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Imitation learning for legged
robot locomotion: a survey
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Imitation learning (IL) has fundamentally transformed the field of legged
robot locomotion, removing the dependence on hand-engineered reward
functions. Since 2019, this area of research has progressed rapidly, from simple
motion-capture replication to the generation of sophisticated policies using
diffusion models. This survey offers a comprehensive analysis of 35 pivotal
research works, using a structured six-dimensional framework to investigate
advancements using quadrupedal and humanoid platforms. The review also
pinpoints significant challenges related to deployment and outlines new
research directions. A key finding from the survey indicates that behavior cloning
is utilized in almost half of the analyzed studies. Moreover, data generated
through model-predictive control (MPC) now represents the most frequently
used training data source for advanced imitation learning systems.

KEYWORDS

imitation learning, reinforcement learning, legged robotics, locomotion control, sim-
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1 Introduction

Modern legged robotics has achieved remarkable milestones—robots
now navigate rocky terrain, ascend staircases, and perform industrial door
manipulation tasks. These achievements stem from three fundamental control
paradigms: model-predictive control (MPC) for optimization-based approaches,
reinforcement learning (RL) for reward-driven policy development, and imitation
learning (IL), where robots acquire skills by directly replicating expert
demonstrations.

Unlike reinforcement learning, which requires careful reward engineering, imitation
learning offers compelling advantages: accelerated development cycles, reduced
hyperparameter sensitivity, and natural scalability, when demonstration data are abundant.
Gu etal. (2025) provided a broader coverage of humanoid control methods across planning
and learning domains. Another recent survey specifically on imitation learning for general
contact-rich tasks was given by Tsuji et al. (2025) who addressed a central challenge in
robotics: enabling robots to perform tasks involving continuous physical contact, such as
assembly, insertion, polishing, and manipulation of deformable objects. In that context, our
paper focuses mostly on legged locomotion for humanoids, quadrupeds, and hybrid-form
robots.

The imitation learning landscape has considerably diversified since 2019. What began
as simple paradigm of learning from demonstrations has now branched into six distinct
methodological families:
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1. Behavioral cloning (BC): Direct supervised learning from
state—action pairs

2. Adversarial motion priors (AMPs/GAIL): Discriminator-
based realism enforcement

(DIFs):

multimodal action generation

3. Diffusion models Probabilistic ~denoising for

4. Decaying action priors (DAPs): Time-dependent teacher
guidance mechanisms

5. MPC distillation (MPC): Physics-informed MPC knowledge
transfer

reinforcement

6. Curricular hindsight

Imitation-seeded progressive learning

learning (CHRL):

7. Mimic (MM): Physics-based motion imitation baseline in
character animation

1.1 Research scope and contributions

This survey analyzes 35 key papers, most of them published
between 2019 and mid-2025, focusing exclusively on pure imitation
approaches without initial reward shaping. Our analysis provides the
following:

1. Systematic classification: A multi-dimensional taxonomy
enabling rapid literature filtering based on robot morphology,
data requirements, input/outputs, and underlying algorithm.

2. Technical comparison: In-depth pros and cons for the six
different types of emerging imitation learning approaches
mentioned above, along with key related papers.

3. Deployment insights and current trends: Practical

challenges for hardware implementation, including latency

considerations and simulation-to-reality transfer strategies.

2 Taxonomy

Table I lists the notations used for categorizing each axis of
the taxonomy, while Table 2 encodes each paper along the six
orthogonal axes. Each axis is explained and justified in the following
section, along with the categorization within each of them.

2.1 Data source

Expert data quality is the single strongest predictor of sim-
to-real success in imitation learning for legged locomotion.
Demonstration data sources have expanded beyond traditional
motion capture to encompass teleoperation logs, massive robot
trajectory datasets, and raw video footage from online platforms.
The effectiveness of imitation learning depends critically on the
quality and source of demonstration data, with current approaches
utilizing six primary data sources that present unique trade-offs
between data quality, availability, and morphological similarity to
the target robot.

Animal MoCap (A) appears in five papers (14%) and
exposes naturalistic gait phasing—the foundation of agile skills
in Laikago (Peng et al., 2020) and the dog-sized quadruped Go-
1 (Singla et al, 2019). This approach offers high-fidelity
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TABLE 1 Notation key for taxonomy.

Category Notation and description

A = Animal MoCap

H = Human MoCap

M = Expert MPC Logs

Data
T = Tele-operation or Virtual Reality (VR)

V = In-the-wild Video Logs

R = Robot Self-Logs

BC = Behavior Cloning

AMP = Adversarial Motion Prior (GAIL)

DIF = Diffusion-based Cloning

Technique DAP = Decaying/Latent Action Prior

MPC = Hamiltonian/MPC-net Distillation

CHRL = Curricular Hindsight RL

MM = Mimic

TQ = Joint Torques

Output JP = loint Positions

TS = Task-space Wrench/GRF

Q= guadruped

Robot B = Biped/Humanoid

Hy = Hybrid (e.g., biped mode on quad chassis)

S = Simulation Only

Deployment RH-ind = Real Hardware, Indoor/Lab

RH-out = Real Hardware, Outdoor/Field

OFF = Offline IL Only

Setting IL—RL = Imitation Learning Pre-training — RL

IL + ADPT = Imitation Learning + Online Adaptation

kinematic data but is typically constrained to laboratory
environments and lacks the diversity needed for robust outdoor
locomotion.

Human MoCap (H) represents eight papers (23%) and seeds
bipedal balance in humanoids (Zhang et al., 2024; Taylor et al.,
2021). Human demonstration data offer the advantage of
abundant, diverse locomotion patterns readily available from
internet-scale datasets. However, this approach faces significant
embodiment gaps due to differences in morphology, joint
configurations, and mass distributions between humans and legged
robots.
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TABLE 2 Taxonomy of imitation-learning papers for legged robots.

10.3389/frobt.2025.1678567

Paper and short title/Method Demo Tech Out ’ Robot ’ Deploy Setting
Ross et al. (2011)—DAgger: dataset-aggregation imitation M BC JP - N IL-RL
Peng et al. (2018)—DeepMimic: example-guided RL from human mocap H MM JP B S IL-RL
Peng et al. (2020)—AMP agile Laikago from animal MoCap A AMP JP Q RH-ind IL + ADPT
Lee et al. (2020)—ANYmal rough-terrain BC M BC JP Q RH-out OFF
Carius et al. (2020)—MPC-net M MPC TQ Q RH-ind OFF
Reske et al. (2021)—MPC-net multi-gait cloning M MPC TQ Q RH-ind OFF
Kumar et al. (2021)—RMA: BC + rapid adaptation R DAP JP Q RH-out IL + ADPT (hybrid IL + RL)
Escontrela et al. (2022)—AMP: adversarial motion priors quadruped A AMP JP Q RH-ind OFF
Yao et al. (2022)—Consistency video IL + adaptation \% AMP JP Q RH-ind IL-RL
Miki et al. (2022)—Robust perceptive loco (outdoor) M BC JP Q RH-out IL + ADPT
Ajay et al. (2022)—Decision diffuser: trajectory-diffusion offline RL R DIF JP - S OFF
Khadiv et al. (2023)—Sensor-space BC of MPC expert M BC JP/TQ Q S OFF
Seo et al. (2023)—Tele-op humanoid loco-manip T BC TQ B S OFF
Ding et al. (2023)—SAF-BC task-space biped gaits M BC TS B RH-ind OFF
Yang et al. (2023)—semantics-aware locomotion from human demos T BC JP Q RH-out OFF
Sood et al. (2023)—DecAP: decaying action priors R DAP TQ Q RH-ind OFF
Vollenweider et al. (2023)—Multi-AMP skill library A AMP TQ Q RH-ind OFF
Huang et al. (2024)—DiffuseLoco: diffusion-BC quad R DIF TQ Q/B RH-ind OFF
Serifi et al. (2024)—RobotMDM: text-conditioned diffusion H DIF JP B RH-ind OFF
He et al. (2024)—Visual loco-manip IL M DIF JP Q RH-ind OFF
Song et al. (2024)—Differentiable-sim BC (quad) M BC JP Q S OFF
Peng et al. (2024)—AMP: biped walk using quad framework M AMP JP Hy N OFF
Mothish et al. (2024)—BiRoDifE: diffusion policies for unseen terrain R DIF JP B S OFF
Qiu et al. (2024)—WildLMa long-horizon loco-manip T BC TQ Q RH-out IL + ADPT
Hausdorfer et al. (2024)—1-cycle latent action priors H DAP JP Q S OFF
Li et al. (2024a)—OKAMI: single video humanoid manipulation A% BC JP B RH-ind OFF
Li et al. (2024b)—CHRL: curricular hindsight RL R CHRL JP Q RH-out OFF
Zhang et al. (2024)—Humanoid walking w/human reference H AMP JP B RH-ind OFF
Narayanan et al. (2025)—GROQLoco: dataset-driven quad BC R BC JP Q RH-out OFF
Sajja et al. (2025)—Multi-task IL from NMPC logs M MPC JP Q RH-ind OFF
Shi et al. (2025)—ALMI-AMP H AMP JP B RH-ind OFF
Sood et al. (2025)—APEX: decaying action priors A DAP JP Q RH-ind OFF
(Continued on the following page)
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TABLE 2 (Continued) Taxonomy of imitation-learning papers for legged robots.

Paper and short title/Method Out Robot Deploy NE ]
Zhang et al. (2025)—Motion Priors Re-imagined A BC JP Q RH-out IL—RL
Ze et al. (2025)—TWIST: whole-body teleop imitation (humanoid) H BC JP B RH-ind IL—RL
Ma et al. (2025)—StyleLoco: GAN-distilled natural humanoid H AMP JP B RH-out IL—-RL
Niu et al. (2025)—Human2LocoMan: cross-embodiment quadruped H BC JP Q RH-ind OFF

MPC logs (M) dominate with 11 papers (31%) and are
scalable, noise-free, albeit domain-limited. Policy execution from
existing controllers—from both simulation and the robot—provides
morphologically consistent data, but this approach may be limited in
behavioral diversity.

Tele-operation (T) appears in three papers (9%) and
contributes highly diverse but inconsistent contact patterns
(He et al,, 2024; Qiu et al., 2024). Robot teleoperation provides
morphologically consistent data but is limited by the complexity of
capturing full-body locomotion patterns and the substantial effort
required for data collection.

Video (V) recordings are utilized in two papers (6%) and
provide abundant, diverse locomotion data from internet-scale
sources at low cost, capturing natural behaviors without expensive
motion capture equipment or specialized environments. However,
significant embodiment gaps between video subjects and robots
create complex morphological mismatches, while extracting
actionable robot control data from visual observations requires
sophisticated computer vision and physics-informed processing
techniques. Robot self-logs (R) appear in six papers (17%) and scale
to thousands of trajectories but carry severe covariate shift, along
with video data. Both video and robot self-logs offer unprecedented
scalability but require addressing technical challenges related to
embodiment gaps and context translation.

2.2 Imitation learning technique

As mentioned in Section 1, IL for legged robot locomotion
now spans a spectrum of method families—including BC, AMPs,
DIFs, DAPs, Hamiltonian and MPC variants (MPCs), and
CHRL—each differing in their use of supervision, generative or
adversarial regularization, and physical structure preservation. BC
overwhelmingly dominates with 15 papers (43%), minimizing
supervised loss in a hardware-friendly manner but remaining
sensitive to covariate drift, which arises from the difference
in the distribution of states visited by a learned policy during
deployment, as compared to training. AMP appears in eight
papers (23%), leveraging discriminators to enforce realism and
often combining multiple priors for robust, style-rich motion.
DIF represents five papers (14%), using stable denoising diffusion
models for multimodal action synthesis. MPC methods account
for three papers (9%), imposing structure or safety constraints
through Hamiltonian imitation or MPC distillation to ensure
physical feasibility. DAP methods also appear in three papers
(9%), interpreting teacher actions as priors that decay across
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time to support practical torque-space deployment, and CHRL
represents the smallest category with one paper (3%), utilizing IL asa
curriculum seed for more adaptive, hindsight-driven reinforcement
learning. This distribution reveals BC’s overwhelming practical
dominance (representing almost half of all surveyed work) while
highlighting the fields growing but still nascent exploration
of more sophisticated approaches that address fundamental
limitations through adversarial training, generative modeling,
structured priors, and online adaptation mechanisms. These six
categories define the main axes of current research and are explored
more in later sections to clarify their trade-offs and deployment
considerations.

2.3 Output interface

The control output representation fundamentally shapes
deployment feasibility and performance characteristics in legged
locomotion systems. Our survey reveals that approximately 75% of
reviewed works generate joint position (JP) targets as their primary
control output, reflecting the field’s preference for kinematic-
level commands. The position-level control approach has gained
considerable traction, particularly in humanoid robotics research,
by deliberately avoiding the intricacies of motor dynamics and
hardware-specific control loops. This abstraction significantly
simplifies the sim-to-real transfer process by delegating actuator-
level concerns to the robot’s native control stack, although it may
compromise some degree of fine-grained force control and dynamic
responsiveness.

Raw joint torques (TQs) represent a more direct but challenging
approach, offering maximum expressiveness and enabling precise
force modulation essential for contact-rich locomotion. Although
torque-level control allows seamless integration into whole-body
control architectures, it demands robust sim-to-real transfer to
handle actuator dynamics, sensor noise, and hardware limitations
effectively.

Task-space wrenches (TS)—encompassing end-effector forces
and ground reaction forces—have emerged prominently in safety-
critical applications and curricular hindsight reinforcement
learning pipelines. This renewed interest in force-controlled
legged locomotion reflects growing recognition that explicit force
reasoning can enhance robustness, safety, and adaptability. By
operating in task-space coordinates, these approaches can more
naturally incorporate physical constraints, contact force limits, and
stability margins, making them particularly valuable for applications
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requiring predictable interaction forces with the environment or
human operators.

2.4 Robot morphology

The distribution of robot platforms in legged-locomotion
imitation learning reflects both technological maturity and
emerging research frontiers. Analyzing the surveyed works
reveals clear patterns in morphology preference and deployment
environments that highlight the fields current capabilities and
limitations.

Quadrupedal (Q) platforms overwhelmingly dominate the
literature, appearing in 24 of the surveyed papers, reflecting their
inherent stability advantages and the relative maturity of four-legged
control frameworks. This strong preference stems from the natural
redundancy of quadrupeds in ground contact, which provides
greater tolerance for control errors and simplifies the sim-to-real
transfer process. Popular platforms include the ANYmal series,
Laikago, and Unitree Go-1 robots, with applications ranging from
rough terrain navigation to agile locomotion skills derived from
animal motion capture data.

Bipedal and humanoid platforms (B), while representing only
nine papers, are experiencing rapid growth, with particularly strong
momentum, in post-2023 research. This surge is exemplified by
recent works such as whole-body humanoid control using human
motion references (Zhang et al., 2024), teleoperative humanoid
locomotion and manipulation (Seo et al, 2023), and cross-
embodiment imitation learning approaches (Niu et al, 2025).
Despite being outnumbered by quadrupeds, the increasing interest
in bipedal systems reflects growing confidence in handling their
inherent dynamic complexity and the potential for more human-
like robot behaviors. Hybrid configurations (Hy), although less
common, represent an interesting middle ground where robots can
switch between quadrupedal and bipedal modes depending on task
requirements.

2.5 Deployment

The deployment distribution reveals significant challenges in
real-world application of imitation learning methods. Simulation-
only work (S) accounts for 8 out of 35 papers (23%), providing a
safe testing ground for new algorithms while highlighting ongoing
sim-to-real transfer difficulties. The majority of work focuses
on indoor laboratory deployments (RH-ind), where controlled
conditions enable reliable reproduction of learned behaviors.
Critically, outdoor hardware deployment (RH-out) appears in only 8
out of 35 surveyed works, underscoring the substantial gap between
laboratory demonstrations and field-ready systems.

2.6 Learning setting

The surveyed literature reveals three distinct paradigms for
handling the learning process in legged-locomotion imitation
learning. Pure offline imitation learning (OFF) is predominant,
appearing in 25 out of 35 papers (71%), where robot policies are
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trained entirely on pre-collected demonstration data without any
subsequent environmental interaction. This approach learns from
fixed expert datasets and deploying without further learning. The
prevalence of offline-only methods reflects the field’s emphasis on
predictable, controlled learning environments.

However, a notable shift toward adaptive learning paradigms
is emerging through two hybrid approaches. IL— RL (six papers)
follows a sequential two-phase pipeline where imitation learning
provides initialization followed by reinforcement learning that
enables skill discovery and environmental adaptation through
continued interaction. IL + ADPT (three papers) maintains a
stable base policy trained on demonstrations while incorporating
concurrent online adaptation mechanisms that make real-time
adjustments during deployment based on sensory feedback. The
growing adoption of these hybrid frameworks—representing nearly
26% of surveyed works—indicates field-wide recognition that pure
offline methods, while safe and stable, may be insufficient for the
robustness demands of real-world legged locomotion, driving a
gradual evolution toward longer-duration learning paradigms that
can continuously adapt to new environments and conditions.

3 Imitation learning methods

This section gives the details of each of the six categories of the
algorithms mentioned earlier and listed paper-wise in Table 2. The
main papers for each category are also discussed.

3.1 Behavior cloning

Despite its simplicity, BC remains a foundational approach in
imitation learning for legged robots. It offers a straightforward
supervised learning framework, where the objective is to train a
policy my(a, | s,) to map observed states s, directly to expert actions
a, by minimizing the discrepancy between the robot’s actions and
those of a demonstrator. Given a dataset of expert trajectories D =
{si, a’;}fil, the standard BC objective is to minimize the empirical risk

N
Lac(®) = £ ¢(my(5)) ) )
i=1
where €(.,.) is typically the mean squared error (MSE) for continuous
actions or cross-entropy for discrete actions (Ross et al., 2011), ﬂg(si)
is the predicted action, ai is the expert action, and N is the total
number of expert trajectories.

Three design choices govern BC performance: demonstration
fidelity, state augmentation, and feedback tracking. Sensor-space
cloning (Khadiv et al, 2023) achieves 400 Hz torque control
by ingesting only proprioception; no external vision is required
for flat terrain. For cases where vision is critical, He et al.
(2024) combined RGB-D with foot force sensors to execute door-
pushing while trotting. Although BC provides a data-efficient and
hardware-friendly pathway to policy learning, it is fundamentally
limited by its sensitivity to covariate shifts. When a BC system
encounters states outside the training distribution, errors can
compound quickly over time steps, leading to catastrophic failures,
as demonstrated by Ross et al. (2011).
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Recent research (Kumar et al., 2021; Qiu et al., 2024) addresses
these shortcomings by combining BC with online adaptation layers
or by augmenting demonstration datasets with greater diversity and
domain randomization. As a result, BC continues to be a practical
baseline for researchers and can be a critical component if one
chooses to create a more sophisticated hybrid system around it.

In their work, Narayanan et al. (2025) (GROQLoco) extended
their approach to multi-terrain logs, using domain randomization
to narrow the sim-to-real gap and achieving an 85% success rate
on rubble. They developed a single, generalist locomotion policy
capable of handling various quadrupedal robots across diverse
terrains. They achieved this by training on expert demonstrations
that include both stair and flat terrain traversal, leveraging data
gathered from several quadrupeds to encompass a wide range
of gaits and morphological diversity. The central argument of
their study is that enhancing diversity in both robot body
types and locomotion behaviors is essential for achieving robust
generalization. To validate this, they collected data using multiple
quadruped robots operating on stairs and flat surfaces. Their
generalist policy was then deployed on platforms such as the Unitree
Go-1 and Stoch-5, without requiring any additional fine-tuning
steps. The model architecture features causal attention mechanisms,
alongside GRU-based temporal modeling to effectively capture the
dynamics of locomotion across these varied settings.

Seo et al. (2023) introduced a framework Tele-Operation and
Imitation Learning for Loco-Manipulation (TRILL), which deals
with training humanoid loco-manipulation policies using human
demonstrations by using a virtual reality (VR) tele-operation
interface to collect human demo data. For humanoid robots, since
the task action space is vast, the dataset is also enormous, leading to
slow training rates. A second challenge is in terms of dealing with
contact-rich environments and the need for stabilizing dynamics.
They used a whole-body control approach to convert the task-space
trajectories into joint-torque actions and implemented policies for
humanoid bimanual operation tasks, such as picking and placing
and removing a spray cap. The main challenge noted in their work
is the control latency, which makes it more difficult to transfer the
policies to different hardware.

Qiu et al. (2024) presented a comprehensive structure for
combining whole-body control, imitation learning, and the use of
Large Language Models (LLMs) for the planning of manipulation
of a quadruped. They used VR tele-operation to collect data. The
method also develops a generalizable skill library of visuomotor
skills using imitation learning and analytical methods (such as
way-point navigation using PD-based control and LiDAR-based
SLAM for pose estimation). Finally, there is a task planning system
interfaced with LLMs that can decompose a high-level command
into small individual tasks. They deployed the controller on a Unitree
Bl quadruped with a Z1 arm for applications related to table top
grasping, button pressing, and grasping from ground. They also
showed some long-horizon tasks such as trash collection and shelf
rearrangement. The main limitations were that the success rate of the
long-range tasks was moderate, showing the need for error recovery
mechanisms.

Yang et al. (2023) presented a framework that enables quadruped
robots to adapt their locomotion behaviors based on terrain
semantics (e.g., grass, mud, and asphalt) rather than only geometric
properties. The key innovation is learning directly in the real world

Frontiers in Robotics and Al

10.3389/frobt.2025.1678567

using only 40 min of human demonstration data while maintaining
safety and efficiency. They use tele-operated data across diverse
terrains collected using a human operator using joystick commands.
The high-level skill policy selects the locomotion gait and speed from
camera images, while a low-level MPC controller is used for motor
commands. They show the policy being deployed on the Unitree A1
quadruped on a 450 outdoor trail. The learned policy is able to run
on near-maximum safe speeds on asphalt, grass, pebble, and rock
surfaces. The policy’s main limitation is it’s inability to perform agile
movements such as jumping. It can also reflect the human operator’s
cautiosness by behaving in an overly conservative manner.

Teleoperated Whole-Body Imitation System (TWIST) (Ze et al.,
2025) presents a method for humanoid tele-operation that enables
real-time whole-body motion imitation. Unlike the traditional
approach that decouples upper and lower body control or focuses
on isolated tasks, TWIST achieves coordinated whole-body skills
through a unified neural network controller. TWIST uses a three-
stage pipeline, with the first stage focused on humanoid motion
dataset curation using MoCap clips from AMASS and OMOMO
datasets. Next, a teacher-student policy is trained using proximal
policy optimization (PPO), where the teacher has privileged access
to 2-s future motion frames. Finally for the last stage, Optitrack
MoCap is used to perform real-time re-targeting for humanoid
motion generation, with a loop rate of 50 HZ for the joint targets.
They deployed the policy on the Unitree G1 and the Booster T1
(for sim-to-sim validation) for whole-body manipulation skills,
such as lifting boxes and carrying objects. They also showcased
legged manipulation, such as kicking soccer balls and opening doors
with feet. The main limitations, like other research in this area,
are tele-operation delay hindering real-time critical tasks, with no
tactile feedback.

Object-aware ~ Kinematic  retArgeting for huManoid
Imitation (OKAMI) (Li]. et al, 2024) presents a breakthrough
for teaching humanoid robot manipulation skills from single-
RGB-D video demonstrations. The key innovation is object-aware
re-targeting, which enables robots to mimic human motions while
adapting to different object locations during deployment. They
presented a two-stage training pipeline, where the first stage deals
with the reference generation, followed by SLAM in the second stage.
They integrated the GPT4V model to identify task-relevant objects
and use the modified SLAHMR model with the SMPL-H model
for full body and hand poses. Stage-2 is based on object-aware
re-targeting based on ground SLAM. Finally, they applied inverse
kinematics to convert re-targeted trajectories to joint commands.
They deployed the controller on a Fourier GR1 humanoid with 6-
DoF dexterous hands for tasks such as placing snacks on plates,
closing the laptop, closing the drawer, and bagging. However, the
pipeline only supports manipulation and no locomotion, and the
performance is inconsistent with motion speed and quality.

Niu et al. (2025) introduced a novel cross-embodiment
imitation learning framework that enables quadrupedal robots
to learn manipulation skills from human demonstrations. The
system’s core technical innovation lies in its Modularized Cross-
embodiment Transformer (MXT) architecture, which uses separate
tokenizers and detokenizers for different data modalities while
sharing a common transformer trunk across embodiments. The
cross-embodiment learning capability is particularly noteworthy,
achieving a 38.6% success rate improvement through human
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pretraining and showing strong positive transfer, despite the
large morphological gap between humans and quadrupeds.
There certainly are scalability questions regarding how effective
the approach is when handling larger-scale datasets or more
diverse robot embodiments. The system’s generalization to other
quadrupedal platforms remains invalidated.

3.2 Adversarial motion priors

AMPs represent a class of imitation learning methods based
on generative adversarial imitation learning (GAIL) (Ho and
Ermon, 2016) by leveraging a discriminator to regularize policy
learning, ensuring that generated motion remains realistic and
closely aligned with expert demonstrations. The policy is trained
within an adversarial framework: a discriminator network is tasked
with distinguishing between state-action pairs from the expert
dataset and those produced by the policy, while the policy aims
to produce behaviors that the discriminator cannot differentiate
from those of the expert. AMP methods are particularly effective
in capturing the style and naturalness of motion, which is crucial
for legged locomotion. For example, Peng et al. (2018) showed in
their DeepMimic framework that adversarial objectives are able to
produce highly dynamic and agile motions in simulated humanoids.

AMP’s discriminator inherits the reward-design burden: if it
is too weak, the policy diverges; if too strong, learning collapses.
Lee et al. (2020) mitigated this by expanding the teacher dataset
to 7k MPC trajectories, achieving 1.5m/s over gravel, while
Vollenweider’s multi-prior variant (Vollenweider et al., 2023) blends
gait styles (trot, bound, and jump) into a single policy with
92% automatic mode-selection accuracy. The hybrid biped-on-
quadruped demo (Peng et al., 2024) underscores AMP’s robustness
to morphology mismatch.

The discriminator D¢(s,a) tries to distinguish between
state-action pairs from reference motion and those generated
by the policy my(als). The task of the policy is to “fool” the
discriminator while maximizing any task-specific reward. The AMP
objective augments the standard RL objective with an adversarial
imitation term:

maxg [r(s, a)+AlogD, (s,a)] (2)

where r(s,a) is the environment or task reward, D¢(s,a) is the
discriminator’s output, and A is a weighting factor that balances task
performance and motion realism. The discriminator itself is trained
on the ability to maximize its ability to distinguish expert from
policy-generated data

maxy E o) ppert [logD¢ (s, a)] +E (g g)en, [log (1 -D, (s, a))] (3)

This is analogous to the discriminator loss in GANs, where
the goal is to correctly classify real (expert) versus fake (policy)
samples (Goodfellow et al., 2014). The policy is updated using RL
(e.g., PPO or SAC), where the reward at each step is augmented
by the discriminator’s output, encouraging the policy to generate
expert-like motions. In practice, state s often includes proprioceptive
features (joint angles, velocities, and base orientation) and
sometimes exteroceptive features (terrain and vision), while
action a is typically joint positions or torques. Overall, AMP
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has shown to produce more natural, energy-efficient, and robust
gaits than pure RL, especially when rewards are sparse or
under-specified (Merel et al., 2017).

Peng et al. (2020) combined the motion imitation from animals,
along with latent space adaptation to learn a diverse set of dynamic
locomotion skills, which are ultimately transferred to quadrupeds.
Their pipeline is divided into motion re-targeting, motion imitation,
and domain adaptation. Although motion re-targeting is often
performed using inverse kinematics solvers, motion imitation
is performed by training a policy in simulation using domain
randomization. Finally, the policy is transferred to real robots
using the sample-efficient domain adaptation process. The policy is
queried at 30 Hz for a new action at each time-step. The action space
specifies joint positions for PD controllers at each joint, after being
low-pass-filtered. The motion dataset consists of MOCAP clips from
dogs and some from artist animations.

Escontrela et al. (2022) highlighted that standard RL approaches
can yield aggressive, overly energetic behaviors due to under-
specified rewards. To address this, they used motion capture data
to create a “style-reward,” encouraging agents to mimic the style
of reference motions. This method leads to lower cost-of-transport
(CoT) and more natural gait transitions. Similarly, Zhang et al.
(2024) used an AMP-based imitation learning framework with a
motor-joint-driven humanoid, Adam, trained via PPO in Issac Gym.
They successfully demonstrated human-like, straight-knee “heel-to-
toe” gaits.

Peng et al. (2024) discussed an AMP-based approach to
adapt a learning framework designed for quadrupedal motion to
operate on bipeds. This allows them to use the front two legs to
perform useful work, while using the hind legs for locomotion.
They followed the approach of a student-teacher policy to enable
imitation learning using reference motion. For reference generation,
they used the TOWR (Winkler et al.,, 2018) library to perform
trajectory optimization (TO) for the Al biped robot. This results
in dynamically and kinematically feasible reference trajectories that
can be used for learning. The teacher policy uses a PPO algorithm
using the Issac gym simulator. They tested the policy in simulation
on different terrains, such as uniform, wave, stepping stones, sloped,
stairs, and obstacles. The policy performed well on lower speeds
and gradually worsened on higher speeds and sloped terrain, with
obstacles.

The VIAN framework (Yao et al., 2022) enables quadrupeds
to mimic animal behaviors from brief videos (3-8 seconds)
using deep RL guided by consistency-based rewards. It uses
DeepLabCut (Nath et al., 2019) for pose estimation, mapping key
anatomical points from animals to robots. VIAN handles both
periodic (e.g., walking) and aperiodic (e.g., backflip) motions,
adapting motions through seasonal decomposition for periodic gaits
and keyframe selection for aperiodic gaits. Trained in PyBullet and
deployed on the Al quadruped, VIAN achieved an 80% success
rate for dog imitation versus 55% for standard RL, highlighting the
strength of video imitation.

StyleLoco (Ma et al., 2025) introduced a Generative Adversarial
Distillation (GAD) framework that overcomes the trade-off in
humanoid locomotion between agility and naturalness. It uses two
discriminators: a teacher discriminator ensures that the student
policy maintains RL-derived agility and precision, while a dataset
discriminator enforces natural movements by referencing human
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motion-capture data (LaFAN1). Tested on the Unitree HI in
simulation and real-world settings, StyleLoco achieves agile, robust,
and natural human-like walking. The main limitation is the need for
manual tuning of discriminator weights.

Multi-AMP (Vollenweider et al., 2023) extends the AMP
framework, enabling robots to learn and seamlessly switch between
multiple motion styles within a single policy. A key highlight is
its demonstration on a wheeled-legged quadruped robot, which
can perform advanced skills such as quadruped-to-humanoid
transformation: standing upright on its hind legs, navigating on
two wheels, and returning to a seated position. The architecture
uses a dedicated discriminator for each motion style, with each
discriminator solving a least-squares task to distinguish real motion
data from policy-generated actions. Training occurs in Issac Gym
on a 16-DoF wheeled-legged quadruped, showing diverse behaviors,
including standard four-legged movement, ducking under obstacles,
and morphing between quadruped and humanoid gaits. The main
limitations include the need to generate motion data for most
skills and the challenge of tuning multiple discriminators for
stable learning.

3.3 Diffusion cloning

Diffusion cloning refers to a new type of imitation learning
paradigm that uses denoising diffusion models (originally developed
for image synthesis) to learn a set of robust robot control
policies from demonstration data. Instead of mapping states
directly to actions, a diffusion policy gradually refines a random
initial action toward a realistic, expert-like action by iteratively
denoising over multiple steps, guided by context (such as images or
language) (He et al., 2019).

These models are trained on offline demonstration data and
have shown strong generalization and robustness to out-of-
distribution scenarios compared to standard policies. Mani et al.
(2024) and Serifi et al. (2024) showed that modern variants can
condition on high-dimensional vision features and even plain text
instructions for language-conditioned behavior.

Starting with an expert action g, from demonstration, the action
is progressively perturbed over T steps with Gaussian noise:

a, = \a,a,+\1 -

where ¢€(0,1) and «, control the noise schedule (typically

(4)

decreasing over time). The policy learns to denoise: recover g,_,; from
a, conditioned on state s (and often context, such as images or text).
The denoising neural network predicts the noise ¢ added at step ¢.

(5)

¢(ap s t,c)

The training loss is typically a mean squared error (MSE)
between real noise ¢ and predicted noise ¢,

L= Euu,(,t [”?6 (at’s’ t, C) - {"2] (6)

To generate a new action, we start from pure noise ar and
iteratively apply the learned denoising model T times (for t=
T,...,1), updating a, toward a,:

7

a,y = f(aps,1:6,)
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where fdenotes the standard diffusion model update (can be model-
specific).

It gets expensive to scale RL training due to expensive rollouts.
DiffuseLoco (Huang et al., 2024) attempts to solve this problem
by denoising over a 16-step horizon at 100 Hz on Jetson Orin,
outputting torques. They solved two problems—offline learning
from various data sources and the ability to learn a set of
diverse skills by training diffusion-based policies that capture
diverse behaviors, enabling learning in both quadrupedal and
bipedal settings. They were also able to generate plans higher than
30 Hz. Their state-space is modeled as the effector’s proprioceptive
feedback-measured joint positions g, joint velocities g, base
orientation ®, and base angular velocity Q. Their action space is
the desired joint position, while goal space is the desired base
height, sagittal velocity, and desired turning velocity. The method
was also deployed on the bipedal Cassie robot but exhibited poor
sim-to-real tranfer compared to the Gol quadruped example.
The DiffuseLoco policy demonstrates good robustness against
various ground conditions and small variations in terrain. However,
robustness against a specific skill is poor.

Mothish et al. (2024) trained a single walking controller
that yields locomotion on multiple terrains. Their BiRoDiff biped
controller reaches 0.85 m/s on 15 slopes purely in sim, and hardware
transfer depends on real-time inference optimization. The training
is based on the diffusion model, generalizes on multiple terrains,
and uses offline data. RobotMDM (Serifi et al., 2024) introduces
text tokens (e.g., “low crouch”) at every denoising iteration, gesturing
toward language-grounded locomotion. They used a two-stage
process, where they first trained a Critic model from a dataset,
creating a differentiable surrogate for expected future rewards
conditioned on motion inputs. For the second stage, the Critic is
used to fine-tune a diffusion model to align with the character’s
limits and physical feasibility. For training purposes, they used the
HumanML3D dataset (Guo et al., 2022), consisting of the human
motion-capture data, re-targeted for the bipedal robot character.
However, the main limitation remains the lack of hard constraints
on motion feasibility, hence limiting its use in performance-
critical tasks. They recommended the use of physics-aware motion
generators to create new datasets for training.

He et al. (2024) presented a hierarchical RL-based controller
and a behavior cloning planner for a quadruped to perform loco-
manipulation. The high-level planning policy is based on the
diffusion-based BC approach. The main benefit of the method
is that they can carry out locomotion while performing any
manipulation task. The fundamental approach deals with collecting
data using a low-level control policy for the end-effector to follow
Bezier control points while maintaining locomotion using the
three remaining legs. The manipulation end-effector trajectory
is parametrized, and the parameters are outputs of the high-
level planner. The large-scale datasets are collected using parallel
simulation in IssacGym (Makoviychuk et al, 2021). They can
perform tasks including pressing a button, pulling handles, pushing
doors, and opening a dishwasher and achieve better success
rates than the hierarchical reinforcement learning method. The
main limitations are inference speed limitations and poor sim-to-
real transfer.

Decision diffusers (Ajay et al., 2022) introduced a diffusion
probabilistic model to generate high-quality trajectories by
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conditioning on returns, constraints, or skills, eliminating the
need for value function estimation. They presented a single
approach that handles return maximization, constraint satisfaction,
and skill composition through different conditioning strategies.
The approach is mostly applied in simulation for locomotion
tasks on HalfCheetah, Hopper, and Walker2D. They also showed
some long-horizon D4RL Kkitchen tasks, along with Unitree
quadruped simulation. The main limitations reported are stochastic
dynamics—where performance degrades in highly stochastic
environments—and limited data regimes, which make the model
prone to overfitting with small datasets.

3.4 Decaying/latent action priors

DecAP (Sood et al, 2023) addresses the fundamental
challenge of learning torque-based locomotion policies for legged
robots—more robust and compliant than position-based policies
but suffer from sample inefficiency and poor convergence to natural
gaits. They proposed a two-stage framework that leverages the
sample efficiency of position-based learning to accelerate torque-
based learning. The first stage trains an end-to-end joint position-
based policy using PPO with standard locomotion rewards, along
with collecting imitation data including joint angles, base height,
and foot height. The second stage trains a torque-based policy
using the data from the first stage. They introduced the Decaying
Action Priors (DecAP), which are torque biases calculated on the
joint angles via a PD controller. They showed that without any
domain randomization, the torque policy maintains smooth outputs
during perturbations, while the joint-position policy fails. The main
limitations are that the framework depends on offline imitation data
from position-based policy simulations. However, the framework
requires manual tuning of the PID gains for the position-based
policy. Eventually, the system transitions to a fully torque-based
policy. DecAP reports 30% shorter training time than BC while
halving torque overshoot in disturbance tests.

Hausdorfer et al. (2024) introduced latent action priors, a
novel approach that learns compressed action representations
from minimal expert demonstrations to guide deep reinforcement
learning. The latent action prior method learns a low-dimensional
latent representation of expert actions using an autoencoder. This
latent prior guides the RL and improves the performance and
generalization. z, = Encoder(a,) and @, = Decoder(z,), where z, is the
latent code and the reconstruction loss is

Lyg = z ||az—ﬁt||2
t

They demonstrated that effective action priors can be extracted

(8)

from only a single open-loop gait cycle, dramatically reducing data
requirements while improving learning performance and enabling
above-expert-level achievements. They used a nonlinear auto-
encoder with one hidden layer, and the latent space dimension is
set to half of the full action space. The policy is implemented in
Loco-Mujoco using the Unitree Al and H1 humanoids, along with
the Mujoco environment for HalfCheetah, Ant, and Humanoid.
They showed different gait transitions from walking to running to
galloping across speed ranges.

Zhang et al. (2025) introduced a hierarchical RL framework
that enables quadruped robots to generalize motion imitation skills
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from flat-terrain animal data to complex terrains by learning low-
level motion priors and adapting with high-level residuals. Their
four-step pipeline—motion processing, motion prior pre-training,
hierarchical adaptation, and sim-to-real distillation—culminates in
a real-world deployable policy on ANYmal-D using a GRU belief
encoder for sim-to-real transfer. However, the method can suffer
from mode collapse (defaulting to a single gait), does not support
non-locomotion skills (such as jumping or crawling), and excludes
highly discontinuous terrains (e.g., gaps or stepping stones).

Rapid Motor Adaptation (RMA) (Kumar et al., 2021) introduces
a hybrid structure of supervised learning for the adaptive module
with reinforcement learning for the base policy. It is a transformative
framework for enabling real-time adaptation in quadruped robots,
allowing them to traverse a wide range of challenging terrains
without requiring simulation calibration or additional fine-tuning
in the real world. They introduced a two-part system: a base
policy, initially trained using privileged (environment-specific)
information, and an adaptation module that dynamically estimates
environmental factors by analyzing recent state-action histories.
Training proceeds in two stages: first, the base policy is optimized via
PPO using privileged data about the environment; then, a separate
adaptation model is trained to infer critical environment parameters
based on the last 50 steps of the robot’s own states and actions. RMA
demonstrates deployment on the Unitree A1 quadruped for both
indoor and real-world outdoor experiments, successfully navigating
terrains such as sand, mud, grass, and irregular construction sites
filled with pebbles and cement debris. A key limitation of this
approach is its reliance solely on proprioceptive data, without
utilizing external sensors or exteroceptive cues. However, it is
important to note that RMA is not a purely imitation-based
approach. Although the adaptive module is trained in a supervised
imitation method to infer environment parameters from historical
observations, the base locomotion policy itself is optimized with
reinforcement learning using privileged information. This hybrid
mechanism distinguishes RMA from pure imitation learning
methods such as behavior cloning.

3.5 Hamiltonian and safety variants

Sajja et al. (2025) used expert demonstrations from non-linear
model-predictive control (NMPC) to train a single neural network
policy and to generalize the single policy on diverse quadrupedal
gaits. They used raw proprioceptive data including IMU and
joint-encoder measurements. A single neural network maps raw
proprioceptive data to joint-position targets, and the outputs of the
network are task-specific, one for each different type of gait (trot,
bound, etc.). However, the model did not generalize well to new gait
such as gallop or pace, showing limitations of multi-task learning.
Similarly, Khadiv et al. (2023) also used NMPC demonstrations as
an expert to learn policies directly from the proprioceptive data.
They were able to learn different gaits on the solo-12 quadruped.
They also showed that the joint-position target policy outperforms
the torque policy. The architecture consists of two networks—an
estimator network that maps measurements to states and a policy
network that maps measurements to actions. They used Pybullet
simulation environment for collecting the datasets by perturbing the
system at each re-planning stage of the NMPC. They were able to
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show that the PD policy was superior to the torque policy since it is
more robust to the function approximate error.

MPC-Net (Carius et al., 2020) presents a novel imitation
learning approach that distills MPC solutions into fast neural
network policies. The key innovation is using a theoretically
motivated loss function based on the control Hamiltonian rather
than traditional behavioral cloning, enabling robots to learn
complex control policies from minimal MPC demonstration data
while maintaining constraint satisfaction. They used a Hamiltonian-
based loss function and a linear-quadratic controller as the
expert demonstrator. The samples used for training are extracted
from neighborhoods of the optimal trajectories. They also used
a Gaussian sampling to create tubes of state-space as training
data. The main advantage is the constraint-aware learning, which
maintains physical feasibility. They showed the policy on the
ANYmal quadruped robot for trotting and static walk gaits. The
main limitations are that the resulting policy cannot outperform
MPC for the same cost function and cannot learn in the areas where
MPC does not converge.

Reske et al. (2021) presented training a single policy that learns
multiple gaits of a walking robot. They used the mixture of experts
network, where each expert is responsible for controlling one mode
of a hybrid system. The core idea is to use a single policy to replace
the teacher to control multiple gaits by distilling nonlinear MPC into
a neural network, cutting compute by 20 times and enabling 1 kHz
joint-space control on ANYmal.

Peng et al. (2020) used differentiable simulation for learning
quadruped locomotion. Their work demonstrates that by using a
differentiable simulation, they can outperform an RL PPO algorithm
in terms of sample efficiency, handling large-scale environments.
The main approach is to first split the robot-dynamics model into
a floating base and joint space. They avoided using the full of the
whole-body model that has discontinuities due to contact models
and used the single-rigid-body model instead. For training the
policy, they used the simple surrogate model and the full non-
differentiable simulator for the forward simulation. They deployed
the policy on a Mini-Cheetah for different gaits (trot, pace, bound,
and gallop) on challenging terrains.

3.6 Curriculum hindsight reinforcement
learning

Although CHRL is framed as a reinforcement learning
approach, it incorporates a teacher-student policy architecture
that bears conceptual similarities to imitation learning. In contrast,
CHRL trains a teacher policy with privileged information (e.g.,
ground-truth terrain, friction, and payload) and then distills its
behavior into a student policy with only proprioceptive inputs. This
distillation process resembles IL in that the student learns to mimic
the teacher’s actions under limited observations; the teacher is an
RL-trained agent and not a human expert. We, therefore, decide to
include CHRL in this review because its teacher-student framework
highlights a broader class of methods, where knowledge transfer
from privileged to non-privileged policies plays a role similar
to imitation. This situates CHRL at the intersection of imitation
learning and reinforcement learning with privileged information.
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Li et al. (2024b) introduced CHRL, a novel framework that
enables quadruped robots to achieve highly agile and adaptive
locomotion behaviors including fall recovery, high-speed running,
and rapid turning in real-world environments. The strategy is an
adaptive curriculum that adjusts task difficulty based on policy
performance, and the main curriculum parameters are as follows:
a) reward coefficients—joint torque penalties and energy costs; b)
domain randomization on friction and payload mass; ¢) command
ranges—linear velocities; and d) terrain difficulty—height field
variations. For the learning architecture, they used a teacher-student
policy architecture, where the teacher policy has access to the full
privileged information (ground truth terrain, friction, and payload)
and outputs a 12-dimension joint position targets. The student
policy has access to only the proprioceptive sensors, along with
added noise. They showed the policy on a custom quadruped in
outdoor grass terrains with high forward/turning speeds. The main
limitations are the usage of only proprioceptive sensors and careful
tuning of curriculum thresholds that could be tedious.

3.7 Mimic

Although adversarial motion prior methods use discriminators
to enforce motion realisim, DeepMimic (Peng et al., 2018) presents a
deep reinforcement learning framework for physics-based character
animation that combines motion imitation objectives with task-
specific goals without the use of discriminators. The framework
enables simulated characters to learn robust control policies that
can reproduce a wide range of motion clips while adapting
to environmental variations and accomplishing user-specified
objectives. The state-features include character body configuration
(link positions, rotations, and velocities) in the local coordinate
frame, while the action space includes the target joint positions. The
inputs to the model are reference motion capture clips (humans,
animals, and key framed). The policy/neural network outputs
joint positions, which are fed to PD controllers. PPO is used
with reference state initialization and early termination to stabilize
training. The rewards consist of a weighted combination of pose-
reward, velocity reward, end-effector, and a center-of-mass reward.
For training, the initial states are sampled from reference motion,
rather than a fixed starting position. They showed more than 30
skills, including locomotion, martial arts for the Atlas robot, T-
Rex, and dragon. DeepMimic offers high motion quality without
significant reward engineering and handles dynamic acrobatic skills
well. The main limitations are the PD controller tuning for each
different character and the high sensitivity in novel states. The
DeepMimic framework inspired many later works that directly clone
MPC trajectories or animal gaits. It became a default baseline in
legged locomotion before AMP, and diffusion-based approaches
were adopted and are still widely used due to simplicity and
robustness.

4 Deployment challenges

This section details some of the deployment challenges for the
several imitation learning approaches discussed so far.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1678567
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mirza and Singh

4.1 Data dependency

The data quality heavily impacts deployment success in most of
the algorithms. As an example, VR teleoperation often introduces
latency and tracking errors that propagate to learned policies, while
human operators exhibit inconsistent performance, introducing
suboptimal behaviors. There is performance drift due to facility
modifications, evolving task requirements and seasonal variations.
In some use cases, continuous demonstration collection for policy
improvement requires on-going expert availability. In terms of
data dependency, for behavior cloning methods, the covariate
drift is a significant challenge during deployment. This drift
happens when the system encounters a state outside the training
distribution, leading to poor predicted action. The covariate drift
also limits the policy not being able to discover more aggressive
behaviors, as a result of human operators being more cautious
during data collection. For AMP-based approaches, less time is
spent on reward function tuning, compared to traditional RL
approaches, where more time and effort are needed to generate
quality motion priors for each targeted style, which might not always
be feasible. Diffusion-based methods are prone to overfitting in case
of limited data. This manifests as brittle policies that succeed in
simulation but fail on hardware under slightly varied conditions
(e.g., object slippage in manipulation and unstable balance in

quadrupeds).

On the one hand, although simulation has become
an effective data source for many robot learning tasks,
modeling the complex contact dynamics accurately and

rendering photorealistic terrains are not yet possible in

simulation.

4.2 Sensor integration challenges

In most of the studies surveyed in this paper, a common
theme was the use of multimodal sensor fusion. Sensor fusion
brings complexity and often discovers new failure modes. Since
IMU bias, camera intrinsics, and joint encoder offsets change over
time, temporal alignment between the different sensor modalities
becomes critical for stable performance. A common deployment
failure is policy degradation due to small calibration drifts. An
example of that would be quadrupeds mis-stepping when joint
encoders slip by a few degrees or manipulation tasks failing due to
depth-camera bias.

4.3 Predictability and interpretability

Papers surveyed here also revealed that black-box neural
policies create deployment challenges for safety-critical applications.
The inability to explain policy decisions complicates debugging
and validation, while the lack of formal bounds on policy
behavior under perturbations poses certification challenges for
commercial deployment. For instance, a BC-trained manipulator
may unexpectedly apply unsafe forces on fragile objects, but without
interpretable mechanisms, it is difficult to anticipate or prevent
such actions.
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4.4 Sim-to-real strategies

Despite advances in domain randomization, zero-shot transfer
often requires careful parameter tuning and may fail in scenarios
significantly different from training distributions. A typical case is
legged robots trained with randomized terrain slopes in simulation
still failing to generalize to soft grass or snow, due to unmodeled
compliance. For AMP methods, manual tuning of the discriminator
is often required for stable learning. The latent representation
shift across sim-to-real transfer poses fundamental limitations as
observations that appear numerically similar may have completely
different meanings in their respective contexts. This is especially
problematic for diffusion-based methods, where latent mismatch
can accumulate, producing actions that look smooth in simulation
but destabilize real robots.

5 Future directions

Here, we list some key areas which are actively worked upon
and play a key role in the future of imitation learning for legged
locomotion.

Reducing the simulation-to-real gap: IL policies are usually
trained in simulation for safety. Translating them to hardware
often requires robust domain randomization, system identification,
and actuator modeling. Contact-rich locomotion demands tactile
and proprioceptive data, but existing sensors are limited. Future
IL frameworks should incorporate diverse sensor-data modalities
(joint positions, forces, vision, and tactile), better align human and
robot perspectives, and integrate multimodal data to teach not only
what movements to perform but also why.

Differentiable and high-fidelity simulators: Differentiable
simulators allow gradient-based optimization of policies and
promise better sample efficiency. However, legged locomotion
involves stiff contact dynamics that can lead to poor local minima.
Hence, continued work in smoothing techniques and improved
contact models are needed. Research on differentiable simulation
for IL could enable direct backpropagation through contact events
and more efficient policy training.

There lack of standard
benchmarks for loco-manipulation tasks. However, learning
benchmarks such as HumanoidBench (Sferrazza et al., 2024) and

Building benchmarks is a

MimickingBench (Liu et al., 2024) provide initial test suites but need
to be expanded. Future work should establish datasets and metrics
for evaluating IL policies across gaits, terrains, and manipulation
tasks and create open-source hardware platforms for reproducible
experimentation.

6 Conclusion

Imitation learning is maturing from a convenience tool into
a robust, multimodal paradigm for agile legged robots. Our
taxonomic analysis reveals several critical insights about the
current state of imitation learning for legged robots. Behavior
cloning remains the dominant approach, appearing in almost half
of the surveyed works, demonstrating its practical effectiveness
and hardware-friendly implementation characteristics. However,
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the field is experiencing rapid diversification, with adversarial
motion priors, diffusion-based methods, and emerging techniques
such as decaying action priors and MPC distillation gaining
significant traction.

The data landscape has undergone a fundamental shift, with
model-predictive control logs now representing the most frequently
used training data source, surpassing traditional animal and human
motion capture approaches. This transition reflects the field’s
growing emphasis on morphologically consistent, scalable data
generation methods that can produce noise-free demonstrations
while maintaining physical feasibility. The convergence of several
technological trends suggests promising directions for the
field. LLM-based generative models are beginning to enable
semantic control of locomotion behaviors, while torque-based
control approaches offer enhanced compliance and dynamic
responsiveness.
of
robotics' fundamental challenges: eliminating the need for

Imitation learning has attempted to address one
hand-engineered reward functions while achieving natural,
efficient locomotion behaviors. By enabling robots to learn

directly from demonstrations—whether from animals, humans,

or optimized controllers—this paradigm has accelerated
development cycles, reduced hyperparameter  sensitivity,
and provided natural scalability pathways for complex

behaviors.
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