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Current industrial robots deployed in small and medium-sized businesses (SMEs)
are too complex, expensive, or dependent on external computing resources.
In order to bridge this gap, we introduce an autonomous logistics robot that
combines adaptive control and visual perception on a small edge computing
platform. The NVIDIA Jetson Nano was equipped with a modified ResNet-
18 model that allowed it to concurrently execute three tasks: object-handling
zone recognition, obstacle detection, and path tracking. A lightweight rack-
and-pinion mechanism enables payload lifting of up to 2 kg without external
assistance. Experimental evaluation in semi-structured warehouse settings
demonstrated a path tracking accuracy of 92%, obstacle avoidance success
of 88%, and object handling success of 90%, with a maximum perception-to-
action latency of 150 m. The system maintains stable operation for up to 3 hours
on a single charge. Unlike other approaches that focus on single functions
or require cloud support, our design integrates navigation, perception, and
mechanical handling into a low-power, standalone solution. This highlights its
potential as a practical and cost-effective automation platform for SMEs.

KEYWORDS

autonomous robot, edge Al, jetson nano, ResNet-18, path following, collision
avoidance, adaptive control, object handling

1 Introduction

The evolution of Industry 4.0 has changed the way logistics and manufacturing
industries operate today, highlighting the importance of intelligent and autonomous systems
that can adapt to changing operational needs. Crucial warehouse tasks like safely handling
items through autonomous product navigation and accurate obstacle avoidance demand
responsive robotic platforms that run without the need for centralized monitoring or human
input. The early developments of autonomous robots began with rule-based and fuzzy
logic approaches to implement indoor navigation, offering basic autonomous behavior but
limited adaptability in complex settings (Ishikawa, 1991). A basic machine intelligence by
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learning from the data was made possible through the Artificial
Neural Networks (ANNs) (Krogh, 2008). Among many neural
architectures that were developed, Convolutional Neural Networks
(CNNs) have become popular because of their extraordinary
performance in visual perception tasks like object detection and
tracking (Albawi et al, 2017). Further success was achieved
by the introduction of deep learning models. However, the
model deployments in real-world robotics applications face
numerous challenges, including the high dependence on complex
computational and cloud infrastructure requirements, leading
to latency, bandwidth, and privacy concerns (Chen and Ran,
2019; Li et al,, 2019). Technological improvements to meet the
computational demands have led to the emergence of deep learning
and Edge Al-based solutions to bridge the gap between real-time
intelligence and resource constraints (Wang et al., 2019). Edge
devices possess embedded resources, including GPU computational
cores, enabling them to perform cloud-independent, localized data
processing, accomplishing great performance at less response time,
critical for robotics applications.

Figure 1 illustrates a typical Edge Al-based warehouse
robot, highlighting its core functional components. The robot is
equipped with an embedded GPU capable of performing vision
perception, edge Al inference, navigation, and object handling
tasks, emphasizing decentralized decision-making and actuation
capabilities without the cloud infrastructure, making it ideal for
real-time logistics tasks in warehouse environments. Edge Al
devices like NVIDIA Jetson Nano offer a good amount of GPU
resources to support real-time inference on lightweight CNN
models. This enables robots to perform real-time on-premises
perception and decision-making without external computational
infrastructure. These solutions, coupled with efficient deployment
frameworks, can empower them to become low-power and fully
autonomous robotic systems capable of operating in infrastructure-
constrained settings like warehouses. With an emphasis on visual
inference, path tracking, and autonomous handling capabilities,
recent advancements in edge robotics have shown a great deal
of promise for warehouse applications (Zhao et al, 2022).
Lightweight vision models like YOLO versions have been deployed
in research [28], and SLAM-based navigation has been integrated
into embedded systems [29]. The Jetson Nano is commonly
used as a benchmark for performance under power constraints.
Even with these advancements, current implementations usually
concentrate on discrete features and infrequently integrate full
mechanical handling in a small, edge-deployed platform. By offering
a comprehensive system that integrates perception, navigation,
and object manipulation inside an affordable, modular robotic
framework, the current study overcomes this constraint.

To summarize, modern warehouse industrial robots need to
quickly adapt to changing scenarios to achieve high throughput and
operational agility. The traditional automation solutions perform
dynamic activities, including multi-point navigation, obstacle
handling, and custom object manipulations, which heavily depend
on centralized complex computational and cloud infrastructure
required for control operation, making it difficult to provide the
required flexibility. The autonomous robots built on the NVIDIA
Jetson Nano edge Al platform can make dynamic decisions at the
edge due to embedded GPU cores, which can easily run lightweight
deep learning models to perform vision-based perception and
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FIGURE 1
Edge Al-based autonomous warehouse robot.

navigation operations. High computation on the edge in the
warehouse automation ensures affordable and scalable solutions,
making them ideal for small and medium-sized logistics businesses.
The key contributions to our proposed work are as follows:

i. The development and implementation of a compact Edge AI-

based logistics robot.

ii. Integrate and validate the ResNet-18 model for real-time path
tracking and obstacle detection operations.

iii. Design a rack-and-pinion mechanism to implement payload
lifting/dropping tasks.

iv. Demonstrate the bot’s navigation and maneuverability abilities
in diverse warehouse environments.

In contrast to current systems, which generally separate
perception and actuation pipelines, the proposed method achieves
the precise integration of mechanical control and visual inference
in a low-power, standalone design. This enables navigation, obstacle
avoidance, and payload handling simultaneously, enhancing the
usefulness and affordability for SMEs operating in constrained
warehouse environments. The rest of the paper is structured as
follows: The literature on autonomous robotics, object detection,
and Edge Al in logistics is reviewed in Section 2. The methodology,
comprising the hardware design, locomotion, control logic, and
system architecture, is described in Section 3. The experimental
setup and findings are described in Section 4. Section 5 concludes
the study with key findings and makes recommendations for
future improvements, like combining reinforcement learning and
sensor fusion.

2 Literature review

The early autonomous robots employed fuzzy logic-based
strategies (Ishikawa, 1991), but they lacked the dynamicity to
deal with complex, unpredictable scenarios. Artificial Neural
Networks (ANNs) based pattern recognition algorithm led to a
significant advancement in machine intelligence (Krogh, 2008).
Convolutional Neural Network (CNN) models performed extremely
well in tasks involving object recognition and image interpretation
(Albawi et al, 2017). CNNs' high computational demands and
strong reliance on cloud connectivity limit their deployment in
applications requiring real-time decision-making at low latencies.
To overcome these challenges, Edge AI has emerged as a more
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suitable solution that enables neural networks to be run locally on
embedded devices, thereby improving responsiveness, data privacy,
and resilience in environments with limited internet access (Chen
and Ran, 2019; Li et al., 2019). Technologies like federated learning
and edge-buffering have further boosted distributed intelligence
in robotics (Wang et al., 2019).

You Only Live Once (YOLO) object detection algorithms have
transformed visual perception performance by demonstrating their
real-time high detection precisions (Cahyo and Utaminingrum,
2022; Wang et al, 2022). In industrial research, YOLOv4
was deployed on Jetson Nano to perform nameplate
recognition, demonstrating lightweight detection tasks (Cahyo
and Utaminingrum, 2022) for edge deployments. Advanced
architectures such as YOLOv7 (Wang et al., 2022) further provided
adaptive and high object detection through federated learning,
making them suitable for real-time robotic applications. The
lightweight MobileNet_v2 (Ramesh, 2024) model deployment on
edge robots like JetBot (Open Source Robotics Foundation, 2025)
offers the right balance between detection accuracy and power
optimization. Even though these solutions produced good detection
and tracking performance, they still lack in carrying out physical
manipulation or multi-tasking operations.

However, most deployments discussed earlier are limited to
visual inspection tasks and do not perform object manipulation or
real-time control tasks. Various researchers worked on multiple
robotic platforms to overcome these practical logistics and
inspection challenges, but they were unsuccessful in achieving
the required objectives. Despite these attempts, many existing
systems are restricted to single-task operations, rely on static
settings (Hercik et al., 2022), or lack fusion mechanisms for object
manipulation, collision detection, and control tasks in real time
(Salimpour et al., 2022; Alfiya, 2025). Few researchers highlighted
these shortcomings and provided valuable insights, including
implications on product quality control (Ebayyeh and Mousavi,
2020). For example, a mobile platform-based plant control system
(Arulprakash and Aruldoss, 2022) lacked onboard intelligence
and, as a result, heavily relied on centralized computing systems.
Many attempts have been made to implement automated object
detection tasks and control at good speeds through improvements
in model generalization (Arulprakash and Aruldoss, 2022). Few
attempts were made to build a mining (Alfiya, 2025) and rail-
guided inspection (Cheng and Xiang, 2020) robot for autonomous
navigation and object interaction, but they lacked path flexibility.
Researchers built Autonomous Mobile Robots (AMR) (Florescu
and Barabas, 2020) for smart factory environments through the
centralized command centers; however, they lacked AI decision-
making (Hercik et al., 2022) required to achieve full autonomy. They
also highlighted the need for flexible mobile automations very much
required in Industry 4.0 manufacturing systems. There are only a
handful of systems that contain efficient and cost-effective edge
inference, object detection, and autonomous navigation integrated
components. However, they still face challenges in handling
dynamic location tracking, multi-sensor fusion (Alatise and Hancke,
2020), and Simultaneous Localization and Mapping (SLAM) for
autonomous systems (Open Source Robotics Foundation, 2025),
exposing the need for further enhancements in computer vision
algorithms.
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Al-powered packing and logistics systems showed some
improvements in automation (NVIDIA Corporation, 2025) but
still rely on input for changes or new planned routes. A conveyor
belt robot completely focuses on a dedicated quality control
(Szrek et al., 2022) task, revealing its limited operation. Such robots
are built for anomaly detection-focused solutions (Salimpour et al.,
2022) and typically function as monitoring tools rather than
physically carrying out tasks. These drawbacks highlight the need
for a new generation of autonomous warehouse robots to carry
out visual perception (Szrek et al., 2022), object manipulation,
as well as control (NVIDIA Corporation, 2025a) and dynamic
navigation decisions at the embedded edge computing platforms
that are Al-capable (Alfiya, 2025). These automated AI-driven
logistics (Hassoun et al., 2022) solution developments will certainly
align with the broader framework of Industry 4.0 technologies.
Jetson Nano (NVIDIA Corporation, 2025a; NVIDIA Corporation,
2025b) edge AI solutions are specifically tuned for deployment
in various applications, including indoor localization (Cahyo and
Utaminingrum, 2022), industrial inspection (Hercik et al., 2022),
and quality monitoring (Salimpour et al., 2022) applications.

To summarize, a considerable gap still exists in the development
of small, affordable autonomous systems that combine Edge Al
with real-time navigation, obstacle avoidance, and object handling
capabilities. Even with advancements in edge computing and
vision-based detection, most current solutions lack integrated
mechanisms for dynamic object interaction, rely on static
surroundings, or use centralized control architectures. Furthermore,
autonomous operation and real-time decision-making are
frequently impeded by inadequate onboard computing capabilities.
Few studies provide a comprehensive strategy that integrates
these elements into a self-contained, scalable platform appropriate
for unstructured warehouse environments. This emphasizes how
urgently lightweight, reasonably priced robotic systems that can use
Edge Al to carry out end-to-end logistics activities on their own are
needed. By combining real-time path following, obstacle avoidance,
and object handling into a small, affordable platform powered
by the NVIDIA Jetson Nano (NVIDIA Corporation, 2025a), the
proposed Edge Al-based autonomous logistics robot overcomes
current warehouse automation limitations. It does this by utilizing
onboard ResNet-18-based deep learning models and adaptive
control logic to eliminate the need for external computation, enable
low-latency inference, and ensure dependable operation in dynamic,
unstructured environments. This fills important research gaps about
centralized control, static deployment constraints, and the lack of
integrated manipulation capabilities.

3 Methodology

The development of the autonomous robot for logistics
applications involves a multi-stage approach and a modular design
approach involving system architecture, dataset preparation, model
training, hardware integration, and real-time testing.

The block diagram in Figure 2 describes the proposed
logistic bot system architecture, comprising Edge AI JetBot
(NVIDIA Corporation, 2025) at the bottom, and in Top-
Feeding Lifting Mechanism. JetBot the 4GB
Jetson Nano (NVIDIA Corporation, 2025a), which receives user

contains
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TOP - FEEDING LIFTING MECHANISM
L298N Motor Driver — Motor DC
JETBOT
INPUT PROCESSOR OUTPUT
Rasberry Pi
CSl Camera Motor DC
> JetsonNano | L_,,
4GB
GUI Display
Program
JETBOT

FIGURE 2
Block Diagram of the proposed logistic bot system.

inputs through the GUI interface and the real-time camera feeds
through a 12 MP wide-angle (4608 x 2592) Raspberry Pi Camera.
Jetson Nano performs obstacle detection, marker recognition, and
path following tasks by processing the input video on ResNet-18-
based deep learning inference frameworks. The processor directly
controls the DC motor independently, which is connected via the
L298N motor driver over Jetson Nanos GPIO pins, required to
achieve precise vertical motion of the lift, enabling autonomous
pickup and placement of objects.

3.1 Dataset preparation

To train the ResNet-18 model deployed on the Jetson module,
we collected the datasets in real time. We followed separate robot-
paths following obstacle detection strategies while acquiring the
dataset. We followed a regression-based path-following approach
where we manually annotated a green target point (JetBot path) on
the live image frames to represent the desired movement direction.
To improve dataset diversity and generalization, we operated the
robot to travel at different positions, viewing angles, and orientations
under diverse lighting conditions, including overexposure, shadows,
and glare. Next, we adopt a classification-based strategy for
collecting obstacle detection datasets, where we label each image
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either as “Free Path” or “Destination Arrived,” required for robot
navigation in the field of view, as illustrated in Figures 3a,b. Any
other scenarios will be treated as “Obstacle Detected,” and the
bot will perform a collision avoidance maneuver to continue the
navigation. We used the labelimg tool to perform data augmentation
operations, such as scaling, zooming, flipping, and mosaicking,
required to enhance the model’s robustness while avoiding model
overfitting. A total of 650 pre-processed images were split into 80%
(training) and 20% (validation) to carry out experiments.

3.2 Model training and optimization

3.2.1 Model selection

ResNet-18 was chosen, focusing on striking a balance between
operational accuracy and computing requirements rather than at
random. Although deeper models like ResNet-50 or ResNet-101
offer slight improvements in accuracy, they also introduce inference
delays of more than 250 m, which interfere with the real-time
responsiveness needed for obstacle avoidance and navigation. On
the other hand, lighter models like SqueezeNet and MobileNet
show faster inference, but when used for multi-task execution, their
decreased representational depth results in lower accuracy. The
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(b)

FIGURE 3
Robot path navigation dataset samples (a) Free Path, (b) "X" marker

indicating Destination Arrival.

best compromise was offered by ResNet-18, which guaranteed sub-
150 m inference latency while preserving consistent accuracy in
marker recognition, obstacle classification, and path prediction. It
is the most sensible option for deployment on the Jetson Nano edge
platform because of its performance and speed balance.

The accuracy and inference latency relationship for several
ResNet designs (ResNet-18 through ResNet-101) when deployed on
mobile CPUs, GPUs, and edge devices is shown in Figure 4. The
results are presented as mean values with 95% confidence intervals
(CI). The findings’ statistical reliability is increased by the inclusion
of CIs, which guarantees that observed performance differences
are not the result of random variation. While deep networks like
ResNet-101 have the highest recognition accuracy (up to 92% =+
0.74% on GPUs and 83% + 0.93% on edge devices), they also
have much longer inference times (peaking at 250 + 6.20 m on
edge devices and 300 + 7.44 m on mobile CPUs). The lightweight
ResNet-18 model, on the other hand, has quicker response times
(100-120 m) and maintains an accuracy range of 72% * 0.87% to
85% * 0.50%, depending on the Platform (NVIDIA Corporation,
2025b). This trade-off emphasizes how latency in dense models
might impede real-time applications even when they maximize
accuracy. This balance makes ResNet-18 an appropriate choice for
resource-constrained applications where minimal accuracy trade-
offs are acceptable and lower latency is crucial, including real-time
path tracking and object recognition on embedded platforms like
the Jetson Nano.

Dense models, such as ResNet-101, produce greater inference
times (up to 300 msec on mobile CPUs and 250 msec on edge
devices), at the cost of higher accuracy (up to 92% on GPUs and 83%
on edge devices). On the other hand, ResNet-18 offers lower latency
(100-120 msec) with adequate accuracy (72%-85%), making it a
suitable choice for real-time path following and object recognition
tasks on a resource-constrained edge platform (Jetson Nano).

3.2.2 Multi-task learning

The modified ResNet-18 design, which is optimised for real-
time perception on embedded devices with constrained computing
power, is shown in Figure 5. The network’s extracted features
are directed into three distinct task heads, as shown in the top
section of Figure 5a. It comprises the Path Prediction Head, which
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uses Mean Squared Error (MSE) loss to generate continuous
directional outputs (x, y). It also contains the Obstacle Classification
Head, which uses Softmax activation and Categorical Cross-Entropy
(CCE) loss to distinguish between free paths and obstacles.

Finally, the Flag Detection Head uses multi-class classification
and CCE loss to identify different handling zones. The ResNet-
18 model’s basic architecture is described in the centre part (b),
which begins with an initial convolution and pooling layer and
progresses to residual blocks that extract hierarchical features
with progressively larger filter sizes. The residual block design,
which combines the input and processed output through identity
mapping to improve gradient propagation and training stability,
is shown in the bottom portion (c). This architecture improves
computing efficiency and facilitates simultaneous inference by
sharing convolutional features across workloads, which makes it
especially appropriate for deployment on low-power devices like the
NVIDIA Jetson Nano.

3.2.2.1 ResNet-18 architecture
For effective real-time perception on a resource-constrained

embedded platform, the CNN-based ResNet-18 architecture offers
the best possible trade-off between computational overhead and
representational depth (NVIDIA Corporation, 2025b). We trained
this model on our custom dataset over multiple epochs to
ensure high generalization and avoid overfitting. Post-training, we
optimized the model using the NVIDIA TensorRT framework to
reduce the inference latency to approximately 100-150 milliseconds,
which is crucial to achieve real-time performance on Jetson Nano
edge devices. As shown in Figure 5b, the ResNet-18 architecture is
made up of an initial 7 x 7 convolution kernel layer followed by
a 3 x 3 max-pooling operation. Next, the network passes through
64, 128, 256, and 512 residual stages, each comprising two 3x3
convolutional layers and progressively deeper layers. Each block’s
output is routed via a global average pooling layer, a fully connected
layer, and a SoftMax classifier. The final output is obtained in
Equation 1 by directly adding the input x to the output of the internal
transformation F(x) in each residual block, as seen in Figure 5c.

H(x) = F(x,{W;}) +x @

The residual function in Equation 2 is represented by, F (x, {W,})
which comprises two stacked convolutional layers with weights W,
and W,, interleaved by the ReLU activations.

F(x) =W, -ReLU(W, - x) (2)

This identity map design is essential for reducing the vanishing
gradient problems and facilitates the successful convergence
of deeper networks when we train them on noisy, real-
world data (Cahyo and Utaminingrum, 2022) with significant
visual variance.

To facilitate multi-task robotic perception, the last completely
connected layer was modified to concurrently support:

« Directional path prediction: For motion direction (x,y) € R?,
directional route prediction is a regression problem that yields
a continuous output.

o Obstacle classification: SoftMax activation models the
obstacle classification problem as a binary classification
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issue with output pe[0,1] and activation function as
described in Equation 3.

A3)

« Flag detection for object handling zones: For object handling
zones, flag detection is trained using Categorical Cross-Entropy
(CCE) loss for multi-class recognition and Mean Squared Error
(MSE) for regression as defined in Equation 4.

Lia = A -MSE_y + 1, - CCE +13-CCEppge  (4)

patl obstacle

Where A,,1,,A; are task-specific weighting coefficients.

We employ the Adam optimizer to train the model for over
70 epochs, and with batch normalization after each convolution
is applied to speed up the model convergence. The model is
trained with images containing various lighting conditions, angle
distortions, and background complexities, and hence demonstrating
its robust inference (Krogh, 2008; Albawi et al., 2017), complying
with real-time object handling, collision avoidance, and warehouse
navigation (Wang et al,, 2019; Cahyo and Utaminingrum, 2022)
operational requirements. Beyond the use of ResNet-18, the model’s
customized adaptation for multitask execution in a computationally
restricted environment is the main scope of our work. The network
is specifically designed to recognize visual zones for payload
interaction, classify barriers, and estimate navigation direction, all
at the same time. Unlike previous systems that frequently just
concentrate on object detection, the suggested design combines
actuation mechanisms and vision-driven triggers, enabling real-
time control and decision-making on an inexpensive edge platform.
The degree of autonomy that can be attained by embedded
robotic systems used in logistics environments is increased by this
method.

3.3 Controlling and lifting mechanism

3.3.1 Mechanical design

Figure 6a illustrates the physical 3D model design of the vertical
lifting mechanism designed on a robot chassis. The rack-and-
pinion lifting mechanism accomplishes the lifting operations by
vertically rotating a spur gear using a 12V, 10 RPM DC gear
motor.

The LM8UU linear bearings and 8 mm steel rods together guide
the payload up to 2 Kg, guaranteeing smooth vertical motion with
little lateral deviation. To carry the payload during transportation,
a specially designed light-weight object holder made up of acrylic
material with movable rails and an anti-slip foam lining is mounted.
The actual robot with the lift mechanism used in our work can
be seen in Figure 6b.

3.3.2 Electrical design

To isolate the lift actuation and processor computational loads,
we use a dual-channel power system with a battery management
system (BMS) for safer operations (Battery University, 2025) in
the robot. A lithium-ion battery pack with a 12V buck converter
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powers the lift motor, while another battery pack powers up
the Jetson Nano inside the JetBot. A twin H-Bridge driver
L298N is interfaced with the GPIO pins of the Jetson Nano
to implement precise motor control, and lift speed as well as
directional motion are controlled with the help of Pulse Width
Modulator (PWM) generation method. This bot architecture
can provide mechanical actuation, path navigation, and visual
perception with real-time decision-making capabilities, which are
required for their deployment in autonomous warehouse logistics
applications.

3.4 System innovation highlights

The proposed robotic platform combines mechanical actuation,
autonomous navigation, and visual inference into a small,
edge-deployable device, introducing significant improvements.
While ResNet-18 and Jetson Nano have been used separately
in previous research, the main innovation of this study is how
they were integrated to adapt for multitask execution on limited
hardware.

3.4.1 Multitask visual inference on edge

A modified version of ResNet-18 has been created to carry out
obstacle categorization, pickup/drop-off zone detection, and path
direction prediction all at once. Jetson Nano does all these activities;
therefore, there is no need for extra GPUs or cloud infrastructure.

3.4.2 Integration of visual-to-mechanical control

The system creates a direct connection between actuator orders
and visual outputs. Detected visual flags activate a rack-and-
pinion lifting mechanism, allowing for real-time object pickup and
positioning without the need for external computation or human
intervention.

3.4.3 Modular and cost-effective design

The robot is designed to be inexpensive and easily customizable
using off-the-shelf parts and open-source software. Because of its
architecture, which facilitates quick prototyping and upkeep, small
and medium-sized businesses (SMEs) with little technical expertise
can use it.

3.4.4 Marker-based manipulation

In settings where GPS or beacons are not feasible, the robot
uses color-coded visual markers to identify task zones. With limited
warehouse layouts, this method makes object interaction and
localization easier.

All these advancements work together to build a robotic
system that is both functionally dense and power-efficient, enabling
autonomous operation in real-world environments with minimal
infrastructure. By ensuring low latency, robustness, and reusability,
the hardware-software co-design provides a workable route to
scaling warehouse automation.

3.5 Implementation

In the previous section, we discussed robot architecture with
a lift mechanism design on the NVIDIA Jetson Edge AI JetBot.
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Bot design (a) 3D vertical lift with rack-and-pinion mechanism on a bot chassis (b) physical prototype with implemented lifting mechanism mounted

on JetBot (Open Source Robotics Foundation, 2025) chassis.

The Jetson Nano runs on a full I0W performance mode, ensuring
smooth mechanical actuation, real-time perception, and decision-
making. The architecture is highly scalable and appropriate for
logistics contexts with limited infrastructure since it guarantees
total autonomy, without relying on external computation or cloud
services. Algorithm 1 explains the operational behavior of a logistics
JetBot. The robot starts video inferencing at 10 Frames Per Second
(FPS) to perform the path and obstacle detection. The ResNet-18
models scale the image frames to 224 x 224 pixels and process
them to produce the regression output required for path prediction,
and classification based on “Free Path”, “Obstacle Detected”, or
“Destination Arrived”. Path prediction output contains directional
values required by the PID controller to adjust the bot’s speed in
real-time, allowing the robot to align its position accurately with the
predicted path. If any obstacle is detected, then the robot executes
a collision avoidance maneuver to ensure further navigation. The
robot constantly monitors destination (X) markers, which act as
visual flags for pickup or drop-off zones, and upon detection, it
activates the lifting mechanism to perform either retrieving or
placing items. The entire system operates at a 10 Hz frequency,
accomplishing the above-mentioned tasks at a maximum latency
of 150 msec, and 78% memory utilization, providing optimal
resource management at full operational load. Without any human
intervention, the robot can transport payloads of up to 2 KG to
the designated targets. This solution will certainly contribute to the
global autonomous logistics robot research for Industry 4.0.

4 Results and discussion

4.1 ResNet-18 model training

We trained our optimized model on a compact Jetson Nano
(JetBot) edge Al processor containing a 128-core Maxwell GPU and
Quad Core ARM Cortex-A57 CPU. We trained for over 70 epochs
with a batch size set as 16 and a learning rate of 0.001. We used
the Adam optimizer to utilize adaptive learning and measure the
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Steps:
1. START
2. Initialize and begin the live Video Inference.
3. Perform Real-Time Path and Obstacle detection.
4. IF an obstacle is detected: —Execute collision

avoidance protocol.
ELSE —Continue with path following.
5. IF a target (pickup/drop-off marker) is
detected: —Stop the robot.
—Activate the lifting
mechanism.
—Perform object pickup or
placement.
—Resume path following.
ELSE —Continue path following.
6. IF users want to STOP the Navigation —Go to
Step 7.
ELSE —Repeat Step 3 to enable
continuous seamless operation.
END

Algorithm 1. Autonomous Logistics Warehouse Robot Execution Steps.

performance using two loss functions, namely, the Mean Squared
Error for the regression-based path prediction model and obstacle or
destination (X flags) classifications with the help of the Categorical
Cross-Entropy Loss function. The input images were maintained at
224 x 224 pixel resolution to maintain the model’s computational
efficiency.

Figure 7 presents the training and validation loss curves of
the ResNet-18 model. The model’s sharp decline in both loss
metrics during the initial 5 epochs reflects the fast convergence
and efficient feature learning characteristics. After 10 epochs,
both curves stabilize and align closely, reflecting the excellent
model’s generalization ability without any signs of overfitting.
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ResNet-18 model training vs. validation loss.
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FIGURE 8
JetBot's path navigation performance indicated by Actual vs. Predicted

directional coordinate (x, y) values.

For path tracking and obstacle classification tasks, these system
characteristics enable robust visual operations even in the presence
of noise, lighting variation, and occlusion, making them ready for
real-time deployment.
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Scatter plot comparing prediction vs. actual directional control
coordinates values.

4.2 JetBot directional control prediction
accuracy

The real-time navigation performance compared with the
actual (ground truth) and predicted directional values of the
JetBot is demonstrated in Figure 8. The visual samples include
different lighting conditions, including harsh lighting, shadows,
and reflections, to assess the model’s adaptability. For instance,
Frame 1 (Top-most) in Figure 8 displays the actual directional
coordinate (x, y) values of 0.59, —0.29, and the models predicted
values of 0.45, —0.10, indicating = a 0.18 error. As observed in
each case, the predicted control values (direction and speed) closely
match the ground truth, demonstrating the model’s ability to
accurately interpret visual cues despite noise or distortion. Overall,
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Figure 6.1: Path Deviation Over Time
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FIGURE 11
Confusion matrix heat map for destination (X Mark) detection.

the model maintains directional accuracy of above 75%-88% in
visually complex scenarios, confirming the model’s strong real-
time generalization capability and its effectiveness in guiding
the robot safely through dynamic and visually noisy logistics
environments.

A scatter plot comparing actual vs. predicted directional
control values (x, y) from the test dataset is shown in Figure 9.
Both the X (blue) and Y (orange) predictions cluster around
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the diagonal, indicating great predictive fidelity and strong
alignment between model output and ground truth. The model’s
quantitative results showed a Mean Absolute Error (MAE) of
0.0634 and Root Mean Square Error (RMSE) of 0.0755. These
measurements verify that the robots visual information helps
to accurately generate motor commands required for smooth
steering controls and steady navigation through the encountered
trajectory.
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TABLE 1 Proposed logistics warehouse robots overall
performance summary.

Task Metric Performance
Path following Accuracy (%) 92%

Obstacle detection and Success Rate (%) 88%

avoidance

Reaction time obstacle Average Time (msec) 150 msec
detection

Object flag detection Accuracy (%) 88%

Object pickup and placement Success Rate (%) 90%

Object handling capacity Maximum Weight (kg) | 2 KG

Continuous operation Duration (hours) 2-3h

4.3 Semi-structured real-time
performance validation

We carried out various experiments to assess the proposed
autonomous warehouse robot’s path following, obstacle avoidance,
and object handling performance capabilities in a controlled indoor
warehouse setting. The robot’s lateral path deviation during a
continuous 60-s navigation trial is shown in Figure 10. The plot
displays real-time JetBots alignment variations in centimeters
against the optimal trajectory. The robot was able to maintain
robust path control despite encountering uneven floor or lighting
variations, with path deviations measured as minimum #*5cm
to maximum #10.5 cm, averaging out to about 0 cm. The bot’s
accurate center aligning capability is built by an adaptive PID
correction loop, which is controlled in real-time by ResNet-18’s path
prediction output.

The confusion matrix displayed in Figure 11 suggests that 90%
of the time, JetBot was able to correctly detect destination arrival
(X Flag), while 10% of the time it failed to stop at the destination.
92% of the time, the model correctly navigated the JetBot without
the presence of the X marker, and the remaining 8% of the time,
the bot stopped at the X marker while there were none. Overall, the
system exhibits reliable and effective detection capabilities that make
it appropriate for autonomous warehouse operations.

The quantitative and qualitative performance parameters of the
proposed logistics warehouse robots are summarized in Table 1
and highlighted in Figure 12, where the robot’s overall path-
following accuracy of 92.4% at the highest lateral deviation of 4.3 cm
was observed.

When it came to handling objects, the robot was able to
successfully identify X-markers (Destination) pickup and drop-off
zones, performing lift-and-place tasks successfully 90% of the time,
with maximum response time to marker detection reported at 150
milliseconds. However, warehouse areas with very low illumination
or reflecting surfaces showed a slight performance decrease,
which occasionally interfered with visual marker recognition.
Nonetheless, these critical observations highlight the Edge AI
performance supremacy through accurate real-time path navigation
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and responsive obstacle detection tasks. These results confirm that
the robot can operate autonomously in a multi-tasking warehouse
and validate the combination of mechanical actuation, adaptive
control, and deep learning-based perception in a small edge
computer platform.

4.3.1 Validation results

Further studies were carried out in dynamic, semi-structured
environments to evaluate the robustness of the suggested robotic
system outside of controlled laboratory settings. Real-world
challenges like human intervention (e.g., workers crossing routes),
different lighting conditions (e.g., bright, dim, and shadowed
regions), and irregular obstacle placements (e.g., scattered boxes
and uneven floors) were incorporated into these trials. Throughout
test settings, the robots performance remained constant with
object detection accuracy of above 90% in most conditions, and
a minor drop in accuracy of 85% reported in very low lighting
conditions. While path tracking accuracy only slightly changed
from 89% to 92%, obstacle avoidance stayed consistent under abrupt
visual disruptions, exhibiting only slight directional changes. The
system showed adaptive behavior by rerouting when obstructed
and navigating through short passages on its own. It validated
the efficiency of its perception-guided mechanical interaction
by correctly identifying and responding to visual flags, even
when they were partially covered or presented from various
angles. A summary of comparative performance under control,
shadowed lighting, human interference, and random obstacle test
conditions is illustrated in Figure 13. The robot demonstrated
resilience and operational consistency by maintaining high levels
of accuracy in core activities across these settings. These results
quantitatively demonstrate the system’s ability to function well in
actual warehouse settings, aligning with deployment conditions
in uncontrolled settings. Visually guided mechanical handling,
autonomous decision-making, and real-time obstacle navigation
are some of the features that confirm the design’s appropriateness
for low infrastructure-dependent logistical operations. In Section 5,
future improvements and scalability issues are covered in more
detail, along with the consequences of this validation.

4.3.2 Comparative analysis with state-of-the-art
The proposed platform offers a comprehensive edge-based
solution that integrates path tracking, obstacle avoidance, and object
manipulation on Jetson Nano. This system does all essential tasks
locally, guaranteeing real-time responsiveness and removing the
need for external infrastructure, unlike many warehouse robots that
only do one duty or need cloud access. A benchmarking study
was carried out against well-known frameworks, such as ROS-
driven AMR (Hercik et al., 2022), YOLOV4 on Jetson Nano (Cahyo
and Utaminingrum, 2022), MobileNetV2 on JetBot (Ramesh,
2024), and a SLAM-based navigation technique (Zhao et al.,
2022), in order to verify its efficacy. YOLOv4 has a somewhat
better detection accuracy, but it uses more power (14 W), has no
handling capabilities, and runs at a lower throughput, according
to the compared data (Table 2; Figure 14). Although MobileNetV2
performs moderately well, it is limited to visual detection and
does not provide path prediction or object manipulation. Although
ROS- and SLAM-based technologies offer dependable mapping and
localization, their centralized designs and high processing demands
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Selected Robot Task Performance

FIGURE 12
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(18-20 W) make them less suitable for SMEs and raise deployment
costs. The ResNet-18 + JetBot, on the other hand, maintains real-
time operation at 10 Hz within a 10 W power envelope while
achieving 92% path accuracy, 88% obstacle detection accuracy, 90%
handling success, and 150 m inference latency. Crucially, the robot is
made from inexpensive, readily available hardware, which makes it
a financially feasible option for small and medium-sized businesses.
For SME adoption, cost-effectiveness is just as important as technical
performance.

Our prototype built low-cost, off-the-shelf
components and is based on the ResNet-18 and JetBot
platforms, costing about USD 400-450 in total. In contrast,
commercially available Autonomous Mobile Robots (AMRs)

is using
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with comparable navigation and handling features are typically
priced in the range of USD 10,000-25,000 or higher, often
excluding maintenance and integration costs. This significant cost
differential highlights the practicality and financial viability of
the proposed design for SMEs, offering a scalable automation
solution at a fraction of the price of traditional AMRs.
Together with integrated payload handling, this blend of
speed, accuracy, latency, and affordability highlights the design’s
uniqueness and its potential as a scalable warehouse automation
platform.

The proposed platform achieves 92% path following precision,
88% object identification accuracy, and 88% obstacle avoidance
dependability, together with a 90% payload handling success rate.
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TABLE 2 Performance comparison of the proposed system against baseline robotic navigation frameworks.

Method Path

accuracy

Object Obstacle Object
detection | avoidance handling
accuracy

and key
feature

Proposed 92% 88% 88% 90%
(ResNet-18 +
JetBot).
Multi-task:
path +
obstacle +
handling

Relative
cost

Inference Power
latency usage
(ms) (W)

Speed
(Hz)

Edge
support

150 10 10 Yes Low

MobileNetV2 89% 85% 84% Not

on JetBot supported
(Ramesh,
2024).
Lightweight,
single-task
detection

180 9 8 Yes Low

YOLOV4 on 91% 92% 87% Not
Jetson Nano supported
(Cahyo and
Utaminingrum,
2022). High
accuracy, but
no object
handling

190 14 7 Yes Medium

ROS-based 93% 94% 90% 90%
AMR
(Hercik et al.,
2022).
Centralized
but require
more power

220 20 5 No High

SLAM-based 90%
navigation
(Zhao et al.,
2022). Strong
localization,
lacks
handling and
high latency

Not reported 86% Not
supported

220 20 5 No High

With an average inference time of 150 m and a 10 W power
envelope, the system is most suitable for deployment in settings
with constrained energy and computational resources. This study is
unique in that it combines mechanical actuation and real-time visual
inference on a single small unit, an area that has received relatively
little attention in the literature. Figure 14 illustrates how the system
maintains excellent accuracy on all assessed tasks, with object
handling standing out as a crucial distinction from traditional edge-
based robotic methods. When taken as a whole, these characteristics
highlight how useful the platform is for warehouse automation
applications without substantial infrastructure support. Figure 14
illustrates how the system continuously performs well on
all assessed tasks, with payload manipulation acting as a
primary distinction from traditional edge-based strategies. When
combined, these findings demonstrate that the design is a
scalable and affordable warehouse automation solution, especially
for small and medium-sized businesses where the usage of
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commercial AMRs is restricted by financial and infrastructure
limitations.

4.4 Real-world validation in SME
warehouses

The validation was extended beyond semi-structured scenarios
by conducting real-world testing in two operating SME warehouses:
a 300 m* kitting facility with limited aisles and uneven lighting,
and a 450 m* distribution hub with mixed storage and high
foot traffic. Under typical operating circumstances, more than
240 autonomous pickup-and-delivery tests were conducted,
documenting variations in lighting, human activity, and time of
day. In comparison to previous semi-structured runs, the robot
consistently maintained accurate navigation, with mean lateral
deviations of 4.5 = 2.1 cm in Site A and 4.8 + 2.4 cm in Site
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FIGURE 14
Performance comparison of the proposed ResNet-18 + JetBot system with baseline frameworks, including MobileNetV2 on JetBot (Ramesh, 2024),
YOLOvV4 on Jetson Nano (Cahyo and Utaminingrum, 2022), ROS-based AMR (Hercik et al., 2022), and SLAM-based navigation (Zhao et al., 2022).

TABLE 3 Performance of the proposed robot in SME warehouse validation compared with semi-structured trials (mean + SD or percentage).

Metric Semi-structured Site A: Distribution hub Site B: Kitting area
Path deviation (cm) 42+1.8 45+2.1 4.8+2.4
Obstacle avoidance (%) 93.5 89.2 86.5
Object handling success (%) 94.0 91.0 88.0
Latency (ms, median) 160 162 165
Endurance (h/charge) 39+0.2 38+0.3 3.7+0.3
Interventions (/100 runs) 1.2 1.6 1.8
Worker usability rating - 41+06 41+0.6

TABLE 4 Analysis of enhancement pathways for improving payload and endurance, highlighting strengths, limitations, feasibility, and expected impact.

Enhancement Key strength Limitation Feasibility Expected impact
Structural and actuator Increases payload capacity Adds weight and raises energy Moderate - requires Extends payload range from
Upgrade through stronger chassis and demand; stability must be mechanical redesign 2kgto5-10 kg
high torque lifting motors managed
High-capacity or Extends runtime by several Heavier packs increase load; High-mature technology with Improves endurance by 2-6 h,
hot-swappable batteries hours or enables hot swapping requires safe commercial availability supporting full shifts
near-continuous operation connectors
Automated docking and Provides unattended Needs dedicated docking Medium - costlier but scalable Enables sustained multi-shift
charging recharging for continuous infrastructure and precise for multi-robot fleets deployment
operation localization
Software-level power Reduces energy drawing via May slightly affect inference High - software-based and Boosts endurance by 10%-30%
optimization BMS integration and model accuracy or processing speed cost-effective without hardware changes
compression
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Three-layer scalability strategy for multi-robot systems containing
decentralized communication, cooperative perception, and
conflict-free coordination for safe and efficient warehouse operation.

B (p > 0.05). At the respective locations, obstacle negotiation
success rates were 89.2% and 86.5%, respectively, with glare,
dim lighting, and reflective flooring being the main causes of
mistakes.

In Site A and Site B, object pickup and placement were
successful 91% of the time and 88% of the time, respectively.
Occluding, markers, or problems with payload alignment were
the cause of sporadic failures. With a 95th percentile of 178 m
and a median of 162 m, latency was still minimal and well below
the 200 m cutoff. Battery longevity was consistent with controlled
experiments, averaging 3.8 + 0.3 h per charge; nevertheless, multi-
shift operations indicated that automated charging docks or hot-
swappable packs were necessary. Only 1.7 human interventions
per 100 runs were averaged, mostly during times when worker
movement was high. Feedback from warehouse employees was
positive, giving usability and safety a rating of 4.1 £ 0.6 on a
5-point scale. However, there were some minor issues raised
about noise cues and crowding in narrow aisles. Path accuracy
and latency did not significantly differ between semi-structured
and real-world circumstances, according to comparative analysis;
nevertheless, handling and obstacle performance did somewhat
deteriorate (p < 0.05) with tiny effect sizes (Cohen’s d < 0.35). Table 3
provides a thorough analysis of these findings, and qualitative
video reviews identified recurrent issues with reflective flooring,
dim or high-glare lighting, and heavy foot traffic. These issues were
all resolved with the help of useful tools like contrast markers,
modified camera settings, and designated safe passageways. When
taken as a whole, these results show how reliable the edge-Al
robotic system is in actual SME warehouses while also emphasizing
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the useful improvements required for scalable industrial

deployment.

4.5 Enhancement pathways: payload and
endurance

Despite demonstrating dependable navigation, object handling,
and obstacle avoidance, the suggested robotic platform still has two
major drawbacks for industrial deployment: a small payload capacity
of 2kg and a short operational endurance of 2-3h. Potential
enhancement pathways must be extensively assessed to guarantee
scalability and practical use in warehouse settings. The relative
advantages, drawbacks, viability, and anticipated effects of potential
tactics are compiled in Table 4.

This analysis emphasizes that to increase payload capacity,
hardware-oriented improvements like structural reinforcement and
actuator replacement are required, but they must be carefully
weighed against stability and energy consumption. The most feasible
short-term answer for endurance is offered by battery-related
improvements, particularly hot-swappable designs, while automated
docking and charging become increasingly important in large-scale
deployments. Software-level power optimization, on the other hand,
provides a quick, inexpensive way to increase runtime with little
modification. When combined, these tactics provide a methodical
road map for transforming the prototype into a reliable, expandable
system fit for actual warehouse operations.

4.5.1 Multi-robot scalability framework

To extend the current system toward large-scale deployments,
a multi-robot scalability framework can be built on three strategic
layers, as shown in Figure 15.

i. Distributed Communication (Layer 1): Every robot will
function in a peer-to-peer communication system, such
as lightweight MQTT or ROS2-DDS. By enabling direct
communication between robots on task progress, navigation
updates, and state information, this method does away with the
need for a central controller and enhances resilience and fault
tolerance in dynamic environments.

ii. Shared Perception and Information Flow (Layer 2): Robots
can use edge-to-edge networks to send compressed sensory
data, like obstacle detection and spatial mapping, to improve
collective awareness. This maintains bandwidth efficiency
while guaranteeing that perception transcends individual
sensing limitations.

iii. Coordinated Planning and Conflict Management (Layer 3):
A hybrid model can be used to control motion planning and
task distribution. To maximise task assignment, reinforcement
learning-driven scheduling will be integrated with priority-
based decision procedures. Dynamic job distribution will
be supported by auction-style allocation techniques, and
navigation collisions will be less likely using predictive
trajectory replanning.

By combining these layers, the framework facilitates safe
navigation, effective data processing, and strong coordination,
opening the door to scalable and dependable multi-robot systems
that meet the requirements of Industry 4.0 logistical operations.
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User-centric evaluation framework highlighting three focus areas for SME adoption: usability and human-robot interaction, integration with existing
workflows, and addressing adoption barriers through cost-effective support models.

4.5.2 User-centric evaluation and SME
integration strategy

An additional crucial strategy is to investigate how user-related
elements affect small and medium-sized businesses’ (SMEs) ability
to successfully implement autonomous logistics robots. In contrast
to major business entities with dedicated automation teams, SMEs
frequently lack substantial technological know-how, which can lead
to difficulties with system setup, implementation, and ongoing
maintenance. As illustrated in Figure 16, there will be three main
areas of focus for the research:

i. Human-Robot Interaction (HRI) and usability: Creating
simple dashboards, user-friendly interfaces, and workflows
requiring little setup so that operators without extensive
training may efficiently monitor and manage robotic systems.

To

needs,

ii. Integration into Existing Workflows: minimise

interruption and lower training research
interoperability with current material flow and warehouse
management system (WMS) systems.

iii. Support Mechanisms and Adoption Barriers: Reducing

reliance on qualified personnel by offering lightweight

solutions like plug-and-play modules, mobile-based control

systems, and remote diagnostics to address SME-specific

limitations about cost, training, and technical support.

The platform can be better tailored to the realities of SME
operations by methodically resolving these organisational and
human-centric issues. This will facilitate adoption and guarantee
the platform’s long-term sustainability within Industry 4.0 logistics
ecosystems.

5 Conclusion and future scope

This work offers a small, self-governing logistics robot
that combines object handling, real-time navigation, and edge-
based artificial intelligence perception on a single platform.
The robot simultaneously performs path tracking, obstacle

the NVIDIA Jetson Nano. With experimental validation in
the
dependability for small- and medium-scale warehouse automation

controlled and semi-structured environments, system’s
was confirmed with path accuracy of 92%, obstacle avoidance
success of 88%, and object handling effectiveness of 90%. It
provides a cost-effective substitute for conventional automation
techniques that divide perception and actuation or depend
on external processing because of its modular and energy-
efficient architecture, which permits real-time autonomous
operation.

Future work will strengthen safety-critical reliability by
incorporating redundancy, adaptive re-planning, sensor fusion,
and online learning mechanisms that enable real-time model
updates during deployment. Stronger chassis components, better
mechanical connections, and high-torque actuators can increase the
payload capability beyond the existing 2 kg limits, guaranteeing
steady and effective handling of heavier loads. To enhance
autonomy in complex settings, reinforcement learning can be
explored for navigation in unstructured environments, while
visual SLAM can continue to support dynamic localization, and
selective cloud-oftfloading to extend computational resources
without compromising real-time performance. The framework
can be expanded to facilitate multi-robot cooperation at
the system level by means of fleet-level administration for
effective and conflict-free operation, cooperative perception,
decentralized communication, and coordinated task distribution.
To ensure accessibility and wuseful adoption in industrial
contexts with limited resources, a user-centric evaluation and
SME-focused integration strategy can be adopted to provide
lightweight support solutions, workflow compatibility, and easy
operation.
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