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The integration of Vision-Language Models (VLMs) into autonomous systems 
is of growing importance for improving Human-Robot Interaction (HRI), 
enabling robots to operate within complex and unstructured environments and 
collaborate with non-expert users. For mobile robots to be effectively deployed 
in dynamic settings such as domestic or industrial areas, the ability to interpret 
and execute natural language commands is crucial. However, while VLMs 
offer powerful zero-shot, open-vocabulary recognition capabilities, their high 
computational cost presents a significant challenge for real-time performance 
on resource-constrained edge devices. This study provides a systematic analysis 
of the trade-offs involved in optimizing a real-time robotic perception pipeline 
on the NVIDIA Jetson AGX Orin 64GB platform. We investigate the relationship 
between accuracy and latency by evaluating combinations of two open-
vocabulary detection models and two prompt-based segmentation models. 
Each pipeline is optimized using various precision levels (FP32, FP16, and 
Best) via NVIDIA TensorRT. We present a quantitative comparison of the mean 
Intersection over Union (mIoU) and latency for each configuration, offering 
practical insights and benchmarks for researchers and developers deploying 
these advanced models on embedded systems.
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 1 Introduction

As the paradigm of robotics expands beyond highly controlled industrial environments 
and into the daily lives of humans, a central challenge has emerged: enabling non-expert 
users to intuitively communicate and collaborate with robots. The realization of this vision 
hinges on surmounting the fundamental communication barrier between humans and 
machines, which can be achieved when robots move beyond complex programming or 
formalized command structures to directly understand and execute natural language. 
Therefore, the ability for a robot to accurately connect, or “ground,” linguistic concepts to 
the physical, visual world is an essential prerequisite.

Vision-Language Models (VLMs), pre-trained on large-scale datasets, have arisen as an 
effective solution to this language-vision grounding problem (Radford et al., 2021). VLMs
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provide open-vocabulary recognition, which allows them to identify 
objects described by arbitrary text in a zero-shot manner, extending 
far beyond a limited set of predefined categories. This transformative 
capability grants robots the potential to interact with novel 
objects in unpredictable environments, positioning them as a key 
enabling technology for truly flexible and adaptive Human-Robot 
Interaction (HRI).

However, the powerful performance of VLMs is accompanied 
by immense computational costs, creating a direct conflict with the 
inherent resource constraints of edge devices embedded in real-
world robotic systems. Even state-of-the-art edge platforms, such 
as the NVIDIA Jetson AGX Orin, have limitations in compute 
and memory bandwidth that cannot match the demands of server-
grade GPUs required by most VLMs. This results in a “real-time 
perception bottleneck,” where a robot’s intelligence can leverage 
state-of-the-art AI, but its real-time responsiveness is degraded by 
hardware limitations. Securing a response rate of over 10 FPS, the 
minimum requirement for seamless human interaction, presents a 
significant optimization challenge when deploying VLMs in edge 
environments.

This study presents a systematic approach to bridge this 
critical “real-time gap.” To this end, we conduct a comprehensive 
benchmarking study of four distinct open-vocabulary instance 
segmentation pipelines on the NVIDIA Jetson AGX Orin platform. 
This focus on an efficient perception module serves as a critical 
foundational step for more complex, downstream robotics tasks, 
such as those envisioned in Vision-Language-Action (VLA) 
frameworks (Brohan et al., 2023; Lee et al., 2024). Our contributions 
are as follows:

• Systematic Benchmarking of Diverse Pipeline Philosophies: We 
provide a detailed comparative analysis of pipelines constructed 
from two different detector philosophies a VLM based 
approach (NanoOWL) and a highly efficient YOLO-based 
model (YOLO-World) paired with two segmentation model 
strategies: knowledge distillation (NanoSAM) and efficient 
architecture design (EfficientViT-SAM).

• In-depth Analysis of Edge Device Optimization: Beyond 
surface-level performance metrics, we quantitatively investigate 
the practical trade-offs between segmentation accuracy 
(mIoU) and end-to-end latency through NVIDIA TensorRT 
optimization across various precision configurations (FP32, 
FP16 and Best).

• Actionable Framework for Real-World Robotics: Based on 
our empirical results, we provide the robotics community 
with a clear and actionable framework for selecting 
the optimal perception pipeline and precision strategy 
according to the specific requirements of HRI scenarios 
(e.g., prioritizing response speed versus recognition
accuracy).

Ultimately, the objective of this research is not merely to 
accelerate a single model, but to explore the multi-dimensional 
design space of model architectures, optimization techniques, 
and precision levels to find practical solutions that enable fluid, 
real-time interaction between humans and robots on resource-
constrained platforms.

2 Related work

2.1 Open-vocabulary object detection

Open-vocabulary object detection aims to detect and classify 
objects corresponding to arbitrary natural language text queries, 
moving beyond a predefined and limited set of classes (Gu et al., 
2022). This capability is a fundamental prerequisite for robots 
to understand and interact with diverse user commands in 
unstructured environments. This paper surveys two representative 
approaches with distinct design philosophies: one centered on 
the generality achieved by adapting large-scale Vision-Language 
Models, and the other on the efficiency inherent to highly optimized 
detector architectures (Liu et al., 2024). 

2.1.1 OWL-ViT: adapting vision-language models 
for localization

Open-World Localization Vision Transformer (OWL-
ViT) (Minderer et al., 2022) is a pioneering model that successfully 
adapts the powerful language-vision representations of a pre-trained 
CLIP model for the task of object detection. The core architectural 
modification in OWL-ViT involves removing the final [CLASS] 
token pooling from the ViT image encoder to preserve the spatial 
feature map. Lightweight classification and bounding box prediction 
heads are then attached to each grid token. The model’s zero-shot, 
open-vocabulary capability is realized by dynamically populating 
the classifier weights with text prompt embeddings generated by 
the CLIP text encoder. While this architecture offers excellent 
generalization, it has inherent limitations for real-time performance 
on edge devices due to the requisite interaction between image and 
text embeddings at inference time. 

2.1.2 NanoOWL: a post-hoc optimization 
framework for the edge

NanoOWL is not a new model architecture but rather 
an optimization framework designed to deploy powerful yet 
computationally heavy models like OWL-ViT onto resource-
constrained edge devices such as the NVIDIA Jetson. It encompasses 
the process of converting the PyTorch-based OWL-ViT model into 
a highly efficient inference engine using NVIDIA TensorRT. In 
essence, NanoOWL represents a pragmatic approach that seeks 
to achieve real-time performance through post hoc optimization 
for specific hardware, while retaining the high generality of the 
original model. 

2.1.3 YOLO-world: open-vocabulary detection 
through efficiency-by-design

In contrast, YOLO-World represents a paradigm shift 
by integrating open-vocabulary capabilities into the highly 
efficient YOLOv8 CNN framework (Yaseen, 2024). Its key 
technology, the Re-parameterizable Vision-Language Path 
Aggregation Network (RepVL-PAN), effectively fuses visual and 
linguistic features (Cheng et al., 2024). Notably, YOLO-World 
maximizes real-time efficiency through a novel “prompt-then-
detect” paradigm. This method involves pre-encoding a set of 
user-defined text prompts into an “offline vocabulary,” which is 
then integrated directly into the network weights. This eliminates 
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the need for a text encoder during inference, drastically reducing 
latency. This provides a significant speed advantage compared 
to models like OWL-ViT that require online text encoding for 
every inference, and can be characterized as an “efficiency-
by-design” strategy inherently well-suited for edge-device
applications. 

2.2 Prompt-based image segmentation

Prompt-based segmentation is the task of generating a precise 
mask for a specific object within an image, conditioned on various 
user inputs such as points, boxes, or text. This is essential for robotic 
systems to ascertain the exact geometry of a detected object for fine-
grained manipulation tasks. 

2.2.1 Segment anything model (SAM): a 
foundation model for segmentation

The Segment Anything Model (SAM) is a transformative 
foundation model for image segmentation (Kirillov et al., 2023). 
Comprising a powerful ViT-H image encoder, a prompt encoder, 
and a mask decoder, SAM has demonstrated remarkable zero-
shot generalization performance in producing high-quality 
segmentation masks for a wide array of prompts. However, 
the immense computational requirement of its ViT-H encoder 
makes it infeasible for deployment in real-time edge computing
environments. 

2.2.2 NanoSAM: real-time segmentation via 
knowledge distillation

NanoSAM aims to achieve real-time performance for SAM 
on Jetson devices. It employs knowledge distillation, a training 
technique, to enable a lightweight ResNet-18 image encoder to 
mimic the outputs of a larger “teacher” model the ViT from 
MobileSAM (Zhang et al., 2023). Through this process, the 
simpler “student” CNN architecture learns to approximate the rich 
feature representations of the more complex teacher, achieving 
an effective trade-off between inference speed and segmentation
accuracy. 

2.2.3 EfficientViT-SAM: high-performance 
segmentation through architectural innovation

EfficientViT-SAM offers an alternative strategy by 
replacing SAM’s computationally heavy ViT encoder with 
EfficientViT (Cai et al., 2023), a fundamentally more efficient 
Transformer architecture designed for hardware-aware execution. 
EfficientViT achieves its efficiency by leveraging techniques such 
as multi-scale linear attention, which reduces the complexity 
of the attention mechanism from quadratic (O(N2)) to linear 
O(N) with respect to the input size. The training process consists 
of two stages: first, knowledge from the original SAM-ViT-
H image encoder is distilled into the EfficientViT encoder, 
after which the entire model is fine-tuned end-to-end on the 
large-scale SA-1B dataset. This work was reported to achieve 
significant speed-ups with negligible performance degradation 
compared to the original SAM-ViT-H, and this study aims 
to empirically validate this claim on the NVIDIA Jetson
platform.

2.3 Model optimization with NVIDIA 
TensorRT

NVIDIA TensorRT is a high-performance optimizer and 
runtime library for deep learning inference. It takes a trained 
model and generates an optimized inference engine for NVIDIA 
GPU architectures through various techniques, including graph 
optimization, layer fusion, and kernel auto-tuning.

A key feature of TensorRT, and a central optimization strategy in 
this study, is low-precision inference. While deep learning models 
are typically trained in 32-bit floating-point (FP32) precision, 
TensorRT can convert them to lower precisions. For NVIDIA’s 
Ampere and subsequent architectures, TensorRT often utilizes FP32 
to accelerate operations that are nominally FP32, offering a speedup 
with no code changes. For further performance gains, it can convert 
models to 16-bit floating-point (FP16) or automatically determined 
best precision. This reduction in precision decreases memory usage 
and bandwidth requirements and leverages specialized hardware 
units like Tensor Cores to maximize inference throughput. However, 
this process involves a trade-off, as it carries the risk of some 
accuracy degradation. Finding the optimal precision strategy for 
each model and task is therefore critical to achieving both real-time 
performance and high accuracy on edge devices. 

3 Methods

The experiments in this study were systematically designed to 
ensure reproducible and rigorous evaluation in realistic robotics 
application scenarios. This chapter details the architecture of 
the integrated perception pipeline, the model variants used for 
evaluation, the optimization protocol tailored for the NVIDIA 
Jetson AGX Orin platform, and the evaluation metrics established 
to quantify performance. 

3.1 Integrated perception pipeline 
framework

The overall data flow of our integrated perception pipeline, 
which is based on a common two-stage ‘detect-then-segment’ 
architecture, is illustrated in Figure 1. This modular structure 
was adopted for its proven efficacy in open-vocabulary instance 
segmentation. The pipeline’s data flow is defined as follows:

• Input: A user provides the system with a natural language text 
prompt, P (e.g., “a red mug on the table”), and an RGB image I .

• Detection Stage: An open-vocabulary object detector D, takes 
the image I  and prompt P as input to generate a set of bounding 
box proposals B = {b1,b2,…,bn} corresponding to potential 
instances of the described object.

• Segmentation Stage: A prompt-based image segmentation 
model S, uses the original image I  and the bounding box bi ∈ B
with the highest confidence from the detection stage as a visual 
prompt. It then outputs a high-quality binary segmentation 
mask M that precisely isolates the target object.
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FIGURE 1
The architecture of the two-stage ‘detect-then-segment’ open-vocabulary perception pipeline. A user-provided text query and a camera image are 
fed into the Detector module (NanoOWL or YOLO-World) to generate a bounding box. This bounding box, along with the original image, is then 
passed to the Segmentor module (NanoSAM or EfficientViT-SAM) to produce the final segmentation mask.

This perception module is designed as the core visual input for 
a mobile manipulator, where the final output mask M is used to 
determine the precise shape and location of a target object in HRI 
scenarios. Therefore, the real-time performance target of over 10 FPS 
is not an arbitrary benchmark but a crucial system requirement for 
fluid and natural interaction between users and robots. 

3.2 Models and variants for evaluation

For a comprehensive analysis, this study selected a spectrum of 
model variants representing different sizes, theoretical performance, 
and underlying architectural philosophies. First, for open-
vocabulary object detection, two families of models were evaluated. 
Representing the approach of adapting large-scale VLMs for the 
edge, three primary variants of NanoOWL were selected to analyze 
the impact of backbone scale on performance and latency: owlvit-
base-patch32, owlvit-base-patch16, and owlvit-large-patch14. 
Representing the ‘efficiency-by-design’ philosophy, three officially 
provided variants of YOLO-World were evaluated to analyze the 
trade-off between size and zero-shot capability: YOLO-World-S and 
YOLO-World-X.

Next, for prompt-based image segmentation, models from two 
distinct strategies were chosen. Representing the model lightening 
strategy through knowledge distillation, NanoSAM is composed of 
a lightweight ResNet-18 image encoder and a MobileSAM mask 
decoder. In contrast, representing the optimization strategy through 
efficient architectural design, five variants of EfficientViT-SAM were 
included to evaluate performance at various operating points: L0, L1, 
L2, XL0, and XL1. 

3.3 Edge device optimization protocol

All experiments were conducted on an NVIDIA Jetson AGX 
Orin 64GB Developer Kit set to maximum performance mode 
(MAXN) to preclude thermal throttling as a potential performance 
variable. To ensure consistency and reproducibility, the software 
stack was standardized on JetPack 6.0, which includes CUDA 12.2 
and TensorRT 8.6.2.

For each model variant, a suite of optimized TensorRT 
engines (.engine files) was generated via an ONNX intermediate 
representation using the trtexec command-line tool. The following 
precision configurations were systematically evaluated. FP32 was 
used as the baseline precision, offering the highest accuracy with 

acceleration on Tensor Cores. FP16 was evaluated for its potential to 
yield significant speedups with minimal accuracy loss by leveraging 
the Orin GPU’s Tensor Cores. Finally, the best mode was used as 
a mixed-precision strategy, where TensorRT profiles all available 
precision implementations for each layer and heuristically selects the 
fastest one. This is a dynamic optimization process that aims for the 
lowest achievable latency, potentially resulting in a heterogeneous 
precision configuration across layers. 

3.4 Evaluation protocol and metrics

The choice of dataset is critical for evaluating the language 
understanding capabilities of open-vocabulary models. This study 
utilizes the RefCOCO + dataset (Yu et al., 2016), a benchmark 
for referring expression segmentation. Unlike category-based 
datasets, RefCOCO + provides complex linguistic phrases that 
uniquely identify an object (e.g., “the man in the red shirt”) 
and its corresponding ground-truth mask. It is therefore an ideal 
benchmark for directly assessing a model’s ability to “ground” 
nuanced language to visual features.

The primary performance metrics are accuracy and latency. 
Accuracy is measured using the mIoU (mean Intersection over 
Union), calculated between the generated segmentation mask and 
the ground-truth mask from the RefCOCO + dataset to evaluate 
pixel-level precision. Latency is quantified as the end-to-end 
pipeline latency in milliseconds, measuring the wall-clock time from 
receiving the image and text prompt to outputting the final mask, 
inclusive of all preprocessing, model inference, and postprocessing 
stages. Measurements are averaged over the validation set after an 
initial 20 warm-up inferences, with throughput reported in Frames 
Per Second (FPS).

Furthermore, component-level latencies for the detection and 
segmentation stages are reported separately to identify performance 
bottlenecks. 

4 Results

This section presents the empirical results of the benchmarking 
study. The analysis begins with the performance of the individual 
components, followed by an evaluation of the end-to-end pipelines. 
The analysis focuses on the quantitative trade-off between accuracy 
and latency, which is supplemented by qualitative examples. 
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FIGURE 2
Overall end-to-end performance comparison of the four primary pipeline architectures, measured in Frames Per Second (FPS). Each bar represents the 
highest throughput achieved for the given combination of an open-vocabulary detector (YOLO-World or NanoOWL) and a prompt-based 
segmentation model (EfficientViT or NanoSAM). The results clearly indicate that pipelines utilizing the TensorRT-optimized NanoOWL detector 
significantly outperform those based on YOLO-World, with the NanoOWL + EfficientViT combination achieving the maximum performance.

4.1 Overall performance overview

Figure 2 summarizes the end-to-end performance of the four 
primary pipeline architectures evaluated in this study. This graph 
illustrates the optimal performance achievable by each architectural 
combination.

The most notable result is that pipelines based on the NanoOWL 
detector exhibit a significant speed advantage over their YOLO-
World-based counterparts. Specifically, the highest throughput 
among all combinations was observed with the pairing of NanoOWL 
and EfficientViT-SAM. This suggests that the architecture of 
NanoOWL, fully optimized as a TensorRT engine, operates with 
high efficiency in a real-world edge device environment.

In contrast, the speed difference between NanoSAM and 
EfficientViT-SAM in the segmentation stage was found to be 
relatively minor. Despite employing different lightweight strategies, 
the impact of these two segmenters on the overall pipeline latency 
was limited compared to that of the detector.

These findings imply that the end-to-end latency of the pipeline 
is predominantly determined by the choice of the detection model, 
while the segmentation model acts as a more influential factor for 
final segmentation accuracy (mIoU). A detailed quantitative analysis 
of specific model variants and various precision levels is discussed 
in-depth in the following Section 4.2. 

4.2 Component-level performance analysis

The end-to-end pipeline performance differences 
observed in Section 4.1 originate from the individual characteristics 

of each component. This section independently evaluates the 
performance of the two core elements that determine the overall 
pipeline performance the open-vocabulary object detector and the 
prompt-based segmentor to analyze the fundamental speed and 
accuracy characteristics of each architecture. 

4.2.1 Open-vocabulary detector performance 
comparison

The detection model, as the first stage of the overall pipeline, 
provides the bounding box to the subsequent segmentation module 
and has a decisive impact on the total latency. This section first 
conducts an in-depth analysis of the performance of the YOLO-
World family, which represents the ‘efficiency-by-design’ approach, 
and the NanoOWL family, which represents the ‘VLM adaptation’ 
approach, before presenting a comprehensive comparison of the two 
architectural philosophies.

First, YOLO-World, executed directly within the PyTorch 
framework, was evaluated for two of its variants: YOLO-World-S 
and YOLO-World-X. As presented in Table 1, the YOLO-World-
S model recorded an average latency of 26.07 m, while the larger 
YOLO-World-X model registered 45.59 m. These results indicate 
that latency is directly influenced by model size and complexity, and 
underscore the significant performance penalty incurred from the 
lack of optimization for the edge device.

Next, NanoOWL, fully optimized as a TensorRT engine, was 
evaluated using three models with different backbones across three 
precision levels: FP32, FP16, and best. For each model, the results are 
presented in the sequential order of FP32, FP16, and best. Table 1 
details the performance of each NanoOWL variant by precision. 
The fastest model, patch32, achieved a minimum latency of 9.81 m, 
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TABLE 1  Comparative analysis of inference latency for open-vocabulary 
object detectors. The table presents the latency in milliseconds (ms) for 
two distinct architectural families: YOLO-World (run via PyTorch) and 
NanoOWL (optimized with TensorRT). Performance for YOLO-World 
variants is provided as a baseline. For NanoOWL variants, latency is 
detailed across three different TensorRT precision configurations: FP32, 
FP16, and the mixed-precision ‘best’ mode.

Model Latency (ms)

YOLO-world-S 26.07

YOLO-world-X 45.59

NanoOWL (Patch32) 21.23 9.81 10.01

NanoOWL (Patch16) 147.28 39.15 37.13

NanoOWL (Patch14) 1136.36 195.69 198.81

whereas the heaviest patch14 model was measured at 195.69 m. 
Notably, a substantial reduction in latency was observed when 
optimizing from FP32 to FP16. For some models, the ‘best’ mode 
was observed to yield the optimal speed. This demonstrates that the 
NanoOWL architecture exhibits high compatibility with TensorRT’s 
low-precision optimization capabilities.

A comprehensive comparative analysis of the two model families 
confirms that the NanoOWL series holds a dominant advantage 
in terms of detection speed. The fastest configuration, OWLViT-
base-patch32 at FP16, recorded 9.81 m, showing approximately 
2.65 times faster performance than the fastest YOLO-World-S 
model at 26.03 m. This leads to the critical conclusion that, in 
our experimental environment, converting models into TensorRT 
engines to fully leverage the hardware accelerators of the edge device 
has a decisive impact on performance enhancement. 

4.2.2 Prompt-based segmentation model 
performance comparison

Since the segmentation model receives the bounding box 
provided by the detector and generates the final segmentation 
mask, both latency and segmentation accuracy (mIoU) are critical 
performance indicators. This section provides a multifaceted 
comparative analysis of the performance of the knowledge 
distillation-based NanoSAM and the efficient architecture-based 
EfficientViT-SAM series models.

Figure 3 shows the average latency for the precision of the 
encoder and decoder of each segmentation model. Although 
NanoSAM is a single model type, EfficientViT-SAM has a total of 
five segmentation models, so the graph shows the results for a total 
of six models. First, in terms of inference speed, Figure 3 shows that 
the encoder precision of each model improves significantly when 
going from fp32 to fp16, and from fp16 to best. Overall, it can 
be confirmed that using the best mode is the fastest. The fastest 
segmentation model, EfficientViT-SAM-L0, showed a maximum of 
17.58 m and a minimum of 7.88 m, while the slowest segmentation 
model, EfficientViT-SAM-XL1, showed a maximum of 77.8 m and a 
minimum of 27.78 m. It was also noted that NanoSAM is positioned 
in the middle.

Next, the segmentation accuracy (mIoU) was analyzed not only 
quantitatively but also in conjunction with the qualitative aspects 

of the actual segmentation results. As shown in Table 2 a majority 
of the high-performance configurations, including various precision 
combinations of the EfficientViT-SAM series, consistently achieved 
a high mIoU of over 0.8. A representative example of these successful 
segmentation cases is shown in Figure 4, where it can be confirmed 
that the object is captured and segmented with great precision.

However, a degradation in accuracy was observed in certain 
model and precision combinations, which can be broadly classified 
into two types of failure cases. The first type is the partial 
segmentation failure case; for the EfficientViT-SAM series models, 
when the encoder is fp16, all are measured with an mIoU of 0.4–0.5, 
as can be seen in Figure 5. As shown in the figure, the presence of the 
detected object was recognized, but the segmentation mask failed 
to capture the fine-grained boundaries of the object, appearing in a 
form that included parts of the background or omitted key parts of 
the object. This suggests that aggressive optimization of the model’s 
encoder can degrade the model’s generalization performance.

The second type observed was the case of complete segmentation 
failure. This phenomenon occurred when the encoders of the 
EfficientViT-SAM models L0, XL0, and XL1 were optimized with 
FP16 precision. Figure 5 shows a representative example of this case, 
where the mIoU score drops below 0.1, resulting in a failure to 
generate any meaningful segmentation mask. The corresponding 
quantitative data is presented in Table 3, which confirms a complete 
failure with an mIoU score of 0 for the L2, XL0, and XL1 variants 
of EfficientViT-SAM when their encoders are optimized with FP16 
precision. This phenomenon underscores the potential brittleness 
of highly efficient architectures when subjected to aggressive 
quantization, leading to a total collapse in performance rather than 
graceful degradation. A qualitative example of this catastrophic 
failure is illustrated in Figure 6, where the model fails to produce 
any output for the target object. This visual evidence directly 
corresponds to the complete failure cases detailed quantitatively in 
the subsequent text. In contrast, the knowledge distillation-based 
NanoSAM maintained stable segmentation performance across all 
evaluated precision optimizations (FP32, FP16, and best), with 
not a single case of complete failure observed. This demonstrates 
that NanoSAM possesses high robustness and reliability against 
aggressive optimization.

This degradation is quantitatively detailed in Table 4, which 
shows that while the ‘best’ precision optimization mode yields 
the fastest inference speeds for the EfficientViT-SAM series, it 
consistently results in a significant drop in segmentation accuracy, 
with mIoU scores clustering between 0.42 and 0.54. This highlights 
a critical trade-off where the pursuit of minimal latency through 
aggressive mixed-precision optimization can compromise the 
model's ability to produce precise segmentation masks.

The pronounced difference in robustness between the two 
segmentation paradigms can be traced back to their fundamental 
design philosophies. The stability of NanoSAM under aggressive 
optimization is a direct consequence of its knowledge distillation 
foundation. In KD, a compact “student” model is trained to 
emulate the softened output distribution (soft labels) of a larger 
“teacher” model, not just the ground-truth labels. This process 
acts as a powerful regularizer, compelling the student model to 
learn a smoother and more generalized decision boundary. Such 
a smoothed function is inherently more robust to the discrete 
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FIGURE 3
Performance analysis of prompt-based segmentation models across various precision configurations. The chart plots the throughput (FPS) of six 
segmentation models (five variants of EfficientViT-SAM and NanoSAM) as a function of the precision settings for their respective encoder and decoder 
components. Precision configurations range from 32-bit floating-point (fp32) to 16-bit floating-point (fp16) and a mixed-precision ‘best’ mode 
optimized by TensorRT. The results demonstrate a clear trend of performance improvement as precision is lowered, particularly for the encoder.

TABLE 2  Performance metrics of EfficientViT-SAM variants under 
precision settings (FP32, FP16) that yield high segmentation accuracy. 
The table details the latency (ms) and corresponding high mIoU scores 
associated with the successful segmentation outcomes 
illustrated in Figure 3.

Model Encoder precision Latency (ms) mIoU

L0
Fp32 17.16 0.9119

Fp16 10.19 0.8465

L1
Fp32 20.54 0.9160

Fp16 12.47 0.9143

L2 Fp32 26.16 0.9167

XL0 Fp32 46.79 0.8846

XL1 Fp32 75.93 0.9186

perturbations introduced by weight quantization, as minor shifts in 
parameter values are less likely to cause drastic changes in the output.

Conversely, the brittleness observed in certain EfficientViT-
SAM configurations stems from the nature of hardware-
aware architectural design. These models achieve efficiency by 
minimizing parameter redundancy and creating highly specialized 
computational paths. While exceptionally efficient at full precision, 
this lack of redundancy means that the information loss incurred 
during quantization, especially with low-precision formats like 
FP16, can have a disproportionately large impact. Critical 
parameters or layers acting as information bottlenecks can be 
severely degraded, leading to the catastrophic performance collapse 

observed in our experiments. Therefore, the trade-off is not merely 
between two models, but between the intrinsic robustness conferred 
by knowledge transfer and the potential fragility of a highly 
optimized, non-redundant architecture.

In conclusion, the analysis of the segmentation stage reveals 
a clear trade-off between the two architectures. The EfficientViT-
SAM family, with its variety of models, demonstrated the potential 
to achieve the highest speeds with certain models and precisions, 
while simultaneously revealing a vulnerability to unpredictable 
failures in specific optimization combinations. On the other hand, 
NanoSAM, although somewhat slower in absolute terms, proved 
highly reliable by providing consistent performance in terms 
of accuracy under all optimization conditions. These individual 
performance characteristics of each component are the direct cause 
for the overall performance of the end-to-end pipelines, which will 
be discussed in Section 4.3. 

4.3 End-to-end pipeline performance 
analysis

Building upon the preceding component-level analysis, this 
section evaluates the comprehensive performance of the end-
to-end pipelines constructed from the four main architectural 
combinations. The analysis reveals that the NanoOWL + 
EfficientViT-SAM combination formed the most superior 
performance group in all aspects of speed and accuracy. Specifically, 
the pipeline combining OWLViT-base-patch32 at fp16 with the 
EfficientViT-SAM-L0 encoder at fp16 and its decoder in best mode 
achieved an outstanding throughput of 47.51 FPS while maintaining 
a high mIoU of 84.64%, presenting the most attractive balance 
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FIGURE 4
Qualitative example of a successful segmentation result. This figure illustrates a high-accuracy prediction from one of the best-performing pipeline 
configurations, achieving an mIoU score above 0.8. The generated mask (Prediction) aligns almost perfectly with the ground-truth mask, 
demonstrating the model’s ability to precisely delineate the target object.

FIGURE 5
Qualitative example of a partial segmentation failure. This case demonstrates accuracy degradation under aggressive optimization, specifically 
observed with some EfficientViT-SAM variants using an FP16 encoder, resulting in an mIoU score between 0.4 and 0.5. While the object’s presence is 
recognized, the predicted mask is imprecise, failing to capture detailed boundaries and including parts of the background.

TABLE 3  Performance metrics of specific EfficientViT-SAM variants 
where optimizing the encoder to FP16 precision resulted in catastrophic 
failure. The reported mIoU of 0 for all listed configurations corresponds 
to the complete failure to generate a meaningful segmentation mask, as 
illustrated in Figure 5.

Model Encoder precision Latency (ms) mIoU

L2 Fp16 15.48 0

XL0 Fp16 24.06 0

XL1 Fp16 39.66 0

between real-time capability and accuracy. In contrast, the YOLO-
World-based pipelines recorded a lower FPS overall compared 
to the NanoOWL-based pipelines. The combination of YOLO-
World-S and EfficientViT-SAM-L0, which achieved the fastest 
throughput among the YOLO-World-based pipelines, recorded 
26.68 FPS, a figure that is approximately 43% slower than the fastest 
NanoOWL-based combination.

A noteworthy point is the impact of the segmentor choice 
on the final accuracy. Pipelines using NanoSAM, while providing 
relatively stable mIoU across various optimization conditions, 
did not reach the maximum accuracy levels of those using 
EfficientViT-SAM. This is a direct reflection of the trade-offs 
identified in Section 4.2.2: EfficientViT-SAM possesses higher 
accuracy potential but exhibits vulnerabilities under specific 
optimization conditions, whereas NanoSAM has lower absolute 
accuracy but higher reliability. These characteristics are directly 
mirrored in the end-to-end performance results. 

5 Discussion

This chapter synthesizes the experimental results presented 
previously to discuss their in-depth implications for designing 
real-time, open-vocabulary perception systems on resource-
constrained edge devices. It analyzes the relative merits of competing 
architectural paradigms and proposes a practical framework for 
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FIGURE 6
Qualitative example of a complete segmentation failure. This figure illustrates a catastrophic failure case observed with an EfficientViT-SAM model 
when the encoder was optimized using FP16 precision. The system fails to generate any meaningful segmentation mask for the target object 
(Prediction), resulting in an mIoU score near zero when compared to the ground truth. This highlights the vulnerability of certain efficient architectures 
to aggressive quantization strategies.

TABLE 4  Performance metrics of EfficientViT-SAM variants when 
applying the ‘best’ mixed-precision optimization to the encoder. This 
configuration resulted in degraded accuracy, with the reported mIoU 
scores corresponding to the partial segmentation failure cases 
illustrated in Figure 4.

Model Encoder precision Latency (ms) mIoU

L0 Best 8.62 0.5108

L1 Best 10.68 0.5238

L2 Best 11.43 0.5306

XL0 Best 18.16 0.4269

XL1 Best 28.44 0.5487

selecting the optimal pipeline according to the requirements of 
specific HRI scenarios. Finally, it concludes by summarizing the 
contributions of this work, acknowledging its limitations, and 
suggesting directions for future research. 

5.1 In-depth analysis of architectural 
paradigms

The experimental results of this study clearly demonstrate that 
the choice of an open-vocabulary detector for edge devices involves 
a fundamental trade-off that extends beyond static architectural 
efficiency to the realms of platform-specific optimization potential 
and linguistic expressiveness.

Despite the complexity of its ViT-based architecture, NanoOWL 
shows a decisive strength in its ability to be fully converted and 
optimized into a TensorRT engine. This allows it to leverage the 
hardware acceleration capabilities of the NVIDIA Jetson platform to 
their fullest extent, granting it the potential to achieve the lowest latency 
among the models evaluated in this study. In other words, NanoOWL 
holds an advantage in terms of optimization potential, making it the 

definitive choice for applications seeking to secure immediate real-time 
performance through a proven pipeline. However, this high speed is 
achieved through an architecture and optimization pipeline tailored 
specifically for grounding simple noun phrases. The underlying OWL-
ViT model was not inherently designed for parsing complex relational 
sentences, and the NanoOWL framework further specializes the model 
for this high-throughput, simplified recognition task. This inherent 
architectural focus is the primary reason for its structural limitations 
in understanding complex states a deliberate trade-off to achieve 
state-of-the-art latency on edge hardware, representing the pinnacle 
of hardware optimization. 

In contrast, YOLO-World, in the PyTorch file format used in 
this study, falls short of NanoOWL in terms of speed but possesses 
a dominant advantage in linguistic expressiveness. This model is 
designed to understand complex, sentence-level referring expressions, 
enabling it to “ground” relationships between objects, such as in “the 
person closest to the door,” to the visual world. This is a critical 
capability that can elevate human-robot interaction beyond simple 
object designation to a much more natural and sophisticated level 
of communication. Therefore, YOLO-World demonstrates its value in 
high-level HRI scenarios where sophisticated language understanding 
is more critical than immediate speed. However, this model is not 
designed to be compatible with TensorRT optimization; attempting to 
do so would result in the loss of its zero-shot capabilities.

In conclusion, the two detector paradigms are optimized along 
different axes. NanoOWL represents the pinnacle of ‘hardware 
optimization,’ while YOLO-World represents the pinnacle of ‘language 
capability optimization.’ Robotics system designers must clearly 
recognize this trade-off and make a strategic choice based on the 
core capabilities required by their application. 

5.2 A framework for HRI scenario-based 
pipeline selection

Based on this new analysis, the guidelines for pipeline selection 
according to the requirements of HRI applications can be redefined 
as follows.
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For High-Responsiveness Tasks, such as object tracking or 
dynamic obstacle avoidance where latency is the most critical factor, 
a NanoOWL-based pipeline is undoubtedly the most suitable choice. 
Fully accelerated by its TensorRT engine, NanoOWL provides the 
highest FPS and delivers optimal performance in environments that 
require rapid recognition based on clear noun phrases like “a car” or 
“a person.”

For High-Level Language Understanding Tasks, such as precise 
manipulation scenarios that require understanding complex context 
or relationships like “pick up the cup I am looking at,” a YOLO-
World-based pipeline is the only viable option. Although it may be 
slower due to its PyTorch framework basis, semantic accuracy takes 
precedence over speed, as the task itself would fail if the command 
is not understood.

A Balanced Sweet Spot still exists for general HRI tasks that 
require an adequate level of speed (>15 FPS), high mIoU, and 
language capabilities beyond basic noun phrases. The pipeline 
combination and precision level that best satisfy this balance should 
be selected from the Pareto front of the experimental results. 

5.3 Limitations and future work

The limitations of this study and corresponding directions for 
future research are as follows. First, a primary limitation of this 
study is its evaluation on a static image dataset, the RefCOCO+. 
This approach does not fully account for the temporal complexities 
and dynamic challenges, such as motion blur or varying lighting 
conditions, that arise in a real robot’s video stream. Future work 
should therefore extend this analysis by deploying the most 
promising pipelines on a physical mobile manipulator. This would 
enable a comprehensive evaluation of their real-world robustness 
and performance within a complete “command-to-action” loop, 
as planned in our future research trajectory. Second, the focus 
was exclusively on the perception module, and integration with 
downstream decision-making and control stacks was not addressed.

A key future research direction is to extend the OWL-ViT 
model, the backbone of NanoOWL, to enable the understanding of 
full sentences in addition to noun phrases, while still maintaining 
full optimization through TensorRT. If a model based on OWL-
ViT could recognize sentences at its current speed, it has 
the potential to become a dominant solution possessing both 
linguistic expressiveness and speed. This would be a significant 
milestone for next-generation perception pipelines in edge robotics. 
Furthermore, this work can be extended to deploying the identified 
optimal pipeline on a physical mobile manipulator to evaluate the 
performance of the full “command-to-action” loop, and to research 
aimed at achieving Vision-Language-Action (VLA) capabilities for 
processing and executing more complex commands on edge devices 
(Brohan et al., 2023; Lee et al., 2024). 

5.4 Conclusion

This study presented a comprehensive benchmark of open-
vocabulary perception pipelines on the NVIDIA Jetson AGX Orin 
and identified a critical trade-off between hardware optimization 

potential and linguistic expressiveness. The TensorRT-accelerated 
NanoOWL provided the fastest performance, though limited 
to noun-phrase recognition, while the PyTorch-based YOLO-
World was relatively slower but demonstrated superior language 
capabilities by understanding complex sentences. Through this 
quantitative and qualitative analysis, this research provides 
empirically-grounded guidelines that enable robotics researchers 
and engineers to make informed decisions in the selection 
and development of architectures tailored to their specific HRI 
requirements.
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