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Editorial on the Research Topic

Advancements in vibration control for space manipulators: actuators, 
algorithms, and material Innovations

s

Space manipulators play a pivotal role in modern space missions by enabling satellite 
servicing, debris removal, and planetary exploration. However, their lightweight, long-
reach designs and dynamic operational environments introduce significant vibration 
challenges that can compromise mission success. Addressing these challenges requires a 
multidisciplinary approach that integrates advancements in actuators, control algorithms, 
and material science. While conventional actuators (Liu et al., 2021; Tayebi et al., 
2022; Mishra et al., 2018) and attitude control strategies (Chen and Shan, 2019; 
Tayebi et al., 2025; Xie et al., 2025) remain prevalent in spacecraft design, emerging solutions 
that leverage soft materials and AI-driven control architectures represent a rapidly evolving 
frontier in vibration mitigation research.

This Research Topic presents the most recent developments in vibration mitigation 
techniques for space manipulators and includes four important studies resulting from the 
call. These studies address several aspects of vibration control for space manipulators. Key 
areas of focus include flexible dynamics estimation via quasi-static approximation, AI-
enhanced guidance and control systems, bio-inspired soft actuation, and hybrid soft-rigid 
grasping architectures.

Accurate measurement of elastic coordinates via sensors has historically posed 
significant challenges in controlling flexible space manipulators. Patel and Damaren 
addressed this issue by developing a model-based estimation framework that 
eliminates the need for direct vibration sensing. They proposed a quasi-static 
estimator that approximates elastic coordinates with joint torque data, enabling
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FIGURE 1
Left: Design of the intelligent orbital service spacecraft. Right: The conceptual mission framework (Hao~et al.).

FIGURE 2
Left: Basic structure of a typical starfish’s podia (tube foot). Right: Close-up of a starfish on the sea floor, with podia in active motion (Ashby~et al.).

precise end-effector trajectory tracking. Their simulations on single- 
and two-link manipulators demonstrate robust performance, even 
with large payloads and model uncertainties.

Conventional Guidance, Navigation, and Control (GNC) 
systems for spacecraft, which are designed for ground-commanded 
operations with limited autonomy, face significant challenges when 
adapting to the dynamic demands of on-orbit servicing missions. 
To address this issue, Hao et al. proposed an AI-enhanced visual 
GNC system as an intermediate solution between conventional 
architectures and fully autonomous systems of the future. Their 
approach combined a deep learning-based algorithm that estimates 
target pose from 2D images without requiring prior knowledge of 
the target’s dynamics, and a learning-based motion planner that 
generates manipulator trajectories while minimizing spacecraft 
attitude disturbances. The visual GNC system was exemplified 
through the simulation of a conceptual mission, involving a 
microsatellite tasked with the on-orbit manipulation of a non-
cooperative CubeSat. Figure 1 illustrates the design of the intelligent 
orbital service spacecraft and outlines the conceptual mission 
framework for capturing and servicing a non-cooperative target. 
Their work demonstrates the potential of AI to enhance autonomy 
in space robotics, particularly for non-cooperative target capture.

Actuators play an important role in controlling space 
manipulators. Ashby et al. introduced bio-inspired soft actuators 
that use dielectric elastomer transducers (DETs) as lightweight 
artificial muscles for space applications. Inspired by the starfish 
podia shown in Figure 2, their inflatable DET-based actuator 
combines deployable structures with proprioceptive capabilities, 
enabling compact stowage during launch and adaptive operation 
in zero-gravity environments. The study highlights the advantages 
of soft robotics in space, where mass and volume constraints are 
critical. These actuators show particular promise for applications 
requiring adaptable, mass-efficient systems in an unstructured 
orbital environment.

Dontu et al. discussed the development of a hybrid soft gripper 
designed for delicate object manipulation and validated through 
real-world robotics competitions. Their vacuum-actuated design 
integrates soft fingers with rigid components and task-specific 
modules to balance compliance and precision. By refining the 
gripper through successive iterations, the work demonstrates the 
importance of adaptable, hybrid designs for handling diverse objects 
in unstructured environments.

These studies collectively illustrate three essential developments 
in space manipulator design through model-based estimation to
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overcome sensing limitations in orbit, AI-driven autonomy to enable 
real-time adaptation, and innovations in materials and actuation. 
Looking ahead, the field must address key challenges in technology 
readiness levels and orbital validation, particularly regarding soft 
robotic components in space environments.
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