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Introduction: Animal-involved scenarios pose significant challenges for 
autonomous driving systems due to their rarity, unpredictability, and safety-
critical nature. Despite their importance, existing vision-language datasets for 
autonomous driving largely overlook these long-tail situations.
Methods: To address this gap, we introduce AniDriveQA, a novel visual question 
answering (VQA) dataset specifically designed to evaluate vision-language 
models (VLMs) in driving scenarios involving animals. The dataset is constructed 
through a scalable pipeline that collects diverse animal-related traffic scenes 
from internet videos, filters and annotates them using object detection and 
scene classification models, and generates multi-task VQA labels with a 
large vision-language model. AniDriveQA includes three key task types: scene 
description, animal description, and driving suggestion.
Results: For evaluation, a hybrid scheme was employed that combined 
classification accuracy for structured tasks with LLM-based scoring for open-
ended responses. Extensive experiments on various open-source VLMs revealed 
large performance disparities across models and task types.
Discussion: The experimental results demonstrate that AniDriveQA effectively 
exposes the limitations of current VLMs in rare yet safety-critical autonomous 
driving scenarios. The dataset provides a valuable diagnostic benchmark for 
advancing reasoning, perception, and decision-making capabilities in future 
vision-language models.

KEYWORDS

vision-language models, visual question answering (VQA), autonomous driving, animal-
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 1 Introduction

The automotive sector is continuously evolving as manufacturers face pressure to 
enhance safety, adopt sustainable practices and improve design efficiency (Martínez-
Hinojosa et al., 2025). Driven by these challenging requirements, automotive manufacturers 
are increasingly adopting advanced perception and decision-making systems to support 
drivers and enable autonomous driving (Toropov et al., 2023). Ensuring the safety 
and reliability of autonomous driving systems requires robust perception and reasoning 
capabilities, especially in complex and long-tail scenarios. Among these, driving scenes 
involving the sudden appearance of animals represent a critical yet underexplored challenge. 
Animals on or near roadways can cause severe traffic disruptions, accidents, and fatalities. In
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the United States, approximately 1–2 million collisions between 
vehicles and large animals occur each year, resulting in significant 
property damage and human casualties (Donaldson, 2017). The 
presence of animals poses a serious threat to driving safety. 
Despite advances in object detection and motion planning, current 
perception and decision-making systems still struggle to generalize 
to such rare yet safety-critical events, often due to limited training 
data and insufficient context-aware reasoning.

Recent advancements in large-scale vision-language models 
(VLMs) have demonstrated promising generalization abilities across 
diverse visual scenes. These models leverage extensive knowledge 
bases and strong reasoning capabilities to interpret complex 
environments. In the context of autonomous driving, VLMs offer 
the potential to understand not only what is present in a scene but 
also to reason about behaviors, predict consequences, and suggest 
appropriate actions. Their ability to perform zero-shot inference and 
generate structured outputs makes them particularly suitable for 
addressing long-tail scenarios involving rare or unexpected entities 
such as animals.

However, as illustrated in Figure 1, animal-involved driving 
scenarios represent a typical long-tail phenomenon, where such 
events occur infrequently in driving data. In these safety-critical 
cases, existing VLMs may still struggle with scene misinterpretation, 
incorrect behavior analysis, or unsafe recommendations. Figure 1 
provides an example where the LLaVA v1.5-7B model fails to 
accurately recognize the animal and misjudges the potential driving 
risk, highlighting the need for dedicated datasets targeting such rare 
yet impactful scenarios.

Despite the capabilities of VLMs, current datasets for vision-
language understanding in autonomous driving primarily focus 
on general objects, road infrastructure, and human behavior. 
Datasets such as NuScenes-QA Qian et al. (2024), NuScenes-MQA 
Inoue et al. (2024), MAPLM-QA Cao et al. (2024), DriveLM-
nuScenes Sima et al. (2024), and CODA-LM Chen K. et al. (2025) 
cover diverse driving scenarios but largely overlook the presence 
of animals and the reasoning required for safe interaction. For 
example, CODA-LM contains fewer than 500 images involving 
animals, making it insufficient for systematic evaluation of animal-
related reasoning. This lack of targeted evaluation data limits the 
ability to assess and enhance model performance in animal-involved 
driving situations, thereby hindering their deployment in real-world 
safety-critical conditions.

To bridge this gap, this paper proposed AniDriveQA, a visual 
question answering (VQA) dataset specifically focused on driving 
scenarios where animals appear. This paper collected image data 
from various internet sources and leveraged the capabilities of 
large vision-language models to generate high-quality question-
answer pairs covering key reasoning aspects, including animal 
detection, behavior recognition, impact analysis, and driving 
suggestions. The dataset enabled systematic evaluation of VLMs 
in rare and safety-critical contexts, promoting the development of 
more robust autonomous driving systems. The main contributions 
are summarized as follows:

• this paper collected a diverse set of animal-involved driving 
images and video clips from internet sources, capturing a 
wide range of species, traffic scenarios, and environmental 
conditions.

• this paper designed a multi-level visual question answering task 
suite targeting scene understanding, animal detection, behavior 
recognition, impact analysis, and driving suggestions.

• this paper constructed the AniDriveQA dataset using large 
vision-language models for automated question-answer 
generation.

2 Materials and methods

2.1 Related works

2.1.1 Autonomous driving datasets
Traditional autonomous driving datasets, such as KITTI 

Geiger et al. (2013), nuScenes Caesar et al. (2020), Waymo 
Open Dataset Sun et al. (2020), Cityscapes Cordts et al. (2016), 
ApolloScape Huang et al. (2018), BDD100K Yu et al. (2020), and 
Argoverse Chang et al. (2019), primarily focus on visual perception 
and scene understanding tasks. These datasets provide multimodal 
sensor data but lack the textual annotations necessary for evaluating 
higher-level reasoning and decision-making capabilities.

With the emergence of large language models, several datasets 
have been proposed to introduce linguistic information into 
autonomous driving. In real-world settings, datasets such as BDD-
X Kim et al. (2018), BDD-OIA Xu et al. (2020), Talk2Car 
Deruyttere et al. (2019), and NuPrompt Wu et al. (2025) extend 
existing large-scale driving datasets by adding action explanations, 
natural language commands, and scene descriptions to support 
reasoning and planning tasks. In simulation environments, CARLA-
NAV Jain et al. (2023), Driving-LLM Chen et al. (2024), LaMPilot 
Ma et al. (2024), and LangAuto Shao et al. (2024) leverage 
simulators such as CARLA and HighwayEnv to construct datasets 
combining language instructions with navigation, decision-making, 
and closed-loop control tasks. Compared to traditional datasets that 
primarily focus on perception and low-level control, these language-
augmented datasets enable a deeper integration of perception, 
reasoning, and decision-making, offering new opportunities for 
building explainable and interactive autonomous driving systems. 
While existing datasets have advanced multi-modal autonomous 
driving research, they largely overlook rare but safety-critical events 
involving animals. 

2.1.2 VQA tasks in autonomous driving
VQA tasks have become critical components in autonomous 

driving research, enabling systems to integrate visual perception 
with natural language reasoning to better interpret complex 
environments and support decision-making. Existing datasets have 
designed VQA tasks across multiple dimensions, including perception 
and scene understanding, sequential reasoning, and high-level 
decision support. For example, NuScenes-QA Qian et al. (2024) 
and MAPLM-QA Cao et al. (2024) focus on perception-oriented 
tasks such as object existence, counting, and spatial relationship 
recognition. NuScenesMQA Inoue et al. (2024) enhances answer 
quality by providing responses in fully structured sentences, thereby 
offering a richer semantic hierarchy. DriveLM Sima et al. (2024) 
extends VQA to sequential reasoning by modeling the connections 
between perception, trajectory prediction, and planning. CODA-LM 
Chen K. et al. (2025) targets decision-oriented reasoning through 
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FIGURE 1
Vision-language model failure in understanding animal-involved driving scenarios.

hierarchical tasks involving scene analysis, regional risk assessment, 
and driving suggestion generation. Furthermore, datasets like SUTD-
TrafficQA Xu et al. (2021), DrivingVQA Corbière et al. (2025), 
DriveBench Xie et al. (2025), Rank2Tell Sachdeva et al. (2024) and 
LingoQA Marcu et al. (2024) explore higher-order reasoning tasks 
such as event forecasting, causal explanation, counterfactual inference, 
and driver attention modeling. NuScenes-SpatialQA Tian et al. (2025) 
is designed for both spatial understanding and spatial reasoning 
in autonomous driving. In addition, STRIDE-QA Ishihara et al. 
(2025) defines object-centric spatial, ego-centric spatial, and ego-
centric spatiotemporal QA tasks to support fine-grained, predictive 
reasoning in complex traffic scenarios. AutoTrust Xing et al. (2024) 
focuses on the influence of trustworthiness factors, such as safety, 
privacy, and robustness, on the operational performance and reliability 
of autonomous driving systems across diverse driving scenarios. 
While these efforts significantly advance multimodal reasoning in 
autonomous driving, rare yet safety-critical situations–particularly 
those involving animals–remain largely underexplored. 

2.2 Methodology

Animal appearances in driving environments are highly 
unpredictable, making it costly and inefficient to capture such 

data through real-world collection. Inspired by the pretraining 
strategies of large language models, this paper explored internet 
video platforms as a rich source for animal-involved driving 
scenes, offering diverse species, lighting conditions, and geographic 
contexts. This research was conducted at Institute of Computing 
Technologies, China Academy of Railway Sciences Corporation 
Ltd., Beijing, China.

This paper manually collected videos from Bilibili and YouTube 
via keyword search and verified them before batch downloading 
with yt-dlpyt-dlp Contributors, (2021). Frames were extracted at 
fixed intervals to build an initial pool. A multi-stage filtering pipeline 
was then applied: YOLOv5x Jocher (2020) and Grounding DINO 
Liu S. et al. (2024) detected animals, Places365 Zhou et al. (2017) 
classified road-related scenes, and CLIP ViT-B/32 Radford et al. 
(2021) evaluated semantic relevance. Frames passing these stages 
were manually reviewed for quality assurance.

Based on the alignment between images and textual 
descriptions, we further filter part of the data to verify whether 
the image content matches the target semantics. After manual 
verification, we obtain approximately 12K images that meet the 
requirements. In addition, during the above data mining process, 
the results of object detection and scene recognition on the 
images are stored as pre-annotations, providing references for the 
subsequent construction of visual question-answering data. The 
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TABLE 1  Statistics of data sources.

Video 
platform

Number of 
videos

Total 
images

Valid 
images

Bilibili 205 58,323 10,372

YouTube 31 18,796 2,448

specific video sources and image quantities are summarized in 
Table 1, while the distributions of animal categories and scenes 
are shown in Figures 5a,b, respectively.

For annotation, preliminary object and scene information were 
used as pseudo-labels to assist downstream VQA construction. This 
paper established a large language model-driven semi-automated 
validation process with human involvement. The overall data 
construction process is illustrated in Figure 2.

2.2.1 VQA tasks & metrics
The VQA tasks in AniDriveQA are designed to evaluate 

vision-language models’ capabilities in scene understanding, 
animal recognition, and decision-making under complex driving 
conditions. An overview of the tasks is illustrated in Figure 3.

2.2.1.1 Scene description task
The scene description task requires models to generate a 

comprehensive summary of the driving environment, covering 
elements such as road conditions, weather, scene type, and 
key participants like vehicles and pedestrians. As illustrated 
in Task 1 of Figure 3, this task is not limited to identifying 
common traffic participants but also requires providing detailed 
descriptions of abnormal or infrequent factors that may pose 
significant safety risks. 

2.2.1.2 Animal description task
The animal description task focuses on identifying the species, 

describing the behavior (e.g., stationary, crossing the road), 
and assessing the potential influence of the animal on the 
ego vehicle’s driving decisions, reflecting the model’s ability to 
extract fine-grained, behavior-aware information. As illustrated 
in Task 2 of Figure 3, the presence of a horse moving along the 
road requires the model to not only detect the animal itself but also 
reason about the possible consequences for driving safety, such as 
prompting self-driving cars to slow down or change lanes to avoid 
potential collisions, highlighting the integration of perception and 
reasoning in various traffic scenarios. 

2.2.1.3 Driving suggestion task
The driving suggestion task evaluates the model’s reasoning 

ability by requiring it to propose concrete and safety-oriented 
driving recommendations based on the scene context, particularly 
considering the animal’s presence and behavior. This task therefore 
emphasizes the model’s ability to integrate perception with decision-
making and to provide actionable guidance in various scenarios. 
As shown in Task 3 of Figure 3, when an alligator crosses the 
road, the model should suggest safe actions such as braking 

smoothly, keeping distance, and waiting quietly until the animal
passes. 

2.2.1.4 Evaluation metrics
The evaluation of models on AniDriveQA covers both closed-

form and open-form VQA tasks, classified based on the nature 
of their expected responses. Closed-form tasks, including animal 
species recognition and behavior classification, have a finite set of 
possible answers and are evaluated using classification accuracy, as 
defined in Equation 1:

Accuracy =
Ncorrect

Ntotal
(1)

where Ncorrect represents the number of samples the model predicted 
correctly, and Ntotal represents the total number of samples.

For open-form tasks, including scene description, animal 
impact analysis, and driving suggestion, model responses are free-
form and diverse. Since traditional lexical overlap metrics such 
as BLEU Papineni et al. (2002) and CIDEr Vedantam et al. 
(2015) are insufficient to fully capture the semantic quality and 
reasoning depth of these responses, this paper adopted a large 
language model (LLM)-based evaluation approach, inspired by 
recent works (Zheng et al., 2023; Lin and Chen, 2023. Specifically, 
this paper utilized DeepSeek R1 14B Guo et al. (2025) to conduct 
prompt-guided evaluations, scoring each response on a 1–10 
scale against reference answers and task-specific criteria. Scene 
description is evaluated based on the accuracy, completeness, 
and clarity of environmental depiction. Animal impact analysis 
focuses on the clarity, relevance, and logical soundness of the 
inferred impact on driving behavior. Driving suggestion assessment 
considers the reasonableness, safety, contextual adaptability, and 
clarity of the recommended actions. This hybrid evaluation strategy 
ensures a comprehensive assessment of both recognition capabilities 
and complex reasoning abilities critical for safe autonomous
driving. 

2.2.2 Annotation process
To support the use of AniDriveQA for both training and 

evaluation, each image depicting an animal-involved driving 
scenario must be annotated with VQA data aligned to the 
designed tasks. High-quality annotations are essential for 
ensuring the accuracy and consistency of model assessment. 
However, manual annotation is labor-intensive and impractical 
for large-scale datasets. To address this, this paper developed 
a multi-step, task-decoupled annotation pipeline, enhanced 
by a large language model-driven semi-automated validation 
process, which significantly improves annotation quality and
efficiency.

As illustrated in Figure 4, the annotation process begins with 
object detection to identify entities such as vehicles, pedestrians, 
animals, and traffic signs. The detection results are stored in 
structured JSON format and serve as context for guiding the vision-
language model Qwen-VL 72B Bai et al. (2023) in generating 
task-specific answers. Each VQA task is handled independently 
with tailored prompts: for the scene description task, the model 
synthesizes a textual summary covering weather, road conditions, 
and key participants; for the animal description task, it extracts each 
detected animal, identifies its species, determines its behavior, and 
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FIGURE 2
Data construction pipeline.

FIGURE 3
Overview of VQA tasks in AniDriveQA.
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FIGURE 4
Data annotation pipeline.

FIGURE 5
Distribution of scenarios and animal types in the dataset. (a) Scenario statistics. (b) Animal statistics.

analyzes its potential impact on driving decisions; for the driving 
suggestion task, it reasons over the scene and entities to generate a 
concise, context-aware recommendation.

All answers are structured into a unified format and undergo 
a semi-automated validation phase. A large model first inspects 
the annotations based on a predefined checklist, identifying 
potential errors and suggesting corrections, which are then reviewed 
and refined by humans. This hybrid validation strategy balances 
efficiency with annotation quality, ensuring that the final outputs 
serve as reliable supervision signals for model training and 
evaluation. 

2.2.3 Statistics
The AniDriveQA dataset contains a total of 12,820 samples. 

To facilitate both evaluation and finetuning, this paper splits the 
AniDriveQA dataset evenly into training and testing sets with a 1:1 

ratio. The testing set serves as the benchmark for model evaluation, 
while the training set is used for adaptation experiments.

To demonstrate the diversity of AniDriveQA, this paper 
provided a statistical overview of the animal species and driving 
scene types covered in the dataset. As shown in Figures 5a,b, the 
dataset includes a broad range of animal categories, from commonly 
seen species such as dogs and deer to rarer or region-specific animals 
like moose and elephants. This ensures the inclusion of both frequent 
and long-tail classes that pose unique challenges to autonomous 
driving systems.

The driving scenes in AniDriveQA span various environmental 
contexts, including urban roads, forests, intersections, and off-road 
locations such as deserts and riversides. This scene-level diversity 
reflects the real-world complexity in which animals may appear and 
allows for a comprehensive evaluation of vision-language models 
across a spectrum of traffic conditions and geographies. 
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TABLE 2  Cosine similarity and Pearson correlation for each ScoreType-Model-Human combination.

ScoreType Model Human Cosine similarity Pearson correlation Sample number

Animal impact DeepSeek-VL2-Small Person 0 0.978 0.231 151

Animal impact DeepSeek-VL2-Small Person 1 0.953 0.133 151

Animal impact LLaVA-1.5-13B-HF Person 0 0.978 0.178 175

Animal impact LLaVA-1.5-13B-HF Person 1 0.982 0.234 175

Driving scene DeepSeek-Vl2-Small Person 0 0.976 0.358 151

Driving scene DeepSeek-VL2-Small Person 1 0.932 0.432 151

Driving scene LLaVA-1.5-13B-HF Person 0 0.981 0.322 175

Driving scene LLaVA-1.5-13B-HF Person 1 0.979 0.277 175

TABLE 3  Aggregated similarity and correlation between two human annotators for each ScoreType.

ScoreType Model Cosine similarity Pearson correlation Sample number

Animal impact LLaVA-1.5-13B-HF 0.986 0.585 175

Animal impact DeepSeek-VL2-Small 0.971 0.388 151

Driving scene LLaVA-1.5-13B-HF 0.985 0.457 175

Driving scene DeepSeek-VL2-Small 0.954 0.595 151

3 Results

3.1 Implementation details

The methodology employed in this study involves several key 
components. Data annotation was performed using multi-step 
reasoning workflows with large language models. Video data were 
collected via web crawling using yt-dlp, and the Qwen-72B model 
was deployed locally to perform multi-step reasoning for annotation. 
For model fine-tuning, LLaVA-v1.5-7B was used as the base 
model, with LoRA fine-tuning (rank = 8). The LLMFactory toolkit 
was utilized for large model training. All experiments were conducted 
on an NVIDIA RTX A6000 GPU with 48 GB memory. 

To validate the effectiveness of DeepSeek R1 14B scoring, we 
had two independent raters manually score the animal impact and 
driving scene labels for samples generated by two VLM models, 
LLaVA-1.5-13B (175 samples) Liu et al. (2023) and DeepSeek-VL2-
Small (151 samples), on a scale of 1–10. We then computed the 
Cosine Similarity and Pearson Correlation between these scores 
and those produced by DeepSeek R1 Guo et al. (2025), to validate 
the effectiveness of DeepSeek R1’s scoring and its agreement with 
human ratings. Additionally, we calculated the Cosine Similarity and 
Pearson Correlation between the scores from the two raters.

LMSYS Zheng et al. (2024a) pointed out the feasibility 
of using GPT-4 as an evaluator to score question-answering 
results on a 1–10 scale, showing a high consistency with human 
evaluations. In addition, LLM-EVAL Lin and Chen (2023) proposed 

a multidimensional evaluation method for open-domain QA, 
achieving more comprehensive assessments through prompt 
engineering. Consistent with these findings, it can be seen in 
Tables 2, 3 that although DeepSeek’s scores have a lower Pearson 
correlation with human ratings than the correlation between 
the human raters themselves, they still show a strong positive 
correlation, and the cosine similarity is extremely high. 

3.2 Main results

This paper evaluated eight open-source vision-language models 
on AniDriveQA, including five 7B-scale models (e.g., LLaVA-1.5-7B, 
Qwen2.5-VL-7B) and three 13B-scale models (e.g., LLaVA-1.5-13B, 
InstructBLIP-Vicuna-13B). All models are tested under a zero-shot 
setting with the same prompt template and evaluated following the 
metrics described above. To facilitate comparison, subjective scores 
originally rated on a 1–10 scale are linearly scaled to a 1–100 range. 
The evaluation results are summarized in Table 4.

The results reveal notable differences among models. Qwen2.5-
VL-7B achieves the best overall performance, demonstrating strong 
abilities in both perception and reasoning tasks, with leading 
results across scene description, species recognition, and driving 
suggestion. It consistently outperforms other models in both closed-
form classification and open-form generation tasks. Other models, 
such as Ovis-Clip-Qwen1.5-14B and MiniCPM-Llama3-V2.5, 
perform competitively on closed-form tasks, each achieving species 
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TABLE 4  Performance of open-source VLMs on the AniDriveQA dataset. Bold and underlined values denote the highest and second-highest scores 
per column.

Model Scene 
description text 

score

Species 
recognition 

accuracy

Behavior 
recognition 

accuracy

Impact analysis 
text score

Driving 
suggestion text 

score

Qwen2.5-VL-7B 
Bai et al. (2025)

70.42 0.64 0.77 63.88 64.39

MiniCPM-Llama3-V2.5 
Yao et al. (2024)

59.03 0.59 0.67 66.83 66.10

LLaVA-1.5-7B Liu et al. 
(2023)

51.77 0.47 0.12 50.25 52.16

InternLM-
XComposer2.5-7B 
Zhang et al. (2024)

60.01 0.59 0.87 71.77 69.59

Janus-Pro-7B Chen et al. 
(2025b)

54.33 0.55 0.24 54.92 58.32

LLaVA-1.5-13B Liu et al. 
(2023)

54.67 0.48 0.18 52.90 56.49

InstructBLIP-Vicuna-
13B Liu et al. (2024a)

46.05 0.51 0.08 49.80 51.24

Ovis-Clip-Qwen1.5-14B 
Lu et al. (2024)

65.19 0.57 0.65 58.92 61.98

LLaVA-1.5-7B 
(Fintuned)

72.87 0.74 0.87 70.96 68.17

FIGURE 6
Example outputs generated by different vision-language models.
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TABLE 5  Comparison of finetuned models on the AniDriveQA dataset and CODA-LM benchmark. Bold and underlined values denote the highest and 
second-highest scores per column.

Model AniDriveQA CODA-LM

Scene 
description 
text score

Species 
recognition 
accuracy

Behavior 
recognition 
accuracy

Impact 
analysis 

text score

Driving 
suggestion 
text score

General 
description 
text score

Regional 
awareness 
text score

Driving 
suggestion 
text score

LLaVA-1.5-7B 51.88 0.47 0.12 59.36 61.14 19.30 42.06 23.16

Finetuned on 
AniDriveQA

72.87 0.74 0.87 70.96 68.17 30.54 38.28 49.15

Finetuned on 
CODA-LM

70.34 0.42 0.77 61.24 64.40 54.87 74.90 57.38

Finetuned on 
Mixed Data

74.80 0.75 0.87 68.08 71.17 59.04 64.50 60.36

TABLE 6  Comparison of datasets.

Dataset Scenes 
with 

animals

Scene 
desc.

Object 
desc.

Driving 
sug.

Animal 
info.

CODA-
LM 
Chen et al. 
(2025a)

< 500 ✓ ✓ ✓ ×

SUP-AD 
Sima et al. 
(2024)

- ✓ ✓ × ×

Ours 12K ✓ ✓ ✓ ✓

recognition accuracies around 0.6 and maintaining reasonable 
behavior recognition performance. In contrast, models like LLaVA-
1.5 and InstructBLIP-Vicuna-13B show significant limitations 
in fine-grained reasoning, with behavior recognition accuracies 
dropping below 0.2, and lower text quality scores in impact analysis 
and driving suggestion tasks.

These results highlight that while some models perform 
reasonably on basic recognition tasks, they struggle when deeper 
semantic understanding and contextual reasoning are required. The 
results also demonstrate that AniDriveQA effectively distinguishes 
models’ abilities in perception and reasoning specifically under 
animal-involved driving scenarios, providing a targeted benchmark 
for evaluating vision-language models in safety-critical and rare-
event contexts. Representative qualitative outputs from selected 
models are illustrated in Figure 6.

To further investigate data adaptability, this paper finetuned 
LLaVA-1.5-7B model on AniDriveQA using the llamafactory
toolkit Zheng Y. et al. (2024) and the LoRA technique (Hu et al., 
2022). During training, the multimodal projection layers are frozen 
to maintain visual feature extraction capabilities, while the core LLM 
and visual encoder parameters are updated. The training process 
adopts a context window of 4096 tokens, employs a linear warm-up 
followed by cosine decay across five epochs, and leverages mixed-
precision training to improve efficiency.

In addition to finetuning on AniDriveQA alone, this paper 
explored a mixed-data strategy by combining AniDriveQA with 
the CODA-LM benchmark. This paper designed three experimental 
settings: finetuning solely on AniDriveQA, finetuning solely on 
CODA-LM, and finetuning on the combined dataset. For evaluation, 
AniDriveQA tasks are assessed using the same methodology described 
earlier, combining classification accuracy for closed-form tasks and 
LLM-based scoring for open-form tasks, while CODA-LM tasks 
are evaluated using its original evaluation protocol. The results are 
summarized in Table 5. 

Finetuning solely on AniDriveQA significantly enhances 
model performance in animal-involved scenarios, highlighting the 
importance of targeted rare-event data. Finetuning on CODA-LM 
improves general driving scene understanding but shows limited 
gains in handling rare animal-related events. Finetuning on the 
combined dataset achieves the best overall results, suggesting that 
integrating both traditional and rare driving scenarios enables 
models to better generalize across common and safety-critical 
conditions.

Overall, these experiments demonstrate that AniDriveQA is 
not only a challenging benchmark for evaluating vision-language 
models in complex autonomous driving scenarios but also an 
effective resource for improving model robustness and reasoning 
through finetuning. By rigorously testing models across both closed-
form and open-form tasks, AniDriveQA promotes the development 
of safer and more intelligent autonomous driving systems capable of 
handling unpredictable real-world situations. 

4 Discussion

To better compare our dataset, we evaluate it against the latest 
similar datasets, as shown in Table 6. Our dataset significantly differs 
from prior works such as CODA-LM Chen K. et al. (2025) and SUP-
AD Sima et al. (2024). Specifically, while CODA-LM Chen K. et al. 
(2025) contains fewer than 500 scenes with animals and lacks 
detailed animal information, and SUP-AD Sima et al. (2024) does 
not provide driving advice or animal information, our dataset 
contains 12,000 scenes with animals and provides comprehensive 
annotations including scene descriptions, object descriptions,
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driving advice, and animal information. This richer annotation 
enables more detailed analysis and model evaluation, addressing 
limitations in prior datasets. By incorporating these additional 
dimensions, our work facilitates more thorough comparisons and 
insights, thereby enhancing the scope and utility of the results.

This paper proposed AniDriveQA, a novel visual question 
answering dataset specifically designed to evaluate the reasoning 
capabilities of vision-language models in animal-involved driving 
scenarios. The dataset is constructed through a semi-automated 
pipeline that combines internet video mining with LLM-
based annotation. It covers a diverse set of tasks, including 
scene description, animal description, and driving suggestion. 
Comprehensive experiments on a range of open-source models 
demonstrate the effectiveness of AniDriveQA in revealing the strengths 
and limitations of current vision-language models in complex 
and safety-critical scenarios. Nevertheless, deployment remains 
challenging, and future work should improve model robustness and 
efficiency to ensure safe and reliable performance under rare animal 
appearances, real-time constraints, and diverse driving conditions. 

This work fills a critical gap in autonomous driving research 
by introducing a benchmark dataset that systematically evaluates 
vision-language models in rare but safety-critical animal-involved 
scenarios, advancing the study of long-tail perception and reasoning. 
Animal-related traffic accidents cause substantial human, economic, 
and ecological losses each year, and this research contributes to safer 
and more reliable autonomous driving systems by enabling more 
robust perception and decision-making in such scenarios.
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