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Imitation learning for legged 
robot locomotion: a survey
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1Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 2The 
University of Texas at Austin, Austin, TX, United States

Imitation learning (IL) has fundamentally transformed the field of legged 
robot locomotion, removing the dependence on hand-engineered reward 
functions. Since 2019, this area of research has progressed rapidly, from simple 
motion-capture replication to the generation of sophisticated policies using 
diffusion models. This survey offers a comprehensive analysis of 35 pivotal 
research works, using a structured six-dimensional framework to investigate 
advancements using quadrupedal and humanoid platforms. The review also 
pinpoints significant challenges related to deployment and outlines new 
research directions. A key finding from the survey indicates that behavior cloning 
is utilized in almost half of the analyzed studies. Moreover, data generated 
through model-predictive control (MPC) now represents the most frequently 
used training data source for advanced imitation learning systems.
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 1 Introduction

Modern legged robotics has achieved remarkable milestones—robots 
now navigate rocky terrain, ascend staircases, and perform industrial door 
manipulation tasks. These achievements stem from three fundamental control 
paradigms: model-predictive control (MPC) for optimization-based approaches, 
reinforcement learning (RL) for reward-driven policy development, and imitation 
learning (IL), where robots acquire skills by directly replicating expert
demonstrations.

Unlike reinforcement learning, which requires careful reward engineering, imitation 
learning offers compelling advantages: accelerated development cycles, reduced 
hyperparameter sensitivity, and natural scalability, when demonstration data are abundant. 
Gu et al. (2025) provided a broader coverage of humanoid control methods across planning 
and learning domains. Another recent survey specifically on imitation learning for general 
contact-rich tasks was given by Tsuji et al. (2025) who addressed a central challenge in 
robotics: enabling robots to perform tasks involving continuous physical contact, such as 
assembly, insertion, polishing, and manipulation of deformable objects. In that context, our 
paper focuses mostly on legged locomotion for humanoids, quadrupeds, and hybrid-form
robots.

The imitation learning landscape has considerably diversified since 2019. What began 
as simple paradigm of learning from demonstrations has now branched into six distinct 
methodological families:
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1. Behavioral cloning (BC): Direct supervised learning from 
state–action pairs

2. Adversarial motion priors (AMPs/GAIL): Discriminator-
based realism enforcement

3. Diffusion models (DIFs): Probabilistic denoising for 
multimodal action generation

4. Decaying action priors (DAPs): Time-dependent teacher 
guidance mechanisms

5. MPC distillation (MPC): Physics-informed MPC knowledge 
transfer

6. Curricular hindsight reinforcement learning (CHRL): 
Imitation-seeded progressive learning

7. Mimic (MM): Physics-based motion imitation baseline in 
character animation

1.1 Research scope and contributions

This survey analyzes 35 key papers, most of them published 
between 2019 and mid-2025, focusing exclusively on pure imitation 
approaches without initial reward shaping. Our analysis provides the 
following: 

1. Systematic classification: A multi-dimensional taxonomy 
enabling rapid literature filtering based on robot morphology, 
data requirements, input/outputs, and underlying algorithm.

2. Technical comparison: In-depth pros and cons for the six 
different types of emerging imitation learning approaches 
mentioned above, along with key related papers.

3. Deployment insights and current trends: Practical 
challenges for hardware implementation, including latency 
considerations and simulation-to-reality transfer strategies.

2 Taxonomy

Table 1 lists the notations used for categorizing each axis of 
the taxonomy, while Table 2 encodes each paper along the six 
orthogonal axes. Each axis is explained and justified in the following 
section, along with the categorization within each of them.

2.1 Data source

Expert data quality is the single strongest predictor of sim-
to-real success in imitation learning for legged locomotion. 
Demonstration data sources have expanded beyond traditional 
motion capture to encompass teleoperation logs, massive robot 
trajectory datasets, and raw video footage from online platforms. 
The effectiveness of imitation learning depends critically on the 
quality and source of demonstration data, with current approaches 
utilizing six primary data sources that present unique trade-offs 
between data quality, availability, and morphological similarity to 
the target robot.

Animal MoCap (A) appears in five papers (14%) and 
exposes naturalistic gait phasing—the foundation of agile skills 
in Laikago (Peng et al., 2020) and the dog-sized quadruped Go-
1 (Singla et al., 2019). This approach offers high-fidelity 

TABLE 1  Notation key for taxonomy.

Category Notation and description

Data

A = Animal MoCap

H = Human MoCap

M = Expert MPC Logs

T = Tele-operation or Virtual Reality (VR)

V = In-the-wild Video Logs

R = Robot Self-Logs

Technique

BC = Behavior Cloning

AMP = Adversarial Motion Prior (GAIL)

DIF = Diffusion-based Cloning

DAP = Decaying/Latent Action Prior

MPC = Hamiltonian/MPC-net Distillation

CHRL = Curricular Hindsight RL

MM = Mimic

Output

TQ = Joint Torques

JP = Joint Positions

TS = Task-space Wrench/GRF

Robot

Q = Quadruped

B = Biped/Humanoid

Hy = Hybrid (e.g., biped mode on quad chassis)

Deployment

S = Simulation Only

RH-ind = Real Hardware, Indoor/Lab

RH-out = Real Hardware, Outdoor/Field

Setting

OFF = Offline IL Only

IL→RL = Imitation Learning Pre-training → RL

IL + ADPT = Imitation Learning + Online Adaptation

kinematic data but is typically constrained to laboratory 
environments and lacks the diversity needed for robust outdoor
locomotion.

Human MoCap (H) represents eight papers (23%) and seeds 
bipedal balance in humanoids (Zhang et al., 2024; Taylor et al., 
2021). Human demonstration data offer the advantage of 
abundant, diverse locomotion patterns readily available from 
internet-scale datasets. However, this approach faces significant 
embodiment gaps due to differences in morphology, joint 
configurations, and mass distributions between humans and legged
robots.
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TABLE 2  Taxonomy of imitation-learning papers for legged robots.

Paper and short title/Method Demo Tech Out Robot Deploy Setting

Ross et al. (2011)—DAgger: dataset-aggregation imitation M BC JP – S IL→RL

Peng et al. (2018)—DeepMimic: example-guided RL from human mocap H MM JP B S IL→RL

Peng et al. (2020)—AMP agile Laikago from animal MoCap A AMP JP Q RH-ind IL + ADPT

Lee et al. (2020)—ANYmal rough-terrain BC M BC JP Q RH-out OFF

Carius et al. (2020)—MPC-net M MPC TQ Q RH-ind OFF

Reske et al. (2021)—MPC-net multi-gait cloning M MPC TQ Q RH-ind OFF

Kumar et al. (2021)—RMA: BC + rapid adaptation R DAP JP Q RH-out IL + ADPT (hybrid IL + RL)

Escontrela et al. (2022)—AMP: adversarial motion priors quadruped A AMP JP Q RH-ind OFF

Yao et al. (2022)—Consistency video IL + adaptation V AMP JP Q RH-ind IL→RL

Miki et al. (2022)—Robust perceptive loco (outdoor) M BC JP Q RH-out IL + ADPT

Ajay et al. (2022)—Decision diffuser: trajectory-diffusion offline RL R DIF JP – S OFF

Khadiv et al. (2023)—Sensor-space BC of MPC expert M BC JP/TQ Q S OFF

Seo et al. (2023)—Tele-op humanoid loco-manip T BC TQ B S OFF

Ding et al. (2023)—SAF-BC task-space biped gaits M BC TS B RH-ind OFF

Yang et al. (2023)—semantics-aware locomotion from human demos T BC JP Q RH-out OFF

Sood et al. (2023)—DecAP: decaying action priors R DAP TQ Q RH-ind OFF

Vollenweider et al. (2023)—Multi-AMP skill library A AMP TQ Q RH-ind OFF

Huang et al. (2024)—DiffuseLoco: diffusion-BC quad R DIF TQ Q/B RH-ind OFF

Serifi et al. (2024)—RobotMDM: text-conditioned diffusion H DIF JP B RH-ind OFF

He et al. (2024)—Visual loco-manip IL M DIF JP Q RH-ind OFF

Song et al. (2024)—Differentiable-sim BC (quad) M BC JP Q S OFF

Peng et al. (2024)—AMP: biped walk using quad framework M AMP JP Hy S OFF

Mothish et al. (2024)—BiRoDiff: diffusion policies for unseen terrain R DIF JP B S OFF

Qiu et al. (2024)—WildLMa long-horizon loco-manip T BC TQ Q RH-out IL + ADPT

Hausdörfer et al. (2024)—1-cycle latent action priors H DAP JP Q S OFF

Li et al. (2024a)—OKAMI: single video humanoid manipulation V BC JP B RH-ind OFF

Li et al. (2024b)—CHRL: curricular hindsight RL R CHRL JP Q RH-out OFF

Zhang et al. (2024)—Humanoid walking w/human reference H AMP JP B RH-ind OFF

Narayanan et al. (2025)—GROQLoco: dataset-driven quad BC R BC JP Q RH-out OFF

Sajja et al. (2025)—Multi-task IL from NMPC logs M MPC JP Q RH-ind OFF

Shi et al. (2025)—ALMI-AMP H AMP JP B RH-ind OFF

Sood et al. (2025)—APEX: decaying action priors A DAP JP Q RH-ind OFF

(Continued on the following page)
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TABLE 2  (Continued) Taxonomy of imitation-learning papers for legged robots.

Paper and short title/Method Demo Tech Out Robot Deploy Setting

Zhang et al. (2025)—Motion Priors Re-imagined A BC JP Q RH-out IL→RL

Ze et al. (2025)—TWIST: whole-body teleop imitation (humanoid) H BC JP B RH-ind IL→RL

Ma et al. (2025)—StyleLoco: GAN-distilled natural humanoid H AMP JP B RH-out IL→RL

Niu et al. (2025)—Human2LocoMan: cross-embodiment quadruped H BC JP Q RH-ind OFF

MPC logs (M) dominate with 11 papers (31%) and are 
scalable, noise-free, albeit domain-limited. Policy execution from 
existing controllers—from both simulation and the robot—provides 
morphologically consistent data, but this approach may be limited in 
behavioral diversity.

Tele-operation (T) appears in three papers (9%) and 
contributes highly diverse but inconsistent contact patterns 
(He et al., 2024; Qiu et al., 2024). Robot teleoperation provides 
morphologically consistent data but is limited by the complexity of 
capturing full-body locomotion patterns and the substantial effort 
required for data collection.

Video (V) recordings are utilized in two papers (6%) and 
provide abundant, diverse locomotion data from internet-scale 
sources at low cost, capturing natural behaviors without expensive 
motion capture equipment or specialized environments. However, 
significant embodiment gaps between video subjects and robots 
create complex morphological mismatches, while extracting 
actionable robot control data from visual observations requires 
sophisticated computer vision and physics-informed processing 
techniques. Robot self-logs (R) appear in six papers (17%) and scale 
to thousands of trajectories but carry severe covariate shift, along 
with video data. Both video and robot self-logs offer unprecedented 
scalability but require addressing technical challenges related to 
embodiment gaps and context translation. 

2.2 Imitation learning technique

As mentioned in Section 1, IL for legged robot locomotion 
now spans a spectrum of method families—including BC, AMPs, 
DIFs, DAPs, Hamiltonian and MPC variants (MPCs), and 
CHRL—each differing in their use of supervision, generative or 
adversarial regularization, and physical structure preservation. BC 
overwhelmingly dominates with 15 papers (43%), minimizing 
supervised loss in a hardware-friendly manner but remaining 
sensitive to covariate drift, which arises from the difference 
in the distribution of states visited by a learned policy during 
deployment, as compared to training. AMP appears in eight 
papers (23%), leveraging discriminators to enforce realism and 
often combining multiple priors for robust, style-rich motion. 
DIF represents five papers (14%), using stable denoising diffusion 
models for multimodal action synthesis. MPC methods account 
for three papers (9%), imposing structure or safety constraints 
through Hamiltonian imitation or MPC distillation to ensure 
physical feasibility. DAP methods also appear in three papers 
(9%), interpreting teacher actions as priors that decay across 

time to support practical torque-space deployment, and CHRL 
represents the smallest category with one paper (3%), utilizing IL as a 
curriculum seed for more adaptive, hindsight-driven reinforcement 
learning. This distribution reveals BC’s overwhelming practical 
dominance (representing almost half of all surveyed work) while 
highlighting the field’s growing but still nascent exploration 
of more sophisticated approaches that address fundamental 
limitations through adversarial training, generative modeling, 
structured priors, and online adaptation mechanisms. These six 
categories define the main axes of current research and are explored 
more in later sections to clarify their trade-offs and deployment 
considerations. 

2.3 Output interface

The control output representation fundamentally shapes 
deployment feasibility and performance characteristics in legged 
locomotion systems. Our survey reveals that approximately 75% of 
reviewed works generate joint position (JP) targets as their primary 
control output, reflecting the field’s preference for kinematic-
level commands. The position-level control approach has gained 
considerable traction, particularly in humanoid robotics research, 
by deliberately avoiding the intricacies of motor dynamics and 
hardware-specific control loops. This abstraction significantly 
simplifies the sim-to-real transfer process by delegating actuator-
level concerns to the robot’s native control stack, although it may 
compromise some degree of fine-grained force control and dynamic 
responsiveness.

Raw joint torques (TQs) represent a more direct but challenging 
approach, offering maximum expressiveness and enabling precise 
force modulation essential for contact-rich locomotion. Although 
torque-level control allows seamless integration into whole-body 
control architectures, it demands robust sim-to-real transfer to 
handle actuator dynamics, sensor noise, and hardware limitations 
effectively.

Task-space wrenches (TS)—encompassing end-effector forces 
and ground reaction forces—have emerged prominently in safety-
critical applications and curricular hindsight reinforcement 
learning pipelines. This renewed interest in force-controlled 
legged locomotion reflects growing recognition that explicit force 
reasoning can enhance robustness, safety, and adaptability. By 
operating in task-space coordinates, these approaches can more 
naturally incorporate physical constraints, contact force limits, and 
stability margins, making them particularly valuable for applications 
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requiring predictable interaction forces with the environment or 
human operators. 

2.4 Robot morphology

The distribution of robot platforms in legged-locomotion 
imitation learning reflects both technological maturity and 
emerging research frontiers. Analyzing the surveyed works 
reveals clear patterns in morphology preference and deployment 
environments that highlight the field’s current capabilities and 
limitations.

Quadrupedal (Q) platforms overwhelmingly dominate the 
literature, appearing in 24 of the surveyed papers, reflecting their 
inherent stability advantages and the relative maturity of four-legged 
control frameworks. This strong preference stems from the natural 
redundancy of quadrupeds in ground contact, which provides 
greater tolerance for control errors and simplifies the sim-to-real 
transfer process. Popular platforms include the ANYmal series, 
Laikago, and Unitree Go-1 robots, with applications ranging from 
rough terrain navigation to agile locomotion skills derived from 
animal motion capture data.

Bipedal and humanoid platforms (B), while representing only 
nine papers, are experiencing rapid growth, with particularly strong 
momentum, in post-2023 research. This surge is exemplified by 
recent works such as whole-body humanoid control using human 
motion references (Zhang et al., 2024), teleoperative humanoid 
locomotion and manipulation (Seo et al., 2023), and cross-
embodiment imitation learning approaches (Niu et al., 2025). 
Despite being outnumbered by quadrupeds, the increasing interest 
in bipedal systems reflects growing confidence in handling their 
inherent dynamic complexity and the potential for more human-
like robot behaviors. Hybrid configurations (Hy), although less 
common, represent an interesting middle ground where robots can 
switch between quadrupedal and bipedal modes depending on task 
requirements. 

2.5 Deployment

The deployment distribution reveals significant challenges in 
real-world application of imitation learning methods. Simulation-
only work (S) accounts for 8 out of 35 papers (23%), providing a 
safe testing ground for new algorithms while highlighting ongoing 
sim-to-real transfer difficulties. The majority of work focuses 
on indoor laboratory deployments (RH-ind), where controlled 
conditions enable reliable reproduction of learned behaviors. 
Critically, outdoor hardware deployment (RH-out) appears in only 8 
out of 35 surveyed works, underscoring the substantial gap between 
laboratory demonstrations and field-ready systems. 

2.6 Learning setting

The surveyed literature reveals three distinct paradigms for 
handling the learning process in legged-locomotion imitation 
learning. Pure offline imitation learning (OFF) is predominant, 
appearing in 25 out of 35 papers (71%), where robot policies are 

trained entirely on pre-collected demonstration data without any 
subsequent environmental interaction. This approach learns from 
fixed expert datasets and deploying without further learning. The 
prevalence of offline-only methods reflects the field’s emphasis on 
predictable, controlled learning environments.

However, a notable shift toward adaptive learning paradigms 
is emerging through two hybrid approaches. IL→ RL (six papers) 
follows a sequential two-phase pipeline where imitation learning 
provides initialization followed by reinforcement learning that 
enables skill discovery and environmental adaptation through 
continued interaction. IL + ADPT (three papers) maintains a 
stable base policy trained on demonstrations while incorporating 
concurrent online adaptation mechanisms that make real-time 
adjustments during deployment based on sensory feedback. The 
growing adoption of these hybrid frameworks—representing nearly 
26% of surveyed works—indicates field-wide recognition that pure 
offline methods, while safe and stable, may be insufficient for the 
robustness demands of real-world legged locomotion, driving a 
gradual evolution toward longer-duration learning paradigms that 
can continuously adapt to new environments and conditions. 

3 Imitation learning methods

This section gives the details of each of the six categories of the 
algorithms mentioned earlier and listed paper-wise in Table 2. The 
main papers for each category are also discussed. 

3.1 Behavior cloning

Despite its simplicity, BC remains a foundational approach in 
imitation learning for legged robots. It offers a straightforward 
supervised learning framework, where the objective is to train a 
policy πθ(at ∣ st) to map observed states st directly to expert actions 
at by minimizing the discrepancy between the robot’s actions and 
those of a demonstrator. Given a dataset of expert trajectories D =
{si

t,a
i
t}

N
i=1, the standard BC objective is to minimize the empirical risk

LBC (θ) =
1
N

N

∑
i=1

ℓ(πθ (s
i
t) ,a

i
t) (1)

where ℓ(., .) is typically the mean squared error (MSE) for continuous 
actions or cross-entropy for discrete actions (Ross et al., 2011), πθ(s

i
t)

is the predicted action, ai
t is the expert action, and N is the total 

number of expert trajectories.
Three design choices govern BC performance: demonstration 

fidelity, state augmentation, and feedback tracking. Sensor-space 
cloning (Khadiv et al., 2023) achieves 400 Hz torque control 
by ingesting only proprioception; no external vision is required 
for flat terrain. For cases where vision is critical, He et al. 
(2024) combined RGB-D with foot force sensors to execute door-
pushing while trotting. Although BC provides a data-efficient and 
hardware-friendly pathway to policy learning, it is fundamentally 
limited by its sensitivity to covariate shifts. When a BC system 
encounters states outside the training distribution, errors can 
compound quickly over time steps, leading to catastrophic failures, 
as demonstrated by Ross et al. (2011).
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Recent research (Kumar et al., 2021; Qiu et al., 2024) addresses 
these shortcomings by combining BC with online adaptation layers 
or by augmenting demonstration datasets with greater diversity and 
domain randomization. As a result, BC continues to be a practical 
baseline for researchers and can be a critical component if one 
chooses to create a more sophisticated hybrid system around it.

In their work, Narayanan et al. (2025) (GROQLoco) extended 
their approach to multi-terrain logs, using domain randomization 
to narrow the sim-to-real gap and achieving an 85% success rate 
on rubble. They developed a single, generalist locomotion policy 
capable of handling various quadrupedal robots across diverse 
terrains. They achieved this by training on expert demonstrations 
that include both stair and flat terrain traversal, leveraging data 
gathered from several quadrupeds to encompass a wide range 
of gaits and morphological diversity. The central argument of 
their study is that enhancing diversity in both robot body 
types and locomotion behaviors is essential for achieving robust 
generalization. To validate this, they collected data using multiple 
quadruped robots operating on stairs and flat surfaces. Their 
generalist policy was then deployed on platforms such as the Unitree 
Go-1 and Stoch-5, without requiring any additional fine-tuning 
steps. The model architecture features causal attention mechanisms, 
alongside GRU-based temporal modeling to effectively capture the 
dynamics of locomotion across these varied settings.

Seo et al. (2023) introduced a framework Tele-Operation and 
Imitation Learning for Loco-Manipulation (TRILL), which deals 
with training humanoid loco-manipulation policies using human 
demonstrations by using a virtual reality (VR) tele-operation 
interface to collect human demo data. For humanoid robots, since 
the task action space is vast, the dataset is also enormous, leading to 
slow training rates. A second challenge is in terms of dealing with 
contact-rich environments and the need for stabilizing dynamics. 
They used a whole-body control approach to convert the task-space 
trajectories into joint-torque actions and implemented policies for 
humanoid bimanual operation tasks, such as picking and placing 
and removing a spray cap. The main challenge noted in their work 
is the control latency, which makes it more difficult to transfer the 
policies to different hardware.

Qiu et al. (2024) presented a comprehensive structure for 
combining whole-body control, imitation learning, and the use of 
Large Language Models (LLMs) for the planning of manipulation 
of a quadruped. They used VR tele-operation to collect data. The 
method also develops a generalizable skill library of visuomotor 
skills using imitation learning and analytical methods (such as 
way-point navigation using PD-based control and LiDAR-based 
SLAM for pose estimation). Finally, there is a task planning system 
interfaced with LLMs that can decompose a high-level command 
into small individual tasks. They deployed the controller on a Unitree 
B1 quadruped with a Z1 arm for applications related to table top 
grasping, button pressing, and grasping from ground. They also 
showed some long-horizon tasks such as trash collection and shelf 
rearrangement. The main limitations were that the success rate of the 
long-range tasks was moderate, showing the need for error recovery 
mechanisms.

Yang et al. (2023) presented a framework that enables quadruped 
robots to adapt their locomotion behaviors based on terrain 
semantics (e.g., grass, mud, and asphalt) rather than only geometric 
properties. The key innovation is learning directly in the real world 

using only 40 min of human demonstration data while maintaining 
safety and efficiency. They use tele-operated data across diverse 
terrains collected using a human operator using joystick commands. 
The high-level skill policy selects the locomotion gait and speed from 
camera images, while a low-level MPC controller is used for motor 
commands. They show the policy being deployed on the Unitree A1 
quadruped on a 450 outdoor trail. The learned policy is able to run 
on near-maximum safe speeds on asphalt, grass, pebble, and rock 
surfaces. The policy’s main limitation is it’s inability to perform agile 
movements such as jumping. It can also reflect the human operator’s 
cautiosness by behaving in an overly conservative manner.

Teleoperated Whole-Body Imitation System (TWIST) (Ze et al., 
2025) presents a method for humanoid tele-operation that enables 
real-time whole-body motion imitation. Unlike the traditional 
approach that decouples upper and lower body control or focuses 
on isolated tasks, TWIST achieves coordinated whole-body skills 
through a unified neural network controller. TWIST uses a three-
stage pipeline, with the first stage focused on humanoid motion 
dataset curation using MoCap clips from AMASS and OMOMO 
datasets. Next, a teacher–student policy is trained using proximal 
policy optimization (PPO), where the teacher has privileged access 
to 2-s future motion frames. Finally for the last stage, Optitrack 
MoCap is used to perform real-time re-targeting for humanoid 
motion generation, with a loop rate of 50 HZ for the joint targets. 
They deployed the policy on the Unitree G1 and the Booster T1 
(for sim-to-sim validation) for whole-body manipulation skills, 
such as lifting boxes and carrying objects. They also showcased 
legged manipulation, such as kicking soccer balls and opening doors 
with feet. The main limitations, like other research in this area, 
are tele-operation delay hindering real-time critical tasks, with no 
tactile feedback.

Object-aware Kinematic retArgeting for huManoid 
Imitation (OKAMI) (Li J. et al., 2024) presents a breakthrough 
for teaching humanoid robot manipulation skills from single-
RGB-D video demonstrations. The key innovation is object-aware 
re-targeting, which enables robots to mimic human motions while 
adapting to different object locations during deployment. They 
presented a two-stage training pipeline, where the first stage deals 
with the reference generation, followed by SLAM in the second stage. 
They integrated the GPT4V model to identify task-relevant objects 
and use the modified SLAHMR model with the SMPL-H model 
for full body and hand poses. Stage-2 is based on object-aware 
re-targeting based on ground SLAM. Finally, they applied inverse 
kinematics to convert re-targeted trajectories to joint commands. 
They deployed the controller on a Fourier GR1 humanoid with 6-
DoF dexterous hands for tasks such as placing snacks on plates, 
closing the laptop, closing the drawer, and bagging. However, the 
pipeline only supports manipulation and no locomotion, and the 
performance is inconsistent with motion speed and quality.

Niu et al. (2025) introduced a novel cross-embodiment 
imitation learning framework that enables quadrupedal robots 
to learn manipulation skills from human demonstrations. The 
system’s core technical innovation lies in its Modularized Cross-
embodiment Transformer (MXT) architecture, which uses separate 
tokenizers and detokenizers for different data modalities while 
sharing a common transformer trunk across embodiments. The 
cross-embodiment learning capability is particularly noteworthy, 
achieving a 38.6% success rate improvement through human 
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pretraining and showing strong positive transfer, despite the 
large morphological gap between humans and quadrupeds. 
There certainly are scalability questions regarding how effective 
the approach is when handling larger-scale datasets or more 
diverse robot embodiments. The system’s generalization to other 
quadrupedal platforms remains invalidated. 

3.2 Adversarial motion priors

AMPs represent a class of imitation learning methods based 
on generative adversarial imitation learning (GAIL) (Ho and 
Ermon, 2016) by leveraging a discriminator to regularize policy 
learning, ensuring that generated motion remains realistic and 
closely aligned with expert demonstrations. The policy is trained 
within an adversarial framework: a discriminator network is tasked 
with distinguishing between state–action pairs from the expert 
dataset and those produced by the policy, while the policy aims 
to produce behaviors that the discriminator cannot differentiate 
from those of the expert. AMP methods are particularly effective 
in capturing the style and naturalness of motion, which is crucial 
for legged locomotion. For example, Peng et al. (2018) showed in 
their DeepMimic framework that adversarial objectives are able to 
produce highly dynamic and agile motions in simulated humanoids.

AMP’s discriminator inherits the reward-design burden: if it 
is too weak, the policy diverges; if too strong, learning collapses. 
Lee et al. (2020) mitigated this by expanding the teacher dataset 
to 7 k MPC trajectories, achieving 1.5 m/s over gravel, while 
Vollenweider’s multi-prior variant (Vollenweider et al., 2023) blends 
gait styles (trot, bound, and jump) into a single policy with 
92% automatic mode-selection accuracy. The hybrid biped-on-
quadruped demo (Peng et al., 2024) underscores AMP’s robustness 
to morphology mismatch.

The discriminator Dϕ(s,a) tries to distinguish between 
state–action pairs from reference motion and those generated 
by the policy πθ(a|s). The task of the policy is to “fool” the 
discriminator while maximizing any task-specific reward. The AMP 
objective augments the standard RL objective with an adversarial 
imitation term:

maxθ 𝔼πθ
[r (s,a) + λ logDϕ (s,a)] (2)

where r(s,a) is the environment or task reward, Dϕ(s,a) is the 
discriminator’s output, and λ is a weighting factor that balances task 
performance and motion realism. The discriminator itself is trained 
on the ability to maximize its ability to distinguish expert from 
policy-generated data

maxϕ 𝔼(s,a)∼Expert [logDϕ (s,a)] +𝔼(s,a)∼πθ
[log(1−Dϕ (s,a))] (3)

This is analogous to the discriminator loss in GANs, where 
the goal is to correctly classify real (expert) versus fake (policy) 
samples (Goodfellow et al., 2014). The policy is updated using RL 
(e.g., PPO or SAC), where the reward at each step is augmented 
by the discriminator’s output, encouraging the policy to generate 
expert-like motions. In practice, state s often includes proprioceptive 
features (joint angles, velocities, and base orientation) and 
sometimes exteroceptive features (terrain and vision), while 
action a is typically joint positions or torques. Overall, AMP 

has shown to produce more natural, energy-efficient, and robust 
gaits than pure RL, especially when rewards are sparse or 
under-specified (Merel et al., 2017).

Peng et al. (2020) combined the motion imitation from animals, 
along with latent space adaptation to learn a diverse set of dynamic 
locomotion skills, which are ultimately transferred to quadrupeds. 
Their pipeline is divided into motion re-targeting, motion imitation, 
and domain adaptation. Although motion re-targeting is often 
performed using inverse kinematics solvers, motion imitation 
is performed by training a policy in simulation using domain 
randomization. Finally, the policy is transferred to real robots 
using the sample-efficient domain adaptation process. The policy is 
queried at 30 Hz for a new action at each time-step. The action space 
specifies joint positions for PD controllers at each joint, after being 
low-pass-filtered. The motion dataset consists of MOCAP clips from 
dogs and some from artist animations.

Escontrela et al. (2022) highlighted that standard RL approaches 
can yield aggressive, overly energetic behaviors due to under-
specified rewards. To address this, they used motion capture data 
to create a “style-reward,” encouraging agents to mimic the style 
of reference motions. This method leads to lower cost-of-transport 
(CoT) and more natural gait transitions. Similarly, Zhang et al. 
(2024) used an AMP-based imitation learning framework with a 
motor-joint-driven humanoid, Adam, trained via PPO in Issac Gym. 
They successfully demonstrated human-like, straight-knee “heel-to-
toe” gaits.

Peng et al. (2024) discussed an AMP-based approach to 
adapt a learning framework designed for quadrupedal motion to 
operate on bipeds. This allows them to use the front two legs to 
perform useful work, while using the hind legs for locomotion. 
They followed the approach of a student–teacher policy to enable 
imitation learning using reference motion. For reference generation, 
they used the TOWR (Winkler et al., 2018) library to perform 
trajectory optimization (TO) for the A1 biped robot. This results 
in dynamically and kinematically feasible reference trajectories that 
can be used for learning. The teacher policy uses a PPO algorithm 
using the Issac gym simulator. They tested the policy in simulation 
on different terrains, such as uniform, wave, stepping stones, sloped, 
stairs, and obstacles. The policy performed well on lower speeds 
and gradually worsened on higher speeds and sloped terrain, with 
obstacles.

The VIAN framework (Yao et al., 2022) enables quadrupeds 
to mimic animal behaviors from brief videos (3–8 seconds) 
using deep RL guided by consistency-based rewards. It uses 
DeepLabCut (Nath et al., 2019) for pose estimation, mapping key 
anatomical points from animals to robots. VIAN handles both 
periodic (e.g., walking) and aperiodic (e.g., backflip) motions, 
adapting motions through seasonal decomposition for periodic gaits 
and keyframe selection for aperiodic gaits. Trained in PyBullet and 
deployed on the A1 quadruped, VIAN achieved an 80% success 
rate for dog imitation versus 55% for standard RL, highlighting the 
strength of video imitation.

StyleLoco (Ma et al., 2025) introduced a Generative Adversarial 
Distillation (GAD) framework that overcomes the trade-off in 
humanoid locomotion between agility and naturalness. It uses two 
discriminators: a teacher discriminator ensures that the student 
policy maintains RL-derived agility and precision, while a dataset 
discriminator enforces natural movements by referencing human 
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motion-capture data (LaFAN1). Tested on the Unitree H1 in 
simulation and real-world settings, StyleLoco achieves agile, robust, 
and natural human-like walking. The main limitation is the need for 
manual tuning of discriminator weights.

Multi-AMP (Vollenweider et al., 2023) extends the AMP 
framework, enabling robots to learn and seamlessly switch between 
multiple motion styles within a single policy. A key highlight is 
its demonstration on a wheeled-legged quadruped robot, which 
can perform advanced skills such as quadruped-to-humanoid 
transformation: standing upright on its hind legs, navigating on 
two wheels, and returning to a seated position. The architecture 
uses a dedicated discriminator for each motion style, with each 
discriminator solving a least-squares task to distinguish real motion 
data from policy-generated actions. Training occurs in Issac Gym 
on a 16-DoF wheeled-legged quadruped, showing diverse behaviors, 
including standard four-legged movement, ducking under obstacles, 
and morphing between quadruped and humanoid gaits. The main 
limitations include the need to generate motion data for most 
skills and the challenge of tuning multiple discriminators for 
stable learning. 

3.3 Diffusion cloning

Diffusion cloning refers to a new type of imitation learning 
paradigm that uses denoising diffusion models (originally developed 
for image synthesis) to learn a set of robust robot control 
policies from demonstration data. Instead of mapping states 
directly to actions, a diffusion policy gradually refines a random 
initial action toward a realistic, expert-like action by iteratively 
denoising over multiple steps, guided by context (such as images or 
language) (He et al., 2019).

These models are trained on offline demonstration data and 
have shown strong generalization and robustness to out-of-
distribution scenarios compared to standard policies. Mani et al. 
(2024) and Serifi et al. (2024) showed that modern variants can 
condition on high-dimensional vision features and even plain text 
instructions for language-conditioned behavior.

Starting with an expert action a0 from demonstration, the action 
is progressively perturbed over T steps with Gaussian noise:

at = √αta0 +√1− αtϵ (4)

where ϵ ∈ (0,1) and αt control the noise schedule (typically 
decreasing over time). The policy learns to denoise: recover at−1 from 
a, conditioned on state s (and often context, such as images or text). 
The denoising neural network predicts the noise ϵ added at step t.

̂ϵθ (at, s, t, c) (5)

The training loss is typically a mean squared error (MSE) 
between real noise ϵ and predicted noise ̂ϵθ

L = 𝔼a0, ϵ, t [‖ ̂ϵθ (at, s, t,c) − ϵ‖
2] (6)

To generate a new action, we start from pure noise aT and 
iteratively apply the learned denoising model T times (for t =
T,…,1), updating at toward a0:

at−1 = f (at, s, t,c, ̂ϵθ) (7)

where f denotes the standard diffusion model update (can be model-
specific).

It gets expensive to scale RL training due to expensive rollouts. 
DiffuseLoco (Huang et al., 2024) attempts to solve this problem 
by denoising over a 16-step horizon at 100 Hz on Jetson Orin, 
outputting torques. They solved two problems—offline learning 
from various data sources and the ability to learn a set of 
diverse skills by training diffusion-based policies that capture 
diverse behaviors, enabling learning in both quadrupedal and 
bipedal settings. They were also able to generate plans higher than 
30 Hz. Their state-space is modeled as the effector’s proprioceptive 
feedback-measured joint positions q, joint velocities q̇, base 
orientation Θ, and base angular velocity Ω. Their action space is 
the desired joint position, while goal space is the desired base 
height, sagittal velocity, and desired turning velocity. The method 
was also deployed on the bipedal Cassie robot but exhibited poor 
sim-to-real tranfer compared to the Go1 quadruped example. 
The DiffuseLoco policy demonstrates good robustness against 
various ground conditions and small variations in terrain. However, 
robustness against a specific skill is poor.

Mothish et al. (2024) trained a single walking controller 
that yields locomotion on multiple terrains. Their BiRoDiff biped 
controller reaches 0.85 m/s on 15 slopes purely in sim, and hardware 
transfer depends on real-time inference optimization. The training 
is based on the diffusion model, generalizes on multiple terrains, 
and uses offline data. RobotMDM (Serifi et al., 2024) introduces 
text tokens (e.g., “low crouch”) at every denoising iteration, gesturing 
toward language-grounded locomotion. They used a two-stage 
process, where they first trained a Critic model from a dataset, 
creating a differentiable surrogate for expected future rewards 
conditioned on motion inputs. For the second stage, the Critic is 
used to fine-tune a diffusion model to align with the character’s 
limits and physical feasibility. For training purposes, they used the 
HumanML3D dataset (Guo et al., 2022), consisting of the human 
motion-capture data, re-targeted for the bipedal robot character. 
However, the main limitation remains the lack of hard constraints 
on motion feasibility, hence limiting its use in performance-
critical tasks. They recommended the use of physics-aware motion 
generators to create new datasets for training.

He et al. (2024) presented a hierarchical RL-based controller 
and a behavior cloning planner for a quadruped to perform loco-
manipulation. The high-level planning policy is based on the 
diffusion-based BC approach. The main benefit of the method 
is that they can carry out locomotion while performing any 
manipulation task. The fundamental approach deals with collecting 
data using a low-level control policy for the end-effector to follow 
Bezier control points while maintaining locomotion using the 
three remaining legs. The manipulation end-effector trajectory 
is parametrized, and the parameters are outputs of the high-
level planner. The large-scale datasets are collected using parallel 
simulation in IssacGym (Makoviychuk et al., 2021). They can 
perform tasks including pressing a button, pulling handles, pushing 
doors, and opening a dishwasher and achieve better success 
rates than the hierarchical reinforcement learning method. The 
main limitations are inference speed limitations and poor sim-to-
real transfer.

Decision diffusers (Ajay et al., 2022) introduced a diffusion 
probabilistic model to generate high-quality trajectories by 
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conditioning on returns, constraints, or skills, eliminating the 
need for value function estimation. They presented a single 
approach that handles return maximization, constraint satisfaction, 
and skill composition through different conditioning strategies. 
The approach is mostly applied in simulation for locomotion 
tasks on HalfCheetah, Hopper, and Walker2D. They also showed 
some long-horizon D4RL kitchen tasks, along with Unitree 
quadruped simulation. The main limitations reported are stochastic 
dynamics—where performance degrades in highly stochastic 
environments—and limited data regimes, which make the model 
prone to overfitting with small datasets. 

3.4 Decaying/latent action priors

DecAP (Sood et al., 2023) addresses the fundamental 
challenge of learning torque-based locomotion policies for legged 
robots—more robust and compliant than position-based policies 
but suffer from sample inefficiency and poor convergence to natural 
gaits. They proposed a two-stage framework that leverages the 
sample efficiency of position-based learning to accelerate torque-
based learning. The first stage trains an end-to-end joint position-
based policy using PPO with standard locomotion rewards, along 
with collecting imitation data including joint angles, base height, 
and foot height. The second stage trains a torque-based policy 
using the data from the first stage. They introduced the Decaying 
Action Priors (DecAP), which are torque biases calculated on the 
joint angles via a PD controller. They showed that without any 
domain randomization, the torque policy maintains smooth outputs 
during perturbations, while the joint-position policy fails. The main 
limitations are that the framework depends on offline imitation data 
from position-based policy simulations. However, the framework 
requires manual tuning of the PID gains for the position-based 
policy. Eventually, the system transitions to a fully torque-based 
policy. DecAP reports 30% shorter training time than BC while 
halving torque overshoot in disturbance tests.

Hausdörfer et al. (2024) introduced latent action priors, a 
novel approach that learns compressed action representations 
from minimal expert demonstrations to guide deep reinforcement 
learning. The latent action prior method learns a low-dimensional 
latent representation of expert actions using an autoencoder. This 
latent prior guides the RL and improves the performance and 
generalization. zt = Encoder(at) and ât = Decoder(zt), where zt is the 
latent code and the reconstruction loss is

LAE =∑
t
‖at − ât‖

2 (8)

They demonstrated that effective action priors can be extracted 
from only a single open-loop gait cycle, dramatically reducing data 
requirements while improving learning performance and enabling 
above-expert-level achievements. They used a nonlinear auto-
encoder with one hidden layer, and the latent space dimension is 
set to half of the full action space. The policy is implemented in 
Loco–Mujoco using the Unitree A1 and H1 humanoids, along with 
the Mujoco environment for HalfCheetah, Ant, and Humanoid. 
They showed different gait transitions from walking to running to 
galloping across speed ranges.

Zhang et al. (2025) introduced a hierarchical RL framework 
that enables quadruped robots to generalize motion imitation skills 

from flat-terrain animal data to complex terrains by learning low-
level motion priors and adapting with high-level residuals. Their 
four-step pipeline—motion processing, motion prior pre-training, 
hierarchical adaptation, and sim-to-real distillation—culminates in 
a real-world deployable policy on ANYmal-D using a GRU belief 
encoder for sim-to-real transfer. However, the method can suffer 
from mode collapse (defaulting to a single gait), does not support 
non-locomotion skills (such as jumping or crawling), and excludes 
highly discontinuous terrains (e.g., gaps or stepping stones).

Rapid Motor Adaptation (RMA) (Kumar et al., 2021) introduces 
a hybrid structure of supervised learning for the adaptive module 
with reinforcement learning for the base policy. It is a transformative 
framework for enabling real-time adaptation in quadruped robots, 
allowing them to traverse a wide range of challenging terrains 
without requiring simulation calibration or additional fine-tuning 
in the real world. They introduced a two-part system: a base 
policy, initially trained using privileged (environment-specific) 
information, and an adaptation module that dynamically estimates 
environmental factors by analyzing recent state-action histories. 
Training proceeds in two stages: first, the base policy is optimized via 
PPO using privileged data about the environment; then, a separate 
adaptation model is trained to infer critical environment parameters 
based on the last 50 steps of the robot’s own states and actions. RMA 
demonstrates deployment on the Unitree A1 quadruped for both 
indoor and real-world outdoor experiments, successfully navigating 
terrains such as sand, mud, grass, and irregular construction sites 
filled with pebbles and cement debris. A key limitation of this 
approach is its reliance solely on proprioceptive data, without 
utilizing external sensors or exteroceptive cues. However, it is 
important to note that RMA is not a purely imitation-based 
approach. Although the adaptive module is trained in a supervised 
imitation method to infer environment parameters from historical 
observations, the base locomotion policy itself is optimized with 
reinforcement learning using privileged information. This hybrid 
mechanism distinguishes RMA from pure imitation learning 
methods such as behavior cloning. 

3.5 Hamiltonian and safety variants

Sajja et al. (2025) used expert demonstrations from non-linear 
model-predictive control (NMPC) to train a single neural network 
policy and to generalize the single policy on diverse quadrupedal 
gaits. They used raw proprioceptive data including IMU and 
joint-encoder measurements. A single neural network maps raw 
proprioceptive data to joint-position targets, and the outputs of the 
network are task-specific, one for each different type of gait (trot, 
bound, etc.). However, the model did not generalize well to new gait 
such as gallop or pace, showing limitations of multi-task learning. 
Similarly, Khadiv et al. (2023) also used NMPC demonstrations as 
an expert to learn policies directly from the proprioceptive data. 
They were able to learn different gaits on the solo-12 quadruped. 
They also showed that the joint-position target policy outperforms 
the torque policy. The architecture consists of two networks—an 
estimator network that maps measurements to states and a policy 
network that maps measurements to actions. They used Pybullet 
simulation environment for collecting the datasets by perturbing the 
system at each re-planning stage of the NMPC. They were able to 
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show that the PD policy was superior to the torque policy since it is 
more robust to the function approximate error.

MPC-Net (Carius et al., 2020) presents a novel imitation 
learning approach that distills MPC solutions into fast neural 
network policies. The key innovation is using a theoretically 
motivated loss function based on the control Hamiltonian rather 
than traditional behavioral cloning, enabling robots to learn 
complex control policies from minimal MPC demonstration data 
while maintaining constraint satisfaction. They used a Hamiltonian-
based loss function and a linear–quadratic controller as the 
expert demonstrator. The samples used for training are extracted 
from neighborhoods of the optimal trajectories. They also used 
a Gaussian sampling to create tubes of state-space as training 
data. The main advantage is the constraint-aware learning, which 
maintains physical feasibility. They showed the policy on the 
ANYmal quadruped robot for trotting and static walk gaits. The 
main limitations are that the resulting policy cannot outperform 
MPC for the same cost function and cannot learn in the areas where 
MPC does not converge.

Reske et al. (2021) presented training a single policy that learns 
multiple gaits of a walking robot. They used the mixture of experts 
network, where each expert is responsible for controlling one mode 
of a hybrid system. The core idea is to use a single policy to replace 
the teacher to control multiple gaits by distilling nonlinear MPC into 
a neural network, cutting compute by 20 times and enabling 1 kHz 
joint-space control on ANYmal.

Peng et al. (2020) used differentiable simulation for learning 
quadruped locomotion. Their work demonstrates that by using a 
differentiable simulation, they can outperform an RL PPO algorithm 
in terms of sample efficiency, handling large-scale environments. 
The main approach is to first split the robot-dynamics model into 
a floating base and joint space. They avoided using the full of the 
whole-body model that has discontinuities due to contact models 
and used the single-rigid-body model instead. For training the 
policy, they used the simple surrogate model and the full non-
differentiable simulator for the forward simulation. They deployed 
the policy on a Mini-Cheetah for different gaits (trot, pace, bound, 
and gallop) on challenging terrains. 

3.6 Curriculum hindsight reinforcement 
learning

Although CHRL is framed as a reinforcement learning 
approach, it incorporates a teacher–student policy architecture 
that bears conceptual similarities to imitation learning. In contrast, 
CHRL trains a teacher policy with privileged information (e.g., 
ground-truth terrain, friction, and payload) and then distills its 
behavior into a student policy with only proprioceptive inputs. This 
distillation process resembles IL in that the student learns to mimic 
the teacher’s actions under limited observations; the teacher is an 
RL-trained agent and not a human expert. We, therefore, decide to 
include CHRL in this review because its teacher–student framework 
highlights a broader class of methods, where knowledge transfer 
from privileged to non-privileged policies plays a role similar 
to imitation. This situates CHRL at the intersection of imitation 
learning and reinforcement learning with privileged information.

Li et al. (2024b) introduced CHRL, a novel framework that 
enables quadruped robots to achieve highly agile and adaptive 
locomotion behaviors including fall recovery, high-speed running, 
and rapid turning in real-world environments. The strategy is an 
adaptive curriculum that adjusts task difficulty based on policy 
performance, and the main curriculum parameters are as follows: 
a) reward coefficients—joint torque penalties and energy costs; b) 
domain randomization on friction and payload mass; c) command 
ranges—linear velocities; and d) terrain difficulty—height field 
variations. For the learning architecture, they used a teacher–student 
policy architecture, where the teacher policy has access to the full 
privileged information (ground truth terrain, friction, and payload) 
and outputs a 12-dimension joint position targets. The student 
policy has access to only the proprioceptive sensors, along with 
added noise. They showed the policy on a custom quadruped in 
outdoor grass terrains with high forward/turning speeds. The main 
limitations are the usage of only proprioceptive sensors and careful 
tuning of curriculum thresholds that could be tedious. 

3.7 Mimic

Although adversarial motion prior methods use discriminators 
to enforce motion realisim, DeepMimic (Peng et al., 2018) presents a 
deep reinforcement learning framework for physics-based character 
animation that combines motion imitation objectives with task-
specific goals without the use of discriminators. The framework 
enables simulated characters to learn robust control policies that 
can reproduce a wide range of motion clips while adapting 
to environmental variations and accomplishing user-specified 
objectives. The state-features include character body configuration 
(link positions, rotations, and velocities) in the local coordinate 
frame, while the action space includes the target joint positions. The 
inputs to the model are reference motion capture clips (humans, 
animals, and key framed). The policy/neural network outputs 
joint positions, which are fed to PD controllers. PPO is used 
with reference state initialization and early termination to stabilize 
training. The rewards consist of a weighted combination of pose-
reward, velocity reward, end-effector, and a center-of-mass reward. 
For training, the initial states are sampled from reference motion, 
rather than a fixed starting position. They showed more than 30 
skills, including locomotion, martial arts for the Atlas robot, T-
Rex, and dragon. DeepMimic offers high motion quality without 
significant reward engineering and handles dynamic acrobatic skills 
well. The main limitations are the PD controller tuning for each 
different character and the high sensitivity in novel states. The 
DeepMimic framework inspired many later works that directly clone 
MPC trajectories or animal gaits. It became a default baseline in 
legged locomotion before AMP, and diffusion-based approaches 
were adopted and are still widely used due to simplicity and 
robustness. 

4 Deployment challenges

This section details some of the deployment challenges for the 
several imitation learning approaches discussed so far. 
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4.1 Data dependency

The data quality heavily impacts deployment success in most of 
the algorithms. As an example, VR teleoperation often introduces 
latency and tracking errors that propagate to learned policies, while 
human operators exhibit inconsistent performance, introducing 
suboptimal behaviors. There is performance drift due to facility 
modifications, evolving task requirements and seasonal variations. 
In some use cases, continuous demonstration collection for policy 
improvement requires on-going expert availability. In terms of 
data dependency, for behavior cloning methods, the covariate 
drift is a significant challenge during deployment. This drift 
happens when the system encounters a state outside the training 
distribution, leading to poor predicted action. The covariate drift 
also limits the policy not being able to discover more aggressive 
behaviors, as a result of human operators being more cautious 
during data collection. For AMP-based approaches, less time is 
spent on reward function tuning, compared to traditional RL 
approaches, where more time and effort are needed to generate 
quality motion priors for each targeted style, which might not always 
be feasible. Diffusion-based methods are prone to overfitting in case 
of limited data. This manifests as brittle policies that succeed in 
simulation but fail on hardware under slightly varied conditions 
(e.g., object slippage in manipulation and unstable balance in
quadrupeds).

On the one hand, although simulation has become 
an effective data source for many robot learning tasks, 
modeling the complex contact dynamics accurately and 
rendering photorealistic terrains are not yet possible in
simulation. 

4.2 Sensor integration challenges

In most of the studies surveyed in this paper, a common 
theme was the use of multimodal sensor fusion. Sensor fusion 
brings complexity and often discovers new failure modes. Since 
IMU bias, camera intrinsics, and joint encoder offsets change over 
time, temporal alignment between the different sensor modalities 
becomes critical for stable performance. A common deployment 
failure is policy degradation due to small calibration drifts. An 
example of that would be quadrupeds mis-stepping when joint 
encoders slip by a few degrees or manipulation tasks failing due to 
depth-camera bias. 

4.3 Predictability and interpretability

Papers surveyed here also revealed that black-box neural 
policies create deployment challenges for safety-critical applications. 
The inability to explain policy decisions complicates debugging 
and validation, while the lack of formal bounds on policy 
behavior under perturbations poses certification challenges for 
commercial deployment. For instance, a BC-trained manipulator 
may unexpectedly apply unsafe forces on fragile objects, but without 
interpretable mechanisms, it is difficult to anticipate or prevent 
such actions. 

4.4 Sim-to-real strategies

Despite advances in domain randomization, zero-shot transfer 
often requires careful parameter tuning and may fail in scenarios 
significantly different from training distributions. A typical case is 
legged robots trained with randomized terrain slopes in simulation 
still failing to generalize to soft grass or snow, due to unmodeled 
compliance. For AMP methods, manual tuning of the discriminator 
is often required for stable learning. The latent representation 
shift across sim-to-real transfer poses fundamental limitations as 
observations that appear numerically similar may have completely 
different meanings in their respective contexts. This is especially 
problematic for diffusion-based methods, where latent mismatch 
can accumulate, producing actions that look smooth in simulation 
but destabilize real robots. 

5 Future directions

Here, we list some key areas which are actively worked upon 
and play a key role in the future of imitation learning for legged 
locomotion.

Reducing the simulation-to-real gap: IL policies are usually 
trained in simulation for safety. Translating them to hardware 
often requires robust domain randomization, system identification, 
and actuator modeling. Contact-rich locomotion demands tactile 
and proprioceptive data, but existing sensors are limited. Future 
IL frameworks should incorporate diverse sensor-data modalities 
(joint positions, forces, vision, and tactile), better align human and 
robot perspectives, and integrate multimodal data to teach not only 
what movements to perform but also why.

Differentiable and high-fidelity simulators: Differentiable 
simulators allow gradient-based optimization of policies and 
promise better sample efficiency. However, legged locomotion 
involves stiff contact dynamics that can lead to poor local minima. 
Hence, continued work in smoothing techniques and improved 
contact models are needed. Research on differentiable simulation 
for IL could enable direct backpropagation through contact events 
and more efficient policy training.

Building benchmarks There is a lack of standard 
benchmarks for loco-manipulation tasks. However, learning 
benchmarks such as HumanoidBench (Sferrazza et al., 2024) and 
MimickingBench (Liu et al., 2024) provide initial test suites but need 
to be expanded. Future work should establish datasets and metrics 
for evaluating IL policies across gaits, terrains, and manipulation 
tasks and create open-source hardware platforms for reproducible 
experimentation. 

6 Conclusion

Imitation learning is maturing from a convenience tool into 
a robust, multimodal paradigm for agile legged robots. Our 
taxonomic analysis reveals several critical insights about the 
current state of imitation learning for legged robots. Behavior 
cloning remains the dominant approach, appearing in almost half 
of the surveyed works, demonstrating its practical effectiveness 
and hardware-friendly implementation characteristics. However,
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the field is experiencing rapid diversification, with adversarial 
motion priors, diffusion-based methods, and emerging techniques 
such as decaying action priors and MPC distillation gaining 
significant traction.

The data landscape has undergone a fundamental shift, with 
model-predictive control logs now representing the most frequently 
used training data source, surpassing traditional animal and human 
motion capture approaches. This transition reflects the field’s 
growing emphasis on morphologically consistent, scalable data 
generation methods that can produce noise-free demonstrations 
while maintaining physical feasibility. The convergence of several 
technological trends suggests promising directions for the 
field. LLM-based generative models are beginning to enable 
semantic control of locomotion behaviors, while torque-based 
control approaches offer enhanced compliance and dynamic
responsiveness.

Imitation learning has attempted to address one of 
robotics’ fundamental challenges: eliminating the need for 
hand-engineered reward functions while achieving natural, 
efficient locomotion behaviors. By enabling robots to learn 
directly from demonstrations—whether from animals, humans, 
or optimized controllers—this paradigm has accelerated 
development cycles, reduced hyperparameter sensitivity, 
and provided natural scalability pathways for complex
behaviors.
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