

OPEN ACCESS

EDITED AND REVIEWED BY
Panagiotis Tsiotras,
Georgia Institute of Technology, United States

*CORRESPONDENCE
Javad Tayebi,

☑ j.tayebi@nuaa.edu.cn

RECEIVED 07 August 2025 ACCEPTED 22 August 2025 PUBLISHED 05 September 2025

CITATION

Tayebi J, Chen T, Wu X and Mishra AK (2025) Editorial: Advancements in vibration control for space manipulators: actuators, algorithms, and material innovations.

Front. Robot. Al 12:1681168. doi: 10.3389/frobt.2025.1681168

COPYRIGHT

© 2025 Tayebi, Chen, Wu and Mishra. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Advancements in vibration control for space manipulators: actuators, algorithms, and material innovations

Javad Tayebi¹*, Ti Chen¹, Xiaofeng Wu² and Anand Kumar Mishra³

¹State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China, ²School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia, ³Department of Mechanical Materials and Aerospace Engineering, West Virginia University, Morgantown, WV, United States

KEYWORDS

space manipulators, vibration control, soft robotics, artificial intelligent, on-orbit servicing, smart material, soft griper

Editorial on the Research Topic

Advancements in vibration control for space manipulators: actuators, algorithms, and material Innovations

Space manipulators play a pivotal role in modern space missions by enabling satellite servicing, debris removal, and planetary exploration. However, their lightweight, long-reach designs and dynamic operational environments introduce significant vibration challenges that can compromise mission success. Addressing these challenges requires a multidisciplinary approach that integrates advancements in actuators, control algorithms, and material science. While conventional actuators (Liu et al., 2021; Tayebi et al., 2022; Mishra et al., 2018) and attitude control strategies (Chen and Shan, 2019; Tayebi et al., 2025; Xie et al., 2025) remain prevalent in spacecraft design, emerging solutions that leverage soft materials and AI-driven control architectures represent a rapidly evolving frontier in vibration mitigation research.

This Research Topic presents the most recent developments in vibration mitigation techniques for space manipulators and includes four important studies resulting from the call. These studies address several aspects of vibration control for space manipulators. Key areas of focus include flexible dynamics estimation via quasi-static approximation, AI-enhanced guidance and control systems, bio-inspired soft actuation, and hybrid soft-rigid grasping architectures.

Accurate measurement of elastic coordinates via sensors has historically posed significant challenges in controlling flexible space manipulators. Patel and Damaren addressed this issue by developing a model-based estimation framework that eliminates the need for direct vibration sensing. They proposed a quasi-static estimator that approximates elastic coordinates with joint torque data, enabling

Tayebi et al. 10.3389/frobt.2025.1681168

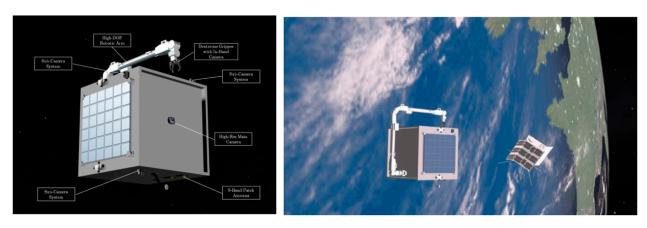
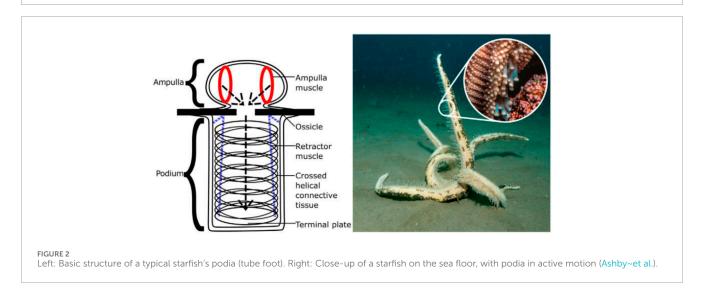



FIGURE 1
Left: Design of the intelligent orbital service spacecraft. Right: The conceptual mission framework (Hao~et al.).

precise end-effector trajectory tracking. Their simulations on singleand two-link manipulators demonstrate robust performance, even with large payloads and model uncertainties.

Conventional Guidance, Navigation, and Control (GNC) systems for spacecraft, which are designed for ground-commanded operations with limited autonomy, face significant challenges when adapting to the dynamic demands of on-orbit servicing missions. To address this issue, Hao et al. proposed an AI-enhanced visual GNC system as an intermediate solution between conventional architectures and fully autonomous systems of the future. Their approach combined a deep learning-based algorithm that estimates target pose from 2D images without requiring prior knowledge of the target's dynamics, and a learning-based motion planner that generates manipulator trajectories while minimizing spacecraft attitude disturbances. The visual GNC system was exemplified through the simulation of a conceptual mission, involving a microsatellite tasked with the on-orbit manipulation of a noncooperative CubeSat. Figure 1 illustrates the design of the intelligent orbital service spacecraft and outlines the conceptual mission framework for capturing and servicing a non-cooperative target. Their work demonstrates the potential of AI to enhance autonomy in space robotics, particularly for non-cooperative target capture.

Actuators play an important role in controlling space manipulators. Ashby et al. introduced bio-inspired soft actuators that use dielectric elastomer transducers (DETs) as lightweight artificial muscles for space applications. Inspired by the starfish podia shown in Figure 2, their inflatable DET-based actuator combines deployable structures with proprioceptive capabilities, enabling compact stowage during launch and adaptive operation in zero-gravity environments. The study highlights the advantages of soft robotics in space, where mass and volume constraints are critical. These actuators show particular promise for applications requiring adaptable, mass-efficient systems in an unstructured orbital environment.

Dontu et al. discussed the development of a hybrid soft gripper designed for delicate object manipulation and validated through real-world robotics competitions. Their vacuum-actuated design integrates soft fingers with rigid components and task-specific modules to balance compliance and precision. By refining the gripper through successive iterations, the work demonstrates the importance of adaptable, hybrid designs for handling diverse objects in unstructured environments.

These studies collectively illustrate three essential developments in space manipulator design through model-based estimation to

Tayebi et al. 10.3389/frobt.2025.1681168

overcome sensing limitations in orbit, AI-driven autonomy to enable real-time adaptation, and innovations in materials and actuation. Looking ahead, the field must address key challenges in technology readiness levels and orbital validation, particularly regarding soft robotic components in space environments.

Author contributions

JT: Writing – original draft, Writing – review and editing. TC: Supervision, Writing – review and editing. XW: Writing – review and editing. AM: Writing – review and editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Chen, T., and Shan, J. (2019). Distributed control of multiple flexible manipulators with unknown disturbances and dead-zone input. *IEEE Trans. Industrial Electron.* 67 (11), 9937–9947. doi:10.1109/TIE.2019.2955417

Liu, M., Wang, Z., Ikeuchi, D., Fu, J., and Wu, X. (2021). Design and simulation of a flexible bending actuator for solar sail attitude control. *Aerospace* 8 (12), 372. doi:10.3390/aerospace8120372

Mishra, A. K., Mondini, A., Del Dottore, E., Sadeghi, A., Tramacere, F., and Mazzolai, B. (2018). Modular continuum manipulator: analysis and characterization of its basic module. *Biomimetics* 3 (1), 3. doi:10.3390/biomimetics3010003

Tayebi, J., Han, C., and Yu, Y. (2022). Disturbance observer backstepping sliding mode agile attitude control of satellite based on the anti-saturation hybrid actuator of the magnetorquer and magnetically suspended wheel. *Part G J. Aerosp. Eng.* 236 (13), 2817–2828. doi:10.1177/09544100211069699

Tayebi, J., Chen, Y., Chen, T., and Jia, S. (2025). Attitude control of flexible satellite *via* three-dimensional magnetically suspended wheel. *Appl. Math. Mech.* 46 (3), 555–572. doi:10.1007/s10483-025-3232-7

Xie, Z., Chen, X., Wu, J., and Wu, X. (2025). Non-overshooting fixed time control of free-flying space robotic manipulators with output constraints: an inverse optimal approach. *Aerosp. Sci. Technol.* 161, 110079. doi:10.1016/j.ast.2025.110079