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Autonomous driving has the potential to enhance driving comfort and
accessibility, reduce accidents, and improve road safety, with vision sensors
playing a key role in enabling vehicle autonomy. Among existing sensors,
event-based cameras offer advantages such as a high dynamic range, low
power consumption, and enhanced motion detection capabilities compared
to traditional frame-based cameras. However, their sparse and asynchronous
data present unique processing challenges that require specialized algorithms
and hardware. While some models originally developed for frame-based inputs
have been adapted to handle event data, they often fail to fully exploit the
distinct properties of this novel data format, primarily due to its fundamental
structural differences. As a result, new algorithms, including neuromorphic,
have been developed specifically for event data. Many of these models are
still in the early stages and often lack the maturity and accuracy of traditional
approaches. This survey paper focuses on end-to-end event-based object
detection for autonomous driving, covering key aspects such as sensing and
processing hardware designs, datasets, and algorithms, including dense, spiking,
and graph-based neural networks, along with relevant encoding and pre-
processing techniques. In addition, this work highlights the shortcomings in the
evaluation practices to ensure fair and meaningful comparisons across different
event data processing approaches and hardware platforms. Within the scope
of this survey, system-level throughput was evaluated from raw event data to
model output on an RTX 4090 24GB GPU for several state-of-the-art models
using the GEN1 and 1MP datasets. The study also includes a discussion and
outlines potential directions for future research.

KEYWORDS

event-based camera, neuromorphic camera, autonomous driving, object detection,
event-based dataset, benchmarking

1 Introduction

Autonomous vehicles, powered by Autonomous Driving (AD) technologies, are rapidly
expanding their presence in the market. Autonomy in the context of AD systems
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refers to a vehicle’s capability to independently execute critical
driving tasks, including object detection, path planning, motion
prediction, and vehicle control functions such as steering, braking,
and acceleration. This progress is largely enabled by breakthroughs
in artificial intelligence (AI), machine learning, computer vision,
robotics, and sensor technology. The effective operation of
Autonomous Driving Systems (ADS) relies on key functions such
as perception, decision-making, and control. The perception system
allows the vehicle to sense and interpret its environment in real time,
enabling timely and appropriate responses (Messikommer et al,
2022). Tt collects data from a variety of sensors, including
cameras, LiDARs, and radars, to acquire and understand the
surrounding environment. The raw sensor data are then processed
to perform critical tasks such as object detection, segmentation,
and classification, providing essential information for high-level
decision making in various applications, including self-driving cars,
drones, robotics, wireless communication, and augmented reality
(El Madawi et al., 2019; Petrunin and Tang, 2023; Fabiani et al.,
2024; Wang Y. et al., 2025). The major players in the field of
ADS are Waymo, Tesla, Uber, BMW, Audi, Apple, Lyft Baidu and
others (Johari and Swami, 2020; Kosuru and Venkitaraman, 2023;
Zade et al., 2024). In particular, Waymo offers “robotaxi” services
in major US cities, including Phoenix, Arizona, San Francisco,
California. It relies on the fusion of cameras, radar, and LiDAR
to navigate in urban surroundings. Tesla implemented its Autopilot
system, which functions similarly to an airplane’s autopilot, assisting
with driving tasks while the driver remains responsible for full
control of the vehicle. Its system eliminates LIDAR and functions
based on advanced camera and AT technologies. BMW, in its BMWi
Vision Dee system, is working toward integrating augmented reality
and human-machine interaction (Suarez, 2025).

Among sensors used in the AD perception system, LIDAR offers
high accuracy but suffers from high latency. Radar, on the other
hand, provides low latency but lacks precision (Wang H. et al., 2025).
Traditional frame-based cameras, which are currently the dominant
type (Liu et al., 2024), face challenges in dynamic environments
where lighting conditions change rapidly or where extremely high-
speed motion is involved. The typical dynamic range of frame-based
cameras is around 60 dB (Gallego et al., 2020), and in the high-
quality frame cameras, it does not exceed 95 dB (Chakravarthi et al.,
2025). The power consumption of these cameras is 1-2 W with a
data rate around 30-300 MB/s and a latency of 10-100 ms (Xu et al.,
2025). Therefore, recently introduced event-based cameras have
gained attention for their distinct operating principles, which are
inspired by biological vision systems. This approach emulates the
way the brain and nervous system process sensory input, inherently
exhibiting neuromorphic properties (Lakshmi et al., 2019). Unlike
traditional frame-based cameras that capture the entire scene at
fixed intervals, event-based cameras detect changes in brightness at
each pixel asynchronously and record events only when a change
occurs (Kryjak, 2024; Reda et al., 2024). As a result, they offer faster
update rates in the range of 1-10 ys per event, higher dynamic range
exceeding 100 dB, and low power consumption typically around
10-100 mW (Xu et al., 2025). Additionally, eliminating redundant
information from static background scenes reduces memory usage
with time resolution around 0.1-2 MB/s, depending on the scene
(Xu et al,, 2025; Chakravarthi et al., 2025). Currently, interest in
the event-based domain continues to grow, driving the development
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of new event-based cameras by hardware vendors, the creation of
new datasets and algorithms, and the introduction of simulators
specifically designed for the generation and processing of event-
driven data (Chakravarthi et al., 2025).

Object detection is a fundamental component of the perception
system and plays a vital role in ensuring safe navigation in
autonomous driving (Balasubramaniam and Pasricha, 2022).
The ability to accurately and promptly identify nearby vehicles,
pedestrians, cyclists, and static obstacles is crucial for informed
decision-making. Event-based sensors are particularly well-suited
for high-speed motion and challenging lighting conditions,
offering robustness to motion blur, low latency, and high temporal
resolution. This responsiveness enables more precise and timely
object recognition, making them a strong candidate for enhancing
perception in autonomous vehicles (Zhou and Jiang, 2024). Notably,
some of the earliest datasets collected with event-based cameras were
captured in driving scenarios, highlighting their relevance for real-
world autonomous navigation. These include N-Cars (Sironi et al.,
2018), DDD17 (Binas et al., 2017), DDD20 (Hu et al., 2020) datasets.
Furthermore, the first large-scale real-world datasets focused on
object detection, GEN1 (De Tournemire et al., 2020) and 1MP (Fei-
Fei et al., 2004), were specifically designed for this task and are
widely accepted as benchmarks for evaluating models.

Despite promising features of event-based cameras, modern
processing systems and algorithms are not fully suitable or ready
to process sparse spatiotemporal data produced by such sensors.
Most traditional computer vision pipelines and Deep Neural
Network (DNN) models are designed for frame-based data, where
information is structured as sequential images (Perot et al., 2020;
Messikommer et al., 2020). In addition, there are significantly
fewer event-based datasets available compared to traditional frame-
based datasets. Nevertheless, there has been a significant surge in
research activity and specialized workshops focused on event-based
processing and applications (Chakravarthi et al., 2025; Cazzato and
Bono, 2024). This growing interest has also resulted in numerous
surveys that review and analyze various aspects of event-based
processing and its applications. One of the pioneering surveys in
this area was presented in (Lakshmi et al, 2019). It describes
the architecture and operating principles of neuromorphic sensors,
followed by a brief summary of commercially available event-based
cameras, their applications, and relevant algorithms. Due to the
limited availability of commercial event-based cameras at the time,
the survey includes only early event-based datasets and, for the
same reason, explores methods for generating more event data from
conventional frame-based sources. A later survey (Gallego et al.,
2020) expands the coverage to include both commercially available
and prototype event cameras and extends the discussion to include
neuromorphic data processors. However, it does not provide
information on datasets.

One of the first reviews on event-based neuromorphic vision
with a specific focus on autonomous driving is presented in
(Chen et al., 2020). The survey discusses the operating principles of
event-based cameras, highlighting their advantages and suitability
for autonomous driving. It also presents early driving scenario
datasets that can be adapted through post-processing for object
detection tasks, along with signal processing techniques and
algorithms tailored for event-based applications. However, it
does not discuss hardware components such as commercially
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available event-based cameras or neuromorphic processors.
The fundamentals of event-based cameras, along with their
capabilities, challenges, and the common state-of-the-art cameras,
are listed in (Shariff et al., 2024). Most importantly, this survey
discusses the appropriate settings for acquiring high-quality data
and applications. A more recent survey (Chakravarthi et al,
2025) provided a general overview of research and publication
trends in the field, highlighting significant milestones in event-
based vision and presenting real-world datasets for various
applications and existing cameras. But it lacks information about
state-of-the-art preprocessing and processing algorithms and
neuromorphic hardware.

Another recent survey on event-based autonomous driving
reviewed both early and state-of-the-art publicly available object
detection datasets, along with the processing methodologies,
classifying them into four main categories, such as traditional Deep
Neural Networks (DNNs), bio-inspired Spiking Neural Networks
(SNNs), spatio-temporal Graph Neural Networks (GNNs), and
multi-modal fusion models (Zhou and Jiang, 2024). There is also
a recent survey on event-based pedestrian detection (EB-PD) that
evaluates various algorithms using the 1MP and self-collected
datasets for the pedestrian detection task, which can be seen as
a specific use case of object detection in autonomous driving
(Wang H. et al,, 2024). A comprehensive and well-structured study
on event-based object detection using SNNs, including applications
in autonomous driving, can be found in (Iaboni and Abichandani,
2024). It provides an overview of state-of-the-art event-based
datasets, as well as SNN architectures and their algorithmic and
hardware implementations for object detection. The work also
highlights the evaluation metrics that can be used to assess the
practicality of SNNs.

Biologically inspired approaches to processing the output
of event-based cameras show great promise for their potential
to enable energy-efficient and high-speed computing, though
they have yet to surpass traditional methods (Shawkat et al.,
2024; Iaboni and Abichandani, 2024; Chakravarthi et al., 2025).
The study (Shawkat et al., 2024) reviewed approaches involving
neuromorphic sensors and processors and pointed out that a
major challenge in building fully neuromorphic systems, especially
on a single chip, is the lack of solutions for integrating event
vision sensors with processors. Similarly, challenges exist in
interfacing event-based cameras with systems accelerated using
Field Programmable Gate Arrays (FPGAs) or System-on-Chip
FPGAs (SoC FPGAs). Additionally, there is limited availability
of publicly accessible code, particularly in Hardware Description
Languages (HDLs) (Kryjak, 2024).

While effective algorithms and efficient hardware acceleration
are crucial for processing event-based data, there are also techniques
specifically aimed at enhancing the quality of the event data
itself. These methods improve data representation and reduce
noise to enhance performance (Shariff et al, 2024). A recent
comprehensive survey on deep learning approaches for event-
based vision and benchmarking provides a detailed taxonomy
of the latest studies, including event quality enhancement and
encoding techniques (Zheng et al., 2023). Another survey provides
an overview of hardware and software acceleration strategies, with
a focus on mobile sensing and a range of application domains
(Wang H. et al,, 2025). A recent work also surveyed algorithms,
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hardware, and applications in the event-based domain, highlighting
the research gap (Cimarelli et al., 2025).

All aforementioned surveys provide important insights into
event-based vision and are summarized in Table 1. Building on these
contributions, our survey provides an end-to-end review of event-
based vision, covering event-based sensor architectures, key datasets
with a focus on object detection in autonomous driving, and the full
pipeline from data preprocessing and processing to postprocessing.
In addition, we discuss benchmarking metrics designed to support
fair and consistent evaluation across different processing approaches
and hardware accelerators, aiming to ensure a balanced comparison.
This work provides a summary of popular evaluation metrics for
object detection models and evaluation of system-level throughput
that includes conversion events to the required data format.

The structure of the paper is outlined as follows: Section 2
introduces the fundamental concepts of autonomous driving
systems and explains the distinctions between different levels
of driving automation. It also highlights the role of object
detection in supporting autonomous driving functionality.
Section 3 provides a brief overview of the available event-
based datasets and their acquisition methods. In particular,
Section 3.1 introduces the fundamentals of event-based sensors
and highlights notable commercially available models. Section 3.3
explores the characteristics of event-based datasets, covering both
early-stage research datasets and real-world as well as synthetic
datasets, with an emphasis on autonomous driving scenarios.
Section 4 introduces the evaluation metrics and focuses on the
neuromorphic processing pipeline, detailing state-of-the-art event-
based object detection architectures, their classification, relevant
event encoding techniques, and data augmentation methods.
Sections 2-4 cover the fundamentals of object detection and event-
data acquisition, making the survey accessible to a broader audience,
including researchers who are new to event-based object detection.
Section 5 presents a system-level evaluation of event-based object
detectors and summarizes the performance of models discussed in
Section 4.2. Additionally, it addresses missing aspects in end-to-end
evaluation. Finally, Section 6 offers a discussion.

2 Autonomous driving systems

The Society of Automotive Engineers (SAE) defines six levels
of autonomy in autonomous driving systems (Zhao et al., 2025).
These levels are based on who performs the Dynamic Driving Task
(DDT), either the driver or the system. A key part of DDT is
Object and Event Detection and Response (OEDR), which refers
to the system’s ability to detect objects in the environment, such as
vehicles, pedestrians, and traffic signs, and respond appropriately.
Level 0 of the SAE indicates no autonomy and full manual driving,
while Levels 1 through 5 represent increasing degrees of automation,
with each level incorporating more advanced autonomous features.
As the level of autonomy increases, the vehicle’s reliance on
intelligent systems becomes more critical for ensuring safe and
efficient navigation in complex environments (Zhao et al., 2025;
Balasubramaniam and Pasricha, 2022). The SAE also introduced
the concept of the Operational Design Domain (ODD), a key
characteristic of a driving automation system. Defined by the
system’s manufacturer, the ODD outlines the specific conditions,
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such as geographic area, road type, weather, and traffic scenarios
under which the autonomous system is intended to operate
ERTRAC (2019). Overall, the SAE levels describe the degree of
driver involvement and the extent of autonomy, while the ODD
defines the specific conditions where and when that autonomy can
be applied (Warg et al., 2023). Table 2 summarizes SAE Levels of
automation for on-road vehicles and the role of object detection.
Clearly, as the level of autonomy increases, the importance of object
detection becomes increasingly critical.

Most commercial vehicles today operate at Level 2, where
the system can control steering and speed. This includes Tesla
Autopilot, Ford BlueCruise, Mercedes Drive Pilot (Leisenring,
2022). Waymo has advanced into Level 4, offering fully autonomous
services within geofenced urban areas like Phoenix and San
Francisco, without a safety driver onboard Ahn (2020). Uber, while
investing heavily in autonomy, currently operates at Level 2-3
through partnerships and focuses on integrating automation with
human-supervised fleets Vedaraj et al. (2023). Level 5, representing
universal, human-free autonomy in all environments, remains a
long-term goal for the industry and has not yet been achieved by
any company.

The SAE proposes an engineering-centric classification, while
there is also a user-centric perspective for vehicle automation
classification. According to Koopman, there are four operational
modes, which include driver assistance, supervised automation,
autonomous operation, and vehicle testing. The latter distinct
category is for testing purposes, where the human operator is
expected to respond more effectively to automation failures than
a typical driver. Mobileye also suggests four dimensions, such
as hands-on/hands-off (for steering wheel), eyes-on/eyes-oft (the
road), driver/no driver, and Minimum Risk Maneuver (MRM)
requirement Warg et al. (2023). All of the above-mentioned
automation level definitions are focused on driving tasks on-road
traffic. There are other dimensions for autonomy classification
focused on interaction in various environments, which are not
covered in this work.

3 Neuromorphic data acquisition and
datasets

3.1 Event-based sensors

Traditional image- and video-acquiring technology primarily
revolves around frame-based cameras capable of capturing a
continuous stream of still pictures at a specific rate. Each still frame
consists of a grid of 2D pixels with global synchronization, generated
using sensor technologies like Charge-Coupled Devices (CCDs) or
Complementary Metal Oxide-Semiconductor (CMOS) sensors. Due
to their superior imaging quality, CCDs are favored in specialized
fields such as astronomy (Polatoglu and Ozkesen, 2022), microscopy
(Faruqi and Subramaniam, 2000), and others. These sensors feature
arrays of photodiodes, capacitors, and charge readout circuits that
convert incoming light into electrical signals. In contrast, CMOS
sensors dominate consumer electronics due to their lower cost and
sufficient image quality. CMOS sensors can be designed as either
Active Pixel Sensors (APS) or, less commonly, Passive Pixel Sensors
(PPS) (Udoy et al., 2024). A basic APS pixel sensor is comprised of a
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TABLE 2 The SAE levels of autonomy and role of object detection.

SAE levels SAE levels

description

10.3389/frobt.2025.1674421

DDT Role of object
detection

Lateral and

longitudinal

motion
control
Level 0 No automation The human driver Driver Driver no Optional. Not
performs all aspects required by
of the driving task at automation, but may
all times be used for
assistance
Level 1 Driver assistance The system assists Driver and System Driver limited Supports object
with either steering detection for
or adaptive functions
acceleration/deceleration for either steering
using info about the and braking or
environment accelerating either
lateral or
longitudinal motion
control
Level 2 Partial driving The system performs System Driver limited Required for a lane
automation steering and keeping assist
acceleration/deceleration (LKA), an adaptive
but the driver must cruise control (ACC)
monitor and and environmental
intervene if needed perception
Level 3 Conditional driving The system performs System System limited Essential for scene
automation all DDT within the understanding,
defined ODD but obstacle avoidance,
requests takeover and fallback
when necessary planning
Level 4 High driving The system performs System System limited Critical for safe
automation all driving tasks and operation; must
handles fallback in detect and respond
the defined ODD to all obstacles and
without requiring events
human input
Level 5 Full driving The system performs No human driver System unlimited Mandatory and fully
automation all driving tasks integrated; complete
under all conditions situational
without any human awareness required
involvement

3-transistor (3-T) cell, which includes a reset transistor T, a source
follower transistor T, and a row select transistor T (Figure 1a). In
this setup, a reverse-bias photodiode (PD) is used to detect incoming
light. During the reset phase, a transistor T turns on and Vp
charges to a reference voltage V. After resetting, T is turned off
and the integration phase begins. During this phase, incident light
generates a photocurrent Ipp, which gradually discharges voltage
Vpp- This voltage drop is buffered by source follower T, and, when
the row select transistor T is activated, read by the readout circuit.
However, these technologies
of data,
processing  capabilities
This has also led to the development of sensors inspired by

generate large amounts
with  high

increased power consumption.

spatiotemporal requiring hardware

and

biological vision (Shawkat et al., 2024). Particularly, a new imaging
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paradigm inspired by the function of the human retina, located at
the back of the eye, has started gaining attention. The sensing in the
retina is done by cones and rods of a photoreceptor, which convert
light to electrical signals and pass them to ON/OFF bipolar cells
and eventually to ganglion cells. The latter two respond to various
visual stimuli, such as intensity increments or decrements, colour,
or motion. Similar to the retina, pixels in novel event-based cameras
generate output independently from each other and only when some
changes in the captured scene occur.

There are several approaches to implementing event-based
sensors. The first one is the Dynamic Vision Sensor (DVS). Its
pixel architecture shown in Figure 1b mimics a biological retina
and is comprised of three blocks, such as a photoreceptor, switched
capacitor differentiator, and comparator blocks, which act as
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FIGURE 1
(a) Active Pixel Sensor; (b) Retina and Dynamic Vision Sensor (DVS).

photoreceptor, bipolar, and ganglion cells. To produce ON and OFF
events, DVS measures light intensity change and slope. In particular,
at the initial stage, the DVS pixel starts with a reference voltage
that corresponds to the logarithmic intensity of previously observed
light. When light hits a photodiode, the generated current Ip, starts
to discharge the voltage Vpp. The rate at which the photodiode
voltage changes depends on the intensity of the incoming light. The
differentiating circuit produces a voltage proportional to the input’s
rate of change. Slow changes result in small outputs, while rapid
changes cause voltage spikes. The comparator circuit evaluates the
differentiated signal against a fixed threshold and outputs a HIGH
or LOW signal based on the result. The output format of event-
based cameras is a stream of tuples ¢; = (t;, x;, ;, p;), which provide
information about the time #; when the i event e, happened, its
coordinates (x;,y,), and polarity p;.

In addition, there are hybrid types of event-based sensors,
which include Asynchronous Time Based Image Sensor (ATIS) and
DAVIS, shown in Figures 2a,b, respectively. ATIS is a combination
of DVS and Time to First Spike (TFS) technologies (Posch et al.,
2010). Here, the DVS detects changes in the event stream, while
Pulse Width Modulation (PWM) in the Exposure Measurement
(EM) component enables the capture of absolute brightness levels.
The second photodiode in the ATIS architecture allows it to
measure both event intensity and temporal contrast. As a result,
ATIS has a larger pixel area compared to DVS and produces
enriched tripled data output. The output event of ATIS is e, =
(2,95 6 Ps €1m> €cp> €0r)> Where x, y represent the pixel position, ¢ is the
timestamp and p is the event polarity, while ey, e, €., correspond
to the YCbCr color components, providing richer scene information
(Shawkat et al., 2024; Lesage et al., 2023).

DAVIS is an image sensor comprised of synchronous APS and
asynchronous DVS that share a common photodiode, as shown in
Figure 2b. It provides multimodal output, which requires data fusion
and more complex processing. In particular, a frame-based sampling
of the intensities by APS allows for receiving static scene information
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at regular intervals but leads to higher latency (Shawkat et al., 2024),
while DVS produces events in real-time based on changes.

Event-based cameras are typically equipped with control
interfaces known as “biases”. These biases configure key components
such as amplifiers, comparators, and photodiode circuits, directly
impacting latency and event rate. The event bias settings can be
adjusted to adapt to specific environmental conditions and to filter
out noise (Shariff et al., 2024).

The most recent summary on the commercially available
event-based cameras and their specifications can be found in
(Gallego et al., 2020; Chakravarthi et al., 2025). The main vendors
include iniVation (e.g., DVS128, DVS240, DVS346), Prophesee (e.g.,
ATIS, Gen3 CD, Gen 3 ATIS, Gen 4 CD, EVK4 HD), CelePixel (e.g.,
Cele-1V, Cele-V), Samsung (e.g., DVS Gen 2, DVS Gen 3, DVS Gen
4), and Insightness. In addition, (Chakravarthi et al., 2025), provides
a list of open-source event-based camera simulators. The notable
ones include DAVIS (Mueggler et al., 2017) and Prophesee Video
to Event Simulator (Prophesee, 2025). The key event cameras used
for the collection of the real-world large-scale event datasets include
Prophesee’s GEN1, GEN4, EVK4, and IniVation DAVIS346, whose
specifications can be found in Table 3. An important milestone in
the field of event-based sensing is the collaboration of Prophesee
and Sony, resulting in a hybrid architecture IMX636. This sensor
was integrated into industrial camera IDS Imaging uEye XCP
EVS (IDS Imaging Development Systems GmbH, 2025), Prophesee
EVK4 and EVKS5 Evaluation Kits (Chakravarthi et al., 2025),
and others.

3.2 Synthetic event-based data generation

Slow progress in the event-based domain was caused by the
fact that event sensors are both rare and expensive. Furthermore,
producing and labeling real-world data is a resource-intensive
and time-consuming process. As an alternative, datasets can
be generated synthetically (Aliminati et al, 2024). One of the
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FIGURE 2

(a) Asynchronous Time-Based Image Sensor (ATIS); (b) Dynamic and Active Pixel Vision Sensor (DAVIS).

prominent tools for this purpose is the Car Learning to Act
(CARLA) simulator (Dosovitskiy et al., 2017), which provides
highly realistic virtual environments for autonomous driving.
CARLA supports a variety of sensor outputs, including event
cameras, RGB cameras, depth sensors, optical flow, and others,
enabling the creation of diverse and realistic synthetic event-based
datasets.

The Event Camera Simulator (ESIM) is one of the pioneering
works in event simulation Rebecq et al. (2018). Its architecture is
tightly integrated with the rendering engine and generates events
through adaptive sampling, either from brightness changes or
pixel displacements. Vid2E Gehrig et al. (2020) follows the same
principle and is considered an extension of ESIM. Unlike ESIM,
which relies on image input, Vid2E uses video as input. The
data generated by Vid2E was evaluated on object recognition and
semantic segmentation tasks.

EventGAN generates synthetic events using a Generative
Adversarial Network (GAN) (Zhu et al., 2021). The GAN is
trained on a pair of frame data and events from the DAVIS
sensor. During training, the network is constrained to mimic
information present in the real data. To generate events, EventGAN
takes input from a pair of grayscale images from existing
image datasets.

V2E toolbox creates events from intensity frames Hu et al.
(2021). This enabled the generation of event data under bad
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lighting and motion blur. This contributed to the development
of more robust models. V2E produces a sequence of discrete
timestamps, whereas real DVS sensors generate a continuous
event stream Zhang et al. (2024). Video to Continuous Events
Simulator (V2CE) tried to overcome this issue of V2E. V2CE
includes two stages: (1) motion-aware event voxels prediction,
and (2) voxels to continuous events sampling. Besides, it takes
into account the nonlinear characteristics of the DVS camera.
Additionally, this work introduced quantifiable metrics to validate
synthetic data Zhang et al. (2024).

DVS-Voltmeter allows the generation of synthetic events from
high frame-rate videos. It is the first event simulator that took
into account physics-based characteristics of real DVS, which
include circuit variability and noise Lin et al. (2022). The generated
data was evaluated on semantic segmentation and intensity-image
reconstruction tasks, demonstrating strong resemblance to real
event data.

The ADV2E framework proposed a fundamentally different
approach in event generation Jiang et al. (2024). It focuses on
analogue properties of pixel circuitry rather than logical behavior.
Synthetic events are generated from APS frames. Particularly,
emulating an analog low-pass filter allows generating events based
on varying cutoff frequencies.

The Raw2Event framework enables the generation of event data
from raw frame cameras, producing outputs that closely resemble
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TABLE 3 Key commercial event cameras [adapted from (Gallego et al., 2020; Chakravarthi et al., 2024; Wang H. et al., 2025)].

Output Parameter | Prophesee IniVation Prophesee Samsung Prophesee Prophesee uEye XCP
ATIS DAVIS346 GEN4 DVS- EVK4 HD EVKS5 HD EVS
GEN1 Gen4
Spatial 304 x 240 320 x 240 1280 x 720 1280 x 960 1280 x 720 1280 x 720 1280 x 720
Resolution
Temporal - 1us - - 100 ps 100 us 1us
Resolution
Max - 12 MEPS 1066 MEPS 1200 MEPS - - -
Throughput
Max - - - - 1.6 Gbps 1.6 Gbps -
Bandwidth
Event output
vent outpu Latency 3us <l ms 20-150 ps 150 us - 800us -
Dynamic 143 dB 120 dB >124 dB 100 >86 dB >110 dB 120 dB
Range
Contrast 13% 14.3%-22.5% 11% 20% 25% 25% 25%
Sensitivity
Pixel Pitch 30 yum 18.5 um 4.86 yum 4.95 um 4.86 ym 4.86 um 4.86 yum
Low Light - - - - 0.08 lux 0.08 lux 0.08 lux
Cutoff
Spatial n/a 346 x 260 n/a n/a n/a n/a n/a
Resolution
Frame Rate n/a Up to 40 FPS n/a n/a n/a n/a n/a
FPN n/a 4.2% n/a n/a n/a n/a n/a
Frame output
Dark Signal n/a 18,000 e /s n/a n/a n/a n/a n/a
Readout Noise n/a 55¢ n/a n/a n/a n/a n/a
Pixel Pitch n/a 18.5 um n/a n/a n/a n/a n/a
Power 50-175 mW <700 mW 32-84 mW 130 mW 0.5 W via USB 0.5 W via USB 0.5 W via USB
Consumption (140mA @5
Other VDC (USB))
specifi-cations
Year 2011 2017 2020 2020 2022 2023 2025

MEPS, Million Events Per Second; e”, electron; e /s, electrons per second; dB, decibel; ys, microseconds; ms, milliseconds; ym, micrometers; mW, milliwatts; W, watts; mA, milliamperes; FPS,

frames per second; Gbps, Gigabits per second; n/a, not applicable.

those of real event-based sensors Ning et al. (2025). It currently
generates events from grayscale images, but could be extended
to support color event streams. A low-cost solution deployed on
Raspberry Pi could also be built on edge Al hardware, enabling lower
latency and practical use at the edge.

A recently proposed PyTorch-based library, Synthetic Events for
Neural Processing and Integration (SENPI), converts input frames
into realistic event-based tensor data Greene et al. (2025). SENPI
also includes dedicated modules for event-driven input/output,
data manipulation, filtering, and scalable processing pipelines for
both synthetic and real event data.
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To sum up, most of these tools are rule-based, designed to
convert APS-acquired images into synthetic event streams. The only
exception is EventGAN, which is learning-based, but it tends to be
less reliable and heavily dependent on the quality and diversity of the
training data. Among these simulators, ESIM and DVS-Voltmeter
stand out for offering the highest realism. Tools like v2e, v2ce, and
ADV2E are the most scalable for large dataset generation, while
recently introduced Raw2Event is the simplest, lightest, and fastest
option. A novel framework, SENPI, offers controlled simulation
of event cameras and extended processing features, including data
augmentation and manipulation, and algorithmic development.
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3.3 Event-based datasets

3.3.1 Early event-based datasets

There is a growing variety of neuromorphic datasets that were
generated synthetically or recorded in real-world scenarios and
cover a wide spectrum of event-based vision tasks, from small-
scale classification to real-world autonomous navigation. Depending
on the method of capture, they are primarily divided into two
categories: ego-motion and static, also known as fixed. Event-based
datasets collected from a static/fixed perspective typically focus on
the movement of objects or features in the environment, whereas
ego-motion datasets emphasize the movement of the observer or
camera relative to the scene (Verma et al., 2024).

Early event-based datasets include DVS-converted datasets N-
MNIST (Orchard et al., 2015), MNIST-DVS (Serrano-Gotarredona
and Linares-Barranco, 2015), CIFAR 10-DVS (Li et al.,, 2017), N-
Caltech101 (Orchard et al., 2015), and N-ImageNet (Kim et al.,
2021) are publicly available datasets converted to event-based
representation from frame-based static image datasets MNIST
(LeCun et al., 1998), CIFAR 10 (Krizhevsky and Hinton, 2009),
Caltech101 (Fei-Fei et al, 2004), and ImageNet (Deng et al,
2009). The conversion of frame-based images to an event stream
was achieved either by moving the camera, as in case of N-
MNIST and N-Caltech101, or by a repeated closed-loop smooth
(RCLS) movement of frame-based images, as in MNIST-DVS,
CIFAR 10-DVS(Iaboni and Abichandani, 2024; Li et al., 2017). The
latter method produces rich local intensity changes in continuous
time (Li et al, 2017). The pioneering DVS-captured dataset is
DVS128 Gesture. It was generated by natural motion under three
lighting conditions, including natural light, fluorescent light, and
LED light (He et al, 2020). All of them serve as important
benchmark datasets for developing and testing models in the context
of event-based vision. However, only N-Caltech includes bounding
box annotations, making it the most suitable dataset for the object
detection task, which is the primary focus of this survey.

3.3.2 Event-based datasets with autonomous
driving context

There is a variety of DVS-captured datasets, each focusing on
different aspects of event-based vision and application domains.
Table 4 summarizes commonly used event-based datasets related to
autonomous driving. These datasets differ in spatial and temporal
resolution, collection sensor types, and environmental conditions
such as lighting and weather. In addition to the dataset collection
process, dataset labeling also plays an essential role in effective object
detection. However, annotating event-based data at every timestamp
is highly resource-intensive (Wu et al., 2024). Moreover, event
data with low spatial or temporal resolution often results in poor
quality and limited utility, while higher-resolution data significantly
increases memory requirements. Although high temporal resolution
improves the tracking of fast-moving objects, it also introduces
greater sensitivity to noise. To balance these trade-offs, different
datasets adopted different labeling frequencies.

The DDD17 (Davis Driving Dataset, 2017; Binas et al., 2017)
was among the first datasets specifically created for this purpose
and includes 12h of recording. It was collected from German
and Swiss roads at speeds ranging from 0 to 160 km/h using a
DAVIS346B prototype camera with a resolution of 346 x 260 pixels.
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The camera had APS and DVS sensors, which allowed capturing
both event- and frame-based data through the same optics. It
consists of a continuous event stream captured under various
weather and lighting conditions and was used for steering angle
prediction. Since the DDD17 is not categorized into specific object
classes, its direct utilization in object detection tasks is infeasible
without pre-processing and adaptation. An extended version of
DDD17 is DDD20 (Hu et al., 2020). DDD20 has around 51 h of
recordings under various weather and lightning conditions.

Another complex dataset recorded in changing environments
is N-Cars (Sironi et al., 2018). It was collected using Prophesee’s
ATIS camera mounted behind the windshield of a car and consists
of 80 min of video. Then, gray-scale measurements from the ATIS
sensor were converted into conventional gray-scale images. ATIS’s
luminous intensity measures were used to generate ground-truth
annotations. The resulting dataset has two classes, comprised of
12,336 car samples and 11,693 non-car samples.

Three additional event-based datasets focusing on human
motion were later introduced: the pedestrian detection dataset,
the action recognition dataset, and the fall detection dataset.
recorded both
were converted into frames and annotated using the labellmg
tool. The resulting DVS-Pedestrian dataset contains 4,670
annotated frames (Miao et al., 2019).

Prophesee’s GEN1 Automotive Detection Dataset (also called
GAD (Crafton et al, 2021)) is the first large-scale real-world
event-based labeled dataset that includes both cars and pedestrians

The event streams, indoors and outdoors,

(De Tournemire et al., 2020) and is recognized as the first major
detection benchmark. The dataset was collected by the Prophesee
ATIS GEN 1 sensor with a resolution of 304 x 240 mounted behind
the windshield of a car. GEN1 contains more than 39 h of recordings
of various scenes in different lighting and weather conditions. To
decrease the gap between frame-based and event-based datasets in
supervised tasks such as detection and classification, the obtained
dataset was manually labeled at a frequency between 1 and 4
frames per second (FPS). GEN1 is widely utilized for developing
and benchmarking event-based vision technologies and processing
algorithms. Additionally, since it was recorded using the first
generation of event-based vision sensors, the GEN1 dataset exhibits
lower resolution and a higher level of inherent noise compared to
more recent datasets (Perot et al., 2020).

More detailed environmental mapping is achieved in a 1
Megapixel (1MP) automotive detection dataset (Perot et al,
2020) recorded by an event-based vision sensor with high
(1280 x 720), it detailed
spatial analysis (Finateu et al., 2020). In addition to the dataset,

resolution making suitable  for
a fully automated labeling protocol is implemented, the key concept
of which is acquiring data simultaneously with the Prophesee
GEN4 event-based camera and an RGB GoPro Hero 6 camera
positioned side by side as closely as possible. Then, the bounding
boxes from the frame camera images are transferred to the
event-based camera output. The 1MP dataset contains 14 h of
recordings with around 25M bounding boxes of pedestrians
(8.5M), cars (16.3 M), and two-wheelers (1.1 M) at 60 FPS,
facilitating high-temporal-precision tasks.

PKU-DAVIS-SOD is a multimodal object detection dataset with
the focus on challenging conditions. It has 1.08 M bounding boxes

for 3 classes, such as cars, pedestrians, and two-wheelers (Li et al.,
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2023). Compared to GEN1 and 1IMP datasets, the PKU-DAVIS-
SOD dataset offers moderate resolution (346 x 260). The dataset
was collected by DAVIS346 installed on the front windshield of
the driving car, and, to capture high-speed objects, a camera was
also placed at the side of the road. The data obtained are in three
modalities, such as RGB frames, event images, and grayscale images
reconstructed from events using E2VID (Rebecq et al., 2019), and
were manually annotated at a frequency of 25 FPS.

Person Detection in Robotics (PEDRo) is another event-based
dataset primarily designed for robotics, but can also be used in
autonomous driving contexts for pedestrian detection. DAVIS346
camera with a resolution of 304 x 240 was hand-carried to capture
people walking and on some occasions, standing still, sitting,
or running (Boretti et al., 2023). PEDRo, with manually annotated
43 K bounding boxes (25 FPS), can serve as a valuable resource to
mitigate the class imbalance present in the GEN1 and 1MP datasets.

eTraM is one of the recent event-based datasets (Verma et al.,
2024). Tt is a static traffic monitoring dataset recorded by a 1280 x
720 Prophesee EVK4 HD event camera. The dataset contains 10 h
of recordings, providing 2 M bounding box annotations of eight
classes, including pedestrians, cars, trucks, buses, trams, bikes,
bicycles, and wheelchairs that were manually annotated.

3.3.3 Synthetic event-based datasets

CARLA simulator was used to generate the Synthetic Event-
based Vision Dataset (SEVD) (Aliminati et al., 2024) for both
multi-view (360°) ego-motion and fixed-camera traffic perception
scenarios, providing comprehensive information for a range of
event-based vision tasks. The synthetic data sequences were
recorded using multiple dynamic vision sensors under different
weather and lightning conditions and include several object classes
such as car, truck, van, bicycle, motorcycle, and pedestrian.

Additionally, the CARLA simulator, along with the recently
developed eWiz a Python-based library for event-based data
processing and manipulation, was used to generate the eCARLA-
scenes synthetic dataset, which includes four preset environments
and various weather conditions (Mansour et al., 2024).

3.3.4 Event-based dataset labeling

Event-based datasets remain underrepresented. Additionally,
the accuracy of object detection is influenced by dataset labeling
and its temporal frequency. If labels are sparse in time, the model
may miss critical information, especially in high-speed scenarios.
On the other hand, higher labeling frequency can become redundant
in low-motion scenes and is often expensive to implement manually.
To address the scarcity of well-labeled event-based datasets, the
overlap between event-based and frame-based data can be exploited
to generate additional labeled event datasets (Messikommer et al.,
2022). In (Perot et al., 2020), event-based and frame-based cameras
were paired as in the IMP dataset. Since frame-based and event-
based sensors were placed side by side, a distance approximation
was applied afterwards, and labels extracted from the frame-
based camera were transferred to event-based data. Another option
suggests the generation of event-based data from existing video
using video-to-event conversion (Gehrig et al., 2020).

Unlike frame-based cameras, event-based sensors inherently
capture motion information. Adoption of Unsupervised Domain
Adaptation (UDA) to enable the transfer of knowledge from
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a labeled source (e.g., image ) domain to an unlabeled

target (e.g., event Y, .

proposed in (Messikommer et al., 2022). This method does not

Yimg
) domain (Messikommer et al., 2022) was

require paired data from both sensors, making it possible to leverage
labeled frame-based datasets to train models for unlabeled event-
based data. Moreover, a single photo is sufficient to transfer labels,
eliminating the need for high-frame-rate videos.

Labeling event data directly from sensor output, without
relying on corresponding frame-based information, faces its own
challenges. In particular, labeling event-based data at each timestep
is expensive due to its high temporal resolution. To address this
challenge, Label-Efficient Event-based Object Detection (LEOD)
was proposed (Wu et al, 2024). LEOD involves pre-training a
detector on a small set of labeled data, which is then used to generate
pseudo-labels for unlabeled samples. This approach supports both
weakly supervised and semi-supervised object detection settings. To
improve the accuracy of the pseudo-labels, temporal information
was used. Specifically, time-flip augmentation was applied, which
enabled model predictions on both the original and temporally
reversed event streams. LEOD was evaluated on the GEN1 and 1MP
datasets, and it can outperform fully supervised models or be utilized
together to enhance their performance.

4 Event-based object detection

To a great extent, traditional object detectors can be divided
into single-stage detectors and two-stage detectors (Bouraya and
Belangour, 2021; Carranza-Garcia et al,, 2020). The single-stage
detector is comprised of several parts, which typically include
an input, a backbone for feature extraction, a detection head,
and, optionally, neck layers. Its neck layers are located between
the backbone and head layers and consist of several top-down
and bottom-up paths to extract multi-scale features for detecting
objects of various sizes (Bouraya and Belangour, 2021). A detection
head takes the outputs of the backbone and neck and transforms
extracted features into a final prediction. You Only Look Once
(YOLO) (Hussain, 2024) and Single Shot MultiBox Detector (SSD)
(Liu et al, 2016) are examples of Single-stage detectors. YOLO
divides the image into a grid and predicts bounding boxes for
each cell, while SSD uses multiple feature maps at different scales
to detect objects of varying sizes. Two-stage detectors include an
additional step before the classification stage, known as the regions
of interest (Rol) proposal stage (Carranza-Garcia et al., 2020). This
extra stage helps to identify potential object locations for better
performance. As a result, single-stage detectors predict object classes
and bounding boxes in one pass and provide higher speed, whereas
two-stage detectors try to ensure accurate prediction and involve
more computational cost.

Unlike frame-based data, the binary event stream is
characterized by spatial and temporal sparsity. Handling such data
requires high-performing algorithms. The structure of existing
event-based object detection models is comprised of a backbone
architecture followed by an SSD- or YOLO-based head. Detection
model backbone architectures can be classified as dense, spiking,
or graph-based, and can often be converted between formats to
enhance efficiency during training and inference. Depending on the
model architecture, event data may be processed in its raw form
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or require conversion. Once formatted appropriately, models can
operate either asynchronously on raw event streams or at a fixed
rate using dense frame or graph-based representations.

Figure 3 summarizes the basic pipeline of event-based object
detectors, categorized by the type of model used. While the
pipeline can be extended with additional pre- and post-processing
stages, in the diagram we focus on the minimal encoding and
processing components. The processing stage typically involves
converting event data into a specific format, if required, to match
the input requirements of the target model and training or inference
processes. Based on the type of data processing, these models can
be categorized as either event-driven asynchronous (green boxes
in Figure 3) or fixed-rate synchronous (blue boxes in Figure 3).
Furthermore, based on the backbone model architecture, the
networks can be categorized as dense, spiking, or graph-based,
resulting in five possible processing pathways within the pipeline.
More details on models are provided below in Section 4.2. Although
detection models differ in their architectures and processing
strategies, it should be noted that they share several common
evaluation metrics, with some variations depending on the specific
processing approach. In the following sections, we begin by
outlining these key evaluation metrics, then introduce state-of-the-
art models. We also review existing data augmentation techniques
and highlight relevant neuromorphic accelerators.

4.1 Evaluation metrics

Evaluation methods applied to event-based object detectors
are inherited from frame-based frameworks. The widely adopted
one is the COCO (Common Object in Context) metric protocol,
which utilizes various performance metrics such as Average
Precision (AP), APs,, Average Precision Small (APS), Average
Precision Medium (APM), and Average Precision Large (APL)
(Perot et al., 2020; Tian et al, 2024). But the key metrics in
the evaluation of object detectors include mean Average Precision
(mAP) for measuring the accuracy of the object detection, and
runtime for measuring the amount of time required to process input.

These performance metrics evolved based on prediction boxes
produced by detection models. The output of object detectors is
bounding boxes encoded as (X Yiin» ¥max Ymay)» Where each
pair of coordinates represent top-left and bottom-right coordinates
as shown in Figure 4a. The exception is YOLO family models,
in particular, YOLOV8 has a bounding box represented by (label,
Xeenter> Veenter» Width, height), where label is the class of the object,
(Xcenters Veenter) are Normalized coordinates of the center of bounding
box and (width, height) are its width and height as shown in
Figure 4b (Padilla et al, 2020). Despite these differences, the
final evaluation metrics, such as F1 score, AP, and mAP, remain
unaffected.

The Intersection of Union (IoU) is a measure of the overlap
between predicted and Ground Truth (GT) bounding boxes. Based
on the given specific threshold 0, classification can be considered
as correct or incorrect. In particular, if IoU is above the threshold
0, a prediction is considered a True Positive (TP). Otherwise, there
are two cases of incorrect detection: False Negative (FN) and False
Positive (FP). FN occurs when the object detector fails to identify
an object that is present in the scene, whereas FP happens when the
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model incorrectly detects an object in an area where none exists. The
next evaluation metrics are Precision (P) and Recall (R). Precision
(P) shows the ability of the model to find only relevant objects
and can be found using Equation 1, while Recall (R) measures the
proportion of actual GT objects that were correctly detected and can
be identified using Equation 2. Visualization of IoU, precision P and
recall R is illustrated in Figure 5.

TP TP

P= = ; 1
TP+ FP  alldetections W

TP TP

R= = ; 2
TP+FN allgroundtruth @

The precision-recall curve illustrates a trade-off at various
confidence values. The model is considered good if the precision
remains high as its recall increases (Padilla et al.,, 2020). The F1
score is the metric that shows the trade-off between precision P and
recall R as illustrated in Figure 6a and can be found from Equation
3. It ranges between 0 and 1, where 1 shows the highest accuracy.
Average Precision (AP) is identified individually for each class and
represents the area under the curve (AUC) of the precision-recall
corresponding to Figure 6b for that specific class as shown in Figure
6¢. It measures how well the model balances precision (accuracy
of positive predictions) and recall (coverage of actual positives) at
different confidence thresholds. Eventually, mAP (Figure 6d) is the
average of the Average Precision (AP) of each class. mAP; is the
mean average precision of a model when the IoU threshold is set to
50%, whereas mAPs.o5 evaluates performance across multiple IoU
thresholds between 50% and 95%, and is more difficult to achieve
compared to mAP,. mAP; s is preferred metric for benchmarking
state-of-the-art models.

PxR

P+R; 3

Flscore =2x

In addition to mAP, which represents the prediction quality, the
number of floating point operations (FLOPs) is commonly used to
measure the computational efficiency and complexity of a model
(Messikommer et al., 2020). For asynchronous models, where data is
event-driven rather than frame-based, the adopted metric is FLOPs
per event (FLOPs/ev) (Santambrogio et al,, 2024), which more
accurately reflects the computational cost relative to the number of
events processed.

Another important performance indicator is the runtime of the
object detection model, referring to the time required to process
the input data and evaluate all bounding box annotations across the
images. Lower runtime is crucial, especially in real-time or resource-
constrained applications such as robotics and autonomous systems.

Besides, there are evaluations such as latency (milliseconds(ms)),
throughput (frames per second or events per second), energy
efficiency (Joules or Watts) and memory footprint (MB) (Iaboni
and Abichandani, 2024), which better capture a model’s practical
viability on neuromorphic hardware or embedded systems
and contribute to the overall computational cost. Balancing
accuracy, computational cost, and speed is essential for deploying
efficient and scalable event-based object detection models. All the
above-mentioned metrics are summarized in Table 5.
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FIGURE 3
Event-based object detection pipeline: event-data acquisition, pre-processing, processing, post-processing, and deployment. Five types of pipelines

based on processing rate and backbone model architecture: fixed-rate dense, fixed-rate graph-based, asynchronous sense, asynchronous spike-based
processing dense data, and asynchronous spike-based processing raw events.
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TABLE 5 Object detector performance evaluation metrics.

Metric Units Description
Intersection of Union (IoU) unitless Overlap between predicted and Ground Truth (GT) boxes
Precision (P) unitless Shows of all predicted boxes, how many were actually correct
Recall (R) unitless Shows of all actual objects, how many were found by model
F1 score between 0 and 1 Summarizes the accuracy of predicted bounding boxes
Average Precision (AP) unitless Area under this Precision-Recall curve (per class performance)
Mean Average Precision unitless Average of the precision-recall curve across different IoU thresholds and/or multiple classes (overall detector
performance)
Throughput Frames per second (FPS) | Number of frames processed by model per second, speed of processing
Runtime ms Inference speed
Energy Joules or Watt Energy consumption required for inference
Memory footprint Mega Bytes Amount of memory a model needs to operate
Model complexity MACs, FLOPs Amount of computation required for inference
4.2 Models frameworks. However, it should be noted that conventional models

As mentioned earlier, event data is a new and fundamentally
different type of information compared to traditional data.
Nevertheless, existing neural models have been adapted to effectively
process event streams. These approaches can be broadly categorized
into dense, asynchronous dense, SNNs, GNNs, and other model
types. Below, we present these categories with a focus on state-
of-the-art models for autonomous event-based object detection,
particularly those evaluated on the GENI, 1MP, and eTraM
datasets. Figure 7 illustrates some of them.

4.2.1 Dense models

Currently, DNNs remain a practical choice for event-based data
processing due to their well-established training methodologies
and scalability. In particular, in (Perot et al, 2020; Silva et al,
2024¢; Peng et al., 2023a), authors evaluated the performance of
popular CNN-based RetinaNet and YOLOv5 models on GEN1
and 1MP datasets, which lately served as a baseline for their
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require event streams to be converted into a grid-like format
before they can be processed. Earlier methods often relied on
reconstructing grayscale images from events (Liu et al, 2023;
Perot et al., 2020), while recent works use more advanced encoding
techniques (Peng et al., 2023a; Liu et al., 2023; Peng et al., 2023b),
which are discussed later in Section 4.3.

Generally, DNN-based backbones can be categorized into either
CNN-based or Transformer-based architectures. Additionally, they
can be improved by incorporating specialized architectural layers to
better capture the temporal dynamics of event data. In particular,
networks that integrate recurrent layers form a distinct subgroup
of models. One of the first models with recurrency is Recurrent
Event-camera Detector (RED) (Perot et al., 2020). The architecture
of RED includes convolutional layers extracting low-level features
followed by convolutional long short-term memory (ConvLSTM)
layers to extract high-level spatio-temporal patterns from the
input. RED showed that memory mechanism created by recurrent
layers allows detection of objects directly from events, achieving
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results comparable to those obtained using reconstructed grayscale
images. However, utilization of ConvLSTM layers also led to
increased computational complexity and latency and resulted in
slow inference.

The Agile Event Detector (AED) is a YOLO-based architecture,
which demonstrated faster and more accurate performance than the
baseline YOLOX model on the GEN1 and 1MP datasets (Liu et al.,
2023). Prior to AED, many event-based detection models were
computationally intensive and suffered from low inference speeds.
In addition, conventional approaches for converting events into
dense representations often rely on fixed global time windows t,,
which fail to account for the different motion speeds. Specifically,
long time windows can lead to motion blur for fast-moving objects,
while short windows may not capture sufficient information for
slower ones. AED overcomes this limitation through a specialized
event encoding technique, enabling a motion-robust, high-speed,
and lightweight detection pipeline. The architecture of AED avoided
using recurrent layers due to the higher cost of training and slower
speed during inference.

The next architecture is Recurrent Vision Transformer
(RVT) (Gehrig and Scaramuzza, 2023) and has a transformer-
based backbone with recurrent layers. RVT is designed to
overcome a trade-off between accuracy and computational
complexity of previous event-based object detectors
(Perot et al., 2020; Messikommer et al., 2020). It has a hierarchical
multi-stage design of several blocks, which include an attention
mechanism to process spatio-temporal data. Moreover, to reduce
computation, RVT blocks gave preference to Vanilla LSTM cells
over ConvLSTM layers, which allowed for a decrease in inference
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time compared to the RED. Following the introduction of RVT,
numerous event-based object detection models were proposed
within a relatively short period, and RVT served as a baseline for the
majority of them, as can be noticed below.

In most cases, converting events to an image-like dense format
can result in the loss of some properties. A group-based vision
Transformer backbone called Group Event Transformer (GET)
tried to overcome this problem by incorporating Group Token
representation of asynchronous events that consider their time
and polarity (Peng et al., 2023b). The architecture of GET has
three stages comprised of Group Token Embedding (GTE), Event
Dual Self-Attention (EDSA), and Group Token Aggregation (GTA)
blocks. The visualization study demonstrated that by incorporating
the EDSA block, GET could effectively capture counterclockwise
motion. The enhanced version of GET with ConvLSTM layers was
able to outperform most state-of-the-art models like RED, RVT-B,
and others. Overall, GET is reported to be the fastest end-to-end
method since other frameworks require longer data pre-processing
time, which is typically not omitted in runtime results.

Traditional Vision Transformers benefit from the self-attention
mechanism, which improves performance by capturing long-range
dependencies. However, its quadratic computational complexity
also introduces a great overhead in terms of A-FLOPs (Attention-
related FLOPs) and limits scalability during processing high-
resolution tasks (Gehrig and Scaramuzza, 2023; Peng et al., 2024).
One of the ways to reduce computational burden was using
sparse and sparse window-based transformers that rely on token-
level sparsification or adaptive sparsification. In the event-based
domain, these ideas were implemented in the Scene adaptive sparse
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transformer (SAST) (Peng et al., 2024). Its architecture is composed
of multiple SAST blocks, each of which concludes with an LSTM
layer. Through the combined use of window-token co-sparsification
and Masked Sparse Window Self-Attention (MS-WSA), SAST
effectively discards uninformative windows and tokens. This enables
scene-aware adaptability, which allows focusing only on relevant
objects. As a result, it could achieve better performance than variants
of RVT at lower computational expense.

Recurrent YOLOv8 (ReYOLOV8) is an object detection
framework that leverages the state-of-the-art CNN-based YOLOv8
model for efficient and fast object detection, and enhances
its spatiotemporal processing capabilities to process events by
integrating ConvLSTM layers (Silva et al., 2025). ReYOLOVS
achieved better accuracy with a relatively smaller number of
parameters compared to other state-of-the-art event-based object
detectors, including RED (Perot et al, 2020), GET (Peng et al.,
2023b), SAST (Peng et al., 2024), variants of RVT (Gehrig and
Scaramuzza, 2023), HMNet (Hamaguchi et al., 2023), and others.

As mentioned earlier, prior to being processed by dense models,
the event stream must be converted into a frame-like format. The
time window t,, used to generate dense event representations may
vary between training and inference. When models are unable to
adapt to these differences in frequency, their detection performance
can degrade. Integration of the State Space Model (SSM), a type
of model designed to handle sequential data efficiently over long
time horizons, may improve their performance without retraining
at different frequencies (Zubic et al., 2024). Evaluation of RVT
and SSM-VIT represented by SSM for Sequence Modeling (S4)
(Gu A. et al., 2021), Diagonal $4 (S4D) (Gu et al,, 2022), and SSM
with parallel scans (S5) (Smith et al., 2022) models across different
frequencies showed that SSM-ViT can outperform RVT by 20 mAP
and a 33% increase in training speed (Zubic et al., 2024).

SSM with 2D selective scan (S6) was adopted in the architecture
of Sparse Mamba (SMamba) (Yang et al., 2025). It was evaluated
on widely adopted GEN1, 1MP datasets and the recent eTRaM
dataset, and outperformed the state-of-the-art models, including its
sparse transformer-based counterpart SAST. While SAST proposed
a window attention-based sparsification strategy, SMamba utilizes
information-guided spatial selective scanning and global spatial-
based channel selective scanning that can measure the information
content of tokens and discard non-event noisy tokens.

4.2.2 Asynchronous dense models

Conversion of a stream of asynchronous and spatially sparse
events into a synchronous tensor-like format and processing them by
dense models at fixed rates leads to high latency and computational
costs. Therefore, some works focus on dense models that process
asynchronous event-by-event data during inference, leveraging
both the temporal and spatial features of the event information.
Nevertheless, training asynchronous dense models still requires
converting raw event data into frame-like representations, which
remains computationally intensive.

AsyNet is a framework designed to convert traditional
models, trained on synchronous dense images, into asynchronous
models that produce identical outputs (Messikommer et al,
2020). To preserve sparsity in event-based input data, AsyNet
employs a sparse convolutional (SparseConv) technique such as
the Submanifold Sparse Convolutional (SSC) Network, which
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effectively ignores zero-valued inputs within the convolutional
receptive field. To maintain temporal sparsity, Sparse Recursive
Representations (SRRs) are used. Unlike traditional methods that
reprocess the entire image-like representation from scratch for
every incoming event, SRRs enable recursive and sparse updates
as new events arrive, which eliminates the need to rebuild the
full representation each time. Examples of SRRs include event
histograms (Maqueda et al., 2018), event queues (Tulyakov et al.,
2019), and time images (Mitrokhin et al., 2018), where only single
pixels need updating for each new event.

The next approach for asynchronous processing is known as
MatrixLSTM and uses a grid of Long Short-Term Memory (LSTM)
cells to convert asynchronous streams of events into 2D event
representations (Cannici et al., 2020). All outputs of LSTM layers
are collected into a dense tensor of shape H x W x C, forming a final
surface S,. By jointly training MatrixLSTM layers with state-of-the-
art models, there is no longer a need for pre-processing events into
a frame-like structure to process the input.

Asynchronous  spatio-temporal ~memory network for
continuous event-based object detection (ASTMNet) also processes
raw event sequence directly without converting to image-
like format (LiJ. et al, 2022). This became possible due to the
utilization of an adaptive temporal sampling strategy and temporal
attention convolutional module.

Fully Asynchronous, Recurrent and Sparse Event-based CNN
(FARSE-CNN) uses hierarchical recurrent units in a convolutional
way to process sparse and asynchronous input (Santambrogio et al.,
2024). Unlike MatrixLSTM, which also uses ConvLSTM but
uses a single recurrent layer, FARSE-CNN is a multi-layered
hierarchical network. FARSE-CNN also introduced Temporal
Dropout, a temporal compression mechanism, which allows
building deep networks.

The transformer-based framework for streaming object
detection (SODformer) also operates asynchronously without
being tied to a fixed frame rate (Li et al., 2023). SODformer was
designed for object detection based on heterogeneous data, and, to
improve detection accuracy from event- and frame-based streams,
it introduced transformer and asynchronous attention-based fusion
modules. The performance of SODformer was evaluated on the
multimodal PKU-DAVIS-SOD dataset.

4.2.3 Spiking Neural Networks

As observed in dense models, adding recurrent connections
can enhance the performance of dense backbones due to the
ability to capture the temporal dependencies of events (Perot et al.,
2020; Gehrig and Scaramuzza, 2023). One study further showed
that Spiking Neural Networks (SNNs) outperform standard
RNNs in processing sparse, event-driven data and achieve
performance comparable to LSTMs (He et al., 2020). SNNs are
widely known as biologically inspired, energy-efficient architectures
that are inherently well-suited for processing asynchronous input
(Cordone et al., 2022) and are considered as neuromorphic or/and
event-driven neural networks. However, as the resolution of the
vision data increases, the performance of SNNs begins to decline
(He et al., 2020). Moreover, SNNs face significant challenges when
it comes to training and scalability, primarily due to their inherent
complexity and the need for algorithms to handle the discrete and
event-driven nature of their neurons (Kim et al., 2020). Besides,
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there is a lack of specialized hardware. Traditional gradient-based
training methods and Graphics Processing Units (GPUs) and
Tensor Processing Units (TPUs) are well-optimized for DNN,
but not directly suitable for SNNs (Cordone, 2022). Different
topologies of SNNs and training methods are continuously evolving.
Additionally, pre-trained DNNs can be converted into SNNs for
inference, often achieving results comparable to those obtained
with DNNs (Silva D. et al., 2024).

One of the first spike-based object detection models is a
Spiking-YOLO, which was obtained via DNN-to-SNN conversion
(Kim et al, 2020). Initially, the converted model was unable
to detect any objects due to a low firing rate and a lack
of an efficient implementation method of leaky-ReLU. After
introducing channel-wise normalization and signed neurons with
an imbalanced threshold, the modified model achieved up to
98% on non-trivial PASCAL VOC and MS COCO datasets,
comparable to the original DNN-based TinyYOLO model. However,
applied normalization methods also led to an increase in the
required number of timesteps, which is unfeasible for real-world
implementation on neuromorphic hardware due to high latency
(Cordone, 2022). In particular, the conversion-based Spiking-
YOLO model (Kim et al., 2020) required 500 timesteps to achieve
results comparable to those of the Trainable Spiking-YOLO (Tr-
Spiking-YOLO) (Yuan et al, 2024), which uses direct training
with the surrogate gradient algorithm and only 5 timesteps on the
GENI dataset.

EMS-YOLO is the first deep spiking object detector trained
directly with surrogate gradients, without relying on ANN-to-SNN
conversion Su et al. (2023). EMS-YOLO uses the standard Leaky
Integrate-and-Fire (LIF) neuron model and surrogate gradient
backpropagation through time (BPTT) across all spiking layers.
On the GENI1 dataset, EMS-ResNetl0 achieves performance
comparable to dense ResNet10 while consuming 5.83 x less energy.

End-to-End  Adaptive
for Event-based Detection with Recurrent Spiking Neural
Networks (EAS-SNN) SNN-based model that
introduced Residual Potential Dropout (RPD) and Spike-Aware
Training (SAT) (Wang Z. et al., 2024). It also uses backpropagation

Sampling and  Representation

is another

through time (BPTT) with surrogate gradient functions to overcome
the non-differentiability of spikes. Surrogate gradient applied in
Spike-Aware Training (SAT) improves the precision of spike timing
updates. With only 3 timesteps required for detection, EAS-SNN
demonstrated competitive detection speeds of 54.35 FPS and
reduced energy consumption up to a 5.85 x.

A recently introduced Multi-Synaptic Firing (MSF) neuron
inspired by multisynaptic connections represents a practical
breakthrough for event-based object detection Fan et al. (2025).
Unlike vanilla spiking neuron, MSF-based SNN is capable of
simultaneously encoding spatial intensity through firing rates and
temporal dynamics through spike timing. By combining multi-
threshold and multi-synaptic firing with surrogate gradients, MSF
networks can be trained at scale for deep model architectures.
Particularly, the MHSANet-YOLO model with MSF neurons
achieved up to 73.7 mAP on the GENI1 dataset, which is better than
both ReLU and LIF versions. Moreover, MSF-based MHSANet-
YOLO required 16.6 x less power consumption than the one with
ReLU neurons Fan et al. (2025).
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4.2.4 Graph-based models

The architecture of GNNs can also process event-based data by
preserving their sparsity and asynchronous nature. One of the GNN-
based object detection frameworks, called Asynchronous Event-
based Graph Neural Network (AEGNN) processes events as “static”
spatio-temporal graphs in a sequential manner (Schaefer et al.,
2022). AEGNN uses an efficient training method where only the
affected nodes are updated when a single event occurs. In other
words, they were able to process events sparsely and asynchronously.
In addition, it can also process batches of events and use the standard
backpropagation method. This enables AEGNN to be trained on
synchronized event data and support asynchronous inference. For
object detection tasks, AEGNN demonstrated up to 200X less
computational complexity.

The asynchronous nature of the event stream is also considered
in Efficient Asynchronous Graph Neural Networks (EAGR) (Gehrig
and Scaramuzza, 2022). EAGR offers per-event processing and can
be configured using several architecture design choices. To reduce
computational cost, it used max pooling in early layers and a pruning
method, which resulted in skipping up to 73% of node updates.
Therefore, a reduced number of FLOPS was observed during the
first three layers while processing GEN1 dataset. A small size variant
of EAGR achieved a 14.1 mAP higher performance and around
13% times fewer MFLOPS/ev than the AEGNN. Nevertheless,
GNN-based models’ performance is still behind dense counterparts,
especially involving recurrent connections.

Deep Asynchronous GNN (DAGr) attempted to improve GNN’s
performance by combining event- and frame-based sensors in a
hybrid object detector (Gehrig and Scaramuzza, 2024). The study
showed that combining a 20-FPS RGB camera with high-rate event
cameras can match the latency of a 5000-FPS camera and the
bandwidth of a 45-FPS camera. Similarly to EAGR, it comes with
different variants of configurations, conditionally divided into nano,
small, and large size models. By effectively leveraging each modality,
the large variant of DAGr achieved improved performance, reaching
41.9 mAP by the large size variant.

4.2.5 Other models

architectures be the

aforementioned groups and include frameworks that are employed

Some cannot categorized into
to enhance the performance of the object detectors.

The first one is Hierarchical Neural Memory Network (HMNet)
(Hamaguchi et al., 2023). It is a multi-rate network architecture
inspired by Hierarchical Temporal Memory (HTM). An ordinary
HTM is a brain-inspired algorithm that uses an unsupervised
Hebbian-learning rule and is characterized by sparsity, hierarchy,
and modularity. It operates at a single rate and incorporates
Spatial Pooling and Temporal Pooling acting as convolutional and
recurrent layers (Smagulova et al., 2019). On the other hand, HMNet
features a temporal hierarchy of multi-level latent memories that
operate at different rates, allowing it to capture scenes with varying
motion speeds (Hamaguchi et al, 2023). In HMNet, low-level
memories encode local and dynamic information, while high-level
memories focus on static information. For embedding the sparse
event stream into dense memory cells, HMNet introduced an Event
Sparse Cross Attention (ESCA). There are four variants of HMNet,
including HMNet-B1/L1/B3/L3, which differ in the number of
memory levels and dimensions. In addition, the architecture of
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HMNet can be extended to the multisensory inputs. Overall, HMNet
outperforms other methods in speed, particularly the recurrent
baselines, which require a long accumulation time to construct an
event frame.

The dense-to-sparse event-based object detection framework,
DTSDNet, provides enhanced speed robustness and enables a
reduction in event stream accumulation time by a factor of five, such
as decreasing it from the typical 50 ms to just 10 ms (Fan etal., 2024).
In particular, in conventional recurrent models, event streams are
partitioned evenly, whereas DTSDNet uses an attention-based dual-
pathway aggregation module to integrate rich spatial information
from dense pathway with asynchronous sparse pathway.

While manually designed architectures like HMNet and
others demonstrate strong performance, they often rely on expert
knowledge and trial-and-error. To overcome this limitation and
explore more efficient configurations, Neural Architecture Search
(NAS) can automate the design of novel neural networks by
exploring various combinations of architectural components using
strategies like gradient-based search, evolutionary algorithms, and
reinforcement learning (Ren et al., 2021). Chimera is the first block-
based Neural Architecture Search (NAS) for event-based object
detection using dense models (Silva et al., 2024b). The choice of
encoding format, along with models designed using the Chimera
NAS framework, achieved performance comparable to state-of-the-
art models on the GEN1 and PEDRo datasets, while reducing the
number of parameters up to 1.6 .

There are also hybrid models that include both SNN and
dense Artificial neural network (ANN) architectures. One of such
examples is an attention-based hybrid SNN-ANN. Its SNN part
captures spatio-temporal events and converts them into dense
feature maps to be further processed by the ANN part (Ahmed et al.,
2025). SNN component of Hybrid SNN-ANN model used the
surrogate gradient approach during training. Hybrid SNN-ANN
achieves dense-like performance at a reduced number of parameters,
latency, and power.

4.3 Event encoding techniques

Each event in a event stream & occurs only due to the change

in the captured scene and can be recorded in a sequence ¢, =
(%Yo tiopy) of k =1, 2, ...N events, where (x,y) represent pixel
location, t is the time and p is the polarity. In a 4-dimensional
manifold of x,y,t,p, a point-set of events can be represented as an
event field, a continuous time representation of events of positive
and negative polarity £, and £_ as in Equation 4:

.yt =Y 8(x-x0y-y)8(t-1) (4)

e el

SNNs are inherently suited for processing event-based data.
Models that utilize asynchronous sparse architectures are also
capable of handling raw events. However, in the case of DNNs and
GNNs, events cannot be processed directly by models and need
to be encoded into a specific format. To be utilized by GNN,
events must first be transformed into a graph format (Gehrig and
Scaramuzza, 2022; 2024), whereas DNNs process events that have
been adapted into the image- or tensor-like structure.
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During event encoding into a specific format, the choice of
representation can significantly impact performance. For example,
the temporal component of the event stream can be used to identify
patterns and provide valuable insights in certain applications,
a concept known as temporal sensitivity (Shariff et al., 2024).
Additionally, focusing on the most informative changes in a
scene, which is called selectivity, further improves processing.
These representations can also be used to satisfy computational
and memory requirements (Shariff et al., 2024). Table 6 presents
a summary of common event encoding formats, with detailed
descriptions provided in the sections below.

4.3.1 Dense aggregation

A common approach for converting an event stream into a
dense, grid-like format involves stacking the events in various
configurations. Based on image formation strategies, existing
stacking methods are categorized into four types: stacking by
polarity, timestamps, event count, and a combination of timestamps
and polarity (Zheng et al., 2023). This section highlights several
noteworthy techniques for encoding events and illustrates some
of them in Figure 8.

o Event Frame is formed by merging two-channel images,
each corresponding to stacked ON and OFF polarity events
(Henri et al., 2017).

« Event Volume or Voxel Grid is a volumetric representation of
the events expressed as (H, W, T) (Zhu et al., 2019). An event
stream containing N events within a global range (f,, ty) is
sampled into the T temporal bins ranging between [0, B—1]
with a normalized timestamp ¢; as in Equation 5:

._ (ti—to)
ko(ty-1)

Each element in the event volume consists of events represented by a

(©)

linearly weighted accumulation, analogous to bilinear interpolation
as in Equation 6:

V(x,y,t):Zpkkb(x—xk)kb()’_)’k)kb(t_t;:) (6)
k

where kj(a) = max(0, 1- |a|) is a bilinear kernel ensuring smooth
interpolation across the discretized space (Jaderberg et al., 2015).

» Voxel Cube are obtained from a voxel grid which is formed
via accumulation of events over a specified time window At
(Cordone et al., 2022). In particular, a sample lasting d seconds
would be divided into T = d/At timesteps. The resulting voxel
grid is stored in 4D CTHW format, where C is the number of
channels, T denotes the number of timesteps, also known as
bins, and H and W correspond to the height and width of data,
respectively. Voxel Cubes are obtained by further dividing At
into micro time bins.

o Event Spike Tensor (EST) allows to process continuous-
time event data as a grid-like 4-dimensional data structure
(2T,H,W) (Gehrig and Scaramuzza, 2024). Event stream
is converted to EST through a sequence of differentiable
operations: kernel convolutions, quantizations, and projections.
Generalized EST that retains all four dimensions that can be
used to derive new and existing representations.
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TABLE 6 Common event encoding techniques [adapted from (Gehrig et al,, 2019; Zheng et al., 2023].

Type Event representation Dimension Description

Dense Event frame (Henri et al., 2017) HxW Event stream is divided into two polarities ON and OFF, forming a
two-channel image and is then combined to create an event frame
Discards temporal and polarity information

Dense Event count image (Zhu et al., 2018b) 2xHxW Discards time stamps

Dense Surface of Active Events (SAE) (Zhu et al., 2018b) 2x Hx W Discards earlier time stamps

Dense Voxel grid (Zhu et al., 2019) HxWxT Discards event polarity

Dense Voxel Cube (Cordone et al., 2022) CxTxHxW Event stream is divided into multiple # temporal bins and events
split into channels C

Dense Histogram of Time Surfaces (HATS) (Sironi et al., 2018) 2xHxW Discards temporal information

Dense Event Spike Tensor (EST) (Gehrig et al., 2019) 2xBxHxW Discards the least amount of information

Dense Temporal Active Focus (TAF) (Liu et al., 2023) 2K x Hx W A dense version of EST that samples only recent non-zero event

Dense Mixed-Density Event Stacks (MDES) (Nam et al., 2022) MxCxHxW Selects the most recent events within the time window and
aggregates event sequences into multiple stacks M with varying
densities to better capture objects moving at different speeds

Dense Stacked Histogram (SHIST) (Gehrig and Scaramuzza, 2023) 2B x Hx W Event stream is divided into multiple temporal bins and events split
into two polarities ON and OFF, forming a structured
spatiotemporal tensor that preserves motion and polarity
information

Dense Volume of Ternary Event Images (VTEI) (Silva et al., 2025) BxHxW Event stream is divided into multiple temporal bins, and for each
bin, the most recent events are sampled to generate a Ternary Event
Image (TEI). Stacking the TEIs from all bins results in a Volume of
Ternary Event Images (VTEI), capturing both spatial and temporal
structure

Dense Group Token (Peng et al., 2023b) 2KxHx W Event stream is divided into K intervals and events are mapped to
patches with own rank and position

Dense Time-Ordered Recent Event (TORE) (Baldwin et al., 2022) 2K x Hx W Time-ordered recent event volumes

Dense 12-channel Event Representation through Gromov-Wasserstein CxHxW Event representation from GWD optimization (measures the

Optimization (ERGO-12) (Zubic et al., 2023) distortion rate from raw events to event representation)
Graph Graph (Gehrig and Scaramuzza, 2022; Gehrig and Scaramuzza, n/a The graph that include information about spatial and temporal
2024) position of the event

Spike Spike (Wang Z et al., 2024b; Ahmed et al., 2024) n/a To reduce temporal resolution of event stream a sampling S and

aggregation Atechniques might be adopted

In a given time interval A, events represent point-sets that
can be summarized by the event field, which can be interpreted as
successive measurements of a function f, or the Event Measurement
Field (EMF) according to Equation 7:

S.(xyD= Y f,(y00(x-xpy-y)0(t-t,) (7)

ec€,

Examples of f, include event polarity (e.g., f,(x.y.t) = 1),
event count (e.g., f,(x,y,t)=1) and the normalized time stamp
(e.g, fulxyt)= %). Since events are modeled as a Dirac

pulse § and are difficult to use directly, EMF is convolved
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with a kernel k(x,y,t) to aggregate and smooth the events as
in Equation 8:

(kxS)xpt)= Y f,(xeyet)k(x—xpy=2)8(t-1) (8)

el

The convolved signal is also known as membrane potential. Prior
works employed various task-specific kernel functions, including
the exponential kernel, which was used in the hierarchy of time-
surfaces (HOTS) (Lagorce et al., 2016) and histogram of average
time surfaces (HATS) (Sironi et al, 2018) encodings. After a
convolutional step, the signal is further sampled at regular intervals
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Some of the dense representations of events: Event Spike Tensor (EST), Two-Channel Image, Voxel Grid, Event Frame, Mixed-Density Event Stacks
(MDES), Volume Ternary Event Image (VTEI) (adapted from (Gehrig et al., 2019; Nam et al., 2022; Silva et al., 2025).

to produce a grid-like generalized Event Spike Tensor (EST)
representation as in Equation 9:

S [ yot] = (k5 8.) ¥yt = D o8 (5= %0y, —y)8(t,—t)  (9)
ek€€4

with the spatiotemporal coordinates x;,y,,,, belonging to a voxel
grid (H, W, T):x; €{0,1,... W~1},y, €{0,1,... H— 1} and t, € {t,,t, +
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At, ...ty + TAt }, where ¢, is the first timestamp, At is the bin’s size
and T is the number of temporal bins.

The generalized EST can be further modified via different
operations such as summation ), maximization max, and others,

that can be expressed as the projection operator H, with v
denoting dimension. EST without projection is S,[x}y,,t,].
The projection operator H, applied to EST S.[x,y,.t,] can
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result in other representations such as Event Frame S[x;y, ]
= H, +(8,[xpy,,1,]) (Henri et al, 2017), Two-Channel Image
S lxpy,,] =H, (S.[xp,,t,]) (Maqueda etal.,, 2018) and Voxel Grid
S[xpy,oty] = Ho(SL[xp,,t,]) (Zhu et al,, 2019).

» Temporal Active Focus (TAF) is seen as a dense version of the
Event Spike Tensor (EST), which involves spatiotemporal data
processing with efficient queue-based storage (Liu et al., 2023).
While traditional EST is a sparse tensor covering the entire
event stream £ and requiring high time and storage costs, TAF
focuses on sampling only the most recent non-zero K events
at each spatial and polar position and thus avoids excessive
data processing. Moreover, since object detection on the event
stream occurs every At sampling period, the TAF tensor can
be incrementally updated using a First-In-First-Out (FIFO)
queue to reduce computational overhead. Eventually, FIFO
sliding queues of events FIFO(p,t,x,y) with depth K form a
compact and dense tensor S € R* W of most meaningful
data. The process of TAF tensor formation is similar to EST
and includes measurement function f(-) and convolutional
kernel k(-) components. Here, a rectangular window function
acts as a convolution kernel to detect which events contribute
to the tensor. To preserve the absolute position information
on the temporal dimension, the measurement function
f(-) calculates the average elapsed time from the events
captured by the convolution kernel to the current detection
time £,

According to Equation 10, at each detection step n, the average
time elapsed is calculated:

M Etxy,p) = Y f(x0 710 P o ) k(X = X0y = Yo = Pt~ 1)
ey€E
(10)

Then its non-zero values are pushed into the FIFO queues. At
the next step 7+ 1, new values are determined and pushed, while
old ones are incrementally updated: £** « #" + Az, Logarithmic
transformations are applied to normalize At values. A dense
TAF tensor is generated by continuous updates of the FIFO
queues and transformations. Such incremental updates reduce the
computational costs.

« Mixed-Density Event Stacks (MDES) was proposed to alleviate
the event missing or overriding issues due to different speeds of
the captured objects (Nam et al., 2022).

Due to the different speeds of the moving objects, stacking
events with the pre-defined number of events or time period may
lead to the loss of information. For example, short stacks can not
track slow objects, whereas long stacks with excessive events may
overwrite earlier scenes. To overcome the problem, Mixed-Density
Event Stacks (MDES) format is proposed, where the length of each
event sequence ¢ is aggregated to M = 10 stacks with a different
number of events per stack (Nam et al., 2022). For M = 1 the event
sequence e; has N = 5 million events, which linearly depend on the
resolution of the camera and include all movements for a given time
span. The next event sequence e, ends at the same ground-truth
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(GT) depth timestamp of e, but has twice less events n = N/2. Slicing
and stacking half of the events from the previous stack continues in
the subsequent event sequence e;-¢,, and reaching the final M with
n=N/ 2M-1),

o Stacked Histogram (SHIST) A Stacked Histogram (SHIST)
is designed to save memory and bandwidth (Gehrig and
Scaramuzza, 2023). The algorithm creating SHIST includes
several steps. It starts by creating a 4-dimensional byte tensor.
The first two dimensions are polarity and B discretization steps
of time, whereas the last two are the height H and width W of
the camera. For a time window [f,, t,), the set of events £ can
be represented as in Equation 11:

E=E(pnxy) =) 8(p-p)d(x-xpy-y)o(r-7) (1)

e el
%B. Then, the polarity and time in the resulting B2-
b ta
frames are flattened to a 3-dimensional shape (2B, H,

where 7, =
dimensional

w).

o Volume of Ternary Event Images (VTEI) Volume of Ternary
Event Images (VTEI) method ensures high sparsity, low
memory usage, low bandwidth, and low latency (Silva et al,
2025). Similar to MDES, VTEI focuses on the encoding of
the last event data, but with uniform temporal bin sizes and
considering events’ polarity, +1 and —1. The VTEI tensor is
created in several steps. The first step involves the initialization
of a tensor I with dimension B x H x W, where B is the number
of temporal bins and H and W are the height and width of the
camera. Then, an event stream with N events is sampled at a
consistent time window [t,, t,) according to Equation 12:

_ (tk B tu)
(tb - ta)
where t, and t,, are the initial and final timestamps; T} is the temporal

k (12)

bin assigned for the timestamp f,.

o Group Token representation groups asynchronous events
considering their timestamps and polarities (Peng et al., 2023b).
Conversion of the event stream into GT format is done using
Group Token Embedding (GTE) module. First, asynchronous
time events are discretized into K intervals with time bin Jt
and the resolution H x W is divided into P x P patches. When
each event is mapped to a patch, it is assigned a patch rank
pr and a location position within that patch pos. Then, arrays
of (d,pr,pos) and polarity p are mapped into a signle 1D
array as in Equation 13:

H

T=(K-H-W)-p+(H-W)-d,+ }')ZW redpos  (13)
where:
- -t
dt=Kx ——2%
toa—to+1

pr=(X¥mod P) + ( mod P) x P
pos=%/P+3/Px W/P
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Then, two 1D arrays with length H- W-2K are created via
applying 1D bin count operation with weights of ] and relative time
#—1£5/t,a — Ly After concatenation, reshaping and 3 x 3 convolution
operations the Group Tokens with dimension (E . % x (G- C) are
generated, where Cis the channel number of each group and G is the
number of groups and depends on combinations of time intervals
and polarity.

o Time-Ordered Recent Event (TORE) volumes avoid fixed and
predefined frame rates, which helps to minimize information
loss (Baldwin et al., 2022). Similar to TAE, TORE prioritizes
the most recent events since they have the most impact and
employs FIFO buffer. TORE volumes are implemented based on
a per pixel polarity specific FIFO queues FIFO(x, y, p, k) of depth
k €1,2,3..K. Each queue is the result of adding a new event and
removing the oldest. According to Equation 14, TORE volume
compactly stores raw spike timing information using a log-time
difference between the current time t and the k most recent
events in FIFO:

TORE (x,y,p,k,t) = max(min (log (t — FIFO (x,y,p,k) + 1), log (1)), log(7"))
(14)

where 7 is the maximum time and 7' is the minimum time
sensitivity. 7is optional and can be used to establish a hard threshold
for memory retention, which is beneficial in scenarios with limited
bandwidth. Meanwhile, 7’ helps to suppress noise amplified by the
logarithm. TORE volume does not require temporal binning and
windowing and can be created for any time period in the format 2K x
HxW.

o 12-channel Event Representation through Gromov-
Wasserstein Optimization (ERGO-12) It was discovered
that several measures can improve model convergence and
speed up optimization, and include (i) normalization of the
event coordinates and timestamps, (ii) concatenation of the
normalized pixels, and (iii) sparsification (Zubic et al., 2023).

The choice of encoding format depends on the specific task,
dataset, and network backbone used. Traditionally, identifying the
optimal representation relies on validation scores obtained through
neural networks, which is often a resource-intensive process. A
recently introduced method for ranking event representations across
various formats leverages the Gromov-Wasserstein Discrepancy
(GWD), achieving a 200 x speedup compared to traditional neural
network-based approaches (Zubi¢ et al, 2023). GWDy over N
samples is an average distortion rate between raw events £ and
their encoded features F and correlates with neural network output
according to Equation 15:

1

GWDy =

Y L(E,F) (15)
i
where L(E;,F;) is the Gromov-Wasserstein Discrepancy or the
optimal cost of matching events to features under an optimal
transport plan.

The tests of the two-channel 2D Event Histogram and 12-

channel Voxel Grid, MDES, TORE, and ERGO-12 using YOLOv6
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architecture preserved the same ranking across multiple backbones,
SwinV2 (Liu et al, 2022), ResNet-50 (He et al, 2016), and
EfficientRep (Weng et al., 2023). Moreover, ERGO-12 outperformed
other methods by up to 2.9% mAP on the GENI1 dataset using
YOLOV6 with SwinV2 backbone (Zubi¢ et al., 2023).

4.3.2 Spike-based representation
Although  SNNs
computations, their performance lags behind DNNs. One of the

can naturally perform event-driven
possible reasons is that the temporal resolution of sensors exceeds
the processing capability of object detectors. Inspired by a sampling
S and aggregation .4 mechanism used to convert events to dense
tensor formats, a recent work proposed an Adaptive Sampling
technique with Recurrent Spiking Neural Networks (ARSNN) and

was used with the EAS-SNN model (Wang Z. et al., 2024).

4.3.3 Graph representation

In AEGNN, the event stream is converted into a spatio-temporal
graph format using uniform subsampling (Schaefer et al., 2022). In
particular, events are embedded into a spatio-temporal space R® and
divided into K subsamples (e.g., K = 10). During pre-processing,
more informative events and their precise time are kept, whereas
removed events reduce the chances of overfitting. As a result, the
temporal position of each event is normalized by a factor f and each
event is mapped to a node to form a graph G.

Both DAGr (Gehrig and Scaramuzza, 2024) and EAGR process
the spatio-temporal graphs G = {v,E}, comprised of a set of nodes
V connected by spatio-temporal edges E. Nodes in the graph
include information about the spatial and temporal position of
the event, which includes coordinates and time, and its feature
given by polarity. Before being mapped into a node, an event’s
spatial coordinates are normalized by the height and width, and the
corresponding temporal feature f; is rescaled by a factor 5. Each edge
E in the graph links events that are close in both space and time, and
the graph is directed to preserve the natural temporal order of events.

4.4 Augmentation

Data augmentation can increase the generalization ability of
neural networks and greatly affect their performance (Zoph et al.,
2020). The most common augmentation techniques for event-
based data are similar to those used for traditional frame-
based images and include horizontal flipping, zoom-in, zoom-
out, resizing, adding noise, shearing, and cropping (Gehrig and
Scaramuzza, 2023; Peng et al., 2023b).

On the other hand, other augmentation methods exploit the
nature of event-based data for augmentation. EventDrop (Gu F. et al.,
2021) is applied to raw events. It augments asynchronous event
data by selectively removing events based on predefined strategies
such as random drop, drop by time, and drop by area. The
method was evaluated using DNN models with four event encoding
representations, such as Event Frame, Event Count, Voxel Grid, and
Event Spike Tensor (EST), on N-Caltech101 and N-Cars datasets.
In addition, EventDrop can enhance the model’s generalization in
object recognition and tracking by generating partially occluded
cases, improving performance in scenarios with occlusion. Besides,
EventDrop is reported to be compatible with SNNs too.
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Similar to EventDrop, the EventMix method can be applied
to both DNNs and SNNs. It creates augmentation by mixing
event streams with a Gaussian Mixture Model (Shen G. et al,
2023). Performance of EventMix was tested on DVS-CIFAR10, N-
Caltech101, N-CARS, and DVS-Gesture datasets. SNN with Event-
Mix achieved state-of-the-art results (Shen G. et al., 2023).

Neuromorphic Data Augmentation (NDA), a family of
geometric augmentations, was specifically designed to enhance
the robustness of SNNs (Li Y. et al., 2022). SNN model with NDA
improved accuracy by 10.1% and 13.7% on DVS-CIFARIO and
N-Caltech 101, respectively. The next ViewPoint Transform and
Spatio-Temporal Stretching (VPT-STS) augmentation method
is also designed for SNNs (Shen H. et al, 2023). In particular,
the SNN model with VPT-STS achieved 84.4% on the DVS-
CIFAR10 dataset. The VPT-STS generates samples from different
viewpoints by transforming the rotation centers and angles in the
spatiotemporal domain.

Another proposed method for enhancing event data diversity
is Shadow Mosaic (Peng et al., 2023a). It consists of several stages,
including Shadow Mosaic, Scaling, and Cropping, which aim to
reduce the imbalance in spatio-temporal density of event streams
due to different speeds of objects and the brightness change.
Sparse shadow events are generated through random sampling,
while dense shadow events are created by replicating events in the
three-dimensional domain. At the mosaic stage, resulting shadow
event samples are merged and scaled up or down, leading to a
distortion. To restore realistic event structures, the shadow method
is re-applied, and cropping is performed. The Shadow Mosaic
augmentation method was used with Hyper Histograms encoding
for the DNN model and improved mAP by up to 9.0% and 8.8%
compared to the baseline without augmentation on the 1IMP and
GENI1 real-world datasets, respectively. A recent work introduced
Random Polarity Suppression (RPS) augmentation method, which
was applied on the VTEI tensor (Silva et al., 2025). Table 7 provides
summary on augmentation techniques mentioned above.

4.5 Hardware accelerators

4.5.1 Graphical Processing Units

Majority of the event-based data object detection architectures
with the state-of-the-art performance were trained and evaluated on
Graphical Processing Units (GPUs), which represent conventional
Von-Neumann architectures. Some of the works omit the hardware
specification, making their direct comparisons challenging, but the
most commonly used evaluation platforms for both dense and
sparse algorithms include NVIDIA Tesla T4, NVIDIA Titan Xp,
NVIDIA Quadro RTX 4000, and others (Gehrig and Scaramuzza,
2023; Peng et al,, 2024). Generally, GPUs, along with specialized
libraries such as PyTorch and TensorFlow, are well-suited for
executing traditional DNNs due to their optimized support for
parallel matrix operations and high computational throughput.
However, they are less efficient when it comes to processing sparse
models, as they typically do not skip computations involving zero-
value elements (Smagulova et al., 2023).

Generally, sparse neuromorphic models like SNN are better
aligned with the nature of event-based data, offering greater
potential for efficient processing due to their ability to exploit
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data sparsity and reduce unnecessary computations. The same
characteristic also poses a major obstacle to training efficiency.
To address the issue, a range of specialized frameworks for SNNs
have been developed, which include snnTorch and Spiking]elly,
each targeting different aspects of model design and simulation.
More recently, temporal fusion has been proposed as a strategy for
scalable, GPU-accelerated SNN training Li et al. (2024).

4.5.2 FPGA-based accelerators

Al-based object detection systems on FPGAs lag behind GPU-
based developments due to a time-consuming implementation
process(Kryjak, 2024). Additional challenges include the lack of
standardized benchmarks and the limited availability of Hardware
Description Language (HDL) codes. However, the introduction of
Prophesee’s industry-first event-based vision sensors, combined with
the FPGA-based AMD Kria Vision Al Starter Kit, marks a significant
milestone for future advancements in the field (Kalapothas et al.,
2022). The recent work introduces SPiking Low-power Event-
based ArchiTecture (SPLEAT) neuromorphic accelerator, a full-
stack neuromorphic solution that utilizes the Qualia framework for
deploying state-of-the-art SNNs on an FPGA (Courtois et al., 2024).
In particular, it was used to implement a small 32-ST-VGG model,
which achieved 14.4 mAP on the GEN1 dataset. The model’'s backbone
was accelerated on SPLEAT, operating with a power consumption
of just 0.7W and a latency of 700 ms, while the SSD detection
head was executed on a CPU.

4.5.3 Neuromorphic platforms

Neuromorphic processing platforms for SNNs remain in their
early stages of development, but represent a significant area of
ongoing research (Bouvier et al, 2019; Smagulova et al.,, 2023).
The notable SNN accelerators include Loihi (Davies et al., 2018),
Loihi-2 (Orchard et al,, 2021), TrueNorth (Akopyan et al., 2015),
BrainScaleS (Schemmel et al., 2010), BrainScaleS-2 (Pehle et al,,
2022), Spiking Neural Network Architecture (SpiNNaker) (Furber
and Bogdan, 2020), SpiNNaker 2 (Huang et al., 2023), and one of
the first commercially available neuromorphic processors, Akida by
BrainChip (Posey, 2022).

TrueNorth is an early large-scale neuromorphic ASIC designed
for SNNs. While it was a significant milestone in brain-inspired
computing, it lacks the flexibility required for modern AT applications
and has been superseded by newer designs. BrainScaleS and
BrainScaleS-2 are mixed-signal brain-inspired platforms suitable for
large-scale SNN simulations. However, their large physical footprint
and complex infrastructure requirements make them less suitable
for deployment in embedded or real-world applications such as
autonomous driving Taboni and Abichandani (2024).

CarSNN is a neuromorphic solution designed for classifying
cars versus other objects using data from a ATIS sensor and an
SNN deployed on Intel’s Loihi neuromorphic research chip. The
solution was evaluated on the N-CARS dataset with an accuracy
of 82.99%. The corresponding hardware implementation achieved
a maximum latency of just 0.72 ms per sample while maintaining
low power consumption at only 310 mW (Viale et al., 2021). Loihi
supports on-chip learning and real-time SNN inference but offers
limited scalability, whereas Loihi-2 is more suitable for real-world
applications, including event-based object detection. Particularly,
attention-based hybrid SNN-ANN backbone for event-based object
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TABLE 7 Augmentation techniques (* - after transforming events to frame-based format).

Augmentation Frame-based Event-based Description

Flipping Gehrig and Scaramuzza (2023), Peng et al. (2023b) v v Horizontal (left-right) or Vertical (Up-Down) mirroring of
the image

Zooming Gehrig and Scaramuzza (2023), Peng et al. (2023b) v e Rescaling and resizing image

Resizing Gehrig and Scaramuzza (2023), Peng et al. (2023b) v e Resizing image

Cropping Gehrig and Scaramuzza (2023), Peng et al. (2023b) v v Random cropping and extracting random sub-regions from
images

Shearing Gehrig and Scaramuzza (2023), Peng et al. (2023b) v e Slight distortions of images

Event-Drop Gu F et al. (2021) X v Selectively removing events based on predefined strategies

Event-Mix Shen et al. (2023a) X v Created by mixing event streams with Gaussian Mixture
Model

NDA Li Y et al. (2022) X v Geometric augmentations

VPT-STS Shen et al. (2023b) X v Generates samples from different viewpoints

Shadow Mosaic Peng et al. (2023a) X v Sparse and dense shadow events are generated and combined

RPS Silva et al. (2025) X v Generated by randomly suppressing all events of a particular
polarity

detection achieved 0.35 mAP on the GEN1 dataset and 0.27 mAP on
the 1Mp dataset (Ahmed et al., 2025). The same Hybrid SNN-ANN
combined with RNN achieved 0.43mAP on GENT1. In this setup, the
SNN component was accelerated on Loihi 2, delivering subreal-time
performance while offering improved power efficiency compared
to commercially available edge computing hardware (Ahmed et al.,
2025). Temporally-binned Object Flow from Events (TOFFE) is an
event-based object motion estimation framework. It achieved an
8.3 x reduction in energy consumption and a 5.8 x reduction in
latency on a hybrid setup like Loihi-2 with Jetson TX2, compared
to a 5.7x energy and 4.6 x latency reduction on a standalone
edge GPU (Jetson TX2), highlighting that Loihi-2 significantly
contributes to improved efficiency and performance in event-based
object detection. Kosta et al. (2025).

The demonstration of a fully neuromorphic solution based on
the SpiNNaker platform equipped with ATIS camera was conducted
for the visual tracking task (Glover et al, 2019). SpiNNaker and
its successor SpiNNaker-2 are ARM-based processor platforms
designed for simulating SNNs with a high degree of flexibility.
However, their energy consumption is higher compared to dedicated
circuit-based solutions like Loihi, making them less suitable for
energy-constrained edge deployments (Yan et al., 2021).

As for the object detection task, a fully neuromorphic framework
was deployed based on DVXplorer Lite camera by Inivation and Akida
processor by Brainchip (Silva D. etal., 2024). This setup was specifically
designed for edge computing, eliminating the need to transfer data to
the cloud. Due to the constraints of the Akida chip, the YOLOv2 model
was chosen and trained to detect cars, pedestrians, and two-wheelers
from a synthetic dataset. Akida 2, the second generation of BrainChip’s
neuromorphic processor, supports vision transformers, which made
it even more suitable for event-based object detection and edge Al
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applications (BrainChip, 2025). Particularly, the recent demonstration
of Akida 2 with Prophesee’s EVK4 event-based camera enables the
integration of advanced visual intelligence into compact, low-SWaP
(Size, Weight, and Power) devices Ltd (2025).

4.5.4 Performance comparison

There is a growing shift toward neuromorphic vision, driven by
event-based sensors. Their output naturally aligns with neural-inspired
SNNs. The performance differences among hardware platforms are
emphasized in comparative studies of SNN acceleration across
GPUs, Central Processing Units (CPUs), Field Programmable Gate
Arrays (FPGAs),and Application-Specific Integrated Circuits (ASICs),
which assess factors such as power efficiency, flexibility, development
complexity, operating frequency, and throughput (Isik, 2023). The
study results, illustrated in Figure 9, indicate that FPGA and ASIC
platforms are particularly promising for accelerating SNNs in terms
of power efficiency and throughput. However, their utilization
remains challenging due to factors such as design complexity, limited
programmability, and the need for specialized development tools.

SNN acceleration on neuromorphic hardware platforms
promises ultra-low latency and energy efficiency, particularly
making them attractive for real-time perception in autonomous
driving Ltd (2025). Table8 the performance
comparison of different platforms in the implementation of object
detection using YOLOv2 model Putra et al. (2025), which proves
that spike-driven computation by Akida achieved the highest
power/energy efficiency without consideration of accuracy.

summarizes

However, the widespread adoption of neuromorphic platforms in
the near future is limited by an immature ecosystem, the absence
of standardized software toolchains, and a lack of comprehensive
benchmarking against established GPU and FPGA platforms.
Moreover, most of these platforms are not yet commercially
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Performance comparison of hardware platforms for SNN acceleration (Isik, 2023).

available and remain primarily confined to research settings
Putra et al. (2025).

5 System-level evaluation of
event-based detectors

5.1 Performance of the state-of-the-art
models

Being among the first real-world large-scale datasets for event-
based vision, GEN1 and 1MP have achieved widespread adoption
and have established themselves as the primary benchmarks for
detection models evaluation.

The recently introduced eTRaM dataset addresses its limitations
by providing higher-quality event data, more complex traffic
scenarios, and includes annotations for detection, tracking, and
motion prediction tasks. Table 9 provides the summary on the state-
of-the-art event-based object detectors and their performance on

Frontiers in Robotics and Al

28

these datasets, respectively. The table contains only reported results,
thereby highlighting the lack of standardization and complicating
fair comparisons. The primary goal of these architectures for event-
based object detection is to develop lightweight models that can
efficiently process spatio-temporal data.

5.2 End-to-end evaluation

Most event-based algorithms process a fixed number of events
at each step, typically using a fixed time window #,,. When raw event
data needs to be converted into an intermediate representation,
typically to be processed by dense and graph-based models, this step
can significantly affect performance by introducing distortions and
delays. These effects can be measured using parameters such as the
time-windows t,,, conversion time t,., and data compression rate.
During the inference stage, the conversion time ¢,. is typical for
dense and graph-based models, but is absent in asynchronous and
SNN models that process raw events directly.
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TABLE 8 Object detection using YOLOV2 on various platforms Putra et al. (2025).

Platform Performance, FPS Power, W Efficiency, FPS/W
Desktop CPU: Intel i7-6700HQ 78.2 29.88 2.62
Desktop GPU: Nvidia GTX 960 M 219.7 46.67 4.71
Embedded CPU: ARM Cortex-A57 0.23 4.00 0.06
Embedded GPU: Nvidia Jetson TX2 7.8 1.02 40.81
FPGA: ZedBoard ZCU102 5.8 1.20 4.50
FPGA: Virtex-7 XC7V690t 302.3 11.35 26.63
Akida Neuromorphic Platform 6.0 0.078 76.92

In (Gehrig et al, 2019), the authors demonstrated that the
representation computation time f,. contributed only a small
fraction to the overall processing time, which was dominated by
model inference. Specifically, for a 100 ms sample from the N-Cars
dataset, the representation step took just 0.38 ms, whereas the total
computation time ranged from 4.25 ms to 6.08 ms, depending on
the model’s complexity. Notably, the representation was computed
on the CPU, while inference ran on the GPU. Nevertheless, most of
the other works on event-based object detection did not report the
time required for computing the event representation. This omission
is critical because representation computation can introduce non-
negligible latency in real-time applications and more complex data.

The impact of the size of t,, the duration over which these
events are aggregated for processing, and also known as “integration
time”, was studied in (Silva et al., 2024¢; Maqueda et al., 2018).
During the evaluation of the GEN1 dataset using the YOLOV5
model with attention, it was observed that varying t, between
10-125ms had an impact on performance (Silva et al., 2024c).
Specifically, smaller ¢, values were more effective for detecting
low-speed, smaller objects such as pedestrians, while increasing
t,, improved detection of higher-speed objects like cars. Similarly,
(Maqueda et al., 2018), evaluated five integration times and
identified 50 ms as the optimal value. Additionally, t,, also impacts
noise accumulation (Silva D. et al., 2024). Besides, the volume
of encoded data and the memory size required for storage and
processing are not typically reported.

After converting the raw event data into a specific format
suitable for processing, the model generates a set of preliminary
predictions based on this input. These predictions typically include
multiple overlapping bounding boxes for detected objects. To refine
the results and eliminate redundant detections, a Non-Maximum
Suppression (NMS) post-processing step is applied. NMS works by
selecting the bounding box with the highest confidence score and
suppressing all other boxes with significant overlap (as measured by
Intersection over Union, IoU). This ensures that each detected object
is represented by a single, most accurate bounding box.

Overall, a neuromorphic object detection system requires
full integration of the entire processing pipeline, including
event stream preprocessing, model training, and the final
detection stage. The training pipeline time can be represented as
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in Equation 16 below:

t=t,+t

ec t ltrain + tmc (16)
where t,, is the intagration time-window, t,, is the time required for
converting the events to an intermediate format, ¢,,,,;, is the training
time of the model in GPU hours, and ¢, is an optional stage and
shows time required for model format conversion.
Similarly, as in Equation 17 the total computation time during
inference can be summarized by:
t=t,+t,. +t (17)

eval T tnms

where t,, is the integration time window, t,. is the time required for
converting the events to an intermediate format and optional for
certain models, t,,,
and t,,,,,. is the duration of the NMS post-processing.

As can be seen from Table 9, most of the works report only

; is the processing time throughout the model,

nms

performance parameters during the processing of the model,
excluding the processing step of adapting events to the required
representation format, like frame or graph. In this work, the
evaluation of the system throughput is included as part of the
survey and summarized in Table 10. The results were obtained
using 100 randomly chosen samples from the GEN1 and 1MP
datasets on an RTX 4090 24GB GPU. Particularly, each sample
consists of 60 s recordings Perot et al. (2020). Given 50-ms time
windows in video slices, 100 samples result in 120,000 image
samples. The tests were performed with a warm-up phase of 30
epochs. We used a batch size of eight, which is the most common
size used in literature, and multiplied the batch throughput by
eight to obtain the image throughput. However, SSMS (Base) model
encountered out-of-memory (OOM) issues. Alternatively, the SSMS
(Small) variant was used instead. Similarly to RVT (Figure 7a),
both SSMS (Figure 7c¢) is based on the transformer architecture and
additionally employs the same SHIST encoding. However, RVT did
not suffer from OOM. In the RVT, spatial and temporal feature
aggregation are handled separately, with vanilla LSTM layers placed
at the end of each block to model temporal dependencies. The
use of LSTM cells slows down training, and the resulting weights
tend to generalize only to data sampled at the same frequency
as during training. On the other hand, SSMS offers adaptability
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to varying frequencies during inference without the need for
retraining. SSMS utilizes S4 or S5 layers for temporal aggregation
instead of LSTM. SSMs enable parallel, efficient long-sequence
modeling by reducing compute bottlenecks through learned state-
space kernels Somvanshi et al. (2025). As a result, the burden falls
on GPU memory, and SSMS encounters OOM issues due to its
long convolution kernels that generate large intermediate buffers,
particularly with high-resolution images. LSTMs avoid this problem
since they only keep a hidden state at each step.

Overall, it can be seen from Tables 9, 10 that the required
number of FLOPs and MACs increased when event encoding was
included. For example, processing RVT without encoding required
3.5 GFLOPs, whereas with encoding, it increased to 10.2 GFLOPs.
In the case of SAST, the increase was lower from 2.5 GFLOPs
without encoding to 3.5 GFLOPs with it. This again highlights
the importance of carefully considering event encoding, as it can
significantly affect not only performance but also the computational
cost, depending on the model.

6 Discussion and future directions

In the realm of event-based vision, autonomous driving is
one of the most prominent applications as it demands high-
speed motion handling, low-latency perception, and reliable
operation under challenging lighting conditions (Chen et al,
2020). This work surveys an end-to-end pipeline for the
implementation of event-based object detection, starting from
types of event-based sensors to the performance of the
state-of-the-art models.

6.1 Datasets

As reflected in the survey results, event-based data remains
underrepresented in data science and machine learning research,
with a notable absence of standardized benchmarks for evaluating
encoding techniques and model performance. Initially, DVS-
converted datasets were used to compensate for the lack of event-
based data. But these datasets generally exhibit lower sparsity
and more uniform distributions compared to DVS-captured data,
which more accurately represent real-world scenes. Development
of synthetic datasets can be useful for pre-training models,
which can then be fine-tuned on real-world data for improved
performance.

In addition, current event-based datasets lack a diverse range of
object classes necessary to support full automation in Autonomous
Driving Systems. Future work should prioritize the collection of
more comprehensive data, including a broader set of classes relevant
to real-world driving scenarios, including on-road and oft-road. This
includes dynamic agents such as pedestrians, cyclists, motorcyclists,
cars, vans, buses, and trucks, as well as traffic infrastructure
like signs, lane markings, crosswalks, and others. Additionally,
the system must recognize temporary or rare obstacles such as
construction equipment, road debris, and emergency vehicles.
Contextual awareness of sidewalks, curbs, vegetation, and buildings
further enhances scene understanding.
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6.2 Sensors fusion

The collection of high-quality real-world event-based datasets
requires advancements in current event camera technology,
particularly in terms of control capabilities. Existing bias settings
in event-based cameras are often insufficient to effectively manage
noise, limiting data quality in complex environments. One of the key
future directions should be the improvement of the controllability
of event cameras.

Additionally, event-based vision systems face challenges in
detecting static objects due to their motion-dependent sensing,
highlighting the need for improvement and ensuring robust
perception. One approach to overcoming this limitation is through
sensor fusion of Dynamic Vision Sensors (DVS) and Active Pixel
Sensors (APS), as demonstrated in DAVIS cameras Shawkat et al.
(2024) or putting DVS and frame-based cameras side by side
Perot et al. (2020). In addition, a setup that integrates event-
based sensors with complementary sensing modalities such as
LiDAR, radar, and inertial measurement units (IMU) can further
enhance perception capabilities Gehrig et al. (2021), Zhu et al.
(2018a), Chaney et al. (2023). The next is a multi-view setup, where
two or more event cameras capture a static object from different
viewpoints, as in the DSEC dataset Gehrig et al. (2021). Particularly,
in multi-modal datasets that include MVSEC Zhu et al. (2018a),
DSEC Gehrig et al. (2021), and M3ED Chaney et al. (2023), static
objects are mostly captured through ego-motion or sensor fusion.
Similarly, SEVD represents a multi-view synthetic vision-based
cooperative setup, where ego and fixed perception are combined
Aliminati et al. (2024). FlexNet is a framework that integrates
high-frequency event data with semantic information from RGB
frames to enable object detection in both fast-moving and static
scenarios Lu et al. (2024). Nevertheless, its performance gains
over state-of-the-art methods are limited to the frequency range of
20-180 Hz.

Challenges in sensor fusion arise from spatial calibration
and temporal synchronization, since event-based sensors
produce asynchronous outputs, whereas frame-based cameras,
LiDAR, radar, and IMUs typically operate at synchronous, fixed
rates. Moreover, these modalities differ in output format and
resolution, complicating fusion. Finally, deploying multiple sensing
architectures increases both power consumption and hardware
footprint. Therefore, while fusing event-based cameras with
complementary modalities such as IMU, LiDAR, and radar,
RGB can help overcome the challenge of detecting static objects,
it also introduces cost, calibration requirements, and system
complexity Gehrig et al. (2021), Lu et al. (2024). As an alternative
approach to static object detection, compensation algorithms
can be introduced, for example, by generating pseudo-labels for
non-moving objects Messikommer et al. (2022).

6.3 Models

Recent progress in event-based vision underscores the unique
benefits of asynchronous sensing; however, existing object detection
models still underexploit the potential of event data. This gap stems
largely from the reliance on frame-centric design principles, which
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do not align naturally with the sparse and continuous characteristics
of event streams.

Currently, only a limited number of architectures are capable
of natively handling event-based inputs. Spiking Neural Networks
(SNNs) and Graph Neural Networks (GNNs) have emerged as
promising candidates due to their ability to process asynchronous
signals and non-Euclidean structures, respectively. Nevertheless,
evaluations of these approaches remain confined to relatively simple
benchmarks, such as GENI, while their applicability to more
demanding large-scale datasets (e.g., IMP and eTraM) has not yet
been demonstrated.

SNNGs, in particular, face challenges in direct training due to the
non-differentiability of spike generation functions. To mitigate this,
several pipelines rely on training conventional deep neural networks
followed by conversion into spiking counterparts, a process that
introduces additional complexity and often compromises efficiency.
GNN-based approaches, on the other hand, depend on transforming
events into graph structures; however, this representation does
not naturally capture the continuous temporal dynamics of
event streams, leading to suboptimal performance. As a result,
the most competitive results in event-based detection are still
achieved using dense models that reformat events into frame-like
structures, subsequently processed with CNNs or Transformers.
While effective, these strategies diminish the temporal fidelity and
sparsity advantages inherent to event cameras.

Addressing these limitations requires improving model
scalability and developing systematic methods to identify
architectures that are inherently well-suited to event-driven data.
Recent advances in scalable training mechanisms and automated
architecture search present promising directions in this regard.

6.3.1 Scalability

Scalability constitutes a central bottleneck in extending event-
based models to real-world applications. In the case of SNNs,
surrogate gradient methods have been instrumental in enabling
stable backpropagation through spiking activity, thereby supporting
deeper and more expressive architectures Su et al. (2023), Fan et al.
(2025). These algorithmic advances, when paired with emerging
neuromorphic hardware platforms such as Intel Loihi 2 and
SpiNNaker 2, provide new opportunities for efficient large-scale
training and inference.

For GNNs, the computational cost of message passing
across large, dynamic event graphs remains prohibitive.
Sampling-based strategies provide a path forward: cluster-
based sampling facilitates hardware-friendly partitioning for
efficient event-to-graph conversion and real-time inference
Chiang et al. (2019), while neighborhood sampling reduces
training overhead by restricting aggregation to local regions
of interest Yang et al. (2024). Additionally, stochastic subgraph
sampling methods, such as GraphSAINT, improve scalability
by
representational power Zeng et al. (2019).

lowering variance and complexity without sacrificing

More recently, hybrid approaches integrating sampling with
spatiotemporal attention mechanisms have demonstrated improved
scalability for event-driven GNNs, highlighting the potential of
combining structural sparsity with adaptive temporal modeling.

These efforts collectively emphasize that scalability solutions must
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be tailored to the asynchronous and sparse nature of event-
based signals rather than directly borrowing from frame-based
paradigms.

6.3.2 NAS

Neural Architecture Search (NAS) offers
framework for automatically identifying architectures optimized
Unlike NAS
can efficiently explore large design spaces, balancing task-

a principled

for event-driven data. hand-crafted models,
specific accuracy with computational efficiency. Within event-
based vision, early frameworks such as Chimera-NAS have
shown the feasibility of tailoring architectures to asynchronous
modalities Silva et al. (2024b).

Looking forward, extending NAS methodologies to support
SNNs and GNNs represents an important research direction. Such
extensions would allow the automatic discovery of models that
are not only well-suited to the temporal sparsity of event data
but also optimized for emerging neuromorphic hardware. Hybrid
pipelines combining CNN, SNN, and GNN components could
also be jointly optimized through NAS to achieve improved trade-
offs across accuracy, latency, and energy efficiency. Furthermore,
hardware-in-the-loop NAS, where the search process directly
incorporates constraints from neuromorphic accelerators, has the
potential to further align architectural design with deployment
feasibility.

6.4 Hardware

The strong performance of dense models is largely enabled by
the high computational power and parallel processing capabilities of
GPUs. On the other hand, the research in neuromorphic hardware
is rapidly growing, driven by its demonstrated advantages in
reducing latency and enhancing power efficiency. Nevertheless, it
is crucial to continue improving the performance of asynchronous
models that can process raw event data directly, as these models
are particularly well aligned with the inherent characteristics of
event data.

Solutions like SPLEAT and TOFFE also reflect the current
trend toward hybrid hardware architectures that combine
conventional CPU/GPU processing with neuromorphic platforms
(Kosta et al,, 2025; Courtois et al., 2024). Additionally, there is
significant potential for developing hardware-aware NAS strategies
that optimize architectures based on the constraints and capabilities
of event-driven hardware platforms.

6.5 Encoding

Determining the most effective encoding format for event
streams remains an unresolved challenge. Current practice
shows that metrics such as throughput, memory usage, and the
statistical distribution of encoded data are essential for meaningful
comparisons Guo et al. (2021). Yet, most pipelines still rely on
converting events into frame-like formats for compatibility with
dense CNN or Transformer backbones. This approach is simple but
introduces latency, discards fine temporal relationships, and can
lead to information loss depending on the chosen frame rate.
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A variety of alternative encodings have been proposed. Early
works used grayscale reconstructions from event streams, while
more recent approaches introduce time surfaces, voxel grids, or
recurrent encoders such as ConvLSTMs Perot et al. (2020). Others,
like the Agile Event Detector, adapt the encoding to motion speed,
mitigating the limitations of fixed time windows Liu et al. (2023).
Graph-based methods, such as AEGNN, preserve spatiotemporal
continuity by incrementally updating event graphs rather than re-
encoding entire frames.

Despite these advances, no single encoding strategy consistently
outperforms others across datasets and tasks. Each representation
trades off temporal fidelity, latency, and compatibility with
As
systematic, large-scale evaluation of encoding methods under

downstream architectures. noted in recent surveys, a
controlled conditions is still missing. Extensive simulations across
diverse scenarios will therefore be essential to establish clear

best practices.

6.6 Data augmentation

The training methodology of object detectors also impacts
the final performance. Several studies suggest that incorporating
data augmentation techniques can improve the accuracy of the
models. Most data augmentation techniques used in event-
based vision have been adapted from conventional frame-based
processing and are typically applied after converting event
data into frame-like representations. However, there are also
augmentation methods specifically designed for event-based data,
which can further improve performance in various vision tasks
(Li Y.etal, 2022; Zoph et al., 2020). Further studies on augmentation
techniques are required to improve model performance and
adversarial robustness.

6.7 Evaluation and benchmarking

In addition to the lack of well-established models and
accelerators, there is a gap in their fair evaluation. Specifically,
reported results often fail to account for the throughput and memory
requirements of encoding techniques for dense models. The runtime
Leval
format, and the GPU used. However, only a limited number of
studies provided details about the GPU models used to train the

models. This lack of transparency can lead to misleading conclusions

is influenced by factors such as model complexity, encoding

about model performance. Besides, GPUs are designed for vector-
based computations, which is useful in dense DNN models with
large parameter count and Multiply-and-Accumulate (MAC)
operations. However, neuromorphic hardware may better leverage
the sparsity of event-based inputs and offer reduced computational
cost, power consumption, and latency (Ahmed et al., 2025).

While this paper focused on enabling autonomous driving
through the lens of object detection, achieving full vehicle autonomy,
as defined by the six levels of automation, requires addressing a
broader range of perception and decision-making tasks. Object
detection is a foundational component, but additional capabilities
such as semantic segmentation, instance segmentation, depth
estimation, tracking, and scene understanding are essential for
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comprehensive environment modeling. These tasks enable
more precise localization, obstacle avoidance, and dynamic
path planning. Future work should therefore extend beyond
object detection to develop and integrate these complementary
functions, particularly in the context of event-based sensing, to
move closer to robust, fully autonomous driving systems. Full
autonomy will also require effective sensor fusion, combining
event cameras with traditional RGB sensors, LiDAR, radar,
and GPS to leverage the strengths of each modality. Besides,
there is a need to study the robustness of these systems against
adversarial attacks.

Finally, establishing standardized evaluation benchmarks
and simulation tools for event-driven driving tasks will be
crucial to accelerate research and ensure safe, real-world
deployment. This can be promoted through the release of
large-scale, open-access data under diverse environmental
conditions, including multimodal datasets. The development
of simulation platforms, such as CARLA with realistic event
camera models, would further enable reproducible testing and
facilitate comparison of algorithms. Additionally, there is a need
to adopt unified evaluation protocols that include not only mAP
and runtime, but also event throughput, energy per inference,
and robustness under adverse conditions. Together, these efforts
will promote consistency, reproducibility, and trustworthiness
in evaluating event-based detection systems for autonomous

driving.
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