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Human-facility interaction 
improving people’s 
understanding of service robots 
and elevators - system design 
and evaluation

Mau Adachi* and  Masayuki Kakio

Advanced Technology R&D Center, Mitsubishi Electric Corporation, Hyogo, Japan

As service robots become increasingly integrated into public spaces, effective 
communication between robots and humans is essential. Elevators, being 
common shared spaces, present unique challenges and opportunities for such 
interactions. In this study, we developed a Human-Facility Interaction (HFI) 
system to facilitate communication between service robots and passengers in 
elevator environments. The system provided both verbal (voice announcements) 
and non-verbal (light signals) information to passengers waiting for an elevator 
alongside a service robot. We installed the system in a hotel and conducted 
two experiments involving 31 participants to evaluate its impact on passengers’ 
impressions of the elevator and the robot. Our findings revealed that voice-
based information significantly improved passengers’ impressions and reduced 
perceived waiting time. However, light-based information had minimal impact 
on impressions and unexpectedly increased perceived waiting time. These 
results offer valuable insights for designing future HFI systems to support the 
integration of service robots in buildings.
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 1 Introduction

In recent years, service robots, such as delivery robots and security robots, have 
increasingly gained the capability to use elevators, enabling them to provide services across 
multiple floors of buildings (López, et al., 2013; Collin, et al., 2023; Palacín, et al., 2023; 
Al-Kodmany, 2023; Panasonic, 2015). Many studies have focused on the technological 
functions that enable robots to use elevators, such as the identification of the control 
panels (Klingbeil, et al., 2010; Yu, et al., 2019; Zhu, et al., 2020; Zhu, et al., 2021) 
and their operation (Ali, et al., 2017; Liebner, et al., 2019; Zhu, et al., 2020). Another 
approach is to enhance elevators, enabling direct communication between elevators and 
service robots (López, et al., 2013; Panasonic, 2015; Abdulla, et al., 2017; Robal, et al., 
2022). Currently, several elevator companies have also developed systems known as 
“smart elevators” to assist robots in moving between multiple floors within buildings 
(Mitsubishi Electric Building Solutions Corporation, n.d.; KONE Corporation, n.d.; OTIS, 
2024). Smart elevator systems allow service robots to call an elevator to their current floor, 
board it, and travel to their desired destination.
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With the increasing use of elevators by service robots, there 
is a growing need for service robots and humans to share the 
same elevator to improve transportation efficiency. Consequently, 
it has become more important to inform surrounding passengers 
when a robot is using the elevator. Some studies have begun 
to examine more socially acceptable behaviors of robots when 
sharing an elevator with passengers. This includes communication 
methods to notify passengers of robot boarding (Babel, et al., 2022; 
Law, 2022), waiting position design inside and outside an elevator 
(Gallo, et al., 2022), and trajectory design for entering an elevator 
(Gallo, et al., 2023; Kim, et al., 2024). Unfortunately, current robots 
lack their computational resources needed to achieve advanced 
social behaviors, and they do not yet have fully developed interfaces 
for conveying their intentions. It will thus take a long time before 
all service robots deployed in buildings possess such capabilities. 
On the other hand, facilities within buildings, such as elevators, 
often already have some methods for interacting with users, such 
as speakers. Therefore, having facilities interact with users instead of 
robots should be a beneficial strategy. However, the impact of social 
interactive behaviors by facilities on the social acceptance of both 
robots and the facilities themselves has been scarcely examined.

In the pursuit of a society where humans and robots collaborate, 
numerous studies have explored robots as subjects of human 
interaction, emphasizing the understanding and emotional 
responses that humans exhibit toward robots, as well as the robot 
behavior designs within the context of Human-Robot Interaction 
(HRI) (Fong, et al., 2003; Breazeal, 2004; Rodríguez-Guerra, et al., 
2021; Stock-Homburg, 2022). On the other hand, we have focused 
on the social behaviors of elevators as ‘autonomous agents.’ In our 
previous studies (Shiomi, et al., 2024; Shiomi, et al., 2025), we 
examined how the design of voice cues provided by a robot and/or 
an elevator affects passengers’ impressions when the robot takes 
the elevator. We then found that passengers’ impressions of both 
the robot and the elevator can improve when at least one of them, 
either the robot or the elevator, speaks. Based on these findings, we 
developed the concept that high-function facilities in buildings can 
facilitate smooth interactions between humans and service robots 
by supporting the social behaviors of the robots. We refer to this 
concept as “Human-Facility Interaction (HFI),” inspired by the term 
human-robot interaction.

In the field of robotics, many studies have investigated 
various verbal (e.g., speech and text display by robots) and non-
verbal communication expressions (e.g., gestures and lighting 
from robots) for social robots that incorporate interfaces for 
communicating with people (Kanda, et al., 2002; Imai, et al., 
2003; Breazeal, 2003; Breazeal, 2003; Breazeal, 2004; Bethel and 
Murphy, 2008; Marin Vargas, et al., 2021). However, unlike robots, 
facilities in buildings lack clear embodiments, limiting the ways 
they can communicate with users. For facilities in buildings, 
one possible way to communicate with users is using voice 
announcements, which are commonly used in elevators. When 
essential information is summarized in short sentences concisely, 
voice announcements can effectively convey accurate information. 
However, voice announcements are limited by language barriers 
and cannot reach non-native speakers or individuals with hearing 
impairments. Therefore, to accommodate a diverse range of users 
in the future, HFI systems will need to incorporate non-verbal 
communication methods as well.

In this study, we focused on the scenario in which a robot boards 
an elevator and developed an HFI system that provides verbal and 
non-verbal information to users. Specifically, the system offered 
voice and light-based information to passengers waiting for the next 
elevator in an elevator hall with a service robot, explaining the status 
of the elevator and the robot. We then installed it in a hotel to 
conduct demonstrations and investigated the effects of information 
on passengers’ impressions of the elevator and the robot. 

2 System design

2.1 Concepts

We focused on a scenario where a service robot boards an 
elevator with a passenger. To prevent collisions between service 
robots and passengers, the boarding timings for both should 
be properly defined and clearly separated. We thus defined the 
following phases for the scenario:

Phase 0: no service robot is waiting for the elevator in the
  elevator hall.

Phase 1: while a passenger is waiting for the elevator car, a
  service robot arrives at the elevator hall to board.

Phase 2: when the elevator arrives and the doors open, the
  passenger gets on the elevator before the service robot.

Phase 3: after the passenger has boarded, the robot enters the
  elevator car, both the robot and the passenger wait for
  the elevator to depart, and other passengers in the
  elevator hall stay clear from the elevator.

Figure 1 illustrates our concept and the phases above. When the 
elevator departs in Phase 3, Phase 3 ends and Phase 0 starts again. 
Since passengers can move faster than service robots, we defined the 
phases so that the passenger enters the elevator car first, followed by 
the service robot.

2.2 Designed contents

Along each phase described in the previous section, we designed 
voice announcement contents accordingly (Table 1). In Phase 1, 
the announcement informs passengers at the elevator hall that 
the service robot will board the next elevator and asks them to 
enter the elevator before the robot starts to move. In Phase 2, the 
announcement briefly encourages the passengers to board before 
the robot. In Phase 3, the announcement explains that the robot 
is starting to board the elevator, tells the passenger inside the 
elevator car to wait for a while, and urges potential passengers still 
in the elevator hall not to enter for safety reasons. We designed 
short notification sounds and added them to the beginnings of 
the announcements in Phases 2 and 3, so that people could easily 
recognize phase changes using only audio information.

For the light-based information, we designed a lighting color for 
each phase based on traffic signals. In Phase 1, the light units emit 
blue light to calm the passengers and reduce their stress (Gorn, et al., 
1997; Gorn, et al., 2004; Valdez and Mehrabian, 1994). In Phase 2, the 
light units emit green light to encourage the passenger to board the 
elevator, similar to a traffic light. In Phase 3, the light units emit red 
light to prohibit additional passenger boardings. We also designed 
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FIGURE 1
System concept and actual system operation.

TABLE 1  Announcements for each phase.

Phase
Announcements

English translations Original sentences in Japanese

1 - The elevator is shared with the robot. 
  It will also take the next elevator. 
  Please board the next elevator before the robot starts boarding.
- The robot is waiting for the next elevator.
  The robot will board after you.
  Please board first and leave a wide space in the center of the elevator.

- こちらはロボットと共用のエレベーターです.
 次のエレベーターにロボットが乗車します.
 お客様はお先に乗車してください.
- ロボットはエレベーターを待っています.
 お客様に続いてロボットが乗車します.
 お先にご乗車いただき中央付近を広く空けて
 お待ちください.

2 - This is an elevator shared with robots.
  Please board the elevator now.

- こちらはロボットと共用のエレベーターです.
 お客様はお先にどうぞ.

3 - The robot starts boarding. Please leave enough space near the doors.
- The elevator is now checking for safety. Please wait away from the robot for a
  while.
- For your safety, please refrain from boarding the elevator now and watch the
  closing doors.

- ロボットが乗車します.扉付近を広く空けてお待ちください.
- 安全の確認を行っています.ロボットから離れて今しばらくお待ち
 ください.
- 安全のためこれからのご乗車はお控えいただき,閉まる扉にご注意
 ください.

wavy lighting patterns to give passengers the impression that the 
system was processing. 

2.3 Developed system

Figure 2 shows the developed HFI system. We installed it on 
both sides of the elevator doors. The system had two interaction 
methods: a speaker for voice announcements (BOSE SoundLink 
Revolve II) and two light units. The speaker and light units could 
each be turned on or off by the operator. To detect the arrival of 
a service robot and the elevator car using depth information, our 
system had a depth camera (RealSense D455) near the top of the 
elevator doors. The specific detection strategy was as follows. First, 
the depth camera was adjusted so that both a robot waiting at a 

specified location in the elevator hall and the elevator doors were 
within its field of view. The operator then designated rectangular 
areas for the robot and the elevator doors in the RGB image obtained 
in real time by the depth camera, which included the robot or 
the doors, respectively. We detected the arrival of the robot or the 
opening and closing of the elevator doors based on changes in 
the depth information of the point cloud obtained within those 
rectangular areas.

The system operates according to each phase described 
in Section 2.4. When the current state is Phase 0, no voice 
announcement or light is provided. When the depth camera detects 
the robot’s arrival in Phase 0, the control unit switches the current 
state to Phase 1 and starts to play the voice announcements and 
lighting patterns for Phase 1 repeatedly. When the depth camera 
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FIGURE 2
Developed system. (A) Installation in elevator hall. (B) System diagram.

detects the elevator doors opening in Phase 1, the control unit then 
switches the current state to Phase 2 and plays the corresponding 
voice announcement and lighting patterns. When a certain period 
elapses in Phase 2, the control unit automatically switches the 
current state to Phase 3 and plays the corresponding voice 
announcement and lighting patterns. When another certain period 
elapses, the control unit automatically switches the current state to 
Phase 0 and stops the voice announcement and lighting patterns.

For passengers who are unfamiliar with boarding an elevator 
with a service robot, it is important to provide information at 
the appropriate time (Bacotti, et al., 2021). To ensure that the 
timing of announcements and lights matched the actual events, we 
determined the durations of Phases 2 and 3 based on the actual 
boarding time of the service robot used in the experiments. 

3 Experiments

3.1 Hypothesis

Our system can present information by light as well as by 
sound. As explained earlier, our previous studies have shown that 

voice announcements improve passengers’ impressions of both the 
elevator and the robot (Shiomi, et al., 2024; Shiomi, et al., 2025). In 
addition, light-based information will help users in an elevator hall 
to understand the status of the elevator and the boarding behavior of 
service robots. It is generally expected that providing more feedback 
methods will reduce user’s perceived waiting time (Branaghan and 
Sanchez, 2009) and also decrease their stress while waiting (Osuna, 
1985; Bird, et al., 2016; Fan, et al., 2016). We thus formulated the 
following hypothesis.

H1: When the system provides more information, participants 
will have more positive impressions of both the elevator and
the robot. 

H2: When the system provides more information, participants 
will perceive a shorter waiting time for the elevator with the 
robot to depart. 

H3: When the system provides different colors with its light units, 
participants will be able to decide whether to board the elevator 
with the robot.

We evaluated H1 and H2 in Experiment A and H3 in 
Experiment B. 
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FIGURE 3
Experimental environment.

3.2 Participants

Thirty-one people participated in the experiments: 16 women 
and 15 men. Their ages ranged from their 20s to 60s, with an average 
age was 41.0 (S. D. = 11.5). They were recruited through a temporary 
employment agency and received monetary compensation for their 
participation. They received 5,000 yen per hour as compensation for 
participating in the experiments. 

3.3 Environment

Figure 3 illustrates the experimental environment. We 
conducted the experiments in Tap Hospitality Lab Okinawa 
(THL). THL is a demonstration accommodation facility in Japan 
where regular tourists can also stay. We used an elevator in 
THL with an interior size of approximately 2.3 m in height, 
1.7 m in width, and 1.7 m in depth, which incorporates a 
system that enables robots to move freely between floors 
(Mitsubishi Electric Building Solutions Corporation, n.d.). We used 
a delivery robot (YUNJI GOGO: 0.98 m tall, 0.42 m wide, and 
0.49 m deep) (YUNJI TECHNOLOGY, n.d.). The robot had a 
white cuboid shape and featured an operation panel on its top 
surface as an interface. It also possessed the ability to autonomously 
navigate to user-specified destinations while avoiding obstacles and 
collaborating with the elevator. The robot was set up to travel back 
and forth between two locations on different floors in the building. 

3.4 Conditions

For Experiment A, we considered two factors: sound (with 
sound or without sound) and light (with light or without light). For 
Experiment B, we considered one factor: the state of the light units 
(no lights, green lights, blue lights, or red lights, see Figure 4). We 
thus prepared four conditions for each experiment.

3.5 Measurements

For Experiment A, we evaluated the perceived impressions of 
both the elevator and the robot using existing questionnaire scales 

(Bartneck, et al., 2009): likability, intelligence, and safety. Each item 
was rated on a 7-point scale, with 1 indicating the least favorable 
response and 7 the most favorable. We also asked participants 
to evaluate their perception of the waiting time it took for the 
elevator doors to close, compared to the typical duration we had 
measured in advance. For Experiment B, we evaluated the degree 
of hesitation when boarding the elevators shown in Figure 4 using a 
1–9 response format, with 1 indicating the least hesitation and 9 the 
most hesitation. 

3.6 Procedure

All the procedures were approved by the Ethics Review 
Committee of Advanced Technology R&D Center (ATC 2024-
002). First, the participants read explanations of the experiments 
and how to evaluate the service robot and the elevator in each 
condition. We employed a within-participant design in which the 
participants experienced four different conditions in Experiment 
A. We first conducted Experiment A followed by Experiment B 
without explaining the hypotheses to the participants. After starting 
Experiment A, the participants first waited for the elevator in the 
hall, and then the robot arrived. When the elevator car arrived, the 
participants boarded it and waited for the robot to board and the 
elevator to depart. After the elevator arrived at the destination floor, 
the participants exited the elevator and answered questionnaires. 
Before each trial, we moved the elevator to a different floor to 
allow the participants to experience the waiting time for the elevator 
to arrive at the hall. We measured the time between the elevator 
door opening and closing for each trial to normalize participants’ 
subjective waiting time using the objective duration. The order 
of the conditions was counterbalanced. After Experiment A, the 
participants were shown a figure similar to Figure 4 and completed 
questionnaires for Experiment B. At the end of the experiments, we 
conducted a brief interview with the participants. 

4 Results

4.1 Impressions of system and perceived 
waiting time at elevator boarding

We conducted a two-way factorial (sound and light) ANOVA 
to analyze the questionnaire results regarding the impression 
scales of Experiment A (Figure 5). The statistical analysis of the 
elevator’s likability scale showed a significant difference in the sound
factor (F(1,30) = 54.3,p = 3.32× 10−8,  partial η2 = 0.64), and no 
significant differences in the light factor or in the interaction effects 
(Figure 5A). The statistical analysis of the robot’s likability scale 
showed a significant effect of the sound factor (F(1,30) = 47.7,  p =
1.14× 10−7,  partial η2 = 0.61), and no significant differences in 
the light factor or in the interaction effects (Figure 5B). The 
statistical analysis of the elevator’s intelligence scale showed a 
significant difference in the sound factor (F(1,30) = 35.8,p = 1.47×
10−6,  partial η2 = 0.54), and no significant differences in the light
factor or in the interaction effects (Figure 5C). The statistical 
analysis of the robot’s intelligence scale showed a significant effect 
of the sound factor (F(1,30) = 23.7,  p = 3.41× 10−5,  partial η2 =
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FIGURE 4
Robot and elevator with system’s light units in different states. (A) No lights. (B) Green lights. (C) Blue lights. (D) Red lights.

0.44), and no significant differences in the light factor or in 
the interaction effects (Figure 5D). The statistical analysis of the 
elevator’s safety scale showed a significant effect of the sound
factor (F(1,30) = 31.0,  p = 4.66× 10−6,  partial η2 = 0.51), and no 
significant differences in the light factor or in the interaction effects 
(Figure 5E). Finally, the statistical analysis of the robot’s safety scale 
showed a significant effect of the sound factor (F(1,30) = 36.0,  p =
1.40× 10−6,  partial η2 = 0.55), and no significant differences in the 
light factor or in the interaction effects (Figure 5F).

Regarding the waiting time results of Experiment A, we 
first normalized subjective waiting time by dividing it by the 
corresponding objective waiting time for each trial. Throughout all 
trials, the elevator took an average of 42.5 s to close its doors after 
opening, with a standard deviation of 2.7 s. We then conducted a 
two-way factorial (sound and light) ANOVA to analyze the waiting 
time results (Figure 6). The statistical analysis showed a significant 
effect of the sound factor (F(1,30) = 5.06,  p = 0.032,  partial η2 =
0.14) and in the light factor (F(1,30) = 6.10,  p = 0.019,  partial η2 =
0.17), and no significant differences in the interaction effects.

4.2 Impressions of system by passengers in 
elevator hall

We conducted a one-way factor ANOVA to analyze 
the questionnaire results regarding the impression scale of 
Experiment B (Figure 7). The statistical analysis of the degree 
of hesitation scale showed a significant effect of the light unit 
state factor (F(3,90) = 22.3,  p = 7.07× 10−11,  partical η2 = 0.43). A 
Bonferroni-corrected pairwise comparison as a post hoc test showed 
significant differences: green lights < no lights (t(90) = 5.28,  p =
5.40× 10−6,  Cohen′sd = 1.40), green lights < red lights (t(90) = 6.04,
p = 2.04× 10−7,Cohen′sd = 1.48), blue lights < no lights
(t(90) = 5.47,p = 2.42× 10−6,Cohen′sd = 1.38), and blue lights < 
red lights (t(90) = 6.23,  p = 8.76× 10−8,  Cohen′sd = 1.46).

Most participants mentioned the color of the light units as 
the reason for their responses (n = 26). Sixteen of the participants 

gave clearly negative reactions to the red lights condition, of whom 
thirteen indicated that red signifies danger or prohibition, and six 
mentioned its similarity to traffic signals. On the other hand, only 
four of the participants gave clearly negative reactions to the no 
lights condition. Their reasons also varied, such as: “With no lights, 
it was difficult to determine whether the robot was getting on or off,” 
and “No lights lack distinctive colors, making it hard to understand 
what signal is being conveyed.” Nineteen of the participants gave 
clearly positive reactions to the green lights or blue lights condition, of 
whom five indicated its similarity to traffic lights. Other comments 
included, “Green lights seemed the gentlest,” and “Blue lights were 
the most relaxing.” 

5 Discussion

Our results showed that providing voice-based information 
improved passengers’ impressions of the elevator and the robot when 
they boarded with the robot in a statistically significant manner 
(Figure 5). This is consistent with the results of our previous studies 
(Shiomi, et al., 2024; Shiomi, et al., 2025). In those studies, we 
also found an implication that when two agents are present and 
one of them speaks, it may be sufficient to change the perceived 
attributes of the other. In this study, we did not include information 
about the identity of the guide in the announcements. In post-
experiment interviews, some participants said that the elevator 
talked, while others believed it was the robot. This would correlate 
with our earlier implication. On the other hand, although there 
were some differences in the mean values of each impression 
item, our results showed that providing light-based information 
statically had little effect on passengers’ impressions of the elevator 
and the robot (Figure 5). In post-experiment interviews, some 
participants reported that they did not notice the lights at all. 
However, about one-third of participants (n = 9) reported that the 
system with both voice-based and light-based information was the 
most favorable. This suggests that providing light-based information 
would reinforce the effects of voice-based information and help 

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1681187
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Adachi and Kakio 10.3389/frobt.2025.1681187

FIGURE 5
Questionnaire results of perceived likability (A,B), intelligence (C,D), and safety (E,F) of elevator (left) and robot (right).

passengers understand the status of the elevator and robot. Based 
on these findings, H1 was partly supported.

Waiting time for a service to be provided has a significant 
impact on the user’s stress when that service is delivered

(Pruyn and Smidts, 1998; Bielen and Demoulin, 2007; Ayodeji, et al., 
2023). Our results showed that providing voice-based information 
reduced the perceived waiting time between elevator arrival 
and departure in a statistically significant manner. On the other 
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FIGURE 6
Questionnaire results for perceived waiting time ratio. Grey region indicates area where participants perceived the waiting time was longer compared 
to the without light or sound condition, while white region indicates area where participants perceived the waiting time was shorter.

FIGURE 7
Questionnaire results of degree of hesitation for states of light unit.

hand, statistical analysis also showed that providing light-based 
information significantly increased the perceived waiting time 
(Figure 6). H2 was therefore unsupported. That is contrary not 
only to our expectations, but also to the findings of previous studies 
(Bartneck, et al., 2009). In general, multiple forms of feedback will 
contribute to a greater reduction in perceived waiting time. Our 
experiment could have caused this discrepancy for several reasons. 
One possible reason is that the participants could not see the light 
units once they were in the elevator car. When the light units were 
activated and the participants were waiting in the elevator hall, 
the participants could see the blue lighting patterns designed for 
Phase 1. If participants saw blue lights, they likely felt calmer and 
perceived the elevator arrival time as shorter (Gorn, et al., 1997; 
Gorn, et al., 2004; Valdez and Mehrabian, 1994). However, once 
they entered the elevator, they could no longer see the color of 

the light units from inside. As a result, they possibly felt the time 
until the elevator departed was longer, in contrast to before they 
boarded the elevator. Another possible reason is that the light-based 
information provided was unclear to the participants who were 
seeing it for the first time. When participants felt that the lights were 
unclear or incomplete, the use of light-based information may have 
inadvertently increased the cognitive load on them, contrary to our 
intention. Regarding the robot’s interface, some previous studies 
have reported that when users experience a robot’s behavior with 
light-based information, they can correctly understand the function 
of the lights (Fernandez, et al., 2018). Even if designers meticulously 
create an interface using lights, users still need to become familiar 
with the light-based information from a new device to utilize it for 
a quick understanding of the situation.

Our results also showed that the color of the system lighting 
significantly affects the degree of hesitation passengers feel about 
entering the elevator in the hall (Figure 7). Most participants also 
had a good understanding of the color, even though we did not 
explain it before the experiments. Therefore, H3 was supported. 
Even though the color of the system lighting did not contain specific 
information, cultural context may have allowed participants to infer 
its meaning. To clarify the information conveyed by the lights and 
enhance their effectiveness in Phase 3, it would be beneficial to use 
a lighting representation similar to countdown displays on traffic 
signals (Keegan and O'Mahony, 2003; Lipovac, et al., 2012).

In this study, we proposed the concept of HFI to communicate 
information from building facilities to users about the coordination 
between service robots and those facilities. We constructed an HFI 
system that informs the passengers in an elevator hall that a service 
robot is boarding the elevator and evaluated it with the experiments 
with general participants. A statistical analysis revealed that voice-
based information significantly enhanced impressions and reduced 
perceived waiting time of passengers. In contrast, the statistical 
analysis also showed that light-based information barely improved 
impressions and significantly increased perceived waiting time of 
passengers. Our findings provide useful insights for designing future
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HFI systems that enhances the use of service robots in buildings. 
However, our study has limitations, and improvements to the system 
are necessary. In this study, we did not consider situations where 
multiple passengers are riding the elevator with a robot. The number 
of participants were limited, and they were recruited from the 
specific cultural domain (Okinawa Prefecture in Japan), which may 
have influenced the results. Since all participants were adult, we 
did not investigate whether children could understand the system. 
We installed our system on only one floor. In post-experiment 
interviews, several participants mentioned that similar guidance 
should be provided on other floors and inside the elevator as well. 
The system was developed with a focus on the robot’s elevator 
boarding, but guidance is also needed when a robot is exiting. When 
a robot is on the elevator that arrives at an elevator hall, it would 
be helpful to inform passengers whether the robot will exit the 
elevator and, if so, which direction it will move after exiting. In 
addition, it is essential to verify the effects of those extensions on 
passengers’ impressions. To support multilingual users, it may also 
be helpful to design background music for when a robot boards 
or exits the elevator, in addition to the short notification sounds 
already implemented. We would like to address these issues in future 
research and improve our system.
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