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Everything robots need to know 
about cooking actions: creating 
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This paper addresses the challenge of enabling robots to autonomously 
prepare meals by bridging natural language recipe instructions and robotic 
action execution. We propose a novel methodology leveraging Actionable 
Knowledge Graphs to map recipe instructions into six core categories of robotic 
manipulation tasks, termed Action Cores cutting, pouring, mixing, preparing, 
pick and place, and cook and cool. Each AC is subdivided into Action Groups 
which represent a specific motion parameterization required for task execution. 
Using the Recipe1M + dataset (Marín et al., IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 2021, 43, 187–203), encompassing over one million 
recipes, we systematically analysed action verbs and matched them to ACs 
by using direct matching and cosine similarity, achieving a coverage of 76.5%. 
For the unmatched verbs, we employ a neuro-symbolic approach, matching 
verbs to existing AGs or generating new action cores utilizing a Large Language 
Model Our findings highlight the versatility of AKGs in adapting general plans to 
specific robotic tasks, validated through an experimental application in a meal 
preparation scenario. This work sets a foundation for adaptive robotic systems 
capable of performing a wide array of complex culinary tasks with minimal 
human intervention.

KEYWORDS

robot manipulation, knowledge graph, recipe analysis, meal preparation, large language 
models 

 1 Introduction

Robots (still) do not prepare our daily dishes, since the manipulation skills involved in 
meal preparation actions are very complex. Even if we consider only a single action category 
like cutting, we have to account for many factors that influence the execution and the desired 
goal state, such as object properties (e.g., the existence of a peel), task variations (such 
as halving or slicing) and their influence on motion parameters, as well as the situational 
context (e.g., the available tools).

To successfully compute the body motions needed to execute different recipe 
instructions, robots need knowledge. This work addresses the question how we can build
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knowledge bases for meal preparation actions that robots can use to 
translate the contained information into body motion parameters.

While recent research has focused on translating natural 
language instructions to parameters for pick and place tasks 
(see Ahn et al., 2023; Rana et al., 2023), preparation of recipes 
requires more knowledge than grounded environment information. 
Recipes contain:

1. Commonsense knowledge such as that a cup sometimes is used 
as a container but sometimes as a measurement unit

2. Environment and physics knowledge such as what objects can 
be used for the task and that a filled cup should be held upright

3. Action and manipulation knowledge such as how a task is 
broken down into motor primitives but also that hot content 
might burn your finger/gripper, so a hot cup should be held by 
its handle

Thus, accomplishing complex manipulation tasks for the 
preparation of recipes can be stated as a reasoning problem: Given 
a list of vague task requests such as “Set aside for 15 min, then drain 
and put into a blender”, infer the objects to use based on the text and 
the current scene graph of the environment, as well as the necessary 
body motions to achieve the desired result while avoiding unwanted 
side effects. The main question is: How can we build knowledge bases 
that represent this knowledge in a machine-understandable way?

Kümpel (2024) proposes a methodology to create Actionable 
Knowledge Graphs as knowledge bases that robots can use for action 
execution. An Actionable Knowledge Graph (AKG) connects object 
information to environment information and action information for 
an embodiment of knowledge (Kümpel, 2025). AKGs provide action 
parameters for different Action Groups (AGs) of an action category, 
which can be used in general action plans (Hassouna et al., 2024) 
for the execution of task variations such as for performing slicing, 
dicing and halving derived from a general action plan for cutting 
(Kümpel et al., 2024; Beetz et al., 2024). Hence, AGs provide agents 
with knowledge about how a particular activity shall be performed in 
a specific context, along with the awareness about objects involved in 
these actions as well as the properties that influence task execution. 
For the example use case of cutting fruits, such an AKG has been 
used by a robot to infer the necessary body motions for a range of 
cutting tasks on different objects, from slicing a cucumber to halving 
an apple (Beetz et al., 2024; Kümpel and Töberg, 2024).

Still, in order for a robot to prepare any recipe given the 
enormous - and possibly open ended - amount of recipes, the 
question has to be asked if it is possible to derive such AKGs for all 
recipes. We divide this question into the following sub-questions:

1. How many action verbs, and corresponding groups, occur in 
recipes?

2. How do we structure AKGs to cover these verbs and groups?

This paper answers these questions by using Action Cores 
(ACs) (an AC is a main manipulation capability like cutting that 
can be translated to a general action plan), Action Groups (AGs) 
(an AC consists of several more specific AGs that use a similar 
manipulation plan and thus result in similar body movements and 
outputs, e.g., the AC of cutting consists of the AGs dicing, slicing, 
etc.) as well as an Actionable Knowledge Graph, that contains task, 
object and environment knowledge and enables robots to infer the 

body motions needed to prepare any given recipe. We visualize the 
connection between these concepts in Figure 1 and in Figure 2.

We hypothesize that recipes consist of six main ACs that can 
be broken down into several AGs, as visualized in Figure 1. To test 
this hypothesis, we created AKGs for these six main ACs, analysed 
the Recipe1M + corpus (Marín et al., 2021) consisting of 1,028,692 
recipes for the occurring instructional verbs and matched them with 
the AGs of the AKGs.

In a first matching step where only direct matches between 
lemmatized and prefix-trimmed verbs from the recipes and actions 
in our proposed ACs were considered, we found that the six 
proposed ACs cover roughly 54% of actions in the corpus. To 
extend these results, we employed cosine similarity to match all 
actions above a certain, experimentally defined threshold, bringing 
the coverage up to ∼77%. For the remaining unmatched verbs, we 
employed a neuro-symbolic approach, matching verbs to existing 
AGs or generating new action categories by employing a set 
of Large Language Models (LLMs). The complete pipeline is 
visualized in Figure 3.

The contributions of this paper are the following:

• We define the six main Action Cores for meal preparation tasks.
• We create Actionable Knowledge Graphs for the ACs.
• We perform a neuro-symbolic experiment to match verbs of 

recipe instructions with our AKGs and categorise verbs that are 
not covered by our AKGs.

The contributions are validated by letting various simulated 
robots execute multiple tasks, in different environments1. We also 
created an interactive website where users can choose a recipe and 
get the list of matched actions with their respective body motion 
parameters2. 

2 Related work

Correctly executing unknown tasks is still a major challenge 
in robotics due to the fact that tasks are often underspecified 
and assume commonsense knowledge about objects and the 
environment (Töberg et al., 2024). Previous approaches like 
the work by Forbes and Choi (2017) try to infer the implicitly 
embedded physical knowledge centred around actions and their 
participating objects. However, for the execution of unknown meal 
preparation tasks, physical implications focused on size or weight 
are not conclusive enough to empower robots.

For meal preparation tasks, recipes usually offer preparation 
instructions, which are structured task sequences written in natural 
language. To support robotic execution as well as general learning 
tasks, previous work has focused on analysing different aspects of 
recipes. For example, Yasukawa and Scholer (2017) focus on the 
concurrency of dish titles and ingredients whereas the work by 
Nyga and Beetz (2012) analyses actions and their frequency in a 

1 The experiment is openly available online: https://vib.ai.uni-bremen.de/

page/labs/action-cores/

2 Test the idea online: https://vib.ai.uni-bremen.de/page/labs/from-

recipes-to-actions/
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FIGURE 1
Motivation of this work: using Action Cores and Action Groups to parametrise generalised action plans.

FIGURE 2
Connection between action cores (AC), action groups (AG) and the manipulation plan employed by the robot.

FIGURE 3
From the recipe corpus, all included verbs are being matched against the Action Cores and Groups in three steps.
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WikiHow corpus, an approach we adopt and adapt in this work. 
Another work by Kiddon et al. (2015) focuses on mapping recipe 
instructions to action graphs describing the participating objects 
and the order of instructed actions, an important aspect that we also 
integrate in this work.

However, before a robot can successfully prepare a meal, it needs 
a proper understanding of recipes and their instructions, which is 
demonstrated by the benchmark introduced by Nevens et al. (2024). 
As a first step, the procedural text can be transformed into more 
structured representations like LTL formulae (Mavrogiannis et al., 
2024) or functional networks (Paulius et al., 2024) by, e.g., employing 
the language processing capabilities of LLMs. This preprocessing 
also allows for additional semantic annotations that can support 
the later action execution, e.g., by adding the in- and output 
objects to each step in the recipe instructions (Diallo et al., 2024). 
For the correct execution, robots can rely on symbolic planning 
(Bollini et al., 2013), functional networks combined with task trees 
(Sakib et al., 2022; Sakib and Sun, 2024), large and vision language 
models (Kanazawa et al., 2024; Paulius et al., 2024) or human 
demonstrations (Scheutz et al., 2025). In works like (Siburian et al., 
2025), the domain-specific skills relevant for food preparation are 
added on top of an integrated task and motion planning framework 
to allow the robotic agent to perform force-based tip detection or 
reinforcement learning-based slicing. While all these works have 
brought us closer to deploying kitchen robots, they usually rely on 
previously defined task knowledge and miss an important aspect in 
meal preparation: flexible translation of specific task variations into 
diverse body motions - i.e., being able to differentiate between slicing 
and dicing and how this affects body motions.

In our approach, we create action cores and groups and their 
corresponding knowledge graphs to provide the robot’s cognitive 
architecture with access to situationally relevant knowledge as a 
basis to parametrise generalised action plans. Our created action 
representation is hierarchical and similar to the hierarchical action 
taxonomy by Pereira et al. (2022), which focuses on actions 
performed by service workers in the food industry. However, their 
work envisions different machines and robots for executing the 
different actions, whereas we empower a single robot to execute all 
actions in our cores.

To also include actions not covered by our six action cores, 
we conduct an experiment with a neuro-symbolic approach for 
classification. Using a LLM to automatically categorise new entities 
into unknown classes is also proposed by Høeg and Tingelstad 
(2022). Generally, the topic of automatic sorting has been explored 
by, e.g., Guérin et al. (2018), but in most cases this problem is 
focused on objects instead of actions. We do not employ the LLMs to 
directly generate manipulation plans, since previous work has shown 
them to be ineffective for generating plans for complex cognitive 
architectures (Töberg et al., 2025). 

3 From recipes to body motions

This work is based on prior work on analysing the amount 
of different actions occurring in the WikiHow corpus (Nyga and 
Beetz, 2012), where the authors found that the top 15 action 
verbs occur in more than 50% of instructions in WikiHow recipes. 
We go a step further and hypothesize that most action verbs 

occurring in recipe instructions can actually be broken down into 
six main ACs that contain AGs. The set of 6 ACs was derived 
through an iterative, empirically grounded process. We began with 
frequency analysis in Section 3.1 of more than 21M verbs in the 
Recipe1M+ (Marín et al., 2021) corpus, as can be seen in Table 1, 
which revealed clusters of high-frequency action families (e.g., cut, 
mix, pour). The Recipe1M + dataset contains 1,028,692 recipes 
with 10,767,598 instructions collected from different sources and 
written in natural language3. Each recipe also contains an ingredient 
list and associated food images, but in this work we focus on 
analysing the verbs that occur in the preparation instructions. The 
action clusters found in the corpus suggest candidate manipulation
primitives.

Considering the action verb frequencies, we propose to classify 
them into the six main ACs of cutting, pouring, mixing, preparing, 
pick and place, cook and cool - a compact yet expressive set of 
ACs - that comprise of several AGs, which can be translated to 
motion parameters of robot action plans, as will be explained in the 
following. As mentioned above, a visual summary of these concepts 
is depicted in Figure 2. We evaluated coverage of the created ACs 
against the corpus and found that introducing six categories leads to 
a high coverage. 

3.1 Analysing action verb frequencies

The 1,028,692 recipes from Recipe1M+ were used as the 
input data for the Spacy library to assess the dependency trees 
of the given recipes’ instructions. For the analysis we used the 
pre-trained en_core_web_trf model4, which is based on the 
RoBERTa architecture (Liu et al., 2019). The overall process of 
matching the verbs of the recipes to the ACs is visualized in
Figure 4.

In a first step, the recipes and their instructions were parsed by 
extracting all words classified as verbs after part-of-speech tagging, 
resulting in 22,084,228 words. To further process these verbs, special 
characters were dropped, a spell check was applied and the verbs 
were all transformed into lowercase. The remaining verbs were 
lemmatized to bring them into their infinitive case. Additionally, we 
trim prefixes from the verbs in the corpus that only change their 
meaning in, e.g., a temporal, spatial, or negating fashion (prefixes 
such as un-, re-, pre-, post-, …). This preprocessing resulted in 
21,852,426 verbs.

At this point the database of verbs still included duplicates, 
which are not necessary for further assessment. Still, a frequency 
check at this point provides valuable insights into the most 
prominent verbs of the recipe set. In Table 1 the 20 most frequent 
verbs in the corpus are listed. The fourth column shows the 
number of times that this particular verb (after pre-processing and 
lemmatization) is included in the set of recipes. The fifth column lists 
the relative frequency of a verb in the entire corpus. The 20 most 
common verbs make up for about 47.2% of all verbs.

3 A subset of the recipe dataset in OWL format can be found here: 

https://michaelakuempel.github.io/ProductKG/Ontologies.html

4 https://spacy.io/models/en
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FIGURE 4
Flowchart that visualizes the process of preprocessing the database of recipes and of matching this body of verbs to the action groups of the 
action cores.

3.2 Action cores

Looking at Table 1, we can identify six main Action Cores that 
consist of one hypernym for general preparation actions (prepare), 
three main manipulation actions (cutting, pouring, mixing) and 
two main categories for tool and device use (pick and place, 
cool and cook):

• Preparing: Many recipes include preparation tasks to prepare 
the food objects for further handling or bringing them into 
a desired shape. Many of these tasks (e.g., peeling, kneading) 
are difficult to be performed by a robot, unless they use a 
tool/device. Hence, we created this rather broad category that 
will be focus of future work.

• Pouring: Pouring is an action with a simple motion but where 
the specific task, object properties and ingredient consistency 
heavily influence motion parameters and successful action 
execution.

• Cutting: Cutting is an action with a complex motion sequence 
and the goal of dividing an object into two or more pieces of a 
certain shape. Its execution is influenced by the specific task and 
object properties.

• Mixing: Mixing can result in a range of different motions, 
some of which require certain tools or containers. Its execution 
depends on the specific task, available objects, as well as 
ingredient consistency and temperature.

• Pick and Place: Pick and Place tasks have been a research focus. 
Here, for most tasks the focus lies more on object properties 
that influence successful grasping or specific locations where 
the object should be placed. We differentiate between pick and 
place tasks, picking tasks (e.g., “take”), and placing tasks (e.g., 
“put”).

• Cook and Cool: Heating and cooling tasks make up an 
important AC in meal preparation, but can be broken down 

into Pick and Place tasks that involve a device (e.g., placing in 
an oven/microwave) and a device interaction task (e.g., turning 
the oven/microwave on).

The verb list in Table 1 shows two unmatched verbs: “remain” 
and “make”. We hypothesise that “remain” was falsely classified as 
a verb although it was used as an adverb in the recipe instructions 
(as in “add the remaining ingredients”). The word “make” is also 
not used as an instruction leading to an action but rather as an 
auxiliary verb (i.e., “To make the filling/cake, put …“). Thus, we 
do not consider these two as action verbs that should be included 
in the ACs.

From the perspective of robotic manipulation, the 6 ACs are also 
non-overlapping. Each AC corresponds to a distinct manipulation 
primitive as detailed in Table 2. These primitives require distinct 
motor skills and parameterizations, which makes them particularly 
suitable as a structured basis for robotic execution.

3.3 Action groups

Previous work by Kümpel et al. has proposed the creation of an 
Actionable Knowledge Graph for the example use case of cutting 
fruits (Kümpel, 2024; Kümpel et al., 2024). Amongst other things, 
this AKG acquires knowledge from different sources (Beetz et al., 
2024), such as synonyms and hyponyms for “cutting” from WordNet 
(Miller, 1995), VerbNet (Schuler, 2005) and FrameNet (Baker et al., 
1998). The authors propose to group these verbs into Action Groups 
of verbs that result in similar motion parameters, and output. As a 
result, verbs like chopping, mincing and cubing are assigned to the 
“dicing” AG, which results in different motion parameters than the 
AGs of halving, slicing, or cutting.

Since the concrete instantiation of parameters is the same for all 
actions in one AG, using them to cluster similar actions can simplify 
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TABLE 1  20 most common verbs in the Recipe1M + corpus (Marín et al., 
2021). They make up for about 47.2% of all 21,852,426 found verbs.

# Verb Action core Frequency Freq. [%]

1 add mix 1572723 7.197

2 stir mix 914195 4.183

3 cook cook 827379 3.786

4 heat cook 672788 3.079

5 serve pick and place 599245 2.742

6 place pick and place 568270 2.600

7 mix mix 557993 2.553

8 cover pick and place 476680 2.181

9 bake cook 461082 2.110

10 move pick and place 460446 2.107

11 combine mix 453793 2.077

12 use pick and place 365250 1.671

13 pour pour 350040 1.601

14 cool cool 318706 1.458

15 remain - 310116 1.419

16 set pick and place 297437 1.361

17 cut cut 291629 1.335

18 make - 287965 1.318

19 turn pick and place 271807 1.244

20 sprinkle pour 260417 1.192

∑ 18/20 matched 10,317,961 47.217

the actual execution and increase the coverage of novel actions. 
This makes AGs a crucial influence factor for robots being able to 
successfully infer and differentiate the body motions for a specific 
task. Therefore, we reuse the concept of AGs and create them for our 
6 ACs. With this, the action verbs in our AKGs cover ∼54% of the 
verbs in the recipe corpus. 

3.4 Actionable knowledge graph for 
cooking actions

To make the structure of the Actionable Knowledge 
Graph (AKG) more tangible, we provide a minimal fragment 
covering three representative Action Groups: Dicing (from 
the Cutting AC), Draining (from the Pouring AC), and 
Stirring (from the Mixing AC). Table 3 lists selected 
knowledge triples in RDF style (subject–predicate–object). 

TABLE 2  Illustrative examples of verbs grouped into the 6 ACs and their 
correspondence to manipulation primitive.

Action core Sample verbs Manipulation 
primitive

Cutting cut, halve, slice, dice Partitioning an object into 
pieces of a certain shape/size

Mixing mix, stir, whisk, blend Homogenizing multiple 
ingredients into a mixture

Pouring pour, drain, sprinkle Transferring material via gravity 
or controlled flow

Pick and Place put, place, move, serve Relocating objects from one 
location to another

Cook and Cool cook, bake, boil, freeze Changing thermal state of 
ingredients using devices

Preparing peel, knead, unpack Transforming an ingredient for 
further handling

Each triple encodes either a tool association, an input/output 
relation, or a motion parameterization required for robotic
execution.

The parameters illustrated in Table 3 represent a sufficient 
and reliable basis for executing the corresponding manipulation 
actions, as they capture essential preconditions, input and 
output relations and motion constraints. At the same time, 
we emphasize that the representation is deliberately simplified: 
it abstracts away from the wide variety of possible execution 
strategies and object-specific adaptations that a human chef might 
employ. For example, dicing an orange according to the given 
specification may not lead to an optimal outcome in practice. 
However, such simplification is a necessary step toward building a 
generalizable framework, and the present goal is not to prescribe 
the one best way of performing an action but to demonstrate 
how structured parameters can enable robots to dynamically 
execute meal preparation tasks in a systematic and reproducible
manner. 

3.5 Action parameters

As an example, consider this randomly chosen recipe from the 
dataset for cooking an Apple And Almond Chutney:

 Put the almonds into a small bowl and add in sufficient boiling 
water to cover them.

Set aside for 15 min then drain and put into a blender.
Peel and core the apple and chop it roughly. Mix with the lemon 

juice and add in to the blender together with the remaining 
ingredients.

Blend till smooth.
Refrigerate for an hour.

With the defined ACs and AGs we can now translate the verbs 
of the instructions to parameters of the general action plans of the 
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TABLE 3  Excerpt of the Actionable Knowledge Graph (AKG) showing 
triples for three action groups.

Subject Predicate Object

Dicing requiresPriorTask Julienning

Dicing hasInputObject Stripe

Dicing hasResultObject 1 Cube ∧ 1 Stripe

Dicing affordsPosition SlicingPosition

Dicing repetitions n

Draining hasParticipant Seave

Broth subClassOf Food

Broth hasConsistency Liquid

PouringAngle45Degree hasInputObject Food

AND hasConsistency Liquid

PouringAngle45Degree valueQuantity min 1 ∧ max 45

Stirring affordsTrigger MixingTool

Stirring hasInputObject min 2 Food

Stirring requiresMotion OrbitalMotion

OrbitalMotion radiusLowerBoundRelative 0.7

OrbitalMotion radiusUpperBoundRelative 0.7

robot, as exemplarily explained by Beetz et al. (2024) for cutting 
actions. Extending this idea, the example recipe could thus be 
translated into the ACs and corresponding parameters shown in
Table 4.

3.6 Towards preparing any meal

By adding the action parameters of the AGs to the AKG, the 
meal preparation knowledge graph can be used to parametrise 
generalised manipulation plans, as demonstrated by Kümpel et al. 
(2024). However, as a next step towards enabling robots to 
prepare any meal, the abstract parameters incorporated in the 
knowledge graph need to be grounded in the actual instruction 
found in the recipe. In a previous approach by Kanazawa et al. 
(2024), LLMs are used to extract the concrete values for the 
available parameters from a natural language instruction. From 
the instruction bring a pot of water to a boil, the LLMs can 
successfully extract the following instantiation: boil(water, 
boiled_water). Based on the affirmative results for their 
use case, we also plan to employ a neuro-symbolic component 
for the plan parameterization for each concrete recipe to enable 
robots to perform any necessary meal preparation task in 
the future. 

TABLE 4  Example translation of verbs to action parameters.

Step Verb Action core Action parameter

1 put […] into pick and place object, destination

2 add in mixing ingredient, destination

3 cover pick and place object, destination

4 set aside pick and place object, destination

5 drain pouring object, sieve

6 put into pick and place object, destination

7 peel preparing object, tool

8 core preparing object, tool

9 chop cutting object, tool, position, 
repetitions

10 mix mixing ingredients, motion, tool

11 add in mixing ingredient, destination

12 blend mixing ingredients, tool, duration

13 refrigerate cool destination, duration

4 Handling unmatched actions

With the direct matching of action verbs in the AGs, we were 
able to match ∼54% of the verb tokens in the corpus. To improve the 
coverage, we first calculate the cosine similarity measure between 
unmatched verbs and the proposed AGs to find similar verbs. With 
this, we were able to match ∼77% of verbs in the corpus. The 
remaining, still unmatched verbs are given to LLMs to create new 
and potentially missing ACs or AGs. 

4.1 Finding similar verbs and calculating 
coverage

After analysing the corpus and creating the 6 ACs with 
their AGs in Section 3, there are still verbs remaining in the dataset 
that have no connection to our AKGs. To handle these verbs, we 
calculate the cosine similarity between each unmatched action and 
all verbs of the six different ACs to find the most similar AG.

To determine the threshold of cosine similarity above which 
unmatched verbs are matched to their most similar AG, we assessed 
how many verbs were grouped into some existing AC in absolute 
numbers in Figure 5.

Additionally, we use these resulting matchings and calculate 
how many instructions are covered in each recipe. The resulting 
amount of recipes that are covered completely, meaning every 
action occurring in the recipe is included in the AGs, can be 
examined in Figure 6.

Four important facts can be drawn from these two graphs:

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1682031
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Kümpel et al. 10.3389/frobt.2025.1682031

FIGURE 5
The line shows the total number of verb tokens from the recipe instructions that would be grouped into ACs based on a threshold for their cosine 
similarity. The dotted line marks the chosen threshold of 0.56.

FIGURE 6
The line shows the amount of recipes whose actions are covered completely when a specific cosine similarity threshold is chosen for grouping the 
verbs into the ACs. The dotted line marks the chosen threshold of 0.56.

• There is a large number of verbs that fit into the AGs 
that are included in the AKGs without any cosine similarity 
applied. 11,995,642 out of all 22,084,228 verbs (∼54.31%) were 
matched directly. At the same time, only 30,499 recipes are 
covered completely (∼2.96%). Overall, the recipes are covered 
by ∼54.74% on average.

• At a cosine similarity threshold of 0.01, there are still 583 
verbs ungrouped. This amounts to 89 different verb tokens 
(1.65{%} of all different verb tokens) and 544 recipes that are 
not completely covered (0.053{%} of all recipes).

• The number of verbs that are grouped to one of the ACs is 
rising at an applied cosine similarity threshold of 0.56. This 
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FIGURE 7
The number of verb tokens that found a direct match in the ACs and the number of verbs that were added to the ACs by allowing a minimum cosine 
similarity of 0.56. “P and P″ stands for “Pick and Place”.

indicates that the initially chosen clusters have a high distance 
to the remaining unmatched verbs.

• Down to a cosine-similarity threshold of 0.64 there is a 
relatively small rise in grouped verbs and completely covered 
recipes. This indicates that the proposed AGs in the ACs are 
already covering their respective domain well. If there would 
be verbs of significant quantity in the corpus that are not 
included in the ACs but relevant to the domains, there is a 
high likelihood that they would have been included with a high 
cosine similarity.

This analysis led us to set the threshold to 0.56. Thereby, 632 
distinguished verbs were grouped into one of the 6 ACs and the 
instructions found in each recipe are covered by 76.51%. We also 
cover 96,526 recipes completely (9.38%).

In Figure 7 the results of matching the verbs from the corpus 
into the ACs is shown. Moreover, the bars show how many verbs 
were additionally added to the various ACs by allowing a verb with 
a minimum cosine similarity of 0.56 to be added to the ACs. What 
can also be assessed in Figure 7 is the relevance of the different ACs 
for meal preparation tasks. From the considered ACs, Cutting has 
the lowest presence in the dataset whilst Mixing actions have the 
highest count.

4.2 Using Large Language Models to 
handle further verbs

After matching using the cosine similarity, there are still 4,762 
distinguished unmatched verbs that make up roughly 23% of verbs 
found in the whole recipe corpus. We now want to investigate 
whether generative LLMs are a suitable source for matching the 

remaining verbs or coming up with new and currently missing ACs. 
Since an extensive experiment is beyond the scope of our research, 
we perform a small feasibility study to investigate the general 
capabilities and assess whether more research in this direction is 
advisable. To perform this study, we focus only on a small subset 
of the remaining unmatched verbs. For this subset we choose the 
30 unmatched actions with the most occurrences in the corpus and 
manually filter them according to two conditions. We exclude:

• Auxiliary verbs (e.g., make, do, have, let)
• Abstract verbs that do not describe physical actions (e.g., 

remain, need, desire, enjoy)

After this exclusion, 15 words remain for this pre-study, which 
we manually mapped to the existing ACs or chose to create a new AC 
for. These 15 words with their manual mapping are the gold standard 
for our comparison.

To perform this pre-study, we query OpenAI’s GPT-3.5
and GPT-4o models (OpenAI, 2023), Claude (Anthropic, 
2024), Llama 3.3 (Grattafiori et al., 2024) and Gemma 2 
(Gemma Team et al., 2024) five times via their respective API 
using the prompt in Figure 8. For all five runs of the models, the 
temperature is set to zero to create results that are as deterministic 
as possible.

In our created gold standard, only a single new core was 
created for the action repeat. Of the five models we prompted, only
Claude and GPT-4o were able to also propose a similar new 
core. Of the remaining models, both Llama 3.3 and Gemma 2
showed limited creativity by answering Nothing to our matching 
request, actively working against the request made in the prompt of 
“creating a minimal amount of new cores, if no logical match can 
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FIGURE 8
The prompt given to the LLMs for matching 15 of the remaining unmatched actions to the existing cores or creating new cores, if no suitable 
match is found.

be made” (see Figure 8). This answer was given by Gemma 2 also 
for two other actions (wrap and store), which were both matched 
effortlessly by the other four models. GPT-3.5 did not propose any 
new cores but tried to match all 15 verbs to the six existing cores. 
This restrictiveness is in contrast to Claude, which proposed an 
additional new core (Coating) to which it mapped six out of the 15 
verbs, and Llama 3.3, which, similar to Claude, proposed the 
novel action core Spreading, to which four actions were matched. 
Apart from the three actions being unmatched, Gemma 2 does not 
propose any new cores and GPT-4o does not propose any other 
cores than the one expected in the gold standard.

Regarding the performance for actually matching the remaining 
14 actions to one of the six action cores, the models again 
vary in their results and in the amount of correct matches. A 
possible misunderstanding regarding the scope and differentiation 
of the Pouring and Preparing action cores is indicated by the 
pattern of mismatched actions observed in Gemma 2, GPT-3.5
and GPT-4o, where multiple actions correctly associated with 
Pouring are mismatched to Preparing. For Claude, apart from 
the aforementioned mismatches due to the newly proposed action 
core, only a single mismatch occurs and for Llama 3.3, there 
is no distinctive pattern in the three mismatches that occur. If we 
take quantitative measures like the F1-score into account, GPT-3.5
slightly outperforms the other models (F1 = 0.82), directly followed 
by GPT-4o (F1 = 0.78). Claude and Llama 3.3 perform on a 
similar level (F1 = 0.67), with Gemma 2 performing worst of all five 
models (F1 = 0.60).

From this small feasibility study on LLM-based action matching, 
we hypothesise that many of the remaining unmatched actions 
could, based on their motion-based parameterization, be either 
mapped into our ACs directly or be decomposed into a combination 
of the action primitives described by our ACs. Investigating this 
hypothesis further through a more extensive experimentation is part 
of our future work. 

5 Plan parameterization as a core 
mechanism in adaptive robotics

Plan parameterization plays a key role in enabling robots to 
adjust their behaviour dynamically. Traditional systems rely on 
fixed instructions, limiting flexibility. In contrast, our method 
leverages queries to AKGs to refine task execution in real time. This 

allows the robot to adapt to varying conditions without requiring 
constant human intervention, supporting more flexible and efficient 
automation.

To bridge theory and practice, we have developed an interactive 
website featuring an experiment section with two main features: 1) 
inferring action parameters for a chosen recipe and 2) simulating 
adaptive action execution of different meal preparation actions. 

5.1 Action parameterization

This section presents how plan parameterization supports 
adaptive behaviour in robotic systems, enabling robots to 
dynamically translate abstract actions into executable motion 
plans. The proposed AKGs and ACs have been implemented in 
a streamlined pipeline. Once the pipeline is executed, the resulting 
graph provides a ready-to-use knowledge base for robotic meal 
preparation. This can be tested on our website5, where a user 
can choose a recipe (out of the Recipe1M + dataset) and explore 
its structured representation to then get 1) a link to the recipe 
website, 2) natural language recipe preparation instructions, 3) 
matched action verbs and 4) associated action parameters, if 
available. The entire process is fully automatic and needs neither 
human intervention nor does it rely on LLMs but solely queries the 
implemented AKGs. 

5.2 Adaptive action execution

A second interface6 allows users to test the robot’s action 
execution through a simulated environment. The robot processes the 
selected actions - such as cutting, pouring, or mixing - by retrieving 
the necessary motion parameters from the AKG, showcasing the 
direct application of our framework.

The website enables transparent experimentation by allowing 
users to observe how high-level recipe instructions are transformed 
into robot-executable commands. This hands-on approach 

5 The action parameterization website can be accessed here: https://

vib.ai.uni-bremen.de/page/labs/from-recipes-to-actions/

6 The robot simulation for adaptive action execution is available at https://

vib.ai.uni-bremen.de/page/labs/action-cores/
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FIGURE 9
The PR2 robot demonstrates cutting techniques on various fruits: (a) cutting, (b) slicing, (c) halving an avocado, slicing (d) a cucumber, (e) a banana or
(f) a lemon. The black lines represent motion trajectories.

highlights the adaptability of our system, which no longer requires 
executing the full pipeline for each task; once the graph is generated, 
it can be reused for various recipes and their corresponding actions.

Through this setup, we validate the flexibility and practicality 
of our approach: the robot dynamically adjusts its execution plans, 
grounded in the AKG’s structured knowledge, while providing a 
user-accessible tool for both research and educational purposes.

Figure 9 demonstrates the robot’s proficiency in adjusting its 
execution plan for tasks like halving and slicing without prior 
knowledge of the objects, relying solely on information retrieved 
from the AKG during execution. The cutting scenario can be tested 
with all verbs available in the ACs, and on a range of objects, as 
also detailed in (Kümpel et al., 2024). Our findings underline the 
robot’s adaptability across a range of scenarios, setting a foundation 
for further advancements. Additionally, our entire setup is available 
online and accessible to individuals7.

This example serves as a starting point for examining 
more complex capabilities. By isolating the key process of plan 
parameterization, we set the stage for a deeper exploration of the 
system’s computational architecture, especially by investigating 
the uncertainties in perception and execution that we abstracted 
away from. This structured approach underscores the importance 
of plan parameterization in creating adaptable robotics while 
connecting the concept to broader advancements in system design 
and decision-making. 

5.3 Limitations

While the experiments demonstrate that the proposed 
Actionable Knowledge Graphs provide sufficient parameters for 
executing diverse cooking actions, several limitations remain. 
First, the current parameterization is deliberately simplified, which 
enables systematic robot execution but may not capture the full 
variability of human cooking strategies or yield the most efficient 
motions in every context. Second, the approach relies on robust 
perception and environment representations, yet real kitchen 
scenarios often involve uncertainty, occlusion, and noisy object 
recognition. Third, although the method covers approximately 

7 The hands-on code is available at https://vib.ai.uni-bremen.de/page/

labs/actionable-knowledge-graph-laboratory/

77% of verbs in the corpus, a notable portion of less frequent or 
complex actions remains unmatched, requiring further work on 
expanding and refining the AGs. Finally, the validation is limited 
to simulated execution and selected robot demonstrations; more 
extensive physical experiments are needed to assess robustness in 
real-world kitchen environments.

Beyond these methodological issues, several practical 
limitations also remain. The current AGs do not model actions 
in relations to cooking processes, nor their prioritisation—e.g., 
whether waiting for a cake to bake should take precedence over 
performing a new action—are not yet represented in the AKGs. 
Addressing such autonomy concerns will be crucial for bridging the 
gap between experimental validation and real-life deployment, as 
well as going from execution of single actions to meal preparation. 
These limitations do not undermine the value of our approach as 
a conceptual and technical proof of concept but rather point to 
future research directions: testing the framework in long-horizon, 
open-ended meal preparation scenarios with real robots. 

6 Conclusion

Towards the goal of empowering robots to successfully prepare 
varying meals, in this paper we introduce six Action Cores that 
were identified as central manipulation action categories in the 
analysed recipe corpus. For each AC we include Action Groups 
that summarise all actions that result in similar motion parameters 
and similar manipulation outputs. We match the action verbs 
found in the Recipe1M + corpus to our ACs and AGs in two 
steps: First, we match them directly, covering ∼54% of all verbs. 
Afterwards, we match the remaining verbs using cosine similarity 
and an experimentally defined threshold, leading to a coverage of 
∼77%.For the remaining verbs, we query LLMs to match the verbs 
or provide us with additional ACs that possibly cover the missing 
verbs, but a brief analysis shows that the newly proposed cores are 
already incorporated by our proposed cores, underlining their great 
coverage for meal preparation tasks.

The presented approach is limited mostly by the initial choice 
of action cores as well as their associated action groups. As 
explained throughout this paper, we use our analysis to underline 
the relevance of the created ACs and AGs, but a slight change 
in this initial setup would hinder the repeatability of the direct
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matching, the similarity-based matching as well as the neuro-
symbolic experiment. Additionally, the proposed approach focuses 
on the task of matching verbs to the ACs for incorporation into 
the knowledge graph. However, the matching alone is no guarantee 
for a successful execution, as the knowledge needs to be correctly 
grounded in the action-perception-loop of the robot, an aspect we 
want to investigate in future work.

In the future, we want to take the next step towards robots 
automatically preparing any meal they encounter by including 
a neuro-symbolic component that extracts the natural language 
parameters from the actual recipe text to create the concrete 
parameterization of each action, as we explained in Section 3.6. 
Additionally, we want to perform more robotic experiments to 
investigate the adaptability of the proposed approach as well as the 
practicability of the ACs. Lastly, we need to investigate further how 
the remaining unmatched words can be handled and whether they 
can be, e.g., automatically decomposed into sequences of existing 
ACs or AGs, as hypothesised in Section 4.2.
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