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Everything robots need to know
about cooking actions: creating
actionable knowledge graphs to
support robotic meal preparation

Michaela Kimpel'*, Manuel Scheibl?, Jan-Philipp Téberg?,
Vanessa Hassouna®, Philipp Cimiano?, Britta Wrede?* and
Michael Beetz!

!Institute for Artificial Intelligence, Bremen University, Bremen, Germany, °Medical Assistance Systems
Group, Medical School OWL, Bielefeld University, Bielefeld, Germany, *Center for Cognitive
Interaction Technology, Bielefeld University, Bielefeld, Germany

This paper addresses the challenge of enabling robots to autonomously
prepare meals by bridging natural language recipe instructions and robotic
action execution. We propose a novel methodology leveraging Actionable
Knowledge Graphs to map recipe instructions into six core categories of robotic
manipulation tasks, termed Action Cores cutting, pouring, mixing, preparing,
pick and place, and cook and cool. Each AC is subdivided into Action Groups
which represent a specific motion parameterization required for task execution.
Using the RecipelM + dataset (Marin et al., IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021, 43, 187-203), encompassing over one million
recipes, we systematically analysed action verbs and matched them to ACs
by using direct matching and cosine similarity, achieving a coverage of 76.5%.
For the unmatched verbs, we employ a neuro-symbolic approach, matching
verbs to existing AGs or generating new action cores utilizing a Large Language
Model Our findings highlight the versatility of AKGs in adapting general plans to
specific robotic tasks, validated through an experimental application in a meal
preparation scenario. This work sets a foundation for adaptive robotic systems
capable of performing a wide array of complex culinary tasks with minimal
human intervention.

KEYWORDS

robot manipulation, knowledge graph, recipe analysis, meal preparation, large language
models

1 Introduction

Robots (still) do not prepare our daily dishes, since the manipulation skills involved in
meal preparation actions are very complex. Even if we consider only a single action category
like cutting, we have to account for many factors that influence the execution and the desired
goal state, such as object properties (e.g., the existence of a peel), task variations (such
as halving or slicing) and their influence on motion parameters, as well as the situational
context (e.g., the available tools).

To successfully compute the body motions needed to execute different recipe
instructions, robots need knowledge. This work addresses the question how we can build
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knowledge bases for meal preparation actions that robots can use to
translate the contained information into body motion parameters.

While recent research has focused on translating natural
language instructions to parameters for pick and place tasks
(see Ahn et al., 2023; Rana et al., 2023), preparation of recipes
requires more knowledge than grounded environment information.
Recipes contain:

1. Commonsense knowledge such as that a cup sometimes is used
as a container but sometimes as a measurement unit

. Environment and physics knowledge such as what objects can
be used for the task and that a filled cup should be held upright

. Action and manipulation knowledge such as how a task is
broken down into motor primitives but also that hot content
might burn your finger/gripper, so a hot cup should be held by
its handle

Thus, accomplishing complex manipulation tasks for the
preparation of recipes can be stated as a reasoning problem: Given
a list of vague task requests such as “Set aside for 15 min, then drain
and put into a blender”, infer the objects to use based on the text and
the current scene graph of the environment, as well as the necessary
body motions to achieve the desired result while avoiding unwanted
side effects. The main question is: How can we build knowledge bases
that represent this knowledge in a machine-understandable way?

Kiimpel (2024) proposes a methodology to create Actionable
Knowledge Graphs as knowledge bases that robots can use for action
execution. An Actionable Knowledge Graph (AKG) connects object
information to environment information and action information for
an embodiment of knowledge (Kiimpel, 2025). AKGs provide action
parameters for different Action Groups (AGs) of an action category,
which can be used in general action plans (Hassouna et al., 2024)
for the execution of task variations such as for performing slicing,
dicing and halving derived from a general action plan for cutting
(Kampel et al., 2024; Beetz et al.,, 2024). Hence, AGs provide agents
with knowledge about how a particular activity shall be performed in
a specific context, along with the awareness about objects involved in
these actions as well as the properties that influence task execution.
For the example use case of cutting fruits, such an AKG has been
used by a robot to infer the necessary body motions for a range of
cutting tasks on different objects, from slicing a cucumber to halving
an apple (Beetz et al., 2024; Kiimpel and Toberg, 2024).

Still, in order for a robot to prepare any recipe given the
enormous - and possibly open ended - amount of recipes, the
question has to be asked if it is possible to derive such AKGs for all
recipes. We divide this question into the following sub-questions:

1. How many action verbs, and corresponding groups, occur in
recipes?
2. How do we structure AKGs to cover these verbs and groups?

This paper answers these questions by using Action Cores
(ACs) (an AC is a main manipulation capability like cutting that
can be translated to a general action plan), Action Groups (AGs)
(an AC consists of several more specific AGs that use a similar
manipulation plan and thus result in similar body movements and
outputs, e.g., the AC of cutting consists of the AGs dicing, slicing,
etc.) as well as an Actionable Knowledge Graph, that contains task,
object and environment knowledge and enables robots to infer the
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body motions needed to prepare any given recipe. We visualize the
connection between these concepts in Figure 1 and in Figure 2.

We hypothesize that recipes consist of six main ACs that can
be broken down into several AGs, as visualized in Figure 1. To test
this hypothesis, we created AKGs for these six main ACs, analysed
the RecipelM + corpus (Marin et al., 2021) consisting of 1,028,692
recipes for the occurring instructional verbs and matched them with
the AGs of the AKGs.

In a first matching step where only direct matches between
lemmatized and prefix-trimmed verbs from the recipes and actions
in our proposed ACs were considered, we found that the six
proposed ACs cover roughly 54% of actions in the corpus. To
extend these results, we employed cosine similarity to match all
actions above a certain, experimentally defined threshold, bringing
the coverage up to ~77%. For the remaining unmatched verbs, we
employed a neuro-symbolic approach, matching verbs to existing
AGs or generating new action categories by employing a set
of Large Language Models (LLMs). The complete pipeline is
visualized in Figure 3.

The contributions of this paper are the following:

o We define the six main Action Cores for meal preparation tasks.

o We create Actionable Knowledge Graphs for the ACs.

o We perform a neuro-symbolic experiment to match verbs of
recipe instructions with our AKGs and categorise verbs that are
not covered by our AKGs.

The contributions are validated by letting various simulated
robots execute multiple tasks, in different environments'. We also
created an interactive website where users can choose a recipe and
get the list of matched actions with their respective body motion
parametersz.

2 Related work

Correctly executing unknown tasks is still a major challenge
in robotics due to the fact that tasks are often underspecified
and assume commonsense knowledge about objects and the
environment (Toberg et al., 2024). Previous approaches like
the work by Forbes and Choi (2017) try to infer the implicitly
embedded physical knowledge centred around actions and their
participating objects. However, for the execution of unknown meal
preparation tasks, physical implications focused on size or weight
are not conclusive enough to empower robots.

For meal preparation tasks, recipes usually offer preparation
instructions, which are structured task sequences written in natural
language. To support robotic execution as well as general learning
tasks, previous work has focused on analysing different aspects of
recipes. For example, Yasukawa and Scholer (2017) focus on the
concurrency of dish titles and ingredients whereas the work by
Nyga and Beetz (2012) analyses actions and their frequency in a

1 The experiment is openly available online: https://vib.ai.uni-bremen.de/
page/labs/action-cores/
Test the

idea online: https://vib.ai.uni-bremen.de/page/labs/from-

recipes-to-actions/
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FIGURE 1
Motivation of this work: using Action Cores and Action Groups to parametrise generalised action plans.
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FIGURE 2

Connection between action cores (AC), action groups (AG) and the manipulation plan employed by the robot.
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FIGURE 3

From the recipe corpus, all included verbs are being matched against the Action Cores and Groups in three steps.
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WikiHow corpus, an approach we adopt and adapt in this work.
Another work by Kiddon et al. (2015) focuses on mapping recipe
instructions to action graphs describing the participating objects
and the order of instructed actions, an important aspect that we also
integrate in this work.

However, before a robot can successfully prepare a meal, it needs
a proper understanding of recipes and their instructions, which is
demonstrated by the benchmark introduced by Nevens et al. (2024).
As a first step, the procedural text can be transformed into more
structured representations like LTL formulae (Mavrogiannis et al.,
2024) or functional networks (Paulius et al., 2024) by, e.g., employing
the language processing capabilities of LLMs. This preprocessing
also allows for additional semantic annotations that can support
the later action execution, e.g., by adding the in- and output
objects to each step in the recipe instructions (Diallo et al., 2024).
For the correct execution, robots can rely on symbolic planning
(Bollini et al., 2013), functional networks combined with task trees
(Sakib et al., 2022; Sakib and Sun, 2024), large and vision language
models (Kanazawa et al., 2024; Paulius et al., 2024) or human
demonstrations (Scheutz et al., 2025). In works like (Siburian et al.,
2025), the domain-specific skills relevant for food preparation are
added on top of an integrated task and motion planning framework
to allow the robotic agent to perform force-based tip detection or
reinforcement learning-based slicing. While all these works have
brought us closer to deploying kitchen robots, they usually rely on
previously defined task knowledge and miss an important aspect in
meal preparation: flexible translation of specific task variations into
diverse body motions - i.e., being able to differentiate between slicing
and dicing and how this affects body motions.

In our approach, we create action cores and groups and their
corresponding knowledge graphs to provide the robot’s cognitive
architecture with access to situationally relevant knowledge as a
basis to parametrise generalised action plans. Our created action
representation is hierarchical and similar to the hierarchical action
taxonomy by Pereira et al. (2022), which focuses on actions
performed by service workers in the food industry. However, their
work envisions different machines and robots for executing the
different actions, whereas we empower a single robot to execute all
actions in our cores.

To also include actions not covered by our six action cores,
we conduct an experiment with a neuro-symbolic approach for
classification. Using a LLM to automatically categorise new entities
into unknown classes is also proposed by Hoeg and Tingelstad
(2022). Generally, the topic of automatic sorting has been explored
by, e.g., Guérin et al. (2018), but in most cases this problem is
focused on objects instead of actions. We do not employ the LLMs to
directly generate manipulation plans, since previous work has shown
them to be ineffective for generating plans for complex cognitive
architectures (Toberg et al., 2025).

3 From recipes to body motions

This work is based on prior work on analysing the amount
of different actions occurring in the WikiHow corpus (Nyga and
Beetz, 2012), where the authors found that the top 15 action
verbs occur in more than 50% of instructions in WikiHow recipes.
We go a step further and hypothesize that most action verbs
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occurring in recipe instructions can actually be broken down into
six main ACs that contain AGs. The set of 6 ACs was derived
through an iterative, empirically grounded process. We began with
frequency analysis in Section 3.1 of more than 21M verbs in the
RecipelM+ (Marin et al., 2021) corpus, as can be seen in Table 1,
which revealed clusters of high-frequency action families (e.g., cut,
mix, pour). The RecipelM + dataset contains 1,028,692 recipes
with 10,767,598 instructions collected from different sources and
written in natural language®. Each recipe also contains an ingredient
list and associated food images, but in this work we focus on
analysing the verbs that occur in the preparation instructions. The
action clusters found in the corpus suggest candidate manipulation
primitives.

Considering the action verb frequencies, we propose to classify
them into the six main ACs of cutting, pouring, mixing, preparing,
pick and place, cook and cool - a compact yet expressive set of
ACs - that comprise of several AGs, which can be translated to
motion parameters of robot action plans, as will be explained in the
following. As mentioned above, a visual summary of these concepts
is depicted in Figure 2. We evaluated coverage of the created ACs
against the corpus and found that introducing six categories leads to
a high coverage.

3.1 Analysing action verb frequencies

The 1,028,692 recipes from RecipelM+ were used as the
input data for the Spacy library to assess the dependency trees
of the given recipes’ instructions. For the analysis we used the
pre-trained en_core_web_trf model*, which is based on the
RoBERTa architecture (Liu et al., 2019). The overall process of
matching the verbs of the recipes to the ACs is visualized in
Figure 4.

In a first step, the recipes and their instructions were parsed by
extracting all words classified as verbs after part-of-speech tagging,
resulting in 22,084,228 words. To further process these verbs, special
characters were dropped, a spell check was applied and the verbs
were all transformed into lowercase. The remaining verbs were
lemmatized to bring them into their infinitive case. Additionally, we
trim prefixes from the verbs in the corpus that only change their
meaning in, e.g., a temporal, spatial, or negating fashion (prefixes
such as un-, re-, pre-, post-, ...). This preprocessing resulted in
21,852,426 verbs.

At this point the database of verbs still included duplicates,
which are not necessary for further assessment. Still, a frequency
check at this point provides valuable insights into the most
prominent verbs of the recipe set. In Table 1 the 20 most frequent
verbs in the corpus are listed. The fourth column shows the
number of times that this particular verb (after pre-processing and
lemmatization) is included in the set of recipes. The fifth column lists
the relative frequency of a verb in the entire corpus. The 20 most
common verbs make up for about 47.2% of all verbs.

3 A subset of the recipe dataset in OWL format can be found here:
https://michaelakuempel.github.io/ProductKG/Ontologies.html
4 https://spacy.io/models/en
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FIGURE 4

Flowchart that visualizes the process of preprocessing the database of recipes and of matching this body of verbs to the action groups of the

action cores.

3.2 Action cores

Looking at Table 1, we can identify six main Action Cores that
consist of one hypernym for general preparation actions (prepare),
three main manipulation actions (cutting, pouring, mixing) and
two main categories for tool and device use (pick and place,
cool and cook):

 Preparing: Many recipes include preparation tasks to prepare
the food objects for further handling or bringing them into
a desired shape. Many of these tasks (e.g., peeling, kneading)
are difficult to be performed by a robot, unless they use a
tool/device. Hence, we created this rather broad category that
will be focus of future work.

« Pouring: Pouring is an action with a simple motion but where
the specific task, object properties and ingredient consistency
heavily influence motion parameters and successful action
execution.

« Cutting: Cutting is an action with a complex motion sequence
and the goal of dividing an object into two or more pieces of a
certain shape. Its execution is influenced by the specific task and
object properties.

o Mixing: Mixing can result in a range of different motions,
some of which require certain tools or containers. Its execution
depends on the specific task, available objects, as well as
ingredient consistency and temperature.

o Pick and Place: Pick and Place tasks have been a research focus.
Here, for most tasks the focus lies more on object properties
that influence successful grasping or specific locations where
the object should be placed. We differentiate between pick and
place tasks, picking tasks (e.g., “take”), and placing tasks (e.g.,
“put”).

e Cook and Cool: Heating and cooling tasks make up an
important AC in meal preparation, but can be broken down
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into Pick and Place tasks that involve a device (e.g., placing in
an oven/microwave) and a device interaction task (e.g., turning
the oven/microwave on).

The verb list in Table 1 shows two unmatched verbs: “remain”
and “make”. We hypothesise that “remain” was falsely classified as
a verb although it was used as an adverb in the recipe instructions
(as in “add the remaining ingredients”). The word “make” is also
not used as an instruction leading to an action but rather as an
auxiliary verb (i.e., “To make the filling/cake, put ...“). Thus, we
do not consider these two as action verbs that should be included
in the ACs.

From the perspective of robotic manipulation, the 6 ACs are also
non-overlapping. Each AC corresponds to a distinct manipulation
primitive as detailed in Table 2. These primitives require distinct
motor skills and parameterizations, which makes them particularly
suitable as a structured basis for robotic execution.

3.3 Action groups

Previous work by Kiimpel et al. has proposed the creation of an
Actionable Knowledge Graph for the example use case of cutting
fruits (Kiimpel, 2024; Kimpel et al., 2024). Amongst other things,
this AKG acquires knowledge from different sources (Beetz et al.,
2024), such as synonyms and hyponyms for “cutting” from WordNet
(Miller, 1995), VerbNet (Schuler, 2005) and FrameNet (Baker et al.,
1998). The authors propose to group these verbs into Action Groups
of verbs that result in similar motion parameters, and output. As a
result, verbs like chopping, mincing and cubing are assigned to the
“dicing” AG, which results in different motion parameters than the
AGs of halving, slicing, or cutting.

Since the concrete instantiation of parameters is the same for all
actions in one AG, using them to cluster similar actions can simplify

frontiersin.org
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TABLE 1 20 most common verbs in the RecipelM + corpus (Marin et al.,
2021). They make up for about 47.2% of all 21,852,426 found verbs.

10.3389/frobt.2025.1682031

TABLE 2 Illustrative examples of verbs grouped into the 6 ACs and their
correspondence to manipulation primitive.

# Verb Action core Frequency  Freq. [%] Action core | Sample verbs Manipulation
N primitive
1 add mix 1572723 7.197
Cutting cut, halve, slice, dice Partitioning an object into
2 stir mix 914195 4.183 pieces of a certain shape/size
3 cook cook 827379 3.786 Mixing mix, stir, whisk, blend Homogenizing multiple
ingredients into a mixture
4 heat cook 672788 3.079
Pouring pour, drain, sprinkle Transferring material via gravity
5 serve pick and place 599245 2.742 or controlled flow
6 place pick and place 568270 2.600 Pick and Place put, place, move, serve | Relocating objects from one
location to another
7 mix mix 557993 2.553
Cook and Cool cook, bake, boil, freeze | Changing thermal state of
8 cover pick and place 476680 2.181 ingredients using devices
9 bake cook 461082 2110 Preparing peel, knead, unpack Transforming an ingredient for
further handling
10 move pick and place 460446 2.107
11 combine mix 453793 2.077
12 use pick and place 365250 1.671 Each triple encodes either a tool association, an input/output
relation, or a motion parameterization required for robotic
13 pour pour 350040 1.601 execution.
14 ool ool 318706 1438 The parameters illustrated in Table 3 represent a sufficient
and reliable basis for executing the corresponding manipulation
15 remain - 310116 1.419 actions, as they capture essential preconditions, input and
output relations and motion constraints. At the same time,
16 t ick and pl 297437 1.361 . S . L
5 pickcand place we emphasize that the representation is deliberately simplified:
17 cut cut 291629 1335 it abstracts away from the wide variety of possible execution
strategies and object-specific adaptations that a human chef might
18 make - 287965 1.318 employ. For example, dicing an orange according to the given
specification may not lead to an optimal outcome in practice.
19 turn pick and place 271807 1.244 . . L 1
However, such simplification is a necessary step toward building a
20 | sprinkle pour 260417 1192 generalizable framework, and the present goal is not to prescribe
the one best way of performing an action but to demonstrate
X 18/20 matched 10,317,961 47.217 how structured parameters can enable robots to dynamically

the actual execution and increase the coverage of novel actions.
This makes AGs a crucial influence factor for robots being able to
successfully infer and differentiate the body motions for a specific
task. Therefore, we reuse the concept of AGs and create them for our
6 ACs. With this, the action verbs in our AKGs cover ~54% of the
verbs in the recipe corpus.

3.4 Actionable knowledge graph for
cooking actions

To make the structure of the Actionable Knowledge
Graph (AKG) more tangible, we provide a minimal fragment
covering three representative Action Groups: Dicing (from
the Cutting AC), Draining (from the Pouring AC), and
(from the Mixing AC). Table3 lists
in RDF style (subject-predicate-object).

Stirring selected

knowledge triples

Frontiers in Robotics and Al

execute meal preparation tasks in a systematic and reproducible
manner.

3.5 Action parameters

As an example, consider this randomly chosen recipe from the
dataset for cooking an Apple And Almond Chutney:

Put the almonds into a small bowl and add in sufficient boiling
water to cover them.

Set aside for 15 min then drain and put into a blender.

Peel and core the apple and chop it roughly. Mix with the lemon
juice and add in to the blender together with the remaining
ingredients.

Blend till smooth.

Refrigerate for an hour.

With the defined ACs and AGs we can now translate the verbs
of the instructions to parameters of the general action plans of the

frontiersin.org
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TABLE 3 Excerpt of the Actionable Knowledge Graph (AKG) showing
triples for three action groups.

10.3389/frobt.2025.1682031

TABLE 4 Example translation of verbs to action parameters.

] ] ] Step | Verb Action core  Action parameter

Subject Predicate Object

1 put[...]into | pick and place object, destination
Dicing requiresPriorTask Julienning

2 add in mixing ingredient, destination
Dicing hasInputObject Stripe

3 cover pick and place object, destination
Dicing hasResultObject 1 Cube A 1 Stripe

4 set aside pick and place object, destination
Dicing affordsPosition SlicingPosition

5 drain pouring object, sieve
Dicing repetitions n

6 put into pick and place object, destination
Draining hasParticipant Seave

7 peel preparing object, tool
Broth subClassOf Food

8 core preparing object, tool
Broth hasConsistency Liquid

9 chop cutting object, tool, position,
PouringAngle45Degree hasInputObject Food repetitions
AND hasConsistency Liquid 10 mix mixing ingredients, motion, tool
PouringAngle45Degree valueQuantity min 1 A max 45 11 add in mixing ingredient, destination
Stirring affordsTrigger MixingTool 12 blend mixing ingredients, tool, duration
Stirring hasInputObject min 2 Food 13 refrigerate cool destination, duration
Stirring requiresMotion OrbitalMotion
OrbitalMotion radiusLowerBoundRelative 0.7
OrbitalMotion radiusUpperBoundRelative 0.7 4 H an d l n g unma t c h e d a Ct Ions

robot, as exemplarily explained by Beetz et al. (2024) for cutting
actions. Extending this idea, the example recipe could thus be
translated into the ACs and corresponding parameters shown in
Table 4.

3.6 Towards preparing any meal

By adding the action parameters of the AGs to the AKG, the
meal preparation knowledge graph can be used to parametrise
generalised manipulation plans, as demonstrated by Kiimpel et al.
(2024). However, as a next step towards enabling robots to
prepare any meal, the abstract parameters incorporated in the
knowledge graph need to be grounded in the actual instruction
found in the recipe. In a previous approach by Kanazawa et al.
(2024), LLMs are used to extract the concrete values for the
available parameters from a natural language instruction. From
the instruction bring a pot of water to a boil, the LLMs can
successfully extract the following instantiation: boil (water,
boiled_water). Based on the affirmative results for their
use case, we also plan to employ a neuro-symbolic component
for the plan parameterization for each concrete recipe to enable
robots to perform any necessary meal preparation task in
the future.
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With the direct matching of action verbs in the AGs, we were
able to match ~54% of the verb tokens in the corpus. To improve the
coverage, we first calculate the cosine similarity measure between
unmatched verbs and the proposed AGs to find similar verbs. With
this, we were able to match ~77% of verbs in the corpus. The
remaining, still unmatched verbs are given to LLMs to create new
and potentially missing ACs or AGs.

4.1 Finding similar verbs and calculating
coverage

After analysing the corpus and creating the 6 ACs with
their AGs in Section 3, there are still verbs remaining in the dataset
that have no connection to our AKGs. To handle these verbs, we
calculate the cosine similarity between each unmatched action and
all verbs of the six different ACs to find the most similar AG.

To determine the threshold of cosine similarity above which
unmatched verbs are matched to their most similar AG, we assessed
how many verbs were grouped into some existing AC in absolute
numbers in Figure 5.

Additionally, we use these resulting matchings and calculate
how many instructions are covered in each recipe. The resulting
amount of recipes that are covered completely, meaning every
action occurring in the recipe is included in the AGs, can be
examined in Figure 6.

Four important facts can be drawn from these two graphs:
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FIGURE 5
The line shows the total number of verb tokens from the recipe instructions that would be grouped into ACs based on a threshold for their cosine
similarity. The dotted line marks the chosen threshold of 0.56.
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FIGURE 6
The line shows the amount of recipes whose actions are covered completely when a specific cosine similarity threshold is chosen for grouping the
verbs into the ACs. The dotted line marks the chosen threshold of 0.56.

o There is a large number of verbs that fit into the AGs o At a cosine similarity threshold of ©.01, there are still 583
that are included in the AKGs without any cosine similarity verbs ungrouped. This amounts to 89 different verb tokens
applied. 11,995,642 out of all 22,084,228 verbs (~54.31%) were (1.65{%} of all different verb tokens) and 544 recipes that are
matched directly. At the same time, only 30,499 recipes are not completely covered (0 .053{%} of all recipes).
covered completely (~2.96%). Overall, the recipes are covered o The number of verbs that are grouped to one of the ACs is
by ~54.74% on average. rising at an applied cosine similarity threshold of @ . 56. This
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FIGURE 7
The number of verb tokens that found a direct match in the ACs and the number of verbs that were added to the ACs by allowing a minimum cosine
similarity of 0.56. “P and P" stands for “"Pick and Place".

indicates that the initially chosen clusters have a high distance
to the remaining unmatched verbs.

o Down to a cosine-similarity threshold of 0.64 there is a
relatively small rise in grouped verbs and completely covered
recipes. This indicates that the proposed AGs in the ACs are
already covering their respective domain well. If there would
be verbs of significant quantity in the corpus that are not
included in the ACs but relevant to the domains, there is a
high likelihood that they would have been included with a high
cosine similarity.

This analysis led us to set the threshold to 0. 56. Thereby, 632
distinguished verbs were grouped into one of the 6 ACs and the
instructions found in each recipe are covered by 76.51%. We also
cover 96,526 recipes completely (9.38%).

In Figure 7 the results of matching the verbs from the corpus
into the ACs is shown. Moreover, the bars show how many verbs
were additionally added to the various ACs by allowing a verb with
a minimum cosine similarity of @ . 56 to be added to the ACs. What
can also be assessed in Figure 7 is the relevance of the different ACs
for meal preparation tasks. From the considered ACs, Cutting has
the lowest presence in the dataset whilst Mixing actions have the
highest count.

4.2 Using Large Language Models to
handle further verbs

After matching using the cosine similarity, there are still 4,762
distinguished unmatched verbs that make up roughly 23% of verbs
found in the whole recipe corpus. We now want to investigate
whether generative LLMs are a suitable source for matching the
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remaining verbs or coming up with new and currently missing ACs.
Since an extensive experiment is beyond the scope of our research,
we perform a small feasibility study to investigate the general
capabilities and assess whether more research in this direction is
advisable. To perform this study, we focus only on a small subset
of the remaining unmatched verbs. For this subset we choose the
30 unmatched actions with the most occurrences in the corpus and
manually filter them according to two conditions. We exclude:

o Auxiliary verbs (e.g., make, do, have, let)
o Abstract verbs that do not describe physical actions (e.g.,
remain, need, desire, enjoy)

After this exclusion, 15 words remain for this pre-study, which
we manually mapped to the existing ACs or chose to create a new AC
for. These 15 words with their manual mapping are the gold standard
for our comparison.

To perform this pre-study, we query OpenAl's GPT-3.5
and GPT-40 models (OpenAl, 2023), Claude (Anthropic,
2024), Llama 3.3 (Grattafiori et al., 2024) and Gemma 2
(Gemma Team et al., 2024) five times via their respective API
using the prompt in Figure 8. For all five runs of the models, the
temperature is set to zero to create results that are as deterministic
as possible.

In our created gold standard, only a single new core was
created for the action repeat. Of the five models we prompted, only
Claude and GPT-40 were able to also propose a similar new
core. Of the remaining models, both L1ama 3.3 and Gemma 2
showed limited creativity by answering Nothing to our matching
request, actively working against the request made in the prompt of
“creating a minimal amount of new cores, if no logical match can
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System message: Imagine you are a robot executing meal preparation tasks. I want you to match actions
from a given list into pre-defined groups if they entail similar motions during cooking. Each group has one
representative action and some associated actions: Action Core — Action Groups

These are the action cores and groups: [cores & groups]

They differ on the following parameters: [parameters]
User message: Match the following actions to one of these action cores through their action groups or create a
minimal amount of new cores, if no logical match can be made. If you create a new action core, it should have
a similar granularity to the already existing ones. Only match the provided actions and don’t hallucinate new

ones.
Actions to match: [15 unmatched actions]

FIGURE 8

The prompt given to the LLMs for matching 15 of the remaining unmatched actions to the existing cores or creating new cores, if no suitable

match is found.

be made” (see Figure 8). This answer was given by Gemma 2 also
for two other actions (wrap and store), which were both matched
effortlessly by the other four models. GPT-3 . 5 did not propose any
new cores but tried to match all 15 verbs to the six existing cores.
This restrictiveness is in contrast to Claude, which proposed an
additional new core (Coating) to which it mapped six out of the 15
verbs, and L1ama 3.3, which, similar to Claude, proposed the
novel action core Spreading, to which four actions were matched.
Apart from the three actions being unmatched, Gemma 2 does not
propose any new cores and GPT-40 does not propose any other
cores than the one expected in the gold standard.

Regarding the performance for actually matching the remaining
14 actions to one of the six action cores, the models again
vary in their results and in the amount of correct matches. A
possible misunderstanding regarding the scope and differentiation
of the Pouring and Preparing action cores is indicated by the
pattern of mismatched actions observed in Gemma 2, GPT-3.5
and GPT-40, where multiple actions correctly associated with
Pouring are mismatched to Preparing. For Claude, apart from
the aforementioned mismatches due to the newly proposed action
core, only a single mismatch occurs and for L1ama 3.3, there
is no distinctive pattern in the three mismatches that occur. If we
take quantitative measures like the F1-score into account, GPT-3 . 5
slightly outperforms the other models (F1 = 0.82), directly followed
by GPT-40 (F1=0.78). Claude and L1ama 3.3 perform on a
similar level (F1 = 0.67), with Gemma 2 performing worst of all five
models (F1 = 0.60).

From this small feasibility study on LLM-based action matching,
we hypothesise that many of the remaining unmatched actions
could, based on their motion-based parameterization, be either
mapped into our ACs directly or be decomposed into a combination
of the action primitives described by our ACs. Investigating this
hypothesis further through a more extensive experimentation is part
of our future work.

5 Plan parameterization as a core
mechanism in adaptive robotics

Plan parameterization plays a key role in enabling robots to
adjust their behaviour dynamically. Traditional systems rely on
fixed instructions, limiting flexibility. In contrast, our method
leverages queries to AKGs to refine task execution in real time. This
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allows the robot to adapt to varying conditions without requiring
constant human intervention, supporting more flexible and efficient
automation.

To bridge theory and practice, we have developed an interactive
website featuring an experiment section with two main features: 1)
inferring action parameters for a chosen recipe and 2) simulating
adaptive action execution of different meal preparation actions.

5.1 Action parameterization

This section presents how plan parameterization supports
adaptive behaviour in robotic systems, enabling robots to
dynamically translate abstract actions into executable motion
plans. The proposed AKGs and ACs have been implemented in
a streamlined pipeline. Once the pipeline is executed, the resulting
graph provides a ready-to-use knowledge base for robotic meal
preparation. This can be tested on our website’, where a user
can choose a recipe (out of the RecipelM + dataset) and explore
its structured representation to then get 1) a link to the recipe
website, 2) natural language recipe preparation instructions, 3)
matched action verbs and 4) associated action parameters, if
available. The entire process is fully automatic and needs neither
human intervention nor does it rely on LLMs but solely queries the
implemented AKGs.

5.2 Adaptive action execution

A second interface® allows users to test the robot’s action
execution through a simulated environment. The robot processes the
selected actions - such as cutting, pouring, or mixing - by retrieving
the necessary motion parameters from the AKG, showcasing the
direct application of our framework.

The website enables transparent experimentation by allowing
users to observe how high-level recipe instructions are transformed
robot-executable commands.

into This hands-on approach

5 The action parameterization website can be accessed here: https://
vib.ai.uni-bremen.de/page/labs/from-recipes-to-actions/
6 The robot simulation for adaptive action execution is available at https://

vib.ai.uni-bremen.de/page/labs/action-cores/
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FIGURE 9

(f) a lemon. The black lines represent motion trajectories.

a) !b) ic) d) !e) !f) !

The PR2 robot demonstrates cutting techniques on various fruits: (a) cutting, (b) slicing, (c) halving an avocado, slicing (d) a cucumber, (e) a banana or

highlights the adaptability of our system, which no longer requires
executing the full pipeline for each task; once the graph is generated,
it can be reused for various recipes and their corresponding actions.

Through this setup, we validate the flexibility and practicality
of our approach: the robot dynamically adjusts its execution plans,
grounded in the AKG’s structured knowledge, while providing a
user-accessible tool for both research and educational purposes.

Figure 9 demonstrates the robots proficiency in adjusting its
execution plan for tasks like halving and slicing without prior
knowledge of the objects, relying solely on information retrieved
from the AKG during execution. The cutting scenario can be tested
with all verbs available in the ACs, and on a range of objects, as
also detailed in (Kiimpel et al., 2024). Our findings underline the
robot’s adaptability across a range of scenarios, setting a foundation
for further advancements. Additionally, our entire setup is available
online and accessible to individuals”.

This example serves as a starting point for examining
more complex capabilities. By isolating the key process of plan
parameterization, we set the stage for a deeper exploration of the
system’s computational architecture, especially by investigating
the uncertainties in perception and execution that we abstracted
away from. This structured approach underscores the importance
of plan parameterization in creating adaptable robotics while
connecting the concept to broader advancements in system design
and decision-making.

5.3 Limitations

While the experiments demonstrate that the proposed
Actionable Knowledge Graphs provide sufficient parameters for
executing diverse cooking actions, several limitations remain.
First, the current parameterization is deliberately simplified, which
enables systematic robot execution but may not capture the full
variability of human cooking strategies or yield the most efficient
motions in every context. Second, the approach relies on robust
perception and environment representations, yet real kitchen
scenarios often involve uncertainty, occlusion, and noisy object
recognition. Third, although the method covers approximately

7 The hands-on code is available at https://vib.ai.uni-bremen.de/page/

labs/actionable-knowledge-graph-laboratory/
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77% of verbs in the corpus, a notable portion of less frequent or
complex actions remains unmatched, requiring further work on
expanding and refining the AGs. Finally, the validation is limited
to simulated execution and selected robot demonstrations; more
extensive physical experiments are needed to assess robustness in
real-world kitchen environments.

these
limitations also remain. The current AGs do not model actions

Beyond methodological issues, several practical
in relations to cooking processes, nor their prioritisation—e.g.,
whether waiting for a cake to bake should take precedence over
performing a new action—are not yet represented in the AKGs.
Addressing such autonomy concerns will be crucial for bridging the
gap between experimental validation and real-life deployment, as
well as going from execution of single actions to meal preparation.
These limitations do not undermine the value of our approach as
a conceptual and technical proof of concept but rather point to
future research directions: testing the framework in long-horizon,

open-ended meal preparation scenarios with real robots.

6 Conclusion

Towards the goal of empowering robots to successfully prepare
varying meals, in this paper we introduce six Action Cores that
were identified as central manipulation action categories in the
analysed recipe corpus. For each AC we include Action Groups
that summarise all actions that result in similar motion parameters
and similar manipulation outputs. We match the action verbs
found in the RecipelM + corpus to our ACs and AGs in two
steps: First, we match them directly, covering ~54% of all verbs.
Afterwards, we match the remaining verbs using cosine similarity
and an experimentally defined threshold, leading to a coverage of
~77%.For the remaining verbs, we query LLMs to match the verbs
or provide us with additional ACs that possibly cover the missing
verbs, but a brief analysis shows that the newly proposed cores are
already incorporated by our proposed cores, underlining their great
coverage for meal preparation tasks.

The presented approach is limited mostly by the initial choice
of action cores as well as their associated action groups. As
explained throughout this paper, we use our analysis to underline
the relevance of the created ACs and AGs, but a slight change
in this initial setup would hinder the repeatability of the direct
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matching, the similarity-based matching as well as the neuro-
symbolic experiment. Additionally, the proposed approach focuses
on the task of matching verbs to the ACs for incorporation into
the knowledge graph. However, the matching alone is no guarantee
for a successful execution, as the knowledge needs to be correctly
grounded in the action-perception-loop of the robot, an aspect we
want to investigate in future work.

In the future, we want to take the next step towards robots
automatically preparing any meal they encounter by including
a neuro-symbolic component that extracts the natural language
parameters from the actual recipe text to create the concrete
parameterization of each action, as we explained in Section 3.6.
Additionally, we want to perform more robotic experiments to
investigate the adaptability of the proposed approach as well as the
practicability of the ACs. Lastly, we need to investigate further how
the remaining unmatched words can be handled and whether they
can be, e.g., automatically decomposed into sequences of existing
ACs or AGs, as hypothesised in Section 4.2.
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