments. In general, humans and robots face similar risks. 
However, considering the slight difference between the risk to 
humans and risk to robots, the categorization might differ but can 
be trivially adapted to reflect human risks, expert knowledge (e.g., 
by first responders), or different scenarios. We categorize the hazmat 
signs into three levels heuristically: low risk or no risk for the 
robot (e.g., poison, infectious substance, nonflammable gas, and 
inhalation hazard), medium risk (delayed hazard to a robot or they 
can be high risks under certain occasions, e.g., corrosive, radioactive, 
dangerous when wet, oxygen, and organic peroxide), and high risk 

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1694123
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ruan et al. 10.3389/frobt.2025.1694123

(immediate hazard to the robot, e.g., explosives, flammable solid, 
flammable gas, and spontaneously combustible material). Other 
risks that are not included can also be added trivially in different 
scenarios.

Intuitively, distance is a factor that relates to the risk intensity. 
Referring to the relationship between the radiation strength 
and distance (Voudoukis and Oikonomidis, 2017), we apply 
a similar model risk to robots S(risk) by using the inverse 
square law (see Equation 2):

S (risk) =
n

∑
i=1

Hj

d2
i
, (2)

where n is the number of detected signs, i is the label of each detected 
sign, d refers to the distance to the robot, j refers to the level of the 
corresponding signs, and Hj refers to the risk intensity of each level 
of hazmat sign.

Then, we normalize the risk score by applying the sigmoid 
function. The reason for using the sigmoid function is when the 
x-axis closes to infinity, the slope of risk is low and accords with 
human common understanding; that is, the environment that has 
six high-risk objects has a similar S(risk) as the environment 
containing five high-risk objects. The normalized score is as 
follows (see Equation 3):

S(risk)norm =
1

1+ e−aS(risk)−b
, (3)

where a and b are used for tuning the functions. In our experiments, 
we set them as a = 0.09 and b = − 4.8 heuristically to get a 
meaningful and usable curve. Experts can tune a and b for 
different tasks. 

4.3 Signs of human activity

Robots might not always directly detect human victims in the 
environment (e.g., trapped under debris or occluded by objects). 
Hence, robots must identify clues to find victims. SHA are 
considered a potential factor in finding people (Yang et al., 2018). We 
use human belongings, such as mobile phones, keys, and watches, as 
indicators of human activity. Intuitively, the dispersion of personal 
belongings makes a difference to the SHA. Thus, the SHA model is 
developed from two aspects: the class of objects and the dispersion 
of the objects.

We design three classes of objects to differentiate the impact of 
different human belongings: i) high impact means there is a high 
chance for these objects to be found on the human body (e.g., glasses, 
key, cell phone, and watch); ii) medium impact means there are 
chances for these objects to be found in proximity to the human 
body (e.g., cap, mask, and wallet); iii) low impact means there is a 
high chance for these objects not be carried on the human body (e.g., 
laptop and backpack). This heuristic classification is an example of 
realization for our framework, and experts can adjust it.

Based on the above, we propose the following model to estimate 
the SHA score S(SHA) (see Equation 4):

dispersion =
n

∑
i=1
|di − daverage|,

S (SHA) =
n

∑
i=1

Pj

dispersion
,

(4)

where n is the number of detected objects, i is the label for each 
object, di is the distance from the corresponding objects to the robot, 
daverage is the average distance of all the objects, j is the label of class 
for objects, and Pj refers to the impact of corresponding objects.

Similarly, we normalize the S(SHA) using the sigmoid function 
(see Equation 5):

S(SHA)norm =
1

1+ e−aS(SHA)−b
, (5)

where a and b are used for tuning the function. In our experiments, 
we used a = 10 and b = − 0.5 to obtain a curve that has similar 
sensitivity characteristics as Equation 1. The parameters can be 
adjusted when expert knowledge is involved. 

4.4 Radiation

Not only humans but robots may also be affected by 
radiation (Nagatani et al., 2013). The highest risk will be to 
the onboard electronics, as radiation can cause disruptions, 
malfunctions, or even complete failure of electronic components. 
These issues can be addressed by applying appropriate shielding 
and mitigation techniques or designing radiation-hardened robots. 
However, radiation shielding is typically extremely heavy, leading to 
large and bulky robots that may be impractical in certain tasks, such 
as entering a hazardous zone with a small robot via a small door or 
aperture. Alternatively, we might monitor the radiation strength in 
deployment so that robots and humans can avoid exposure.

The risk associated with radiation depends on the distance 
from the source and the radiation’s type, strength, and energy. It 
is important to distinguish between the dose rate and the total 
integrated dose. The dose rate is commonly measured in sievert 
per hour (Sv/h) and microsievert per hour (μSv/h), which is the 
rate at which the radiation is received at a given moment. The total 
integrated dose measured in sieverts results from the accumulation 
of radiation over time.

We designed a mapping I:G↦ S(radiation). It translates the raw 
readings that require radiation backgrounds for understanding to a 
matric ranging from 0 to 1. G is a set of gamma radiation dose rates 
G in μSv/h from the sensor, and S(radiation) denotes the radiation 
strength. Specifically, the sigmoid function is applied in the mapping 
I to normalize the S(radiation) (see Equation 6):

S(radiation)norm =
1

1+ e−aG−b
, (6)

where a = 8 and b = − 8. Specifically, S(radiation) = 0 refers to no 
radiation, and S(radiation) = 1 refers to radiation that can instantly 
damage the robot. This tuning setting takes into account the effects 
of background radiation (usually under 0.4 μSv/h) and decreases the 
impact of it. 

5 Situational semantics richness

With the semantics in Section 4, we propose a 
framework (shown in Figure 2) that fuses the semantics of the 
environment at a higher level, that is, a metric that describes the 
overall status of the environment in an aggregate representation.
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FIGURE 2
Semantics-based SA framework: the light blue box refers to low-level semantics, the cornflower blue box refers to high-level semantics, and the dark 
blue box refers to context. Black dashed lines indicate the potential connections among different levels.

FIGURE 3
(a) Layout for experiment I. The dark blue box area (scenario 1) on the ground is used for laser noise or the radiation source (uranium rock). The yellow 
box area (scenario 2) is used for hazmat signs or personal belongings. (b) Layout for two environment semantics scenarios of experiment II. (c) Layout 
for three environment semantics scenarios of experiment II. In the picture, some environment semantics are covered by red barriers.

In real-world situations, if we do not have a dataset, 
applying data-driven approaches is impractical or intractable. 
To the best of our knowledge, no dataset involves all the 
environment semantics; that is, it is not feasible to build a 
parametric model and train an end-to-end network to assess 
the situation. Moreover, SA is a subjective understanding and 
needs to be intuitive and explainable, especially in safety-critical 
and hazardous applications. Thus, we must capture human 

understanding into our framework. It is common practice to 
build a heuristic-based system that comprises important factors 
and expert knowledge to obtain SA. It is straightforward to 
adjust. The SSR is proposed based on this idea. We obtain 
the score of each environment semantic indicator and adapt 
it into the proposed framework by developing the SSR score, 
which expresses the overall intensity and plethora of semantic 
information from the environment.
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FIGURE 4
SSR and environment semantics intensity timeline. The lines refer to the average SSR environment semantics intensity in five runs. The shade areas 
show the minimum and the maximum range. Zones between the dashed lines refer to the corresponding semantics detected from the environment.
(a) SSR and environment semantics (radiation and noise) intensity timeline in LOW case. (b) SSR and environment semantics (radiation and SHA) 
intensity timeline in MEDIUM case. (c) SSR and environment semantics (risk and noise) intensity timeline in HIGH case.

TABLE 1  Sensitivity analysis (S1 and St) of environment semantics with 
the SSR score in experiment I.

Case Semantic indicator S1 St

Medium
Radiation (red zone) 0.997 0.997

SHA (blue zone) 0.977 0.978

High
Noise (blue zone) 0.997 0.997

Risk (red zone) 0.766 0.769

We obtain a set of normalized metrics S from 0 to 1 in Section 4. 
In different scenarios, different semantics might have different 
importance. To address this, we assign an importance weight Wi
for each Si. Tuning Wi provides the framework extensibility to 
different deployment cases and tasks while enabling leveraging 
expert knowledge. In our experiment, we adopt the exponential 
weight Wi = e

Si
0.99  to emphasize the environment semantics with a 

higher score, where Si is the score of each environment semantic and 
i is the label of environment semantics. The exponential weight lets 
high-score semantics have a higher impact in the final SSR score. 

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1694123
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ruan et al. 10.3389/frobt.2025.1694123

TABLE 2  Combinations of environment semantics in different scenarios 
in experiment II.

Scenario Radiation Risk SHA Noise

1 High — — High

2 Medium — — Medium

3 High High — —

4 Medium Medium — —

5 — High — High

6 — Medium — Medium

7 — — High High

8 — — Medium Medium

9 High — High —

10 Medium — Medium —

11 High — High High

12 Medium Medium — Medium

Then, we define the situational semantics richness R as follows (see 
Equation 7):

R =
n

∑
i=1

Wi × Si, (7)

where n denotes the number of environment semantics. 
We normalize the R using a sigmoid function to obtain 
Rnorm (see Equation 8), which can enable a better understanding 
of the SSR intensity by humans:

Rnorm =
1

1+ e−aR−b
, (8)

where a and b can be set as 10 and -0.5, correspondingly, to fit the 
range (0,1).

To address the effects of unreliable scores caused by noise or 
false detection, we process the normalized SSR score by involving 
historical data. We apply an attention mechanism regression to 
comprise the past SSR scores and emphasize the impact of the 
latest score. The attention mechanism was first proposed by Èlizbar 
A. Nadaraya (Nadaraya, 1964) and Geoffrey S. Watson (Watson, 
1964), and it has been widely used for nonparametric estimation 
and deep learning (Vaswani et al., 2017). It runs like the human’s 
attention to indicate which value or factor deserves more focus 
among the rest of the data.

In our case, we can obtain a set of R in time 
sequence Rt = {R1,R2,…,Rt}, t > 0, where t refers to the 
current timestamp. Then, the estimated situational semantics 
richness R̂t at time t can be defined as follows (see
Equation 9):

R̂t =
n

∑
i=1

K(t− ti)

∑n
j=1

K(t− tj)
×Rt, (9)

where K is the kernel function and ti is the timestamp of different Rt. 
Hence, t− ti refers to their individual time gap to the current time. If 
we apply the Gaussian kernel, which is mostly used in Equation 10, 
the estimated situational semantics richness R̂t is (see Equation 10):

K (u) = 1
√2π

exp(−u2

2
),

R̂t =
n

∑
i=1

so ftmax(−1
2
(t− ti)

2)×Rt,
(10)

where u refers to t− ti in this case.
In the experiment, we selected the time window of five latest 

Rt, which means n = 5. According to the features of the applied 
attention mechanism, the older the sample is, the less impact it has 
on the final score. Hence, the five latest samples are enough to refer. 
Considering the sampling rate limitation from the radiation sensor 
(1 Hz), the updating rate of the SSR score is synchronized to 1 Hz. 
Hence, the tuned situational semantic richness R̂t refers to the Rt in 
5 s, and we apply the R̂t as the final SSR score. The time complexity 
of the whole process is O(n), and the space complexity is O(n) as 
well, which means that it is an efficient algorithm in the scope of
computation. 

6 Experiments

We tested our framework intending to evaluate the following: 
i) if the framework can accurately perceive each semantics and 
their changes separately and ii) if the framework is robust and can 
adapt in an environment with multiple levels and types of semantic 
indicators.

We used a Jackal mobile robot with an Intel I5 CPU and 
GTX 1650TI GPU onboard. The framework is built based on the 
ROS Noetic system. We ran the framework directly on the Jackal 
to avoid image transferring to the offsite computer. Additionally, 
sensors, including a real-sense D435i camera, Velodyne vlp-16 
Lidar, and Hamamatsu Gamma Sensor C12137, were mounted 
on the Jackal. We applied the Yolact (Bolya et al., 2019) as our 
vision model, providing object detection and instance segmentation 
results. We made some modifications to the system to enable us 
to attach depth data to each detected object by aligning the RGB 
image and depth image. The Hamamatsu Gamma Sensor C12137 
is specifically designed to measure gamma radiation in the range 
0.03 MeV–2 MeV and dose rate up to 100 μSv/h. Even though 
the robot would be able to detect high-strength radiation sources 
from a distance, constrained by regulations from the university, 
sadly, we had to use a low-strength radiation source (uranium rock) 
that cannot be detected from long distances (over 10 cm). Stronger 
sources are not available in our project.

We assume that the robot has a prior map from the SLAM, but 
SLAM is outside the scope of this paper. The proposed environment 
semantics were placed in the environment after the mapping. Then, 
we predefined a set of waypoints that the robot has to navigate. 
Autonomous navigation was applied because we would like to keep 
similar trajectories of the robot in corresponding trials. 
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FIGURE 5
SSR and environment semantics intensity timeline (part 1). (a) Radiation–noise combination with high intensity(Scenario 1). (b) Radiation–noise 
combination with medium intensity(Scenario 2). (c) Radiation–risk combination with high intensity(Scenario 3). (d) Radiation–risk combination with 
medium intensity(Scenario 4). (e) Risk-noise combination with high intensity (Scenario 5). (f) Risk-noise combination with medium intensity(Scenario 6).

6.1 Experiment I

6.1.1 Implementation
We tested the framework in the scenarios with single 

environment semantics in experiment I. We set two scenarios 
separately in the area (see Figure 3a). In each scenario, only one 
environment semantics was added; that is, each environment 
semantics is independent, and only one semantics with a big 
impact can be perceived at any time.

Specifically, we defined three cases to differentiate the intensity 
of the environment semantics: low (radiation and noise), medium 
(radiation and SHA), and high (risk and noise), which correspond 
to the levels of environment semantics. For instance, the high case 
refers to risk and noise that can be detected at a high level and the 
medium case refers to radiation and SHA detected at the medium 
level. Due to the nature of the uranium rock, the high-strength 
radiation scenario needed teleoperation and positioning of the robot 
close to the source to simulate the situations in which the sensor 
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FIGURE 6
SSR and environment semantics intensity timeline (part 2). (a) SHA–noise combination with high intensity (Scenario 7). (b) SHA–noise combination with 
medium intensity(Scenario 8). (c) SHA–radiation combination with high intensity(Scenario 9). (d) SHA–radiation combination with medium 
intensity(Scenario 10). (e) SHA–radiation-noise combination with high intensity(Scenario 11). (f) Risk–radiation-noise combination with 
mediumintensity (Scenario 12).

receives a high dose rate. In addition, we applied longer distances 
to simulate medium and low cases. We ran the robots 10 times in 
each of the three cases. 

6.1.2 Results

We collected data, including the scores of all environment 
semantic indicators and timestamps. To examine if the framework 

can differentiate environments with different levels of semantics, we 
generated the timeline of the SSR score and environment semantics 
in Figure 4. Note that in Figure 4c, there is a deep flat between 60 
and 70 s. It was caused when the robot turns momentarily and faces 
the black curtain on the left. At that point, the camera, which is 
constrained by the view of the field, was unable to see the last hazmat 
sign on the red barrier until it moved forward and faced the sign. 
To the best of our knowledge, there is no prior baseline or dataset 
to compare with. The figures from the different cases reveal that 
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TABLE 3  Spearman’s rank correlation coefficient (ρ) of environment semantics with the SSR score and bootstrap 95% CI in experiment II.

Scenario Radiation Risk SHA Noise

1 0.75 [0.65, 0.82] — — 0.81 [0.74, 0.85]

2 0.86 [0.80, 0.91] — — 0.22 [0.07, 0.37]

3 0.67 [0.57, 0.75] 0.80 [0.77, 0.82] — —

4 0.56 [0.45, 0.67] 0.88 [0.85, 0.90] — —

5 — 0.73 [0.68, 0.75] — 0.67 [0.56, 0.75]

6 — 0.53 [0.41, 0.62] — 0.76 [0.72, 0.79]

7 — — 0.83 [0.77, 0.86] 0.79 [0.75, 0.82]

8 — — 0.78 [0.71, 0.84] 0.46 [0.35, 0.56]

9 0.68 [0.58, 0.76] — 0.87 [0.83, 0.89] —

10 0.67 [0.56, 0.75] — 0.79 [0.74, 0.84] —

11 0.53 [0.47, 0.60] — 0.44 [0.36, 0.54] 0.91 [0.88, 0.92]

12 0.42 [0.34, 0.50] 0.63 [0.57, 0.68] — 0.50 [0.40, 0.53]

TABLE 4  Kendall’s rank correlation coefficient (τ) of environment semantics with the SSR score and bootstrap 95% CI in experiment II.

Scenario Radiation Risk SHA Noise

1 0.62 [0.54, 0.69] — — 0.60 [0.53, 0.65]

2 0.70 [0.64, 0.76] — — 0.18 [0.08, 0.28]

3 0.52 [0.45, 0.60] 0.57 [0.53, 0.61] — —

4 0.43 [0.34, 0.51] 0.73 [0.69, 0.77] — —

5 — 0.53 [0.50, 0.55] — 0.51 [0.43, 0.58]

6 — 0.42 [0.36, 0.52] — 0.52 [0.48, 0.57]

7 — — 0.67 [0.62, 0.71] 0.57 [0.52, 0.61]

8 — — 0.63 [0.57, 0.68] 0.32 [0.24, 0.39]

9 0.55 [0.46, 0.61] — 0.70 [0.65, 0.74] —

10 0.52 [0.44, 0.59] — 0.63 [0.57, 0.67] —

11 0.39 [0.35, 0.42] — 0.34 [0.26, 0.40] 0.74 [0.70, 0.77]

12 0.31 [0.25, 0.37] 0.52 [0.47, 0.56] — 0.40 [0.29, 0.42]

the framework is capable of correctly outputting the corresponding 
SSR scores in the individual environment semantics scenario. 
When the robot reached the scenario, the environment semantics 
indicator responded in time, and the SSR score was affected more 
by the semantics with higher scores, as designed; that is, the SSR 
score tracked the environment semantics with the highest score 
and magnitude. When zooming in specific environment semantics 
zones, we notice that low-intensity semantics do not affect the SSR 

score much if medium- or high-intensity semantics exist. We apply 
variance-based sensitivity analysis (Sobol, 2001) in the medium and 
high cases (see Figures 4b, c). Specifically, we calculate the global 
sensitivity (first-order index S1 and total-effect index St) of each 
environment semantics indicator to the SSR score in Table 1. We skip 
the low case to save space, as the low case is not that important in 
real deployments as long as no significant error has been found. The 
analysis showed similar S1 and St results. The individual semantics 
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of the corresponding zones show strong sensitivity (over 0.7) to 
the SSR score. It indicates that the SSR score can respond quickly 
and accurately to single semantics changes in the environment. 
The medium- or high-intensity semantics dominate the impact and 
lead the changes in the SSR score. Our framework was tested to 
capture the changes in individual semantics and reflect correctly on 
the SSR score. 

6.2 Experiment II

6.2.1 Implementation
We tested the framework’s performance in scenarios with 

concurrent multi-environment semantics in experiment II. We 
designed 12 scenarios in this experiment (see Table 2). Specifically, 
we select all the possible two-semantics combinations with high- 
and medium-level intensity and two three-semantics combinations. 
The scenarios covered a wide spectrum of situations that robots may 
encounter. We did not test with all of the semantics concurrently 
as we were constrained by our vision system (train the hazmat and 
personal belonging detection separately). Additionally, the noise 
generation design (Ramesh et al., 2023) has only two levels of 
intensity available. High refers to deliberately adding laser noise 
into the scenario. Medium refers to no artificial laser noise being 
added (e.g., normal noise caused by turning the robot). Low refers to 
background noise. In the scenarios with two environment semantics, 
we used the corresponding area in Figure 3b. The dark blue box on 
the ground was used for laser noise or the radiation source. Hazmat 
signs were put on the right red barrier, and personal belongings 
were scattered in front of the right red barrier. In the scenarios with 
three environment semantics, we applied laser noise in the dark blue 
box, hazmat signs, and radiation source, as shown in Figure 3c and 
personal belongings were scattered around the gray bricks. The robot 
ran five times in each scenario. 

6.2.2 Results

We collected data on all environment semantic indicators, 
SSR scores, and timestamps in experiment II. We aligned the 
data in each scenario with the timestamp to reduce the error 
caused by mismatching. The processed results are shown in 
Figures 5a–f, 6a–f. The shade zone reveals the range of semantic 
indicators and the SSR score. The solid lines refer to the mean from 
five trials.

Because of the limitation of the sensitivity analysis 
(unable to reflect the sensitivity in the complex system with 
multiple factors), we analyzed individual environment semantics 
correlations to the SSR score. Our framework is nonlinear. 
Hence, we calculate Spearman’s rank correlation coefficient 
(ρ) with corresponding bootstrap 95% CI in Table 3 and 
Kendall’s rank correlation coefficient (τ) with corresponding 
bootstrap 95% CI in Table 4 to examine the relationship among 
them. All the p-values are much lower than 0.05. So, we did not list 
them in the table.

In Table 3, Spearman’s rank correlation coefficient demonstrates 
that in most scenarios, environment semantics indicators show at 

least a “weak” correlation (0.1–0.39) to the SSR score. In most 
scenarios with high-intensity semantics, the correlation index is 
above 0.4 and can be considered “moderate” (0.4–0.69). If the 
semantics have high intensity over a long time, tables show 
“strong” (0.7–0.89) correlation (Schober et al., 2018). The table 
indicates that different semantics show at least moderate impacts 
on the SSR score; that is, the SSR score can reflect the changes 
in multiple semantics changes accordingly. If we connect to 
experiment I, we find that the results are consistent in the scope 
of responding to the situation changes correctly. It means our 
framework shows the generality ability when adding or removing 
semantic indicators.

Kendall’s rank correlation coefficient (Chok, 2010) is robust 
to outliers. Similarly, most results in Table 4 align the monotonic 
relationship (at least moderate positive correlation) shown in 
Table 3, which is expected. However, scenario 2 shows a “weak 
positive correlation” with noise. When we check Figure 5a, the 
weak correlation is reasonable. We did not use artificial noise in 
that scenario. Hence, the noise score is mainly affected by the 
robot’s movement, which stays at the bottom of the graph. It does 
not impact the changes in the SSR score much as we expected. 
A similar situation occurs in scenario 8 and results in a weak 
correlation. In scenario 11, there is no environment semantics 
showing a dominant impact on the SSR score from Figure 6b. 
Hence, the correlation coefficients indicate weak or moderate 
correlations only.

Both Spearman’s rank correlation coefficient and Kendall’s rank 
correlation coefficient demonstrate that our framework reveals the 
situation changes and can adapt the complex scenarios with multiple 
semantics. These environment semantics show considerable impacts 
on the SSR score that enable SSR as a trustworthy representative for 
warning situation changes. 

7 Discussion and future work

Multi-robot deployments are expected in the future. SA is one of 
the prerequisites of prediction, planning, and decision-making. Our 
framework provides a way to obtain real-time SA that is intuitive 
and explainable to humans and easily usable for robots. From the 
scope of the experiments, the sensitivity analysis of experiment I and 
the Spearman’s and Kendal’s rank coefficient of experiment II, along 
with the analysis of the figures, reveal that our framework is sensitive 
enough for individual semantics situations and responds correctly in 
semantic-rich situations.

Compared with deep learning methods, our framework is 
designed to apply expert knowledge instead of data-driven training, 
which avoids the issue of lacking datasets. It can be potentially 
explainable to a human, contrary to black box models. It enables 
humans to understand what exactly happens in the framework and 
makes it more intuitive for experts tuning the framework. Human 
operators and robots can obtain shared SA not only from the SSR 
score but also from the changes in individual semantics indicators, 
which enables them to identify the exact situation onsite. This is 
crucial for real-world deployments in safety-critical applications. In 
addition, context and semantics can be infinite. Robots may not 
be able to understand all situations with a complex combination 
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of semantics. This metric can be used to make robots aware of 
whether they are in a semantic-rich situation beyond their capability 
to understand and whether they need help from human intelligence. 
Hence, both the semantics indicators and the aggregated metric 
SSR can be used in a prediction, planning, and decision-making 
framework, especially from HRTs.

Regarding the flexibility and generality of our proposed 
approach, experiment II indicates that the framework is flexible 
enough to shift and comprises multiple environment semantics. 
It will remain robust, easily explainable, and intuitive if more 
environment semantics are added or removed. Depending on the 
applications and mission, experts can directly adjust the parameters 
to generalize the framework into a more reasonable representation 
of the given scenario. For instance, experts can highlight the 
weights of those semantics that are important to the goal of 
the mission, which makes the framework more sensitive and 
responsive to these semantics. The framework is not restricted to 
UGV deployments and can be adopted from different robotics 
platforms and required sensors, such as UAVs or heterogeneous 
multi-robot teams.

Moreover, we apply the framework in a mock-up experiment in 
a SAR task of a disaster-response mission (Ruan et al., 2025) context. 
We explored VA HRT patterns when high-level semantics are 
involved. Specifically, our experiments indicate that the effectiveness 
of the proposed framework and displaying the proposed high-level 
semantic indicators can help humans: decreasing reaction time 
when switching the level of autonomy (LoA), reducing cognitive 
workload, and increasing trust in their SA.

We have some limitations as well. The vision system constrains 
the implementation of the framework. Considering the training 
process, it is possible to fuse personal belonging detection and 
hazmat detection to simplify the deployment process, or we can 
adapt other state-of-the-art perception algorithms to improve the 
accuracy and real-time performance. However, our framework 
will scale nicely to continue being useful as the semantics 
capabilities of AI and computer vision continue to grow more 
powerful over time. 

8 Conclusion

In this paper, we proposed a semantics-based SA framework 
to represent and quantify the variety of semantic information and 
the overall information richness via the concepts of environment 
semantic indicators and the aggregated SSR metric. We also 
provided an example implementation to process high-level 
environment semantic indicators that quantify the corresponding 
specific scope of the environment. Semantic perception capabilities 
of AI are still in an early stage of development. This is why 
we have chosen some relatively simple and robust examples 
in the experiments. However, the experiments demonstrate 
that our framework is capable of obtaining SA and indicate 
its extensibility to semantic-rich environments and has the 
potential to involve multiple environment semantics. The 
modularized design increases the flexibility, and it should adapt 
nicely as these AI capabilities grow.
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