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The integration of Vision-Language Models (VLMs) into autonomous systems
is of growing importance for improving Human-Robot Interaction (HRI),
enabling robots to operate within complex and unstructured environments and
collaborate with non-expert users. For mobile robots to be effectively deployed
in dynamic settings such as domestic or industrial areas, the ability to interpret
and execute natural language commands is crucial. However, while VLMs
offer powerful zero-shot, open-vocabulary recognition capabilities, their high
computational cost presents a significant challenge for real-time performance
on resource-constrained edge devices. This study provides a systematic analysis
of the trade-offs involved in optimizing a real-time robotic perception pipeline
on the NVIDIA Jetson AGX Orin 64GB platform. We investigate the relationship
between accuracy and latency by evaluating combinations of two open-
vocabulary detection models and two prompt-based segmentation models.
Each pipeline is optimized using various precision levels (FP32, FP16, and
Best) via NVIDIA TensorRT. We present a quantitative comparison of the mean
Intersection over Union (mloU) and latency for each configuration, offering
practical insights and benchmarks for researchers and developers deploying
these advanced models on embedded systems.

edge Device, zero-Shot, real-time, optimization, human-robot interaction

1 Introduction

As the paradigm of robotics expands beyond highly controlled industrial environments
and into the daily lives of humans, a central challenge has emerged: enabling non-expert
users to intuitively communicate and collaborate with robots. The realization of this vision
hinges on surmounting the fundamental communication barrier between humans and
machines, which can be achieved when robots move beyond complex programming or
formalized command structures to directly understand and execute natural language.
Therefore, the ability for a robot to accurately connect, or “ground,” linguistic concepts to
the physical, visual world is an essential prerequisite.

Vision-Language Models (VLMs), pre-trained on large-scale datasets, have arisen as an
effective solution to this language-vision grounding problem (Radford et al., 2021). VLMs
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provide open-vocabulary recognition, which allows them to identify
objects described by arbitrary text in a zero-shot manner, extending
far beyond a limited set of predefined categories. This transformative
capability grants robots the potential to interact with novel
objects in unpredictable environments, positioning them as a key
enabling technology for truly flexible and adaptive Human-Robot
Interaction (HRI).

However, the powerful performance of VLMs is accompanied
by immense computational costs, creating a direct conflict with the
inherent resource constraints of edge devices embedded in real-
world robotic systems. Even state-of-the-art edge platforms, such
as the NVIDIA Jetson AGX Orin, have limitations in compute
and memory bandwidth that cannot match the demands of server-
grade GPUs required by most VLMs. This results in a “real-time
perception bottleneck,” where a robot’s intelligence can leverage
state-of-the-art AL but its real-time responsiveness is degraded by
hardware limitations. Securing a response rate of over 10 FPS, the
minimum requirement for seamless human interaction, presents a
significant optimization challenge when deploying VLMs in edge
environments.

This study presents a systematic approach to bridge this
critical “real-time gap” To this end, we conduct a comprehensive
benchmarking study of four distinct open-vocabulary instance
segmentation pipelines on the NVIDIA Jetson AGX Orin platform.
This focus on an efficient perception module serves as a critical
foundational step for more complex, downstream robotics tasks,
such as those envisioned in Vision-Language-Action (VLA)
frameworks (Brohan et al., 2023; Lee et al., 2024). Our contributions
are as follows:

« Systematic Benchmarking of Diverse Pipeline Philosophies: We
provide a detailed comparative analysis of pipelines constructed
from two different detector philosophies a VLM based
approach (NanoOWL) and a highly efficient YOLO-based
model (YOLO-World) paired with two segmentation model
strategies: knowledge distillation (NanoSAM) and efficient
architecture design (EfficientViT-SAM).

o In-depth Analysis of Edge Device Optimization: Beyond

surface-level performance metrics, we quantitatively investigate

the practical trade-offs between segmentation accuracy

(mIoU) and end-to-end latency through NVIDIA TensorRT

optimization across various precision configurations (FP32,

FP16 and Best).

Actionable Framework for Real-World Robotics: Based on

our empirical results, we provide the robotics community
with a clear and actionable framework for selecting
the optimal perception pipeline and precision strategy
according to the specific requirements of HRI scenarios
(e.g.
accuracy).

prioritizing response speed versus recognition

Ultimately, the objective of this research is not merely to
accelerate a single model, but to explore the multi-dimensional
design space of model architectures, optimization techniques,
and precision levels to find practical solutions that enable fluid,
real-time interaction between humans and robots on resource-
constrained platforms.
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2 Related work
2.1 Open-vocabulary object detection

Open-vocabulary object detection aims to detect and classify
objects corresponding to arbitrary natural language text queries,
moving beyond a predefined and limited set of classes (Gu et al.,
2022). This capability is a fundamental prerequisite for robots
to understand and interact with diverse user commands in
unstructured environments. This paper surveys two representative
approaches with distinct design philosophies: one centered on
the generality achieved by adapting large-scale Vision-Language
Models, and the other on the efficiency inherent to highly optimized
detector architectures (Liu et al., 2024).

2.1.1 OWL-VIT: adapting vision-language models
for localization
Open-World  Localization (OWL-

ViT) (Minderer et al., 2022) is a pioneering model that successfully

Vision Transformer
adapts the powerful language-vision representations of a pre-trained
CLIP model for the task of object detection. The core architectural
modification in OWL-ViT involves removing the final [CLASS]
token pooling from the ViT image encoder to preserve the spatial
feature map. Lightweight classification and bounding box prediction
heads are then attached to each grid token. The model’s zero-shot,
open-vocabulary capability is realized by dynamically populating
the classifier weights with text prompt embeddings generated by
the CLIP text encoder. While this architecture offers excellent
generalization, it has inherent limitations for real-time performance
on edge devices due to the requisite interaction between image and
text embeddings at inference time.

2.1.2 NanoOWL: a post-hoc optimization
framework for the edge

NanoOWL is not a new model architecture but rather
an optimization framework designed to deploy powerful yet
computationally heavy models like OWL-ViT onto resource-
constrained edge devices such as the NVIDIA Jetson. It encompasses
the process of converting the PyTorch-based OWL-ViT model into
a highly efficient inference engine using NVIDIA TensorRT. In
essence, NanoOWL represents a pragmatic approach that seeks
to achieve real-time performance through post hoc optimization
for specific hardware, while retaining the high generality of the
original model.

2.1.3 YOLO-world: open-vocabulary detection
through efficiency-by-design

In contrast, YOLO-World represents a paradigm shift
by integrating open-vocabulary capabilities into the highly
efficient YOLOv8 CNN framework (Yaseen, 2024). Its key
technology, the Path
Aggregation Network (RepVL-PAN), effectively fuses visual and
linguistic features (Cheng et al., 2024). Notably, YOLO-World
maximizes real-time efficiency through a novel “prompt-then-

Re-parameterizable  Vision-Language

detect” paradigm. This method involves pre-encoding a set of
user-defined text prompts into an “offline vocabulary,” which is
then integrated directly into the network weights. This eliminates
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the need for a text encoder during inference, drastically reducing
latency. This provides a significant speed advantage compared
to models like OWL-ViT that require online text encoding for
every inference, and can be characterized as an “efficiency-
by-design”

applications.

strategy inherently well-suited for edge-device

2.2 Prompt-based image segmentation

Prompt-based segmentation is the task of generating a precise
mask for a specific object within an image, conditioned on various
user inputs such as points, boxes, or text. This is essential for robotic
systems to ascertain the exact geometry of a detected object for fine-
grained manipulation tasks.

2.2.1 Segment anything model (SAM): a
foundation model for segmentation

The Segment Anything Model (SAM) is a transformative
foundation model for image segmentation (Kirillov et al., 2023).
Comprising a powerful ViT-H image encoder, a prompt encoder,
and a mask decoder, SAM has demonstrated remarkable zero-
shot generalization performance in producing high-quality
segmentation masks for a wide array of prompts. However,
the immense computational requirement of its ViT-H encoder
makes it infeasible for deployment in real-time edge computing
environments.

2.2.2 NanoSAM: real-time segmentation via
knowledge distillation

NanoSAM aims to achieve real-time performance for SAM
on Jetson devices. It employs knowledge distillation, a training
technique, to enable a lightweight ResNet-18 image encoder to
mimic the outputs of a larger “teacher” model the ViT from
MobileSAM (Zhang et al, 2023). Through this process, the
simpler “student” CNN architecture learns to approximate the rich
feature representations of the more complex teacher, achieving
an effective trade-off between inference speed and segmentation
accuracy.

2.2.3 EfficientViT-SAM: high-performance
segmentation through architectural innovation
EfficientViT-SAM strategy by
replacing  SAM’s computationally heavy ViT encoder with
EfficientViT (Cai et al, 2023), a fundamentally more efficient
Transformer architecture designed for hardware-aware execution.

offers an alternative

EfficientViT achieves its efficiency by leveraging techniques such
as multi-scale linear attention, which reduces the complexity
of the attention mechanism from quadratic (O(N?)) to linear
O(N) with respect to the input size. The training process consists
of two stages: first, knowledge from the original SAM-ViT-
H image encoder is distilled into the EfficientViT encoder,
after which the entire model is fine-tuned end-to-end on the
large-scale SA-1B dataset. This work was reported to achieve
significant speed-ups with negligible performance degradation
compared to the original SAM-ViT-H, and this study aims
to empirically validate this claim on the NVIDIA Jetson
platform.
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2.3 Model optimization with NVIDIA
TensorRT

NVIDIA TensorRT is a high-performance optimizer and
runtime library for deep learning inference. It takes a trained
model and generates an optimized inference engine for NVIDIA
GPU architectures through various techniques, including graph
optimization, layer fusion, and kernel auto-tuning.

A key feature of TensorRT, and a central optimization strategy in
this study, is low-precision inference. While deep learning models
are typically trained in 32-bit floating-point (FP32) precision,
TensorRT can convert them to lower precisions. For NVIDIAs
Ampere and subsequent architectures, TensorRT often utilizes FP32
to accelerate operations that are nominally FP32, offering a speedup
with no code changes. For further performance gains, it can convert
models to 16-bit floating-point (FP16) or automatically determined
best precision. This reduction in precision decreases memory usage
and bandwidth requirements and leverages specialized hardware
units like Tensor Cores to maximize inference throughput. However,
this process involves a trade-off, as it carries the risk of some
accuracy degradation. Finding the optimal precision strategy for
each model and task is therefore critical to achieving both real-time
performance and high accuracy on edge devices.

3 Methods

The experiments in this study were systematically designed to
ensure reproducible and rigorous evaluation in realistic robotics
application scenarios. This chapter details the architecture of
the integrated perception pipeline, the model variants used for
evaluation, the optimization protocol tailored for the NVIDIA
Jetson AGX Orin platform, and the evaluation metrics established
to quantify performance.

3.1 Integrated perception pipeline
framework

The overall data flow of our integrated perception pipeline,
which is based on a common two-stage ‘detect-then-segment’
architecture, is illustrated in Figure 1. This modular structure
was adopted for its proven efficacy in open-vocabulary instance
segmentation. The pipeline’s data flow is defined as follows:

o Input: A user provides the system with a natural language text
prompt, P (e.g., “a red mug on the table”), and an RGB image I.

Detection Stage: An open-vocabulary object detector D, takes
the image I and prompt P as input to generate a set of bounding
box proposals B ={b;,b,,...,b,} corresponding to potential
instances of the described object.

o Segmentation Stage: A prompt-based image segmentation
model S, uses the original image I and the bounding box b; € B
with the highest confidence from the detection stage as a visual
prompt. It then outputs a high-quality binary segmentation
mask M that precisely isolates the target object.

frontiersin.org
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Efficient-ViT-SAM J -

The architecture of the two-stage ‘detect-then-segment’ open-vocabulary perception pipeline. A user-provided text query and a camera image are
fed into the Detector module (NanoOWL or YOLO-World) to generate a bounding box. This bounding box, along with the original image, is then
passed to the Segmentor module (NanoSAM or EfficientViT-SAM) to produce the final segmentation mask.

This perception module is designed as the core visual input for
a mobile manipulator, where the final output mask M is used to
determine the precise shape and location of a target object in HRI
scenarios. Therefore, the real-time performance target of over 10 FPS
is not an arbitrary benchmark but a crucial system requirement for
fluid and natural interaction between users and robots.

3.2 Models and variants for evaluation

For a comprehensive analysis, this study selected a spectrum of
model variants representing different sizes, theoretical performance,
and underlying architectural philosophies. First, for open-
vocabulary object detection, two families of models were evaluated.
Representing the approach of adapting large-scale VLMs for the
edge, three primary variants of NanoOWL were selected to analyze
the impact of backbone scale on performance and latency: owlvit-
base-patch32, owlvit-base-patch16, and owlvit-large-patch14.
Representing the ‘efficiency-by-design’ philosophy, three officially
provided variants of YOLO-World were evaluated to analyze the
trade-off between size and zero-shot capability: YOLO-World-S and
YOLO-World-X.

Next, for prompt-based image segmentation, models from two
distinct strategies were chosen. Representing the model lightening
strategy through knowledge distillation, NanoSAM is composed of
a lightweight ResNet-18 image encoder and a MobileSAM mask
decoder. In contrast, representing the optimization strategy through
efficient architectural design, five variants of EfficientViT-SAM were
included to evaluate performance at various operating points: L0, L1,
L2, XL0, and XL1.

3.3 Edge device optimization protocol

All experiments were conducted on an NVIDIA Jetson AGX
Orin 64GB Developer Kit set to maximum performance mode
(MAXN) to preclude thermal throttling as a potential performance
variable. To ensure consistency and reproducibility, the software
stack was standardized on JetPack 6.0, which includes CUDA 12.2
and TensorRT 8.6.2.

For each model variant, a suite of optimized TensorRT
engines (.engine files) was generated via an ONNX intermediate
representation using the trtexec command-line tool. The following
precision configurations were systematically evaluated. FP32 was
used as the baseline precision, offering the highest accuracy with
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acceleration on Tensor Cores. FP16 was evaluated for its potential to
yield significant speedups with minimal accuracy loss by leveraging
the Orin GPU’s Tensor Cores. Finally, the best mode was used as
a mixed-precision strategy, where TensorRT profiles all available
precision implementations for each layer and heuristically selects the
fastest one. This is a dynamic optimization process that aims for the
lowest achievable latency, potentially resulting in a heterogeneous
precision configuration across layers.

3.4 Evaluation protocol and metrics

The choice of dataset is critical for evaluating the language
understanding capabilities of open-vocabulary models. This study
utilizes the RefCOCO + dataset (Yu et al., 2016), a benchmark
for referring expression segmentation. Unlike category-based
datasets, RefCOCO + provides complex linguistic phrases that
uniquely identify an object (e.g., “the man in the red shirt”)
and its corresponding ground-truth mask. It is therefore an ideal
benchmark for directly assessing a model’s ability to “ground”
nuanced language to visual features.

The primary performance metrics are accuracy and latency.
Accuracy is measured using the mloU (mean Intersection over
Union), calculated between the generated segmentation mask and
the ground-truth mask from the RefCOCO + dataset to evaluate
pixel-level precision. Latency is quantified as the end-to-end
pipeline latency in milliseconds, measuring the wall-clock time from
receiving the image and text prompt to outputting the final mask,
inclusive of all preprocessing, model inference, and postprocessing
stages. Measurements are averaged over the validation set after an
initial 20 warm-up inferences, with throughput reported in Frames
Per Second (FPS).

Furthermore, component-level latencies for the detection and
segmentation stages are reported separately to identify performance
bottlenecks.

4 Results

This section presents the empirical results of the benchmarking
study. The analysis begins with the performance of the individual
components, followed by an evaluation of the end-to-end pipelines.
The analysis focuses on the quantitative trade-off between accuracy
and latency, which is supplemented by qualitative examples.

frontiersin.org
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FIGURE 2
Overall end-to-end performance comparison of the four primary pipeline architectures, measured in Frames Per Second (FPS). Each bar represents the
highest throughput achieved for the given combination of an open-vocabulary detector (YOLO-World or NanoOWL) and a prompt-based
segmentation model (EfficientViT or NanoSAM). The results clearly indicate that pipelines utilizing the TensorRT-optimized NanoOWL detector
significantly outperform those based on YOLO-World, with the NanoOWL + EfficientViT combination achieving the maximum performance.

4.1 Overall performance overview

Figure 2 summarizes the end-to-end performance of the four
primary pipeline architectures evaluated in this study. This graph
illustrates the optimal performance achievable by each architectural
combination.

The most notable result is that pipelines based on the NanoOWL
detector exhibit a significant speed advantage over their YOLO-
World-based counterparts. Specifically, the highest throughput
among all combinations was observed with the pairing of NanoOWL
and EfficientViT-SAM. This suggests that the architecture of
NanoOWL, fully optimized as a TensorRT engine, operates with
high efficiency in a real-world edge device environment.

In contrast, the speed difference between NanoSAM and
EfficientViT-SAM in the segmentation stage was found to be
relatively minor. Despite employing different lightweight strategies,
the impact of these two segmenters on the overall pipeline latency
was limited compared to that of the detector.

These findings imply that the end-to-end latency of the pipeline
is predominantly determined by the choice of the detection model,
while the segmentation model acts as a more influential factor for
final segmentation accuracy (mlIoU). A detailed quantitative analysis
of specific model variants and various precision levels is discussed
in-depth in the following Section 4.2.

4.2 Component-level performance analysis

The  end-to-end  pipeline  performance  differences

observed in Section 4.1 originate from the individual characteristics
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of each component. This section independently evaluates the
performance of the two core elements that determine the overall
pipeline performance the open-vocabulary object detector and the
prompt-based segmentor to analyze the fundamental speed and
accuracy characteristics of each architecture.

4.2.1 Open-vocabulary detector performance
comparison

The detection model, as the first stage of the overall pipeline,
provides the bounding box to the subsequent segmentation module
and has a decisive impact on the total latency. This section first
conducts an in-depth analysis of the performance of the YOLO-
World family, which represents the ‘efficiency-by-design’ approach,
and the NanoOWL family, which represents the ‘VLM adaptation’
approach, before presenting a comprehensive comparison of the two
architectural philosophies.

First, YOLO-World, executed directly within the PyTorch
framework, was evaluated for two of its variants: YOLO-World-S
and YOLO-World-X. As presented in Table 1, the YOLO-World-
S model recorded an average latency of 26.07 m, while the larger
YOLO-World-X model registered 45.59 m. These results indicate
that latency is directly influenced by model size and complexity, and
underscore the significant performance penalty incurred from the
lack of optimization for the edge device.

Next, NanoOWL, fully optimized as a TensorRT engine, was
evaluated using three models with different backbones across three
precision levels: FP32, FP16, and best. For each model, the results are
presented in the sequential order of FP32, FP16, and best. Table 1
details the performance of each NanoOWL variant by precision.
The fastest model, patch32, achieved a minimum latency of 9.81 m,
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TABLE 1 Comparative analysis of inference latency for open-vocabulary
object detectors. The table presents the latency in milliseconds (ms) for
two distinct architectural families: YOLO-World (run via PyTorch) and
NanoOWL (optimized with TensorRT). Performance for YOLO-World
variants is provided as a baseline. For NanoOWL variants, latency is
detailed across three different TensorRT precision configurations: FP32,
FP16, and the mixed-precision ‘best’ mode.

Model Latency (ms)

YOLO-world-S 26.07
YOLO-world-X 45.59
NanoOWL (Patch32) 21.23 9.81 10.01
NanoOWL (Patch16) 147.28 39.15 37.13
NanoOWL (Patch14) 1136.36 195.69 198.81

whereas the heaviest patch14 model was measured at 195.69 m.
Notably, a substantial reduction in latency was observed when
optimizing from FP32 to FP16. For some models, the ‘best’ mode
was observed to yield the optimal speed. This demonstrates that the
NanoOWL architecture exhibits high compatibility with TensorRT’s
low-precision optimization capabilities.

A comprehensive comparative analysis of the two model families
confirms that the NanoOWL series holds a dominant advantage
in terms of detection speed. The fastest configuration, OWLViT-
base-patch32 at FP16, recorded 9.81 m, showing approximately
2.65 times faster performance than the fastest YOLO-World-S
model at 26.03 m. This leads to the critical conclusion that, in
our experimental environment, converting models into TensorRT
engines to fully leverage the hardware accelerators of the edge device
has a decisive impact on performance enhancement.

4.2.2 Prompt-based segmentation model
performance comparison

Since the segmentation model receives the bounding box
provided by the detector and generates the final segmentation
mask, both latency and segmentation accuracy (mlIoU) are critical
performance indicators. This section provides a multifaceted
comparative analysis of the performance of the knowledge
distillation-based NanoSAM and the efficient architecture-based
EfficientViT-SAM series models.

Figure 3 shows the average latency for the precision of the
encoder and decoder of each segmentation model. Although
NanoSAM is a single model type, EfficientViT-SAM has a total of
five segmentation models, so the graph shows the results for a total
of six models. First, in terms of inference speed, Figure 3 shows that
the encoder precision of each model improves significantly when
going from fp32 to fp16, and from fpl6 to best. Overall, it can
be confirmed that using the best mode is the fastest. The fastest
segmentation model, EfficientViT-SAM-L0, showed a maximum of
17.58 m and a minimum of 7.88 m, while the slowest segmentation
model, EfficientViT-SAM-XL1, showed a maximum of 77.8 m and a
minimum of 27.78 m. It was also noted that NanoSAM is positioned
in the middle.

Next, the segmentation accuracy (mIoU) was analyzed not only
quantitatively but also in conjunction with the qualitative aspects
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of the actual segmentation results. As shown in Table 2 a majority
of the high-performance configurations, including various precision
combinations of the EfficientViT-SAM series, consistently achieved
ahigh mIoU of over 0.8. A representative example of these successful
segmentation cases is shown in Figure 4, where it can be confirmed
that the object is captured and segmented with great precision.

However, a degradation in accuracy was observed in certain
model and precision combinations, which can be broadly classified
into two types of failure cases. The first type is the partial
segmentation failure case; for the EfficientViT-SAM series models,
when the encoder is fp16, all are measured with an mIoU of 0.4-0.5,
as can be seen in Figure 5. As shown in the figure, the presence of the
detected object was recognized, but the segmentation mask failed
to capture the fine-grained boundaries of the object, appearing in a
form that included parts of the background or omitted key parts of
the object. This suggests that aggressive optimization of the model’s
encoder can degrade the model’s generalization performance.

The second type observed was the case of complete segmentation
failure. This phenomenon occurred when the encoders of the
EfficientViT-SAM models L0, XL0, and XL1 were optimized with
FP16 precision. Figure 5 shows a representative example of this case,
where the mIoU score drops below 0.1, resulting in a failure to
generate any meaningful segmentation mask. The corresponding
quantitative data is presented in Table 3, which confirms a complete
failure with an mIoU score of 0 for the L2, XL0, and XL1 variants
of EfficientViT-SAM when their encoders are optimized with FP16
precision. This phenomenon underscores the potential brittleness
of highly efficient architectures when subjected to aggressive
quantization, leading to a total collapse in performance rather than
graceful degradation. A qualitative example of this catastrophic
failure is illustrated in Figure 6, where the model fails to produce
any output for the target object. This visual evidence directly
corresponds to the complete failure cases detailed quantitatively in
the subsequent text. In contrast, the knowledge distillation-based
NanoSAM maintained stable segmentation performance across all
evaluated precision optimizations (FP32, FP16, and best), with
not a single case of complete failure observed. This demonstrates
that NanoSAM possesses high robustness and reliability against
aggressive optimization.

This degradation is quantitatively detailed in Table 4, which
shows that while the ‘best’ precision optimization mode yields
the fastest inference speeds for the EfficientViT-SAM series, it
consistently results in a significant drop in segmentation accuracy,
with mIoU scores clustering between 0.42 and 0.54. This highlights
a critical trade-off where the pursuit of minimal latency through
aggressive mixed-precision optimization can compromise the
model's ability to produce precise segmentation masks.

The pronounced difference in robustness between the two
segmentation paradigms can be traced back to their fundamental
design philosophies. The stability of NanoSAM under aggressive
optimization is a direct consequence of its knowledge distillation
foundation. In KD, a compact “student” model is trained to
emulate the softened output distribution (soft labels) of a larger
“teacher” model, not just the ground-truth labels. This process
acts as a powerful regularizer, compelling the student model to
learn a smoother and more generalized decision boundary. Such
a smoothed function is inherently more robust to the discrete
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FIGURE 3

YOLO-World + NanoSAM

Throughput (FPS) of Different Perception Pipelines

Perception Pipeline Configuration

Performance analysis of prompt-based segmentation models across various precision configurations. The chart plots the throughput (FPS) of six
segmentation models (five variants of EfficientViT-SAM and NanoSAM) as a function of the precision settings for their respective encoder and decoder
components. Precision configurations range from 32-bit floating-point (fp32) to 16-bit floating-point (fp16) and a mixed-precision ‘best’ mode
optimized by TensorRT. The results demonstrate a clear trend of performance improvement as precision is lowered, particularly for the encoder.

47.51

NanoOWL + EfficientViT NanoOWL + NanoSAM

TABLE 2 Performance metrics of EfficientViT-SAM variants under
precision settings (FP32, FP16) that yield high segmentation accuracy.
The table details the latency (ms) and corresponding high mloU scores
associated with the successful segmentation outcomes

illustrated in Figure 3.

Model  Encoder precision Latency (ms) mloU
Fp32 17.16 0.9119

L0
Fpleé 10.19 0.8465
Fp32 20.54 0.9160

L1
Fpleé 12.47 0.9143
L2 Fp32 26.16 0.9167
XLO Fp32 46.79 0.8846
XL1 Fp32 75.93 0.9186

perturbations introduced by weight quantization, as minor shifts in
parameter values are less likely to cause drastic changes in the output.

Conversely, the brittleness observed in certain EfficientViT-
SAM configurations stems from the nature of hardware-
aware architectural design. These models achieve efficiency by
minimizing parameter redundancy and creating highly specialized
computational paths. While exceptionally efficient at full precision,
this lack of redundancy means that the information loss incurred
during quantization, especially with low-precision formats like
FP16, can have a disproportionately large impact. Critical
parameters or layers acting as information bottlenecks can be
severely degraded, leading to the catastrophic performance collapse
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observed in our experiments. Therefore, the trade-off is not merely
between two models, but between the intrinsic robustness conferred
by knowledge transfer and the potential fragility of a highly
optimized, non-redundant architecture.

In conclusion, the analysis of the segmentation stage reveals
a clear trade-off between the two architectures. The EfficientViT-
SAM family, with its variety of models, demonstrated the potential
to achieve the highest speeds with certain models and precisions,
while simultaneously revealing a vulnerability to unpredictable
failures in specific optimization combinations. On the other hand,
NanoSAM, although somewhat slower in absolute terms, proved
highly reliable by providing consistent performance in terms
of accuracy under all optimization conditions. These individual
performance characteristics of each component are the direct cause
for the overall performance of the end-to-end pipelines, which will
be discussed in Section 4.3.

4.3 End-to-end pipeline performance
analysis

Building upon the preceding component-level analysis, this
section evaluates the comprehensive performance of the end-
to-end pipelines constructed from the four main architectural
combinations. The analysis reveals that the NanoOWL +
EfficientViT-SAM  combination formed the
performance group in all aspects of speed and accuracy. Specifically,
the pipeline combining OWLViT-base-patch32 at fp16 with the
EfficientViT-SAM-LO0 encoder at fp16 and its decoder in best mode
achieved an outstanding throughput of 47.51 FPS while maintaining

most superior

a high mIoU of 84.64%, presenting the most attractive balance
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Prediction

FIGURE 4

Ground Truth

Qualitative example of a successful segmentation result. This figure illustrates a high-accuracy prediction from one of the best-performing pipeline
configurations, achieving an mloU score above 0.8. The generated mask (Prediction) aligns almost perfectly with the ground-truth mask,
demonstrating the model's ability to precisely delineate the target object.

Prediction

FIGURE 5

Ground Truth

Qualitative example of a partial segmentation failure. This case demonstrates accuracy degradation under aggressive optimization, specifically
observed with some EfficientViT-SAM variants using an FP16 encoder, resulting in an mloU score between 0.4 and 0.5. While the object’s presence is
recognized, the predicted mask is imprecise, failing to capture detailed boundaries and including parts of the background.

TABLE 3 Performance metrics of specific EfficientViT-SAM variants
where optimizing the encoder to FP16 precision resulted in catastrophic
failure. The reported mloU of O for all listed configurations corresponds
to the complete failure to generate a meaningful segmentation mask, as
illustrated in Figure 5.

Model  Encoder precision  Latency (ms) mloU
L2 Fpl6 15.48 0
XLO Fpl6 24.06 0
XL1 Fpl6 39.66 0

between real-time capability and accuracy. In contrast, the YOLO-
World-based pipelines recorded a lower FPS overall compared
to the NanoOWL-based pipelines. The combination of YOLO-
World-S and EfficientViT-SAM-L0, which achieved the fastest
throughput among the YOLO-World-based pipelines, recorded
26.68 FPS, a figure that is approximately 43% slower than the fastest
NanoOWL-based combination.

Frontiers in Robotics and Al

A noteworthy point is the impact of the segmentor choice
on the final accuracy. Pipelines using NanoSAM, while providing
relatively stable mlIoU across various optimization conditions,
did not reach the maximum accuracy levels of those using
EfficientViT-SAM. This is a direct reflection of the trade-offs
identified in Section 4.2.2: EfficientViT-SAM possesses higher
accuracy potential but exhibits vulnerabilities under specific
optimization conditions, whereas NanoSAM has lower absolute
accuracy but higher reliability. These characteristics are directly
mirrored in the end-to-end performance results.

5 Discussion

This chapter synthesizes the experimental results presented
previously to discuss their in-depth implications for designing
real-time, open-vocabulary perception systems on resource-
constrained edge devices. It analyzes the relative merits of competing
architectural paradigms and proposes a practical framework for
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Prediction

FIGURE 6

to aggressive quantization strategies.

Ground Truth

Qualitative example of a complete segmentation failure. This figure illustrates a catastrophic failure case observed with an EfficientViT-SAM model
when the encoder was optimized using FP16 precision. The system fails to generate any meaningful segmentation mask for the target object
(Prediction), resulting in an mloU score near zero when compared to the ground truth. This highlights the vulnerability of certain efficient architectures

TABLE 4 Performance metrics of EfficientViT-SAM variants when
applying the ‘best’ mixed-precision optimization to the encoder. This
configuration resulted in degraded accuracy, with the reported mloU
scores corresponding to the partial segmentation failure cases
illustrated in Figure 4.

Model  Encoder precision = Latency (ms) mloU
Lo Best 8.62 05108
L1 Best 10.68 05238
12 Best 1143 0.5306
XLO Best 18.16 0.4269
XL1 Best 28.44 0.5487

selecting the optimal pipeline according to the requirements of
specific HRI scenarios. Finally, it concludes by summarizing the
contributions of this work, acknowledging its limitations, and
suggesting directions for future research.

5.1 In-depth analysis of architectural
paradigms

The experimental results of this study clearly demonstrate that
the choice of an open-vocabulary detector for edge devices involves
a fundamental trade-off that extends beyond static architectural
efficiency to the realms of platform-specific optimization potential
and linguistic expressiveness.

Despite the complexity of its ViT-based architecture, NanoOWL
shows a decisive strength in its ability to be fully converted and
optimized into a TensorRT engine. This allows it to leverage the
hardware acceleration capabilities of the NVIDIA Jetson platform to
their fullest extent, granting it the potential to achieve the lowest latency
among the models evaluated in this study. In other words, NanoOWL
holds an advantage in terms of optimization potential, making it the
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definitive choice for applications seeking to secure immediate real-time
performance through a proven pipeline. However, this high speed is
achieved through an architecture and optimization pipeline tailored
specifically for grounding simple noun phrases. The underlying OWL-
ViT model was not inherently designed for parsing complex relational
sentences, and the NanoOWTL framework further specializes the model
for this high-throughput, simplified recognition task. This inherent
architectural focus is the primary reason for its structural limitations
in understanding complex states a deliberate trade-off to achieve
state-of-the-art latency on edge hardware, representing the pinnacle
of hardware optimization.

In contrast, YOLO-World, in the PyTorch file format used in
this study, falls short of NanoOWL in terms of speed but possesses
a dominant advantage in linguistic expressiveness. This model is
designed to understand complex, sentence-level referring expressions,
enabling it to “ground” relationships between objects, such as in “the
person closest to the door,” to the visual world. This is a critical
capability that can elevate human-robot interaction beyond simple
object designation to a much more natural and sophisticated level
of communication. Therefore, YOLO-World demonstrates its value in
high-level HRI scenarios where sophisticated language understanding
is more critical than immediate speed. However, this model is not
designed to be compatible with TensorRT optimization; attempting to
do so would result in the loss of its zero-shot capabilities.

In conclusion, the two detector paradigms are optimized along
different axes. NanoOWL represents the pinnacle of ‘hardware
optimization, while YOLO-World represents the pinnacle of ‘language
capability optimization. Robotics system designers must clearly
recognize this trade-off and make a strategic choice based on the
core capabilities required by their application.

5.2 A framework for HRI scenario-based
pipeline selection

Based on this new analysis, the guidelines for pipeline selection

according to the requirements of HRI applications can be redefined
as follows.
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For High-Responsiveness Tasks, such as object tracking or
dynamic obstacle avoidance where latency is the most critical factor,
aNanoOWL-based pipeline is undoubtedly the most suitable choice.
Fully accelerated by its TensorRT engine, NanoOWL provides the
highest FPS and delivers optimal performance in environments that
require rapid recognition based on clear noun phrases like “a car” or
“a person.”

For High-Level Language Understanding Tasks, such as precise
manipulation scenarios that require understanding complex context
or relationships like “pick up the cup I am looking at,” a YOLO-
World-based pipeline is the only viable option. Although it may be
slower due to its PyTorch framework basis, semantic accuracy takes
precedence over speed, as the task itself would fail if the command
is not understood.

A Balanced Sweet Spot still exists for general HRI tasks that
require an adequate level of speed (>15 FPS), high mloU, and
language capabilities beyond basic noun phrases. The pipeline
combination and precision level that best satisfy this balance should
be selected from the Pareto front of the experimental results.

5.3 Limitations and future work

The limitations of this study and corresponding directions for
future research are as follows. First, a primary limitation of this
study is its evaluation on a static image dataset, the RefCOCO+.
This approach does not fully account for the temporal complexities
and dynamic challenges, such as motion blur or varying lighting
conditions, that arise in a real robot’s video stream. Future work
should therefore extend this analysis by deploying the most
promising pipelines on a physical mobile manipulator. This would
enable a comprehensive evaluation of their real-world robustness
and performance within a complete “‘command-to-action” loop,
as planned in our future research trajectory. Second, the focus
was exclusively on the perception module, and integration with
downstream decision-making and control stacks was not addressed.

A key future research direction is to extend the OWL-ViT
model, the backbone of NanoOWL, to enable the understanding of
full sentences in addition to noun phrases, while still maintaining
full optimization through TensorRT. If a model based on OWL-
ViT could recognize sentences at its current speed, it has
the potential to become a dominant solution possessing both
linguistic expressiveness and speed. This would be a significant
milestone for next-generation perception pipelines in edge robotics.
Furthermore, this work can be extended to deploying the identified
optimal pipeline on a physical mobile manipulator to evaluate the
performance of the full “command-to-action” loop, and to research
aimed at achieving Vision-Language-Action (VLA) capabilities for
processing and executing more complex commands on edge devices
(Brohan et al., 2023; Lee et al., 2024).

5.4 Conclusion
This study presented a comprehensive benchmark of open-

vocabulary perception pipelines on the NVIDIA Jetson AGX Orin
and identified a critical trade-off between hardware optimization
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potential and linguistic expressiveness. The TensorRT-accelerated
NanoOWL provided the fastest performance, though limited
to noun-phrase recognition, while the PyTorch-based YOLO-
World was relatively slower but demonstrated superior language
capabilities by understanding complex sentences. Through this
quantitative and qualitative analysis, this research provides
empirically-grounded guidelines that enable robotics researchers
and engineers to make informed decisions in the selection
and development of architectures tailored to their specific HRI
requirements.
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