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Autonomous driving has the potential to enhance driving comfort and 
accessibility, reduce accidents, and improve road safety, with vision sensors 
playing a key role in enabling vehicle autonomy. Among existing sensors, 
event-based cameras offer advantages such as a high dynamic range, low 
power consumption, and enhanced motion detection capabilities compared 
to traditional frame-based cameras. However, their sparse and asynchronous 
data present unique processing challenges that require specialized algorithms 
and hardware. While some models originally developed for frame-based inputs 
have been adapted to handle event data, they often fail to fully exploit the 
distinct properties of this novel data format, primarily due to its fundamental 
structural differences. As a result, new algorithms, including neuromorphic, 
have been developed specifically for event data. Many of these models are 
still in the early stages and often lack the maturity and accuracy of traditional 
approaches. This survey paper focuses on end-to-end event-based object 
detection for autonomous driving, covering key aspects such as sensing and 
processing hardware designs, datasets, and algorithms, including dense, spiking, 
and graph-based neural networks, along with relevant encoding and pre-
processing techniques. In addition, this work highlights the shortcomings in the 
evaluation practices to ensure fair and meaningful comparisons across different 
event data processing approaches and hardware platforms. Within the scope 
of this survey, system-level throughput was evaluated from raw event data to 
model output on an RTX 4090 24GB GPU for several state-of-the-art models 
using the GEN1 and 1MP datasets. The study also includes a discussion and 
outlines potential directions for future research.
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 1 Introduction

Autonomous vehicles, powered by Autonomous Driving (AD) technologies, are rapidly 
expanding their presence in the market. Autonomy in the context of AD systems
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refers to a vehicle’s capability to independently execute critical 
driving tasks, including object detection, path planning, motion 
prediction, and vehicle control functions such as steering, braking, 
and acceleration. This progress is largely enabled by breakthroughs 
in artificial intelligence (AI), machine learning, computer vision, 
robotics, and sensor technology. The effective operation of 
Autonomous Driving Systems (ADS) relies on key functions such 
as perception, decision-making, and control. The perception system 
allows the vehicle to sense and interpret its environment in real time, 
enabling timely and appropriate responses (Messikommer et al., 
2022). It collects data from a variety of sensors, including 
cameras, LiDARs, and radars, to acquire and understand the 
surrounding environment. The raw sensor data are then processed 
to perform critical tasks such as object detection, segmentation, 
and classification, providing essential information for high-level 
decision making in various applications, including self-driving cars, 
drones, robotics, wireless communication, and augmented reality 
(El Madawi et al., 2019; Petrunin and Tang, 2023; Fabiani et al., 
2024; Wang Y. et al., 2025). The major players in the field of 
ADS are Waymo, Tesla, Uber, BMW, Audi, Apple, Lyft Baidu and 
others (Johari and Swami, 2020; Kosuru and Venkitaraman, 2023; 
Zade et al., 2024). In particular, Waymo offers “robotaxi” services 
in major US cities, including Phoenix, Arizona, San Francisco, 
California. It relies on the fusion of cameras, radar, and LiDAR 
to navigate in urban surroundings. Tesla implemented its Autopilot 
system, which functions similarly to an airplane’s autopilot, assisting 
with driving tasks while the driver remains responsible for full 
control of the vehicle. Its system eliminates LiDAR and functions 
based on advanced camera and AI technologies. BMW, in its BMWi 
Vision Dee system, is working toward integrating augmented reality 
and human-machine interaction (Suarez, 2025).

Among sensors used in the AD perception system, LiDAR offers 
high accuracy but suffers from high latency. Radar, on the other 
hand, provides low latency but lacks precision (Wang H. et al., 2025). 
Traditional frame-based cameras, which are currently the dominant 
type (Liu et al., 2024), face challenges in dynamic environments 
where lighting conditions change rapidly or where extremely high-
speed motion is involved. The typical dynamic range of frame-based 
cameras is around 60 dB (Gallego et al., 2020), and in the high-
quality frame cameras, it does not exceed 95 dB (Chakravarthi et al., 
2025). The power consumption of these cameras is 1–2 W with a 
data rate around 30–300 MB/s and a latency of 10–100 ms (Xu et al., 
2025). Therefore, recently introduced event-based cameras have 
gained attention for their distinct operating principles, which are 
inspired by biological vision systems. This approach emulates the 
way the brain and nervous system process sensory input, inherently 
exhibiting neuromorphic properties (Lakshmi et al., 2019). Unlike 
traditional frame-based cameras that capture the entire scene at 
fixed intervals, event-based cameras detect changes in brightness at 
each pixel asynchronously and record events only when a change 
occurs (Kryjak, 2024; Reda et al., 2024). As a result, they offer faster 
update rates in the range of 1–10 μs per event, higher dynamic range 
exceeding 100 dB, and low power consumption typically around 
10–100 mW (Xu et al., 2025). Additionally, eliminating redundant 
information from static background scenes reduces memory usage 
with time resolution around 0.1–2 MB/s, depending on the scene 
(Xu et al., 2025; Chakravarthi et al., 2025). Currently, interest in 
the event-based domain continues to grow, driving the development 

of new event-based cameras by hardware vendors, the creation of 
new datasets and algorithms, and the introduction of simulators 
specifically designed for the generation and processing of event-
driven data (Chakravarthi et al., 2025).

Object detection is a fundamental component of the perception 
system and plays a vital role in ensuring safe navigation in 
autonomous driving (Balasubramaniam and Pasricha, 2022). 
The ability to accurately and promptly identify nearby vehicles, 
pedestrians, cyclists, and static obstacles is crucial for informed 
decision-making. Event-based sensors are particularly well-suited 
for high-speed motion and challenging lighting conditions, 
offering robustness to motion blur, low latency, and high temporal 
resolution. This responsiveness enables more precise and timely 
object recognition, making them a strong candidate for enhancing 
perception in autonomous vehicles (Zhou and Jiang, 2024). Notably, 
some of the earliest datasets collected with event-based cameras were 
captured in driving scenarios, highlighting their relevance for real-
world autonomous navigation. These include N-Cars (Sironi et al., 
2018), DDD17 (Binas et al., 2017), DDD20 (Hu et al., 2020) datasets. 
Furthermore, the first large-scale real-world datasets focused on 
object detection, GEN1 (De Tournemire et al., 2020) and 1MP (Fei-
Fei et al., 2004), were specifically designed for this task and are 
widely accepted as benchmarks for evaluating models.

Despite promising features of event-based cameras, modern 
processing systems and algorithms are not fully suitable or ready 
to process sparse spatiotemporal data produced by such sensors. 
Most traditional computer vision pipelines and Deep Neural 
Network (DNN) models are designed for frame-based data, where 
information is structured as sequential images (Perot et al., 2020; 
Messikommer et al., 2020). In addition, there are significantly 
fewer event-based datasets available compared to traditional frame-
based datasets. Nevertheless, there has been a significant surge in 
research activity and specialized workshops focused on event-based 
processing and applications (Chakravarthi et al., 2025; Cazzato and 
Bono, 2024). This growing interest has also resulted in numerous 
surveys that review and analyze various aspects of event-based 
processing and its applications. One of the pioneering surveys in 
this area was presented in (Lakshmi et al., 2019). It describes 
the architecture and operating principles of neuromorphic sensors, 
followed by a brief summary of commercially available event-based 
cameras, their applications, and relevant algorithms. Due to the 
limited availability of commercial event-based cameras at the time, 
the survey includes only early event-based datasets and, for the 
same reason, explores methods for generating more event data from 
conventional frame-based sources. A later survey (Gallego et al., 
2020) expands the coverage to include both commercially available 
and prototype event cameras and extends the discussion to include 
neuromorphic data processors. However, it does not provide 
information on datasets.

One of the first reviews on event-based neuromorphic vision 
with a specific focus on autonomous driving is presented in 
(Chen et al., 2020). The survey discusses the operating principles of 
event-based cameras, highlighting their advantages and suitability 
for autonomous driving. It also presents early driving scenario 
datasets that can be adapted through post-processing for object 
detection tasks, along with signal processing techniques and 
algorithms tailored for event-based applications. However, it 
does not discuss hardware components such as commercially 

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1674421
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Smagulova et al. 10.3389/frobt.2025.1674421

available event-based cameras or neuromorphic processors. 
The fundamentals of event-based cameras, along with their 
capabilities, challenges, and the common state-of-the-art cameras, 
are listed in (Shariff et al., 2024). Most importantly, this survey 
discusses the appropriate settings for acquiring high-quality data 
and applications. A more recent survey (Chakravarthi et al., 
2025) provided a general overview of research and publication 
trends in the field, highlighting significant milestones in event-
based vision and presenting real-world datasets for various 
applications and existing cameras. But it lacks information about 
state-of-the-art preprocessing and processing algorithms and 
neuromorphic hardware.

Another recent survey on event-based autonomous driving 
reviewed both early and state-of-the-art publicly available object 
detection datasets, along with the processing methodologies, 
classifying them into four main categories, such as traditional Deep 
Neural Networks (DNNs), bio-inspired Spiking Neural Networks 
(SNNs), spatio-temporal Graph Neural Networks (GNNs), and 
multi-modal fusion models (Zhou and Jiang, 2024). There is also 
a recent survey on event-based pedestrian detection (EB-PD) that 
evaluates various algorithms using the 1MP and self-collected 
datasets for the pedestrian detection task, which can be seen as 
a specific use case of object detection in autonomous driving 
(Wang H. et al., 2024). A comprehensive and well-structured study 
on event-based object detection using SNNs, including applications 
in autonomous driving, can be found in (Iaboni and Abichandani, 
2024). It provides an overview of state-of-the-art event-based 
datasets, as well as SNN architectures and their algorithmic and 
hardware implementations for object detection. The work also 
highlights the evaluation metrics that can be used to assess the 
practicality of SNNs.

Biologically inspired approaches to processing the output 
of event-based cameras show great promise for their potential 
to enable energy-efficient and high-speed computing, though 
they have yet to surpass traditional methods (Shawkat et al., 
2024; Iaboni and Abichandani, 2024; Chakravarthi et al., 2025). 
The study (Shawkat et al., 2024) reviewed approaches involving 
neuromorphic sensors and processors and pointed out that a 
major challenge in building fully neuromorphic systems, especially 
on a single chip, is the lack of solutions for integrating event 
vision sensors with processors. Similarly, challenges exist in 
interfacing event-based cameras with systems accelerated using 
Field Programmable Gate Arrays (FPGAs) or System-on-Chip 
FPGAs (SoC FPGAs). Additionally, there is limited availability 
of publicly accessible code, particularly in Hardware Description 
Languages (HDLs) (Kryjak, 2024).

While effective algorithms and efficient hardware acceleration 
are crucial for processing event-based data, there are also techniques 
specifically aimed at enhancing the quality of the event data 
itself. These methods improve data representation and reduce 
noise to enhance performance (Shariff et al., 2024). A recent 
comprehensive survey on deep learning approaches for event-
based vision and benchmarking provides a detailed taxonomy 
of the latest studies, including event quality enhancement and 
encoding techniques (Zheng et al., 2023). Another survey provides 
an overview of hardware and software acceleration strategies, with 
a focus on mobile sensing and a range of application domains 
(Wang H. et al., 2025). A recent work also surveyed algorithms, 

hardware, and applications in the event-based domain, highlighting 
the research gap (Cimarelli et al., 2025).

All aforementioned surveys provide important insights into 
event-based vision and are summarized in Table 1. Building on these 
contributions, our survey provides an end-to-end review of event-
based vision, covering event-based sensor architectures, key datasets 
with a focus on object detection in autonomous driving, and the full 
pipeline from data preprocessing and processing to postprocessing. 
In addition, we discuss benchmarking metrics designed to support 
fair and consistent evaluation across different processing approaches 
and hardware accelerators, aiming to ensure a balanced comparison. 
This work provides a summary of popular evaluation metrics for 
object detection models and evaluation of system-level throughput 
that includes conversion events to the required data format.

The structure of the paper is outlined as follows: Section 2 
introduces the fundamental concepts of autonomous driving 
systems and explains the distinctions between different levels 
of driving automation. It also highlights the role of object 
detection in supporting autonomous driving functionality. 
Section 3 provides a brief overview of the available event-
based datasets and their acquisition methods. In particular, 
Section 3.1 introduces the fundamentals of event-based sensors 
and highlights notable commercially available models. Section 3.3 
explores the characteristics of event-based datasets, covering both 
early-stage research datasets and real-world as well as synthetic 
datasets, with an emphasis on autonomous driving scenarios. 
Section 4 introduces the evaluation metrics and focuses on the 
neuromorphic processing pipeline, detailing state-of-the-art event-
based object detection architectures, their classification, relevant 
event encoding techniques, and data augmentation methods. 
Sections 2–4 cover the fundamentals of object detection and event-
data acquisition, making the survey accessible to a broader audience, 
including researchers who are new to event-based object detection. 
Section 5 presents a system-level evaluation of event-based object 
detectors and summarizes the performance of models discussed in 
Section 4.2. Additionally, it addresses missing aspects in end-to-end 
evaluation. Finally, Section 6 offers a discussion. 

2 Autonomous driving systems

The Society of Automotive Engineers (SAE) defines six levels 
of autonomy in autonomous driving systems (Zhao et al., 2025). 
These levels are based on who performs the Dynamic Driving Task 
(DDT), either the driver or the system. A key part of DDT is 
Object and Event Detection and Response (OEDR), which refers 
to the system’s ability to detect objects in the environment, such as 
vehicles, pedestrians, and traffic signs, and respond appropriately. 
Level 0 of the SAE indicates no autonomy and full manual driving, 
while Levels 1 through 5 represent increasing degrees of automation, 
with each level incorporating more advanced autonomous features. 
As the level of autonomy increases, the vehicle’s reliance on 
intelligent systems becomes more critical for ensuring safe and 
efficient navigation in complex environments (Zhao et al., 2025; 
Balasubramaniam and Pasricha, 2022). The SAE also introduced 
the concept of the Operational Design Domain (ODD), a key 
characteristic of a driving automation system. Defined by the 
system’s manufacturer, the ODD outlines the specific conditions, 
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such as geographic area, road type, weather, and traffic scenarios 
under which the autonomous system is intended to operate 
ERTRAC (2019). Overall, the SAE levels describe the degree of 
driver involvement and the extent of autonomy, while the ODD 
defines the specific conditions where and when that autonomy can 
be applied (Warg et al., 2023). Table 2 summarizes SAE Levels of 
automation for on-road vehicles and the role of object detection. 
Clearly, as the level of autonomy increases, the importance of object 
detection becomes increasingly critical.

Most commercial vehicles today operate at Level 2, where 
the system can control steering and speed. This includes Tesla 
Autopilot, Ford BlueCruise, Mercedes Drive Pilot (Leisenring, 
2022). Waymo has advanced into Level 4, offering fully autonomous 
services within geofenced urban areas like Phoenix and San 
Francisco, without a safety driver onboard Ahn (2020). Uber, while 
investing heavily in autonomy, currently operates at Level 2–3 
through partnerships and focuses on integrating automation with 
human-supervised fleets Vedaraj et al. (2023). Level 5, representing 
universal, human-free autonomy in all environments, remains a 
long-term goal for the industry and has not yet been achieved by 
any company.

The SAE proposes an engineering-centric classification, while 
there is also a user-centric perspective for vehicle automation 
classification. According to Koopman, there are four operational 
modes, which include driver assistance, supervised automation, 
autonomous operation, and vehicle testing. The latter distinct 
category is for testing purposes, where the human operator is 
expected to respond more effectively to automation failures than 
a typical driver. Mobileye also suggests four dimensions, such 
as hands-on/hands-off (for steering wheel), eyes-on/eyes-off (the 
road), driver/no driver, and Minimum Risk Maneuver (MRM) 
requirement Warg et al. (2023). All of the above-mentioned 
automation level definitions are focused on driving tasks on-road 
traffic. There are other dimensions for autonomy classification 
focused on interaction in various environments, which are not 
covered in this work. 

3 Neuromorphic data acquisition and 
datasets

3.1 Event-based sensors

Traditional image- and video-acquiring technology primarily 
revolves around frame-based cameras capable of capturing a 
continuous stream of still pictures at a specific rate. Each still frame 
consists of a grid of 2D pixels with global synchronization, generated 
using sensor technologies like Charge-Coupled Devices (CCDs) or 
Complementary Metal Oxide-Semiconductor (CMOS) sensors. Due 
to their superior imaging quality, CCDs are favored in specialized 
fields such as astronomy (Polatoğlu and Özkesen, 2022), microscopy 
(Faruqi and Subramaniam, 2000), and others. These sensors feature 
arrays of photodiodes, capacitors, and charge readout circuits that 
convert incoming light into electrical signals. In contrast, CMOS 
sensors dominate consumer electronics due to their lower cost and 
sufficient image quality. CMOS sensors can be designed as either 
Active Pixel Sensors (APS) or, less commonly, Passive Pixel Sensors 
(PPS) (Udoy et al., 2024). A basic APS pixel sensor is comprised of a 
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TABLE 2  The SAE levels of autonomy and role of object detection.

SAE levels Name SAE levels 
description

DDT ODD Role of object 
detection

Lateral and 
longitudinal 

motion 
control

OEDR

Level 0 No automation The human driver 
performs all aspects 
of the driving task at 
all times

Driver Driver no Optional. Not 
required by 
automation, but may 
be used for 
assistance

Level 1 Driver assistance The system assists 
with either steering 
or 
acceleration/deceleration 
using info about the 
environment

Driver and System Driver limited Supports object 
detection for 
adaptive functions 
for either steering 
and braking or 
accelerating either 
lateral or 
longitudinal motion 
control

Level 2 Partial driving 
automation

The system performs 
steering and 
acceleration/deceleration, 
but the driver must 
monitor and 
intervene if needed

System Driver limited Required for a lane 
keeping assist 
(LKA), an adaptive 
cruise control (ACC) 
and environmental 
perception

Level 3 Conditional driving 
automation

The system performs 
all DDT within the 
defined ODD but 
requests takeover 
when necessary

System System limited Essential for scene 
understanding, 
obstacle avoidance, 
and fallback 
planning

Level 4 High driving 
automation

The system performs 
all driving tasks and 
handles fallback in 
the defined ODD 
without requiring 
human input

System System limited Critical for safe 
operation; must 
detect and respond 
to all obstacles and 
events

Level 5 Full driving 
automation

The system performs 
all driving tasks 
under all conditions 
without any human 
involvement

No human driver System unlimited Mandatory and fully 
integrated; complete 
situational 
awareness required

3-transistor (3-T) cell, which includes a reset transistor T1, a source 
follower transistor T2, and a row select transistor T3 (Figure 1a). In 
this setup, a reverse-bias photodiode (PD) is used to detect incoming 
light. During the reset phase, a transistor T1 turns on and VPD
charges to a reference voltage VDD. After resetting, T1 is turned off 
and the integration phase begins. During this phase, incident light 
generates a photocurrent IPD, which gradually discharges voltage 
VPD. This voltage drop is buffered by source follower T2 and, when 
the row select transistor T3 is activated, read by the readout circuit.

However, these technologies generate large amounts 
of spatiotemporal data, requiring hardware with high 
processing capabilities and increased power consumption. 
This has also led to the development of sensors inspired by 
biological vision (Shawkat et al., 2024). Particularly, a new imaging 

paradigm inspired by the function of the human retina, located at 
the back of the eye, has started gaining attention. The sensing in the 
retina is done by cones and rods of a photoreceptor, which convert 
light to electrical signals and pass them to ON/OFF bipolar cells 
and eventually to ganglion cells. The latter two respond to various 
visual stimuli, such as intensity increments or decrements, colour, 
or motion. Similar to the retina, pixels in novel event-based cameras 
generate output independently from each other and only when some 
changes in the captured scene occur.

There are several approaches to implementing event-based 
sensors. The first one is the Dynamic Vision Sensor (DVS). Its 
pixel architecture shown in Figure 1b mimics a biological retina 
and is comprised of three blocks, such as a photoreceptor, switched 
capacitor differentiator, and comparator blocks, which act as 
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FIGURE 1
(a) Active Pixel Sensor; (b) Retina and Dynamic Vision Sensor (DVS).

photoreceptor, bipolar, and ganglion cells. To produce ON and OFF 
events, DVS measures light intensity change and slope. In particular, 
at the initial stage, the DVS pixel starts with a reference voltage 
that corresponds to the logarithmic intensity of previously observed 
light. When light hits a photodiode, the generated current IPD starts 
to discharge the voltage VPD. The rate at which the photodiode 
voltage changes depends on the intensity of the incoming light. The 
differentiating circuit produces a voltage proportional to the input’s 
rate of change. Slow changes result in small outputs, while rapid 
changes cause voltage spikes. The comparator circuit evaluates the 
differentiated signal against a fixed threshold and outputs a HIGH 
or LOW signal based on the result. The output format of event-
based cameras is a stream of tuples ei = (ti, xi, yi, pi), which provide 
information about the time ti when the ith event ei happened, its 
coordinates (xi,yi), and polarity pi.

In addition, there are hybrid types of event-based sensors, 
which include Asynchronous Time Based Image Sensor (ATIS) and 
DAVIS, shown in Figures 2a,b, respectively. ATIS is a combination 
of DVS and Time to First Spike (TFS) technologies (Posch et al., 
2010). Here, the DVS detects changes in the event stream, while 
Pulse Width Modulation (PWM) in the Exposure Measurement 
(EM) component enables the capture of absolute brightness levels. 
The second photodiode in the ATIS architecture allows it to 
measure both event intensity and temporal contrast. As a result, 
ATIS has a larger pixel area compared to DVS and produces 
enriched tripled data output. The output event of ATIS is ev = 
(x,y, t,p,elum,ecb,ecr), where x,y represent the pixel position, t is the 
timestamp and p is the event polarity, while elum,ecb,ecr correspond 
to the YCbCr color components, providing richer scene information 
(Shawkat et al., 2024; Lesage et al., 2023).

DAVIS is an image sensor comprised of synchronous APS and 
asynchronous DVS that share a common photodiode, as shown in 
Figure 2b. It provides multimodal output, which requires data fusion 
and more complex processing. In particular, a frame-based sampling 
of the intensities by APS allows for receiving static scene information 

at regular intervals but leads to higher latency (Shawkat et al., 2024), 
while DVS produces events in real-time based on changes.

Event-based cameras are typically equipped with control 
interfaces known as “biases”. These biases configure key components 
such as amplifiers, comparators, and photodiode circuits, directly 
impacting latency and event rate. The event bias settings can be 
adjusted to adapt to specific environmental conditions and to filter 
out noise (Shariff et al., 2024).

The most recent summary on the commercially available 
event-based cameras and their specifications can be found in 
(Gallego et al., 2020; Chakravarthi et al., 2025). The main vendors 
include iniVation (e.g., DVS128, DVS240, DVS346), Prophesee (e.g., 
ATIS, Gen3 CD, Gen 3 ATIS, Gen 4 CD, EVK4 HD), CelePixel (e.g., 
Cele-IV, Cele-V), Samsung (e.g., DVS Gen 2, DVS Gen 3, DVS Gen 
4), and Insightness. In addition, (Chakravarthi et al., 2025), provides 
a list of open-source event-based camera simulators. The notable 
ones include DAVIS (Mueggler et al., 2017) and Prophesee Video 
to Event Simulator (Prophesee, 2025). The key event cameras used 
for the collection of the real-world large-scale event datasets include 
Prophesee’s GEN1, GEN4, EVK4, and IniVation DAVIS346, whose 
specifications can be found in Table 3. An important milestone in 
the field of event-based sensing is the collaboration of Prophesee 
and Sony, resulting in a hybrid architecture IMX636. This sensor 
was integrated into industrial camera IDS Imaging uEye XCP 
EVS (IDS Imaging Development Systems GmbH, 2025), Prophesee 
EVK4 and EVK5 Evaluation Kits (Chakravarthi et al., 2025), 
and others.

3.2 Synthetic event-based data generation

Slow progress in the event-based domain was caused by the 
fact that event sensors are both rare and expensive. Furthermore, 
producing and labeling real-world data is a resource-intensive 
and time-consuming process. As an alternative, datasets can 
be generated synthetically (Aliminati et al., 2024). One of the 
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FIGURE 2
(a) Asynchronous Time-Based Image Sensor (ATIS); (b) Dynamic and Active Pixel Vision Sensor (DAVIS).

prominent tools for this purpose is the Car Learning to Act 
(CARLA) simulator (Dosovitskiy et al., 2017), which provides 
highly realistic virtual environments for autonomous driving. 
CARLA supports a variety of sensor outputs, including event 
cameras, RGB cameras, depth sensors, optical flow, and others, 
enabling the creation of diverse and realistic synthetic event-based
datasets.

The Event Camera Simulator (ESIM) is one of the pioneering 
works in event simulation Rebecq et al. (2018). Its architecture is 
tightly integrated with the rendering engine and generates events 
through adaptive sampling, either from brightness changes or 
pixel displacements. Vid2E Gehrig et al. (2020) follows the same 
principle and is considered an extension of ESIM. Unlike ESIM, 
which relies on image input, Vid2E uses video as input. The 
data generated by Vid2E was evaluated on object recognition and 
semantic segmentation tasks.

EventGAN generates synthetic events using a Generative 
Adversarial Network (GAN) (Zhu et al., 2021). The GAN is 
trained on a pair of frame data and events from the DAVIS 
sensor. During training, the network is constrained to mimic 
information present in the real data. To generate events, EventGAN 
takes input from a pair of grayscale images from existing 
image datasets.

V2E toolbox creates events from intensity frames Hu et al. 
(2021). This enabled the generation of event data under bad 

lighting and motion blur. This contributed to the development 
of more robust models. V2E produces a sequence of discrete 
timestamps, whereas real DVS sensors generate a continuous 
event stream Zhang et al. (2024). Video to Continuous Events 
Simulator (V2CE) tried to overcome this issue of V2E. V2CE 
includes two stages: (1) motion-aware event voxels prediction, 
and (2) voxels to continuous events sampling. Besides, it takes 
into account the nonlinear characteristics of the DVS camera. 
Additionally, this work introduced quantifiable metrics to validate 
synthetic data Zhang et al. (2024).

DVS-Voltmeter allows the generation of synthetic events from 
high frame-rate videos. It is the first event simulator that took 
into account physics-based characteristics of real DVS, which 
include circuit variability and noise Lin et al. (2022). The generated 
data was evaluated on semantic segmentation and intensity-image 
reconstruction tasks, demonstrating strong resemblance to real 
event data.

The ADV2E framework proposed a fundamentally different 
approach in event generation Jiang et al. (2024). It focuses on 
analogue properties of pixel circuitry rather than logical behavior. 
Synthetic events are generated from APS frames. Particularly, 
emulating an analog low-pass filter allows generating events based 
on varying cutoff frequencies.

The Raw2Event framework enables the generation of event data 
from raw frame cameras, producing outputs that closely resemble 
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TABLE 3  Key commercial event cameras [adapted from (Gallego et al., 2020; Chakravarthi et al., 2024; Wang H. et al., 2025)].

Output Parameter Prophesee 
ATIS 

GEN1

IniVation 
DAVIS346

Prophesee 
GEN4

Samsung 
DVS-
Gen4

Prophesee 
EVK4 HD

Prophesee 
EVK5 HD

uEye XCP 
EVS

Event output

Spatial 
Resolution

304 ×  240 320 ×  240 1280 ×  720 1280 ×  960 1280 ×  720 1280 × 720 1280 × 720

Temporal 
Resolution

– 1 μs – - 100 μs 100 μs 1 μs

Max 
Throughput

– 12 MEPS 1066 MEPS 1200 MEPS – – -

Max 
Bandwidth

– – – – 1.6 Gbps 1.6 Gbps -

Latency 3 μs <1 ms 20–150 μs 150 μs – 800μs -

Dynamic 
Range

143 dB 120 dB >124 dB 100 >86 dB >110 dB 120 dB

Contrast 
Sensitivity

13% 14.3%–22.5% 11% 20% 25% 25% 25%

Pixel Pitch 30 μm 18.5 μm 4.86 μm 4.95 μm 4.86 μm 4.86 μm 4.86 μm

Low Light 
Cutoff

– – – – 0.08 lux 0.08 lux 0.08 lux

Frame output

Spatial 
Resolution

n/a 346 ×  260 n/a n/a n/a n/a n/a

Frame Rate n/a Up to 40 FPS n/a n/a n/a n/a n/a

FPN n/a 4.2% n/a n/a n/a n/a n/a

Dark Signal n/a 18,000 e−/s n/a n/a n/a n/a n/a

Readout Noise n/a 55 e− n/a n/a n/a n/a n/a

Pixel Pitch n/a 18.5 μm n/a n/a n/a n/a n/a

Other 
specifi-cations

Power 
Consumption

50–175 mW <700 mW 
(140 mA @ 5 
VDC (USB))

32–84 mW 130 mW 0.5 W via USB 0.5 W via USB 0.5 W via USB

Year 2011 2017 2020 2020 2022 2023 2025

MEPS, Million Events Per Second; e−, electron; e−/s, electrons per second; dB, decibel; μs, microseconds; ms, milliseconds; μm, micrometers; mW, milliwatts; W, watts; mA, milliamperes; FPS, 
frames per second; Gbps, Gigabits per second; n/a, not applicable.

those of real event-based sensors Ning et al. (2025). It currently 
generates events from grayscale images, but could be extended 
to support color event streams. A low-cost solution deployed on 
Raspberry Pi could also be built on edge AI hardware, enabling lower 
latency and practical use at the edge.

A recently proposed PyTorch-based library, Synthetic Events for 
Neural Processing and Integration (SENPI), converts input frames 
into realistic event-based tensor data Greene et al. (2025). SENPI 
also includes dedicated modules for event-driven input/output, 
data manipulation, filtering, and scalable processing pipelines for 
both synthetic and real event data.

To sum up, most of these tools are rule-based, designed to 
convert APS-acquired images into synthetic event streams. The only 
exception is EventGAN, which is learning-based, but it tends to be 
less reliable and heavily dependent on the quality and diversity of the 
training data. Among these simulators, ESIM and DVS-Voltmeter 
stand out for offering the highest realism. Tools like v2e, v2ce, and 
ADV2E are the most scalable for large dataset generation, while 
recently introduced Raw2Event is the simplest, lightest, and fastest 
option. A novel framework, SENPI, offers controlled simulation 
of event cameras and extended processing features, including data 
augmentation and manipulation, and algorithmic development. 
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3.3 Event-based datasets

3.3.1 Early event-based datasets
There is a growing variety of neuromorphic datasets that were 

generated synthetically or recorded in real-world scenarios and 
cover a wide spectrum of event-based vision tasks, from small-
scale classification to real-world autonomous navigation. Depending 
on the method of capture, they are primarily divided into two 
categories: ego-motion and static, also known as fixed. Event-based 
datasets collected from a static/fixed perspective typically focus on 
the movement of objects or features in the environment, whereas 
ego-motion datasets emphasize the movement of the observer or 
camera relative to the scene (Verma et al., 2024).

Early event-based datasets include DVS-converted datasets N-
MNIST (Orchard et al., 2015), MNIST-DVS (Serrano-Gotarredona 
and Linares-Barranco, 2015), CIFAR 10-DVS (Li et al., 2017), N-
Caltech101 (Orchard et al., 2015), and N-ImageNet (Kim et al., 
2021) are publicly available datasets converted to event-based 
representation from frame-based static image datasets MNIST 
(LeCun et al., 1998), CIFAR 10 (Krizhevsky and Hinton, 2009), 
Caltech101 (Fei-Fei et al., 2004), and ImageNet (Deng et al., 
2009). The conversion of frame-based images to an event stream 
was achieved either by moving the camera, as in case of N-
MNIST and N-Caltech101, or by a repeated closed-loop smooth 
(RCLS) movement of frame-based images, as in MNIST-DVS, 
CIFAR 10-DVS(Iaboni and Abichandani, 2024; Li et al., 2017). The 
latter method produces rich local intensity changes in continuous 
time (Li et al., 2017). The pioneering DVS-captured dataset is 
DVS128 Gesture. It was generated by natural motion under three 
lighting conditions, including natural light, fluorescent light, and 
LED light (He et al., 2020). All of them serve as important 
benchmark datasets for developing and testing models in the context 
of event-based vision. However, only N-Caltech includes bounding 
box annotations, making it the most suitable dataset for the object 
detection task, which is the primary focus of this survey. 

3.3.2 Event-based datasets with autonomous 
driving context

There is a variety of DVS-captured datasets, each focusing on 
different aspects of event-based vision and application domains. 
Table 4 summarizes commonly used event-based datasets related to 
autonomous driving. These datasets differ in spatial and temporal 
resolution, collection sensor types, and environmental conditions 
such as lighting and weather. In addition to the dataset collection 
process, dataset labeling also plays an essential role in effective object 
detection. However, annotating event-based data at every timestamp 
is highly resource-intensive (Wu et al., 2024). Moreover, event 
data with low spatial or temporal resolution often results in poor 
quality and limited utility, while higher-resolution data significantly 
increases memory requirements. Although high temporal resolution 
improves the tracking of fast-moving objects, it also introduces 
greater sensitivity to noise. To balance these trade-offs, different 
datasets adopted different labeling frequencies.

The DDD17 (Davis Driving Dataset, 2017; Binas et al., 2017) 
was among the first datasets specifically created for this purpose 
and includes 12 h of recording. It was collected from German 
and Swiss roads at speeds ranging from 0 to 160 km/h using a 
DAVIS346B prototype camera with a resolution of 346× 260 pixels. 

The camera had APS and DVS sensors, which allowed capturing 
both event- and frame-based data through the same optics. It 
consists of a continuous event stream captured under various 
weather and lighting conditions and was used for steering angle 
prediction. Since the DDD17 is not categorized into specific object 
classes, its direct utilization in object detection tasks is infeasible 
without pre-processing and adaptation. An extended version of 
DDD17 is DDD20 (Hu et al., 2020). DDD20 has around 51 h of 
recordings under various weather and lightning conditions.

Another complex dataset recorded in changing environments 
is N-Cars (Sironi et al., 2018). It was collected using Prophesee’s 
ATIS camera mounted behind the windshield of a car and consists 
of 80 min of video. Then, gray-scale measurements from the ATIS 
sensor were converted into conventional gray-scale images. ATIS’s 
luminous intensity measures were used to generate ground-truth 
annotations. The resulting dataset has two classes, comprised of 
12,336 car samples and 11,693 non-car samples.

Three additional event-based datasets focusing on human 
motion were later introduced: the pedestrian detection dataset, 
the action recognition dataset, and the fall detection dataset. 
The event streams, recorded both indoors and outdoors, 
were converted into frames and annotated using the labelImg 
tool. The resulting DVS-Pedestrian dataset contains 4,670 
annotated frames (Miao et al., 2019).

Prophesee’s GEN1 Automotive Detection Dataset (also called 
GAD (Crafton et al., 2021)) is the first large-scale real-world 
event-based labeled dataset that includes both cars and pedestrians 
(De Tournemire et al., 2020) and is recognized as the first major 
detection benchmark. The dataset was collected by the Prophesee 
ATIS GEN 1 sensor with a resolution of 304× 240 mounted behind 
the windshield of a car. GEN1 contains more than 39 h of recordings 
of various scenes in different lighting and weather conditions. To 
decrease the gap between frame-based and event-based datasets in 
supervised tasks such as detection and classification, the obtained 
dataset was manually labeled at a frequency between 1 and 4 
frames per second (FPS). GEN1 is widely utilized for developing 
and benchmarking event-based vision technologies and processing 
algorithms. Additionally, since it was recorded using the first 
generation of event-based vision sensors, the GEN1 dataset exhibits 
lower resolution and a higher level of inherent noise compared to 
more recent datasets (Perot et al., 2020).

More detailed environmental mapping is achieved in a 1 
Megapixel (1MP) automotive detection dataset (Perot et al., 
2020) recorded by an event-based vision sensor with high 
resolution (1280× 720), making it suitable for detailed 
spatial analysis (Finateu et al., 2020). In addition to the dataset, 
a fully automated labeling protocol is implemented, the key concept 
of which is acquiring data simultaneously with the Prophesee 
GEN4 event-based camera and an RGB GoPro Hero 6 camera 
positioned side by side as closely as possible. Then, the bounding 
boxes from the frame camera images are transferred to the 
event-based camera output. The 1MP dataset contains 14 h of 
recordings with around 25 M bounding boxes of pedestrians 
(8.5 M), cars (16.3 M), and two-wheelers (1.1 M) at 60 FPS, 
facilitating high-temporal-precision tasks.

PKU-DAVIS-SOD is a multimodal object detection dataset with 
the focus on challenging conditions. It has 1.08 M bounding boxes 
for 3 classes, such as cars, pedestrians, and two-wheelers (Li et al., 

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1674421
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Smagulova et al. 10.3389/frobt.2025.1674421

T
A

B
LE

 4
  E

ve
n

t-
b

as
ed

 d
at

as
et

s 
w

it
h

 a
u

to
n

o
m

o
u

s 
d

ri
vi

n
g
 co

n
te

xt
.

D
at

as
e

t
Ye

ar
C

am
e

ra
Se

n
so

r
M

o
d

al
it

y
P

re
sp

e
ct

iv
e

R
e

so
lu

ti
o

n
C

la
ss

e
s

#
 

B
o

u
n

d
in

g
 

b
o

xe
s

La
b

e
lin

g
 

fr
e

q
u

e
n

cy
D

u
ra

ti
o

n
Sc

e
n

ar
io

s
D

iff
e

re
n

t 
w

e
at

h
e

r 
co

n
d

it
io

n
s

D
iff

e
re

n
t 

lig
h

tn
in

g
 

co
n

d
it

io
n

s

N
-C

A
RS

 
(S

iro
ni
 et

 al
., 

20
18

)

20
17

Pr
op

he
se

e
AT

IS
ev

en
ts

eg
o

n/
a

C
ar

s, 
no

n-
C

ar
s

12
.3

 K
, 

11
.6

 K
n/

a
80

 m
in

D
riv

in
g

n/
a

n/
a

D
D

D
R1

7 
(B

in
as
 et

 al
., 

20
17

)

20
17

D
AV

IS
34

6B
A

PS
 +

 D
V

S
ev

en
ts

eg
o

n/
a

no
no

no
12

 h
D

riv
in

g
✓

✓

D
D

D
R2

0 
(H

u e
t a

l.,
 

20
20

)

20
17

D
AV

IS
A

PS
 +

 D
V

S
ev

en
ts

eg
o

n/
a

no
no

no
51

 h
D

riv
in

g
✓

✓

G
en

1 
(D

e 
To

ur
ne

m
ire

 
et

 a
l.,

 2
02

0)

20
20

Pr
op

he
se

e 
AT

IS
 G

EN
1

AT
IS

ev
en

ts
eg

o
30

4×
24

0
C

ar
s, 

Pe
de

st
ria

ns
22

8 
K

, 2
8 

K
1–

4 
H

z
39

 h
D

riv
in

g
✓

✓

1M
P 

(P
er

ot
 et

 al
., 

20
20

)

20
20

Pr
op

he
se

e 
1M

P 
(G

EN
4)

 +
 

G
o 

Pr
o

A
PS

 +
 D

V
S

ev
en

ts
, 

fr
am

es
eg

o
12

80
×

72
0

C
ar

s, 
Pe

de
st

ria
ns

, 
Tw

o-
w

he
el

er
s

16
.3

 M
, 

8.
5 

M
, 1

.1
 M

60
 H

z
14

 h
D

riv
in

g
✓

✓

PK
U

-
D

AV
IS

-S
O

D
 

(L
i e

t a
l.,

 
20

23
)

20
22

D
AV

IS
34

6
A

PS
 +

 D
V

S
ev

en
ts

, 
fr

am
es

, 
e2

vi
d 

re
co

ns
tr

uc
tio

ns

eg
o

34
6 

× 
26

0
C

ar
s, 

Pe
de

st
ria

ns
, 

Tw
o-

w
he

el
er

s

1.
08

 M
 

(to
ta

l)
25

 H
z

n/
a

D
riv

in
g

✗
✓

PE
D

Ro
 

(B
or

et
ti e

t al
., 

20
23

)

20
23

D
AV

IS
34

6
A

PS
 +

 D
V

S
ev

en
ts

eg
o

30
4×

24
0

Pe
de

st
ria

ns
43

 K
25

 H
z

0.
6 

h 
(2

20
 

se
qu

en
ce

s)
Ro

bo
tic

s
✓

✓

eT
ra

M
 

(V
er

m
a e

t al
., 

20
24

)

20
24

Pr
op

he
se

e 
EV

K
4 

H
D

A
PS

 +
 D

V
S

ev
en

ts
, 

fr
am

es
fix

ed
12

80
×

 7
20

C
ar

s, 
Pe

de
st

ria
ns

, 
Tr

ac
ks

, 
Bu

se
s, 

Tr
am

s, 
Bi

cy
cl

es
, 

Bi
ke

s, 
W

he
el

ch
ai

rs

ov
er

 2
 M

 
(to

ta
l)

30
 H

z
10

 h
st

at
ic

 T
ra

ffi
c 

m
on

ito
rin

g
✓

✓

SE
V

D
 

(A
lim

in
at

i 
et

 a
l.,

 2
02

4)

20
24

C
A

RL
A

 
sim

ul
at

or
M

ul
tip

le
 

D
V

S
ev

en
ts

eg
o,

 fi
xe

d
12

80
×

96
0

C
ar

, T
ru

ck
, 

Va
n,

 B
ic

yc
le

, 
M

ot
or

cy
cl

e, 
Pe

de
st

ria
n

ov
er

 9
 M

 
to

ta
l

n/
a

58
 h

 (t
ot

al
)

D
riv

in
g,

 
Tr

affi
c 

m
on

ito
rin

g

✓
✓

eC
A

RL
A-

sc
en

es
 

(M
an

so
ur

 
et

 a
l.,

 2
02

4)

20
24

C
A

RL
A

 
sim

ul
at

or
D

V
S,

 
gr

ay
sc

al
e, 

op
tic

al
 fl

ow

ev
en

ts
, 

fr
am

es
, 

m
ot

io
n 

fie
ld

eg
o

26
0×

34
6

Pe
de

st
ria

ns
 

Ve
hi

cl
es

no
n/

a
31

 
se

qu
en

ce
s

D
riv

in
g,

 
Tr

affi
c 

m
on

ito
rin

g

✓
✓

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1674421
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Smagulova et al. 10.3389/frobt.2025.1674421

2023). Compared to GEN1 and 1MP datasets, the PKU-DAVIS-
SOD dataset offers moderate resolution (346×  260). The dataset 
was collected by DAVIS346 installed on the front windshield of 
the driving car, and, to capture high-speed objects, a camera was 
also placed at the side of the road. The data obtained are in three 
modalities, such as RGB frames, event images, and grayscale images 
reconstructed from events using E2VID (Rebecq et al., 2019), and 
were manually annotated at a frequency of 25 FPS.

Person Detection in Robotics (PEDRo) is another event-based 
dataset primarily designed for robotics, but can also be used in 
autonomous driving contexts for pedestrian detection. DAVIS346 
camera with a resolution of 304× 240 was hand-carried to capture 
people walking and on some occasions, standing still, sitting, 
or running (Boretti et al., 2023). PEDRo, with manually annotated 
43 K bounding boxes (25 FPS), can serve as a valuable resource to 
mitigate the class imbalance present in the GEN1 and 1MP datasets.

eTraM is one of the recent event-based datasets (Verma et al., 
2024). It is a static traffic monitoring dataset recorded by a 1280×
720 Prophesee EVK4 HD event camera. The dataset contains 10 h 
of recordings, providing 2 M bounding box annotations of eight 
classes, including pedestrians, cars, trucks, buses, trams, bikes, 
bicycles, and wheelchairs that were manually annotated. 

3.3.3 Synthetic event-based datasets
CARLA simulator was used to generate the Synthetic Event-

based Vision Dataset (SEVD) (Aliminati et al., 2024) for both 
multi-view (360°) ego-motion and fixed-camera traffic perception 
scenarios, providing comprehensive information for a range of 
event-based vision tasks. The synthetic data sequences were 
recorded using multiple dynamic vision sensors under different 
weather and lightning conditions and include several object classes 
such as car, truck, van, bicycle, motorcycle, and pedestrian.

Additionally, the CARLA simulator, along with the recently 
developed eWiz a Python-based library for event-based data 
processing and manipulation, was used to generate the eCARLA-
scenes synthetic dataset, which includes four preset environments 
and various weather conditions (Mansour et al., 2024). 

3.3.4 Event-based dataset labeling
Event-based datasets remain underrepresented. Additionally, 

the accuracy of object detection is influenced by dataset labeling 
and its temporal frequency. If labels are sparse in time, the model 
may miss critical information, especially in high-speed scenarios. 
On the other hand, higher labeling frequency can become redundant 
in low-motion scenes and is often expensive to implement manually. 
To address the scarcity of well-labeled event-based datasets, the 
overlap between event-based and frame-based data can be exploited 
to generate additional labeled event datasets (Messikommer et al., 
2022). In (Perot et al., 2020), event-based and frame-based cameras 
were paired as in the 1MP dataset. Since frame-based and event-
based sensors were placed side by side, a distance approximation 
was applied afterwards, and labels extracted from the frame-
based camera were transferred to event-based data. Another option 
suggests the generation of event-based data from existing video 
using video-to-event conversion (Gehrig et al., 2020).

Unlike frame-based cameras, event-based sensors inherently 
capture motion information. Adoption of Unsupervised Domain 
Adaptation (UDA) to enable the transfer of knowledge from 

a labeled source (e.g., image Yimg) domain to an unlabeled 
target (e.g., event Yevent) domain (Messikommer et al., 2022) was 
proposed in (Messikommer et al., 2022). This method does not 
require paired data from both sensors, making it possible to leverage 
labeled frame-based datasets to train models for unlabeled event-
based data. Moreover, a single photo is sufficient to transfer labels, 
eliminating the need for high-frame-rate videos.

Labeling event data directly from sensor output, without 
relying on corresponding frame-based information, faces its own 
challenges. In particular, labeling event-based data at each timestep 
is expensive due to its high temporal resolution. To address this 
challenge, Label-Efficient Event-based Object Detection (LEOD) 
was proposed (Wu et al., 2024). LEOD involves pre-training a 
detector on a small set of labeled data, which is then used to generate 
pseudo-labels for unlabeled samples. This approach supports both 
weakly supervised and semi-supervised object detection settings. To 
improve the accuracy of the pseudo-labels, temporal information 
was used. Specifically, time-flip augmentation was applied, which 
enabled model predictions on both the original and temporally 
reversed event streams. LEOD was evaluated on the GEN1 and 1MP 
datasets, and it can outperform fully supervised models or be utilized 
together to enhance their performance. 

4 Event-based object detection

To a great extent, traditional object detectors can be divided 
into single-stage detectors and two-stage detectors (Bouraya and 
Belangour, 2021; Carranza-García et al., 2020). The single-stage 
detector is comprised of several parts, which typically include 
an input, a backbone for feature extraction, a detection head, 
and, optionally, neck layers. Its neck layers are located between 
the backbone and head layers and consist of several top-down 
and bottom-up paths to extract multi-scale features for detecting 
objects of various sizes (Bouraya and Belangour, 2021). A detection 
head takes the outputs of the backbone and neck and transforms 
extracted features into a final prediction. You Only Look Once 
(YOLO) (Hussain, 2024) and Single Shot MultiBox Detector (SSD) 
(Liu et al., 2016) are examples of Single-stage detectors. YOLO 
divides the image into a grid and predicts bounding boxes for 
each cell, while SSD uses multiple feature maps at different scales 
to detect objects of varying sizes. Two-stage detectors include an 
additional step before the classification stage, known as the regions 
of interest (RoI) proposal stage (Carranza-García et al., 2020). This 
extra stage helps to identify potential object locations for better 
performance. As a result, single-stage detectors predict object classes 
and bounding boxes in one pass and provide higher speed, whereas 
two-stage detectors try to ensure accurate prediction and involve 
more computational cost.

Unlike frame-based data, the binary event stream is 
characterized by spatial and temporal sparsity. Handling such data 
requires high-performing algorithms. The structure of existing 
event-based object detection models is comprised of a backbone 
architecture followed by an SSD- or YOLO-based head. Detection 
model backbone architectures can be classified as dense, spiking, 
or graph-based, and can often be converted between formats to 
enhance efficiency during training and inference. Depending on the 
model architecture, event data may be processed in its raw form 
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or require conversion. Once formatted appropriately, models can 
operate either asynchronously on raw event streams or at a fixed 
rate using dense frame or graph-based representations.

Figure 3 summarizes the basic pipeline of event-based object 
detectors, categorized by the type of model used. While the 
pipeline can be extended with additional pre- and post-processing 
stages, in the diagram we focus on the minimal encoding and 
processing components. The processing stage typically involves 
converting event data into a specific format, if required, to match 
the input requirements of the target model and training or inference 
processes. Based on the type of data processing, these models can 
be categorized as either event-driven asynchronous (green boxes 
in Figure 3) or fixed-rate synchronous (blue boxes in Figure 3). 
Furthermore, based on the backbone model architecture, the 
networks can be categorized as dense, spiking, or graph-based, 
resulting in five possible processing pathways within the pipeline. 
More details on models are provided below in Section 4.2. Although 
detection models differ in their architectures and processing 
strategies, it should be noted that they share several common 
evaluation metrics, with some variations depending on the specific 
processing approach. In the following sections, we begin by 
outlining these key evaluation metrics, then introduce state-of-the-
art models. We also review existing data augmentation techniques 
and highlight relevant neuromorphic accelerators.

4.1 Evaluation metrics

Evaluation methods applied to event-based object detectors 
are inherited from frame-based frameworks. The widely adopted 
one is the COCO (Common Object in Context) metric protocol, 
which utilizes various performance metrics such as Average 
Precision (AP), AP50, Average Precision Small (APS), Average 
Precision Medium (APM), and Average Precision Large (APL) 
(Perot et al., 2020; Tian et al., 2024). But the key metrics in 
the evaluation of object detectors include mean Average Precision 
(mAP) for measuring the accuracy of the object detection, and 
runtime for measuring the amount of time required to process input.

These performance metrics evolved based on prediction boxes 
produced by detection models. The output of object detectors is 
bounding boxes encoded as (xmin, ymin, xmax, ymax), where each 
pair of coordinates represent top-left and bottom-right coordinates 
as shown in Figure 4a. The exception is YOLO family models, 
in particular, YOLOv8 has a bounding box represented by (label, 
xcenter, ycenter, width, height), where label is the class of the object, 
(xcenter, ycenter) are normalized coordinates of the center of bounding 
box and (width, height) are its width and height as shown in 
Figure 4b (Padilla et al., 2020). Despite these differences, the 
final evaluation metrics, such as F1 score, AP, and mAP, remain 
unaffected.

The Intersection of Union (IoU) is a measure of the overlap 
between predicted and Ground Truth (GT) bounding boxes. Based 
on the given specific threshold θ, classification can be considered 
as correct or incorrect. In particular, if IoU is above the threshold 
θ, a prediction is considered a True Positive (TP). Otherwise, there 
are two cases of incorrect detection: False Negative (FN) and False 
Positive (FP). FN occurs when the object detector fails to identify 
an object that is present in the scene, whereas FP happens when the 

model incorrectly detects an object in an area where none exists. The 
next evaluation metrics are Precision (P) and Recall (R). Precision 
(P) shows the ability of the model to find only relevant objects 
and can be found using Equation 1, while Recall (R) measures the 
proportion of actual GT objects that were correctly detected and can 
be identified using Equation 2. Visualization of IoU, precision P and 
recall R is illustrated in Figure 5.

P = TP
TP+ FP

= TP
alldetections

; (1)

R = TP
TP+ FN

= TP
allgroundtruth

; (2)

The precision-recall curve illustrates a trade-off at various 
confidence values. The model is considered good if the precision 
remains high as its recall increases (Padilla et al., 2020). The F1 
score is the metric that shows the trade-off between precision P and 
recall R as illustrated in Figure 6a and can be found from Equation 
3. It ranges between 0 and 1, where 1 shows the highest accuracy. 
Average Precision (AP) is identified individually for each class and 
represents the area under the curve (AUC) of the precision-recall 
corresponding to Figure 6b for that specific class as shown in Figure 
6c. It measures how well the model balances precision (accuracy 
of positive predictions) and recall (coverage of actual positives) at 
different confidence thresholds. Eventually, mAP (Figure 6d) is the 
average of the Average Precision (AP) of each class. mAP50 is the 
mean average precision of a model when the IoU threshold is set to 
50%, whereas mAP50:95 evaluates performance across multiple IoU 
thresholds between 50% and 95%, and is more difficult to achieve 
compared to mAP50. mAP50:95 is preferred metric for benchmarking 
state-of-the-art models.

F1score = 2× P×R
P+R
; (3)

In addition to mAP, which represents the prediction quality, the 
number of floating point operations (FLOPs) is commonly used to 
measure the computational efficiency and complexity of a model 
(Messikommer et al., 2020). For asynchronous models, where data is 
event-driven rather than frame-based, the adopted metric is FLOPs 
per event (FLOPs/ev) (Santambrogio et al., 2024), which more 
accurately reflects the computational cost relative to the number of 
events processed.

Another important performance indicator is the runtime of the 
object detection model, referring to the time required to process 
the input data and evaluate all bounding box annotations across the 
images. Lower runtime is crucial, especially in real-time or resource-
constrained applications such as robotics and autonomous systems.

Besides, there are evaluations such as latency (milliseconds(ms)), 
throughput ( frames per second or events per second), energy 
efficiency (Joules or Watts) and memory footprint (MB) (Iaboni 
and Abichandani, 2024), which better capture a model’s practical 
viability on neuromorphic hardware or embedded systems 
and contribute to the overall computational cost. Balancing 
accuracy, computational cost, and speed is essential for deploying 
efficient and scalable event-based object detection models. All the 
above-mentioned metrics are summarized in Table 5.
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FIGURE 3
Event-based object detection pipeline: event-data acquisition, pre-processing, processing, post-processing, and deployment. Five types of pipelines 
based on processing rate and backbone model architecture: fixed-rate dense, fixed-rate graph-based, asynchronous sense, asynchronous spike-based 
processing dense data, and asynchronous spike-based processing raw events.

FIGURE 4
Bounding boxes in (a) object detectors; (b) YOLO detectors.
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FIGURE 5
IoU, precision and recall.

TABLE 5  Object detector performance evaluation metrics.

Metric Units Description

Intersection of Union (IoU) unitless Overlap between predicted and Ground Truth (GT) boxes

Precision (P) unitless Shows of all predicted boxes, how many were actually correct

Recall (R) unitless Shows of all actual objects, how many were found by model

F1 score between 0 and 1 Summarizes the accuracy of predicted bounding boxes

Average Precision (AP) unitless Area under this Precision-Recall curve (per class performance)

Mean Average Precision unitless Average of the precision-recall curve across different IoU thresholds and/or multiple classes (overall detector 
performance)

Throughput Frames per second (FPS) Number of frames processed by model per second, speed of processing

Runtime ms Inference speed

Energy Joules or Watt Energy consumption required for inference

Memory footprint Mega Bytes Amount of memory a model needs to operate

Model complexity MACs, FLOPs Amount of computation required for inference

4.2 Models

As mentioned earlier, event data is a new and fundamentally 
different type of information compared to traditional data. 
Nevertheless, existing neural models have been adapted to effectively 
process event streams. These approaches can be broadly categorized 
into dense, asynchronous dense, SNNs, GNNs, and other model 
types. Below, we present these categories with a focus on state-
of-the-art models for autonomous event-based object detection, 
particularly those evaluated on the GEN1, 1MP, and eTraM 
datasets. Figure 7 illustrates some of them.

4.2.1 Dense models
Currently, DNNs remain a practical choice for event-based data 

processing due to their well-established training methodologies 
and scalability. In particular, in (Perot et al., 2020; Silva et al., 
2024c; Peng et al., 2023a), authors evaluated the performance of 
popular CNN-based RetinaNet and YOLOv5 models on GEN1 
and 1MP datasets, which lately served as a baseline for their 

frameworks. However, it should be noted that conventional models 
require event streams to be converted into a grid-like format 
before they can be processed. Earlier methods often relied on 
reconstructing grayscale images from events (Liu et al., 2023; 
Perot et al., 2020), while recent works use more advanced encoding 
techniques (Peng et al., 2023a; Liu et al., 2023; Peng et al., 2023b), 
which are discussed later in Section 4.3.

Generally, DNN-based backbones can be categorized into either 
CNN-based or Transformer-based architectures. Additionally, they 
can be improved by incorporating specialized architectural layers to 
better capture the temporal dynamics of event data. In particular, 
networks that integrate recurrent layers form a distinct subgroup 
of models. One of the first models with recurrency is Recurrent 
Event-camera Detector (RED) (Perot et al., 2020). The architecture 
of RED includes convolutional layers extracting low-level features 
followed by convolutional long short-term memory (ConvLSTM) 
layers to extract high-level spatio-temporal patterns from the 
input. RED showed that memory mechanism created by recurrent 
layers allows detection of objects directly from events, achieving 

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2025.1674421
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Smagulova et al. 10.3389/frobt.2025.1674421

FIGURE 6
(a) F1 score; (b) Precision-Recall Area Under Curve (PR-AUC); (c) Average precision (AP); (d) mAP over various IoU.

results comparable to those obtained using reconstructed grayscale 
images. However, utilization of ConvLSTM layers also led to 
increased computational complexity and latency and resulted in 
slow inference.

The Agile Event Detector (AED) is a YOLO-based architecture, 
which demonstrated faster and more accurate performance than the 
baseline YOLOX model on the GEN1 and 1MP datasets (Liu et al., 
2023). Prior to AED, many event-based detection models were 
computationally intensive and suffered from low inference speeds. 
In addition, conventional approaches for converting events into 
dense representations often rely on fixed global time windows tw, 
which fail to account for the different motion speeds. Specifically, 
long time windows can lead to motion blur for fast-moving objects, 
while short windows may not capture sufficient information for 
slower ones. AED overcomes this limitation through a specialized 
event encoding technique, enabling a motion-robust, high-speed, 
and lightweight detection pipeline. The architecture of AED avoided 
using recurrent layers due to the higher cost of training and slower 
speed during inference.

The next architecture is Recurrent Vision Transformer 
(RVT) (Gehrig and Scaramuzza, 2023) and has a transformer-
based backbone with recurrent layers. RVT is designed to 
overcome a trade-off between accuracy and computational 
complexity of previous event-based object detectors 
(Perot et al., 2020; Messikommer et al., 2020). It has a hierarchical 
multi-stage design of several blocks, which include an attention 
mechanism to process spatio-temporal data. Moreover, to reduce 
computation, RVT blocks gave preference to Vanilla LSTM cells 
over ConvLSTM layers, which allowed for a decrease in inference 

time compared to the RED. Following the introduction of RVT, 
numerous event-based object detection models were proposed 
within a relatively short period, and RVT served as a baseline for the 
majority of them, as can be noticed below.

In most cases, converting events to an image-like dense format 
can result in the loss of some properties. A group-based vision 
Transformer backbone called Group Event Transformer (GET) 
tried to overcome this problem by incorporating Group Token 
representation of asynchronous events that consider their time 
and polarity (Peng et al., 2023b). The architecture of GET has 
three stages comprised of Group Token Embedding (GTE), Event 
Dual Self-Attention (EDSA), and Group Token Aggregation (GTA) 
blocks. The visualization study demonstrated that by incorporating 
the EDSA block, GET could effectively capture counterclockwise 
motion. The enhanced version of GET with ConvLSTM layers was 
able to outperform most state-of-the-art models like RED, RVT-B, 
and others. Overall, GET is reported to be the fastest end-to-end 
method since other frameworks require longer data pre-processing 
time, which is typically not omitted in runtime results.

Traditional Vision Transformers benefit from the self-attention 
mechanism, which improves performance by capturing long-range 
dependencies. However, its quadratic computational complexity 
also introduces a great overhead in terms of A-FLOPs (Attention-
related FLOPs) and limits scalability during processing high-
resolution tasks (Gehrig and Scaramuzza, 2023; Peng et al., 2024). 
One of the ways to reduce computational burden was using 
sparse and sparse window-based transformers that rely on token-
level sparsification or adaptive sparsification. In the event-based 
domain, these ideas were implemented in the Scene adaptive sparse 
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FIGURE 7
Schematic of fixed-rate (a) RVT and RVT Block; (b) GET architecture; (c) SSM Block; (d) SAST Block; (e) Recurrent YOLOv8; and asynchronous (f)
ASTMNet; (g) AEGNN models.
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transformer (SAST) (Peng et al., 2024). Its architecture is composed 
of multiple SAST blocks, each of which concludes with an LSTM 
layer. Through the combined use of window-token co-sparsification 
and Masked Sparse Window Self-Attention (MS-WSA), SAST 
effectively discards uninformative windows and tokens. This enables 
scene-aware adaptability, which allows focusing only on relevant 
objects. As a result, it could achieve better performance than variants 
of RVT at lower computational expense.

Recurrent YOLOv8 (ReYOLOv8) is an object detection 
framework that leverages the state-of-the-art CNN-based YOLOv8 
model for efficient and fast object detection, and enhances 
its spatiotemporal processing capabilities to process events by 
integrating ConvLSTM layers (Silva et al., 2025). ReYOLOv8 
achieved better accuracy with a relatively smaller number of 
parameters compared to other state-of-the-art event-based object 
detectors, including RED (Perot et al., 2020), GET (Peng et al., 
2023b), SAST (Peng et al., 2024), variants of RVT (Gehrig and 
Scaramuzza, 2023), HMNet (Hamaguchi et al., 2023), and others.

As mentioned earlier, prior to being processed by dense models, 
the event stream must be converted into a frame-like format. The 
time window tw used to generate dense event representations may 
vary between training and inference. When models are unable to 
adapt to these differences in frequency, their detection performance 
can degrade. Integration of the State Space Model (SSM), a type 
of model designed to handle sequential data efficiently over long 
time horizons, may improve their performance without retraining 
at different frequencies (Zubic et al., 2024). Evaluation of RVT 
and SSM-ViT represented by SSM for Sequence Modeling (S4) 
(Gu A. et al., 2021), Diagonal S4 (S4D) (Gu et al., 2022), and SSM 
with parallel scans (S5) (Smith et al., 2022) models across different 
frequencies showed that SSM-ViT can outperform RVT by 20 mAP 
and a 33% increase in training speed (Zubic et al., 2024).

SSM with 2D selective scan (S6) was adopted in the architecture 
of Sparse Mamba (SMamba) (Yang et al., 2025). It was evaluated 
on widely adopted GEN1, 1MP datasets and the recent eTRaM 
dataset, and outperformed the state-of-the-art models, including its 
sparse transformer-based counterpart SAST. While SAST proposed 
a window attention-based sparsification strategy, SMamba utilizes 
information-guided spatial selective scanning and global spatial-
based channel selective scanning that can measure the information 
content of tokens and discard non-event noisy tokens. 

4.2.2 Asynchronous dense models
Conversion of a stream of asynchronous and spatially sparse 

events into a synchronous tensor-like format and processing them by 
dense models at fixed rates leads to high latency and computational 
costs. Therefore, some works focus on dense models that process 
asynchronous event-by-event data during inference, leveraging 
both the temporal and spatial features of the event information. 
Nevertheless, training asynchronous dense models still requires 
converting raw event data into frame-like representations, which 
remains computationally intensive.

AsyNet is a framework designed to convert traditional 
models, trained on synchronous dense images, into asynchronous 
models that produce identical outputs (Messikommer et al., 
2020). To preserve sparsity in event-based input data, AsyNet 
employs a sparse convolutional (SparseConv) technique such as 
the Submanifold Sparse Convolutional (SSC) Network, which 

effectively ignores zero-valued inputs within the convolutional 
receptive field. To maintain temporal sparsity, Sparse Recursive 
Representations (SRRs) are used. Unlike traditional methods that 
reprocess the entire image-like representation from scratch for 
every incoming event, SRRs enable recursive and sparse updates 
as new events arrive, which eliminates the need to rebuild the 
full representation each time. Examples of SRRs include event 
histograms (Maqueda et al., 2018), event queues (Tulyakov et al., 
2019), and time images (Mitrokhin et al., 2018), where only single 
pixels need updating for each new event.

The next approach for asynchronous processing is known as 
MatrixLSTM and uses a grid of Long Short-Term Memory (LSTM) 
cells to convert asynchronous streams of events into 2D event 
representations (Cannici et al., 2020). All outputs of LSTM layers 
are collected into a dense tensor of shape H×W×C, forming a final 
surface Sε. By jointly training MatrixLSTM layers with state-of-the-
art models, there is no longer a need for pre-processing events into 
a frame-like structure to process the input.

Asynchronous spatio-temporal memory network for 
continuous event-based object detection (ASTMNet) also processes 
raw event sequence directly without converting to image-
like format (Li J. et al., 2022). This became possible due to the 
utilization of an adaptive temporal sampling strategy and temporal 
attention convolutional module.

Fully Asynchronous, Recurrent and Sparse Event-based CNN 
(FARSE-CNN) uses hierarchical recurrent units in a convolutional 
way to process sparse and asynchronous input (Santambrogio et al., 
2024). Unlike MatrixLSTM, which also uses ConvLSTM but 
uses a single recurrent layer, FARSE-CNN is a multi-layered 
hierarchical network. FARSE-CNN also introduced Temporal 
Dropout, a temporal compression mechanism, which allows 
building deep networks.

The transformer-based framework for streaming object 
detection (SODformer) also operates asynchronously without 
being tied to a fixed frame rate (Li et al., 2023). SODformer was 
designed for object detection based on heterogeneous data, and, to 
improve detection accuracy from event- and frame-based streams, 
it introduced transformer and asynchronous attention-based fusion 
modules. The performance of SODformer was evaluated on the 
multimodal PKU-DAVIS-SOD dataset. 

4.2.3 Spiking Neural Networks
As observed in dense models, adding recurrent connections 

can enhance the performance of dense backbones due to the 
ability to capture the temporal dependencies of events (Perot et al., 
2020; Gehrig and Scaramuzza, 2023). One study further showed 
that Spiking Neural Networks (SNNs) outperform standard 
RNNs in processing sparse, event-driven data and achieve 
performance comparable to LSTMs (He et al., 2020). SNNs are 
widely known as biologically inspired, energy-efficient architectures 
that are inherently well-suited for processing asynchronous input 
(Cordone et al., 2022) and are considered as neuromorphic or/and 
event-driven neural networks. However, as the resolution of the 
vision data increases, the performance of SNNs begins to decline 
(He et al., 2020). Moreover, SNNs face significant challenges when 
it comes to training and scalability, primarily due to their inherent 
complexity and the need for algorithms to handle the discrete and 
event-driven nature of their neurons (Kim et al., 2020). Besides, 
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there is a lack of specialized hardware. Traditional gradient-based 
training methods and Graphics Processing Units (GPUs) and 
Tensor Processing Units (TPUs) are well-optimized for DNNs, 
but not directly suitable for SNNs (Cordone, 2022). Different 
topologies of SNNs and training methods are continuously evolving. 
Additionally, pre-trained DNNs can be converted into SNNs for 
inference, often achieving results comparable to those obtained 
with DNNs (Silva D. et al., 2024).

One of the first spike-based object detection models is a 
Spiking-YOLO, which was obtained via DNN-to-SNN conversion 
(Kim et al., 2020). Initially, the converted model was unable 
to detect any objects due to a low firing rate and a lack 
of an efficient implementation method of leaky-ReLU. After 
introducing channel-wise normalization and signed neurons with 
an imbalanced threshold, the modified model achieved up to 
98% on non-trivial PASCAL VOC and MS COCO datasets, 
comparable to the original DNN-based TinyYOLO model. However, 
applied normalization methods also led to an increase in the 
required number of timesteps, which is unfeasible for real-world 
implementation on neuromorphic hardware due to high latency 
(Cordone, 2022). In particular, the conversion-based Spiking-
YOLO model (Kim et al., 2020) required 500 timesteps to achieve 
results comparable to those of the Trainable Spiking-YOLO (Tr-
Spiking-YOLO) (Yuan et al., 2024), which uses direct training 
with the surrogate gradient algorithm and only 5 timesteps on the
GEN1 dataset.

EMS-YOLO is the first deep spiking object detector trained 
directly with surrogate gradients, without relying on ANN-to-SNN 
conversion Su et al. (2023). EMS-YOLO uses the standard Leaky 
Integrate-and-Fire (LIF) neuron model and surrogate gradient 
backpropagation through time (BPTT) across all spiking layers. 
On the GEN1 dataset, EMS-ResNet10 achieves performance 
comparable to dense ResNet10 while consuming 5.83×  less energy.

End-to-End Adaptive Sampling and Representation 
for Event-based Detection with Recurrent Spiking Neural 
Networks (EAS-SNN) is another SNN-based model that 
introduced Residual Potential Dropout (RPD) and Spike-Aware 
Training (SAT) (Wang Z. et al., 2024). It also uses backpropagation 
through time (BPTT) with surrogate gradient functions to overcome 
the non-differentiability of spikes. Surrogate gradient applied in 
Spike-Aware Training (SAT) improves the precision of spike timing 
updates. With only 3 timesteps required for detection, EAS-SNN 
demonstrated competitive detection speeds of 54.35 FPS and 
reduced energy consumption up to a 5.85× .

A recently introduced Multi-Synaptic Firing (MSF) neuron 
inspired by multisynaptic connections represents a practical 
breakthrough for event-based object detection Fan et al. (2025). 
Unlike vanilla spiking neuron, MSF-based SNN is capable of 
simultaneously encoding spatial intensity through firing rates and 
temporal dynamics through spike timing. By combining multi-
threshold and multi-synaptic firing with surrogate gradients, MSF 
networks can be trained at scale for deep model architectures. 
Particularly, the MHSANet-YOLO model with MSF neurons 
achieved up to 73.7 mAP on the GEN1 dataset, which is better than 
both ReLU and LIF versions. Moreover, MSF-based MHSANet-
YOLO required 16.6×  less power consumption than the one with 
ReLU neurons Fan et al. (2025). 

4.2.4 Graph-based models
The architecture of GNNs can also process event-based data by 

preserving their sparsity and asynchronous nature. One of the GNN-
based object detection frameworks, called Asynchronous Event-
based Graph Neural Network (AEGNN) processes events as “static” 
spatio-temporal graphs in a sequential manner (Schaefer et al., 
2022). AEGNN uses an efficient training method where only the 
affected nodes are updated when a single event occurs. In other 
words, they were able to process events sparsely and asynchronously. 
In addition, it can also process batches of events and use the standard 
backpropagation method. This enables AEGNN to be trained on 
synchronized event data and support asynchronous inference. For 
object detection tasks, AEGNN demonstrated up to 200×  less 
computational complexity.

The asynchronous nature of the event stream is also considered 
in Efficient Asynchronous Graph Neural Networks (EAGR) (Gehrig 
and Scaramuzza, 2022). EAGR offers per-event processing and can 
be configured using several architecture design choices. To reduce 
computational cost, it used max pooling in early layers and a pruning 
method, which resulted in skipping up to 73% of node updates. 
Therefore, a reduced number of FLOPS was observed during the 
first three layers while processing GEN1 dataset. A small size variant 
of EAGR achieved a 14.1 mAP higher performance and around 
13% times fewer MFLOPS/ev than the AEGNN. Nevertheless, 
GNN-based models’ performance is still behind dense counterparts, 
especially involving recurrent connections.

Deep Asynchronous GNN (DAGr) attempted to improve GNN’s 
performance by combining event- and frame-based sensors in a 
hybrid object detector (Gehrig and Scaramuzza, 2024). The study 
showed that combining a 20-FPS RGB camera with high-rate event 
cameras can match the latency of a 5000-FPS camera and the 
bandwidth of a 45-FPS camera. Similarly to EAGR, it comes with 
different variants of configurations, conditionally divided into nano, 
small, and large size models. By effectively leveraging each modality, 
the large variant of DAGr achieved improved performance, reaching 
41.9 mAP by the large size variant. 

4.2.5 Other models
Some architectures cannot be categorized into the 

aforementioned groups and include frameworks that are employed 
to enhance the performance of the object detectors.

The first one is Hierarchical Neural Memory Network (HMNet) 
(Hamaguchi et al., 2023). It is a multi-rate network architecture 
inspired by Hierarchical Temporal Memory (HTM). An ordinary 
HTM is a brain-inspired algorithm that uses an unsupervised 
Hebbian-learning rule and is characterized by sparsity, hierarchy, 
and modularity. It operates at a single rate and incorporates 
Spatial Pooling and Temporal Pooling acting as convolutional and 
recurrent layers (Smagulova et al., 2019). On the other hand, HMNet 
features a temporal hierarchy of multi-level latent memories that 
operate at different rates, allowing it to capture scenes with varying 
motion speeds (Hamaguchi et al., 2023). In HMNet, low-level 
memories encode local and dynamic information, while high-level 
memories focus on static information. For embedding the sparse 
event stream into dense memory cells, HMNet introduced an Event 
Sparse Cross Attention (ESCA). There are four variants of HMNet, 
including HMNet-B1/L1/B3/L3, which differ in the number of 
memory levels and dimensions. In addition, the architecture of 
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HMNet can be extended to the multisensory inputs. Overall, HMNet 
outperforms other methods in speed, particularly the recurrent 
baselines, which require a long accumulation time to construct an 
event frame.

The dense-to-sparse event-based object detection framework, 
DTSDNet, provides enhanced speed robustness and enables a 
reduction in event stream accumulation time by a factor of five, such 
as decreasing it from the typical 50 ms to just 10 ms (Fan et al., 2024). 
In particular, in conventional recurrent models, event streams are 
partitioned evenly, whereas DTSDNet uses an attention-based dual-
pathway aggregation module to integrate rich spatial information 
from dense pathway with asynchronous sparse pathway.

While manually designed architectures like HMNet and 
others demonstrate strong performance, they often rely on expert 
knowledge and trial-and-error. To overcome this limitation and 
explore more efficient configurations, Neural Architecture Search 
(NAS) can automate the design of novel neural networks by 
exploring various combinations of architectural components using 
strategies like gradient-based search, evolutionary algorithms, and 
reinforcement learning (Ren et al., 2021). Chimera is the first block-
based Neural Architecture Search (NAS) for event-based object 
detection using dense models (Silva et al., 2024b). The choice of 
encoding format, along with models designed using the Chimera 
NAS framework, achieved performance comparable to state-of-the-
art models on the GEN1 and PEDRo datasets, while reducing the 
number of parameters up to 1.6× .

There are also hybrid models that include both SNN and 
dense Artificial neural network (ANN) architectures. One of such 
examples is an attention-based hybrid SNN-ANN. Its SNN part 
captures spatio-temporal events and converts them into dense 
feature maps to be further processed by the ANN part (Ahmed et al., 
2025). SNN component of Hybrid SNN-ANN model used the 
surrogate gradient approach during training. Hybrid SNN-ANN 
achieves dense-like performance at a reduced number of parameters, 
latency, and power. 

4.3 Event encoding techniques

Each event in a event stream E  occurs only due to the change 
in the captured scene and can be recorded in a sequence ek = 
(xk,yk, tk,pk) of k = 1, 2, …N events, where (x,y) represent pixel 
location, t is the time and p is the polarity. In a 4-dimensional 
manifold of x,y, t,p, a point-set of events can be represented as an 
event field, a continuous time representation of events of positive 
and negative polarity E+ and E− as in Equation 4:

S± (x,y, t) = ∑
ek∈E±

δ(x− xk,y− yk)δ(t− tk) (4)

SNNs are inherently suited for processing event-based data. 
Models that utilize asynchronous sparse architectures are also 
capable of handling raw events. However, in the case of DNNs and 
GNNs, events cannot be processed directly by models and need 
to be encoded into a specific format. To be utilized by GNNs, 
events must first be transformed into a graph format (Gehrig and 
Scaramuzza, 2022; 2024), whereas DNNs process events that have 
been adapted into the image- or tensor-like structure.

During event encoding into a specific format, the choice of 
representation can significantly impact performance. For example, 
the temporal component of the event stream can be used to identify 
patterns and provide valuable insights in certain applications, 
a concept known as temporal sensitivity (Shariff et al., 2024). 
Additionally, focusing on the most informative changes in a 
scene, which is called selectivity, further improves processing. 
These representations can also be used to satisfy computational 
and memory requirements (Shariff et al., 2024). Table 6 presents 
a summary of common event encoding formats, with detailed 
descriptions provided in the sections below.

4.3.1 Dense aggregation
A common approach for converting an event stream into a 

dense, grid-like format involves stacking the events in various 
configurations. Based on image formation strategies, existing 
stacking methods are categorized into four types: stacking by 
polarity, timestamps, event count, and a combination of timestamps 
and polarity (Zheng et al., 2023). This section highlights several 
noteworthy techniques for encoding events and illustrates some 
of them in Figure 8.

• Event Frame is formed by merging two-channel images, 
each corresponding to stacked ON and OFF polarity events 
(Henri et al., 2017).

• Event Volume or Voxel Grid is a volumetric representation of 
the events expressed as (H,W,T) (Zhu et al., 2019). An event 
stream containing N events within a global range (t0, tN) is 
sampled into the T temporal bins ranging between [0, B− 1] 
with a normalized timestamp t∗k  as in Equation 5:

t∗k =
(tk − t0)
(tN − t1)

T (5)

Each element in the event volume consists of events represented by a 
linearly weighted accumulation, analogous to bilinear interpolation 
as in Equation 6:

V (x,y, t) = ∑
k

pkkb (x− xk)kb (y− yk)kb (t− t∗k) (6)

where kb(a) = max(0, 1- |a|) is a bilinear kernel ensuring smooth 
interpolation across the discretized space (Jaderberg et al., 2015).

• Voxel Cube are obtained from a voxel grid which is formed 
via accumulation of events over a specified time window Δt
(Cordone et al., 2022). In particular, a sample lasting d seconds 
would be divided into T = d/Δt timesteps. The resulting voxel 
grid is stored in 4D CTHW format, where C is the number of 
channels, T denotes the number of timesteps, also known as 
bins, and H and W correspond to the height and width of data, 
respectively. Voxel Cubes are obtained by further dividing Δt
into micro time bins.

• Event Spike Tensor (EST) allows to process continuous-
time event data as a grid-like 4-dimensional data structure 
(2T,H,W) (Gehrig and Scaramuzza, 2024). Event stream 
is converted to EST through a sequence of differentiable 
operations: kernel convolutions, quantizations, and projections. 
Generalized EST that retains all four dimensions that can be 
used to derive new and existing representations.
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TABLE 6  Common event encoding techniques [adapted from (Gehrig et al., 2019; Zheng et al., 2023].

Type Event representation Dimension Description

Dense Event frame (Henri et al., 2017) H ×  W Event stream is divided into two polarities ON and OFF, forming a 
two-channel image and is then combined to create an event frame
Discards temporal and polarity information

Dense Event count image (Zhu et al., 2018b) 2 ×  H ×  W Discards time stamps

Dense Surface of Active Events (SAE) (Zhu et al., 2018b) 2 ×  H ×  W Discards earlier time stamps

Dense Voxel grid (Zhu et al., 2019) H ×  W ×  T Discards event polarity

Dense Voxel Cube (Cordone et al., 2022) C ×  T ×  H ×  W Event stream is divided into multiple n temporal bins and events 
split into channels C

Dense Histogram of Time Surfaces (HATS) (Sironi et al., 2018) 2 ×  H ×  W Discards temporal information

Dense Event Spike Tensor (EST) (Gehrig et al., 2019) 2 ×  B ×  H ×  W Discards the least amount of information

Dense Temporal Active Focus (TAF) (Liu et al., 2023) 2 K ×  H ×  W A dense version of EST that samples only recent non-zero event

Dense Mixed-Density Event Stacks (MDES) (Nam et al., 2022) M ×  C ×  H ×  W Selects the most recent events within the time window and 
aggregates event sequences into multiple stacks M with varying 
densities to better capture objects moving at different speeds

Dense Stacked Histogram (SHIST) (Gehrig and Scaramuzza, 2023) 2B ×  H ×  W Event stream is divided into multiple temporal bins and events split 
into two polarities ON and OFF, forming a structured 
spatiotemporal tensor that preserves motion and polarity 
information

Dense Volume of Ternary Event Images (VTEI) (Silva et al., 2025) B ×  H ×  W Event stream is divided into multiple temporal bins, and for each 
bin, the most recent events are sampled to generate a Ternary Event 
Image (TEI). Stacking the TEIs from all bins results in a Volume of 
Ternary Event Images (VTEI), capturing both spatial and temporal 
structure

Dense Group Token (Peng et al., 2023b) 2 K ×  H ×  W Event stream is divided into K intervals and events are mapped to 
patches with own rank and position

Dense Time-Ordered Recent Event (TORE) (Baldwin et al., 2022) 2 K ×  H ×  W Time-ordered recent event volumes

Dense 12-channel Event Representation through Gromov-Wasserstein 
Optimization (ERGO-12) (Zubić et al., 2023)

C ×  H ×  W Event representation from GWD optimization (measures the 
distortion rate from raw events to event representation)

Graph Graph (Gehrig and Scaramuzza, 2022; Gehrig and Scaramuzza, 
2024)

n/a The graph that include information about spatial and temporal 
position of the event

Spike Spike (Wang Z et al., 2024b; Ahmed et al., 2024) n/a To reduce temporal resolution of event stream a sampling S  and 
aggregation Atechniques might be adopted

In a given time interval Δτ, events represent point-sets that 
can be summarized by the event field, which can be interpreted as 
successive measurements of a function f± or the Event Measurement 
Field (EMF) according to Equation 7:

S± (x,y, t) = ∑
ek∈E±

f± (x,y, t)δ(x− xk,y− yk)δ(t− tk) (7)

Examples of f± include event polarity (e.g., f±(x,y, t) = ±1), 
event count (e.g., f±(x,y, t) = 1) and the normalized time stamp 
(e.g., f±(x,y, t) =

t−t0
Δt

). Since events are modeled as a Dirac 
pulse δ and are difficult to use directly, EMF is convolved 

with a kernel k(x,y, t) to aggregate and smooth the events as
in Equation 8:

(k∗ S±) (x,y, t) = ∑
ek∈E±

f± (xk,yk, tk)k(x− xk,y− yk)δ(t− tk) (8)

The convolved signal is also known as membrane potential. Prior 
works employed various task-specific kernel functions, including 
the exponential kernel, which was used in the hierarchy of time-
surfaces (HOTS) (Lagorce et al., 2016) and histogram of average 
time surfaces (HATS) (Sironi et al., 2018) encodings. After a 
convolutional step, the signal is further sampled at regular intervals 
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FIGURE 8
Some of the dense representations of events: Event Spike Tensor (EST), Two-Channel Image, Voxel Grid, Event Frame, Mixed-Density Event Stacks 
(MDES), Volume Ternary Event Image (VTEI) (adapted from (Gehrig et al., 2019; Nam et al., 2022; Silva et al., 2025).

to produce a grid-like generalized Event Spike Tensor (EST) 
representation as in Equation 9:

S± [xl,ym, tn] = (k∗ S±)(xl,ym, tn) = ∑
ek∈E±

f± (x,y, t)δ(xl − xk,ym − yk)δ(tn − tk) (9)

 with the spatiotemporal coordinates xl,ym, tn belonging to a voxel 
grid (H,W,T): xl ∈ {0,1,…W− 1}, ym ∈ {0,1,…H− 1} and tn ∈ {t0, t0 +

Δt, …t0 + TΔt }, where t0 is the first timestamp, Δt is the bin’s size 
and T is the number of temporal bins.

The generalized EST can be further modified via different 
operations such as summation ∑, maximization max, and others, 
that can be expressed as the projection operator Hv with v
denoting dimension. EST without projection is S±[xl,ym, tn]. 
The projection operator Hv applied to EST S±[xl,ym, tn] can 
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result in other representations such as Event Frame S[xl,ym]
= Htn,±(S±[xl,ym, tn]) (Henri et al., 2017), Two-Channel Image 
S±[xl,ym] = Htn

(S±[xl,ym, tn]) (Maqueda et al., 2018) and Voxel Grid 
S[xl,ym, tn] = H±(S±[xl,ym, tn]) (Zhu et al., 2019).

• Temporal Active Focus (TAF) is seen as a dense version of the 
Event Spike Tensor (EST), which involves spatiotemporal data 
processing with efficient queue-based storage (Liu et al., 2023). 
While traditional EST is a sparse tensor covering the entire 
event stream E  and requiring high time and storage costs, TAF 
focuses on sampling only the most recent non-zero K events 
at each spatial and polar position and thus avoids excessive 
data processing. Moreover, since object detection on the event 
stream occurs every Δτ sampling period, the TAF tensor can 
be incrementally updated using a First-In-First-Out (FIFO) 
queue to reduce computational overhead. Eventually, FIFO 
sliding queues of events FIFO(p, t,x,y) with depth K form a 
compact and dense tensor S ∈ ℝ2K×H×W of most meaningful 
data. The process of TAF tensor formation is similar to EST 
and includes measurement function f(⋅) and convolutional 
kernel k(⋅) components. Here, a rectangular window function 
acts as a convolution kernel to detect which events contribute 
to the tensor. To preserve the absolute position information 
on the temporal dimension, the measurement function 
f(⋅) calculates the average elapsed time from the events 
captured by the convolution kernel to the current detection
time t(n).

According to Equation 10, at each detection step n, the average 
time elapsed is calculated:

Δt(n) (E, t,x,y,p) ≔ ∑
ek∈E

f (xk,yk,pk, tk, t(
n))k(x− xk,y− yk,p− pk, t− tk)

(10)

Then its non-zero values are pushed into the FIFO queues. At 
the next step n+ 1, new values are determined and pushed, while 
old ones are incrementally updated: t(n+1)← t(n) +Δτ. Logarithmic 
transformations are applied to normalize Δt values. A dense 
TAF tensor is generated by continuous updates of the FIFO 
queues and transformations. Such incremental updates reduce the 
computational costs.

• Mixed-Density Event Stacks (MDES) was proposed to alleviate 
the event missing or overriding issues due to different speeds of 
the captured objects (Nam et al., 2022).

Due to the different speeds of the moving objects, stacking 
events with the pre-defined number of events or time period may 
lead to the loss of information. For example, short stacks can not 
track slow objects, whereas long stacks with excessive events may 
overwrite earlier scenes. To overcome the problem, Mixed-Density 
Event Stacks (MDES) format is proposed, where the length of each 
event sequence ek is aggregated to M = 10 stacks with a different 
number of events per stack (Nam et al., 2022). For M = 1 the event 
sequence e1 has N = 5 million events, which linearly depend on the 
resolution of the camera and include all movements for a given time 
span. The next event sequence e2 ends at the same ground-truth 

(GT) depth timestamp of e1 but has twice less events n = N/2. Slicing 
and stacking half of the events from the previous stack continues in 
the subsequent event sequence e3-eM and reaching the final M with 
n = N/2(M−1).

• Stacked Histogram (SHIST) A Stacked Histogram (SHIST) 
is designed to save memory and bandwidth (Gehrig and 
Scaramuzza, 2023). The algorithm creating SHIST includes 
several steps. It starts by creating a 4-dimensional byte tensor. 
The first two dimensions are polarity and B discretization steps 
of time, whereas the last two are the height H and width W of 
the camera. For a time window [ta, tb), the set of events E  can 
be represented as in Equation 11:

E = E (p,τ,x,y) = ∑
ek∈E

δ(p− pk)δ(x− xk,y− yk)δ(τ− τk) (11)

where τk = (tk−ta)
(tb−ta)

B. Then, the polarity and time in the resulting B2-
dimensional frames are flattened to a 3-dimensional shape (2B, H, 
W).

• Volume of Ternary Event Images (VTEI) Volume of Ternary 
Event Images (VTEI) method ensures high sparsity, low 
memory usage, low bandwidth, and low latency (Silva et al., 
2025). Similar to MDES, VTEI focuses on the encoding of 
the last event data, but with uniform temporal bin sizes and 
considering events’ polarity, +1 and −1. The VTEI tensor is 
created in several steps. The first step involves the initialization 
of a tensor I with dimension B×H×W, where B is the number 
of temporal bins and H and W are the height and width of the 
camera. Then, an event stream with N events is sampled at a 
consistent time window [ta, tb) according to Equation 12:

Tk =
(tk − ta)
(tb − ta)

B (12)

where ta and tb are the initial and final timestamps; Tk is the temporal 
bin assigned for the timestamp tk.

• Group Token representation groups asynchronous events 
considering their timestamps and polarities (Peng et al., 2023b). 
Conversion of the event stream into GT format is done using 
Group Token Embedding (GTE) module. First, asynchronous 
time events are discretized into K intervals with time bin ⃗dt
and the resolution H×W is divided into P× P patches. When 
each event is mapped to a patch, it is assigned a patch rank 
⃗pr and a location position within that patch ⃗pos. Then, arrays 

of ( ⃗dt, ⃗pr, ⃗pos) and polarity p⃗ are mapped into a signle 1D 
array as in Equation 13:

⃗l = (K ⋅H ⋅W) ⋅ p⃗+ (H ⋅W) ⋅ ⃗dt +
H ⋅W

P2 ⋅ ⃗pr++ ⃗pos (13)

where:

{{{{{
{{{{{
{

⃗dt = K×
⃗t− t0

tend − t0 + 1
,

⃗pr = (x⃗ mod P) + (y⃗ mod P) × P

⃗pos = x⃗/P+ y⃗/P×W/P
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Then, two 1D arrays with length H ⋅W ⋅ 2K are created via 
applying 1D bin count operation with weights of ⃗l and relative time 
⃗t− ⃗t0/ ⃗tend − t0. After concatenation, reshaping and 3× 3 convolution 

operations the Group Tokens with dimension ( H
p
⋅ W

P
× (G ⋅C) are 

generated, where C is the channel number of each group and G is the 
number of groups and depends on combinations of time intervals 
and polarity.

• Time-Ordered Recent Event (TORE) volumes avoid fixed and 
predefined frame rates, which helps to minimize information 
loss (Baldwin et al., 2022). Similar to TAF, TORE prioritizes 
the most recent events since they have the most impact and 
employs FIFO buffer. TORE volumes are implemented based on 
a per pixel polarity specific FIFO queues FIFO(x,y,p,k) of depth 
k ∈ 1,2,3..K. Each queue is the result of adding a new event and 
removing the oldest. According to Equation 14, TORE volume 
compactly stores raw spike timing information using a log-time 
difference between the current time t and the k most recent 
events in FIFO:

TORE (x,y,p,k, t) =max(min (log (t− FIFO (x,y,p,k) + 1) , log (τ)) , log(τ′))
(14)

 where τ is the maximum time and τ′ is the minimum time 
sensitivity. τ is optional and can be used to establish a hard threshold 
for memory retention, which is beneficial in scenarios with limited 
bandwidth. Meanwhile, τ′ helps to suppress noise amplified by the 
logarithm. TORE volume does not require temporal binning and 
windowing and can be created for any time period in the format 2K×
H×W.

• 12-channel Event Representation through Gromov-
Wasserstein Optimization (ERGO-12) It was discovered 
that several measures can improve model convergence and 
speed up optimization, and include (i) normalization of the 
event coordinates and timestamps, (ii) concatenation of the 
normalized pixels, and (iii) sparsification (Zubić et al., 2023).

The choice of encoding format depends on the specific task, 
dataset, and network backbone used. Traditionally, identifying the 
optimal representation relies on validation scores obtained through 
neural networks, which is often a resource-intensive process. A 
recently introduced method for ranking event representations across 
various formats leverages the Gromov-Wasserstein Discrepancy 
(GWD), achieving a 200×  speedup compared to traditional neural 
network-based approaches (Zubić et al., 2023). GWDN over N
samples is an average distortion rate between raw events E  and 
their encoded features F  and correlates with neural network output 
according to Equation 15:

GWDN =
1
N
∑

i
L(Ei,Fi) (15)

where L(Ei,Fi) is the Gromov-Wasserstein Discrepancy or the 
optimal cost of matching events to features under an optimal 
transport plan.

The tests of the two-channel 2D Event Histogram and 12-
channel Voxel Grid, MDES, TORE, and ERGO-12 using YOLOv6 

architecture preserved the same ranking across multiple backbones, 
SwinV2 (Liu et al., 2022), ResNet-50 (He et al., 2016), and 
EfficientRep (Weng et al., 2023). Moreover, ERGO-12 outperformed 
other methods by up to 2.9% mAP on the GEN1 dataset using 
YOLOv6 with SwinV2 backbone (Zubić et al., 2023). 

4.3.2 Spike-based representation
Although SNNs can naturally perform event-driven 

computations, their performance lags behind DNNs. One of the 
possible reasons is that the temporal resolution of sensors exceeds 
the processing capability of object detectors. Inspired by a sampling 
S  and aggregation A mechanism used to convert events to dense 
tensor formats, a recent work proposed an Adaptive Sampling 
technique with Recurrent Spiking Neural Networks (ARSNN) and 
was used with the EAS-SNN model (Wang Z. et al., 2024). 

4.3.3 Graph representation
In AEGNN, the event stream is converted into a spatio-temporal 

graph format using uniform subsampling (Schaefer et al., 2022). In 
particular, events are embedded into a spatio-temporal space ℝ3 and 
divided into K subsamples (e.g., K = 10). During pre-processing, 
more informative events and their precise time are kept, whereas 
removed events reduce the chances of overfitting. As a result, the 
temporal position of each event is normalized by a factor β and each 
event is mapped to a node to form a graph G.

Both DAGr (Gehrig and Scaramuzza, 2024) and EAGR process 
the spatio-temporal graphs G = {ν,E}, comprised of a set of nodes 
V  connected by spatio-temporal edges E. Nodes in the graph 
include information about the spatial and temporal position of 
the event, which includes coordinates and time, and its feature 
given by polarity. Before being mapped into a node, an event’s 
spatial coordinates are normalized by the height and width, and the 
corresponding temporal feature ti is rescaled by a factor β. Each edge 
E in the graph links events that are close in both space and time, and 
the graph is directed to preserve the natural temporal order of events. 

4.4 Augmentation

Data augmentation can increase the generalization ability of 
neural networks and greatly affect their performance (Zoph et al., 
2020). The most common augmentation techniques for event-
based data are similar to those used for traditional frame-
based images and include horizontal flipping, zoom-in, zoom-
out, resizing, adding noise, shearing, and cropping (Gehrig and 
Scaramuzza, 2023; Peng et al., 2023b).

On the other hand, other augmentation methods exploit the 
nature of event-based data for augmentation. EventDrop (Gu F. et al., 
2021) is applied to raw events. It augments asynchronous event 
data by selectively removing events based on predefined strategies 
such as random drop, drop by time, and drop by area. The 
method was evaluated using DNN models with four event encoding 
representations, such as Event Frame, Event Count, Voxel Grid, and 
Event Spike Tensor (EST), on N-Caltech101 and N-Cars datasets. 
In addition, EventDrop can enhance the model’s generalization in 
object recognition and tracking by generating partially occluded 
cases, improving performance in scenarios with occlusion. Besides, 
EventDrop is reported to be compatible with SNNs too. 
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Similar to EventDrop, the EventMix method can be applied 
to both DNNs and SNNs. It creates augmentation by mixing 
event streams with a Gaussian Mixture Model (Shen G. et al., 
2023). Performance of EventMix was tested on DVS-CIFAR10, N-
Caltech101, N-CARS, and DVS-Gesture datasets. SNN with Event-
Mix achieved state-of-the-art results (Shen G. et al., 2023).

Neuromorphic Data Augmentation (NDA), a family of 
geometric augmentations, was specifically designed to enhance 
the robustness of SNNs (Li Y. et al., 2022). SNN model with NDA 
improved accuracy by 10.1% and 13.7% on DVS-CIFAR10 and 
N-Caltech 101, respectively. The next ViewPoint Transform and 
Spatio-Temporal Stretching (VPT-STS) augmentation method 
is also designed for SNNs (Shen H. et al., 2023). In particular, 
the SNN model with VPT-STS achieved 84.4% on the DVS-
CIFAR10 dataset. The VPT-STS generates samples from different 
viewpoints by transforming the rotation centers and angles in the 
spatiotemporal domain.

Another proposed method for enhancing event data diversity 
is Shadow Mosaic (Peng et al., 2023a). It consists of several stages, 
including Shadow Mosaic, Scaling, and Cropping, which aim to 
reduce the imbalance in spatio-temporal density of event streams 
due to different speeds of objects and the brightness change. 
Sparse shadow events are generated through random sampling, 
while dense shadow events are created by replicating events in the 
three-dimensional domain. At the mosaic stage, resulting shadow 
event samples are merged and scaled up or down, leading to a 
distortion. To restore realistic event structures, the shadow method 
is re-applied, and cropping is performed. The Shadow Mosaic 
augmentation method was used with Hyper Histograms encoding 
for the DNN model and improved mAP by up to 9.0% and 8.8% 
compared to the baseline without augmentation on the 1MP and 
GEN1 real-world datasets, respectively. A recent work introduced 
Random Polarity Suppression (RPS) augmentation method, which 
was applied on the VTEI tensor (Silva et al., 2025). Table 7 provides 
summary on augmentation techniques mentioned above.

4.5 Hardware accelerators

4.5.1 Graphical Processing Units
Majority of the event-based data object detection architectures 

with the state-of-the-art performance were trained and evaluated on 
Graphical Processing Units (GPUs), which represent conventional 
Von-Neumann architectures. Some of the works omit the hardware 
specification, making their direct comparisons challenging, but the 
most commonly used evaluation platforms for both dense and 
sparse algorithms include NVIDIA Tesla T4, NVIDIA Titan Xp, 
NVIDIA Quadro RTX 4000, and others (Gehrig and Scaramuzza, 
2023; Peng et al., 2024). Generally, GPUs, along with specialized 
libraries such as PyTorch and TensorFlow, are well-suited for 
executing traditional DNNs due to their optimized support for 
parallel matrix operations and high computational throughput. 
However, they are less efficient when it comes to processing sparse 
models, as they typically do not skip computations involving zero-
value elements (Smagulova et al., 2023).

Generally, sparse neuromorphic models like SNN are better 
aligned with the nature of event-based data, offering greater 
potential for efficient processing due to their ability to exploit 

data sparsity and reduce unnecessary computations. The same 
characteristic also poses a major obstacle to training efficiency. 
To address the issue, a range of specialized frameworks for SNNs 
have been developed, which include snnTorch and SpikingJelly, 
each targeting different aspects of model design and simulation. 
More recently, temporal fusion has been proposed as a strategy for 
scalable, GPU-accelerated SNN training Li et al. (2024). 

4.5.2 FPGA-based accelerators
AI-based object detection systems on FPGAs lag behind GPU-

based developments due to a time-consuming implementation 
process(Kryjak, 2024). Additional challenges include the lack of 
standardized benchmarks and the limited availability of Hardware 
Description Language (HDL) codes. However, the introduction of 
Prophesee’s industry-first event-based vision sensors, combined with 
the FPGA-based AMD Kria Vision AI Starter Kit, marks a significant 
milestone for future advancements in the field (Kalapothas et al., 
2022). The recent work introduces SPiking Low-power Event-
based ArchiTecture (SPLEAT) neuromorphic accelerator, a full-
stack neuromorphic solution that utilizes the Qualia framework for 
deploying state-of-the-art SNNs on an FPGA (Courtois et al., 2024). 
In particular, it was used to implement a small 32-ST-VGG model, 
which achieved 14.4 mAP on the GEN1 dataset. The model’s backbone 
was accelerated on SPLEAT, operating with a power consumption 
of just 0.7 W and a latency of 700 ms, while the SSD detection 
head was executed on a CPU. 

4.5.3 Neuromorphic platforms
Neuromorphic processing platforms for SNNs remain in their 

early stages of development, but represent a significant area of 
ongoing research (Bouvier et al., 2019; Smagulova et al., 2023). 
The notable SNN accelerators include Loihi (Davies et al., 2018), 
Loihi-2 (Orchard et al., 2021), TrueNorth (Akopyan et al., 2015), 
BrainScaleS (Schemmel et al., 2010), BrainScaleS-2 (Pehle et al., 
2022), Spiking Neural Network Architecture (SpiNNaker) (Furber 
and Bogdan, 2020), SpiNNaker 2 (Huang et al., 2023), and one of 
the first commercially available neuromorphic processors, Akida by 
BrainChip (Posey, 2022).

TrueNorth is an early large-scale neuromorphic ASIC designed 
for SNNs. While it was a significant milestone in brain-inspired 
computing, it lacks the flexibility required for modern AI applications 
and has been superseded by newer designs. BrainScaleS and 
BrainScaleS-2 are mixed-signal brain-inspired platforms suitable for 
large-scale SNN simulations. However, their large physical footprint 
and complex infrastructure requirements make them less suitable 
for deployment in embedded or real-world applications such as 
autonomous driving Iaboni and Abichandani (2024). 

CarSNN is a neuromorphic solution designed for classifying 
cars versus other objects using data from a ATIS sensor and an 
SNN deployed on Intel’s Loihi neuromorphic research chip. The 
solution was evaluated on the N-CARS dataset with an accuracy 
of 82.99%. The corresponding hardware implementation achieved 
a maximum latency of just 0.72 ms per sample while maintaining 
low power consumption at only 310 mW (Viale et al., 2021). Loihi 
supports on-chip learning and real-time SNN inference but offers 
limited scalability, whereas Loihi-2 is more suitable for real-world 
applications, including event-based object detection. Particularly, 
attention-based hybrid SNN-ANN backbone for event-based object 
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TABLE 7  Augmentation techniques (∗- after transforming events to frame-based format).

Augmentation Frame-based Event-based Description

Flipping Gehrig and Scaramuzza (2023), Peng et al. (2023b) ✓ ✓∗ Horizontal (left-right) or Vertical (Up-Down) mirroring of 
the image

Zooming Gehrig and Scaramuzza (2023), Peng et al. (2023b) ✓ ✓∗ Rescaling and resizing image

Resizing Gehrig and Scaramuzza (2023), Peng et al. (2023b) ✓ ✓∗ Resizing image

Cropping Gehrig and Scaramuzza (2023), Peng et al. (2023b) ✓ ✓∗ Random cropping and extracting random sub-regions from 
images

Shearing Gehrig and Scaramuzza (2023), Peng et al. (2023b) ✓ ✓∗ Slight distortions of images

Event-Drop Gu F et al. (2021) ✗ ✓ Selectively removing events based on predefined strategies

Event-Mix Shen et al. (2023a) ✗ ✓ Created by mixing event streams with Gaussian Mixture 
Model

NDA Li Y et al. (2022) ✗ ✓ Geometric augmentations

VPT-STS Shen et al. (2023b) ✗ ✓ Generates samples from different viewpoints

Shadow Mosaic Peng et al. (2023a) ✗ ✓ Sparse and dense shadow events are generated and combined

RPS Silva et al. (2025) ✗ ✓ Generated by randomly suppressing all events of a particular 
polarity

detection achieved 0.35 mAP on the GEN1 dataset and 0.27 mAP on 
the 1Mp dataset (Ahmed et al., 2025). The same Hybrid SNN-ANN 
combined with RNN achieved 0.43mAP on GEN1. In this setup, the 
SNN component was accelerated on Loihi 2, delivering subreal-time 
performance while offering improved power efficiency compared 
to commercially available edge computing hardware (Ahmed et al., 
2025). Temporally-binned Object Flow from Events (TOFFE) is an 
event-based object motion estimation framework. It achieved an 
8.3×  reduction in energy consumption and a 5.8×  reduction in 
latency on a hybrid setup like Loihi-2 with Jetson TX2, compared 
to a 5.7×  energy and 4.6×  latency reduction on a standalone 
edge GPU (Jetson TX2), highlighting that Loihi-2 significantly 
contributes to improved efficiency and performance in event-based 
object detection. Kosta et al. (2025).

The demonstration of a fully neuromorphic solution based on 
the SpiNNaker platform equipped with ATIS camera was conducted 
for the visual tracking task (Glover et al., 2019). SpiNNaker and 
its successor SpiNNaker-2 are ARM-based processor platforms 
designed for simulating SNNs with a high degree of flexibility. 
However, their energy consumption is higher compared to dedicated 
circuit-based solutions like Loihi, making them less suitable for 
energy-constrained edge deployments (Yan et al., 2021).

As for the object detection task, a fully neuromorphic framework 
was deployed based on DVXplorer Lite camera by Inivation and Akida 
processor by Brainchip (Silva D. et al., 2024). This setup was specifically 
designed for edge computing, eliminating the need to transfer data to 
the cloud. Due to the constraints of the Akida chip, the YOLOv2 model 
was chosen and trained to detect cars, pedestrians, and two-wheelers 
from a synthetic dataset. Akida 2, the second generation of BrainChip’s 
neuromorphic processor, supports vision transformers, which made 
it even more suitable for event-based object detection and edge AI 

applications (BrainChip, 2025). Particularly, the recent demonstration 
of Akida 2 with Prophesee’s EVK4 event-based camera enables the 
integration of advanced visual intelligence into compact, low-SWaP 
(Size, Weight, and Power) devices Ltd (2025). 

4.5.4 Performance comparison
There is a growing shift toward neuromorphic vision, driven by 

event-based sensors. Their output naturally aligns with neural-inspired 
SNNs. The performance differences among hardware platforms are 
emphasized in comparative studies of SNN acceleration across 
GPUs, Central Processing Units (CPUs), Field Programmable Gate 
Arrays (FPGAs), and Application-Specific Integrated Circuits (ASICs), 
which assess factors such as power efficiency, flexibility, development 
complexity, operating frequency, and throughput (Isik, 2023). The 
study results, illustrated in Figure 9, indicate that FPGA and ASIC 
platforms are particularly promising for accelerating SNNs in terms 
of power efficiency and throughput. However, their utilization 
remains challenging due to factors such as design complexity, limited 
programmability, and the need for specialized development tools. 

SNN acceleration on neuromorphic hardware platforms 
promises ultra-low latency and energy efficiency, particularly 
making them attractive for real-time perception in autonomous 
driving Ltd (2025). Table 8 summarizes the performance 
comparison of different platforms in the implementation of object 
detection using YOLOv2 model Putra et al. (2025), which proves 
that spike-driven computation by Akida achieved the highest 
power/energy efficiency without consideration of accuracy.

However, the widespread adoption of neuromorphic platforms in 
the near future is limited by an immature ecosystem, the absence 
of standardized software toolchains, and a lack of comprehensive 
benchmarking against established GPU and FPGA platforms. 
Moreover, most of these platforms are not yet commercially 
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FIGURE 9
Performance comparison of hardware platforms for SNN acceleration (Isik, 2023).

available and remain primarily confined to research settings
Putra et al. (2025). 

5 System-level evaluation of 
event-based detectors

5.1 Performance of the state-of-the-art 
models

Being among the first real-world large-scale datasets for event-
based vision, GEN1 and 1MP have achieved widespread adoption 
and have established themselves as the primary benchmarks for 
detection models evaluation.

The recently introduced eTRaM dataset addresses its limitations 
by providing higher-quality event data, more complex traffic 
scenarios, and includes annotations for detection, tracking, and 
motion prediction tasks. Table 9 provides the summary on the state-
of-the-art event-based object detectors and their performance on 

these datasets, respectively. The table contains only reported results, 
thereby highlighting the lack of standardization and complicating 
fair comparisons. The primary goal of these architectures for event-
based object detection is to develop lightweight models that can 
efficiently process spatio-temporal data.

5.2 End-to-end evaluation

Most event-based algorithms process a fixed number of events 
at each step, typically using a fixed time window tw. When raw event 
data needs to be converted into an intermediate representation, 
typically to be processed by dense and graph-based models, this step 
can significantly affect performance by introducing distortions and 
delays. These effects can be measured using parameters such as the 
time-windows tw, conversion time tec, and data compression rate. 
During the inference stage, the conversion time tec is typical for 
dense and graph-based models, but is absent in asynchronous and 
SNN models that process raw events directly.
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TABLE 8  Object detection using YOLOv2 on various platforms Putra et al. (2025).

Platform Performance, FPS Power, W Efficiency, FPS/W

Desktop CPU: Intel i7-6700HQ 78.2 29.88 2.62

Desktop GPU: Nvidia GTX 960 M 219.7 46.67 4.71

Embedded CPU: ARM Cortex-A57 0.23 4.00 0.06

Embedded GPU: Nvidia Jetson TX2 7.8 1.02 40.81

FPGA: ZedBoard ZCU102 5.8 1.20 4.50

FPGA: Virtex-7 XC7V690t 302.3 11.35 26.63

Akida Neuromorphic Platform 6.0 0.078 76.92

In (Gehrig et al., 2019), the authors demonstrated that the 
representation computation time tec contributed only a small 
fraction to the overall processing time, which was dominated by 
model inference. Specifically, for a 100 ms sample from the N-Cars 
dataset, the representation step took just 0.38 ms, whereas the total 
computation time ranged from 4.25 ms to 6.08 ms, depending on 
the model’s complexity. Notably, the representation was computed 
on the CPU, while inference ran on the GPU. Nevertheless, most of 
the other works on event-based object detection did not report the 
time required for computing the event representation. This omission 
is critical because representation computation can introduce non-
negligible latency in real-time applications and more complex data.

The impact of the size of tw, the duration over which these 
events are aggregated for processing, and also known as “integration 
time”, was studied in (Silva et al., 2024c; Maqueda et al., 2018). 
During the evaluation of the GEN1 dataset using the YOLOv5 
model with attention, it was observed that varying tw between 
10-125 ms had an impact on performance (Silva et al., 2024c). 
Specifically, smaller tw values were more effective for detecting 
low-speed, smaller objects such as pedestrians, while increasing 
tw improved detection of higher-speed objects like cars. Similarly, 
(Maqueda et al., 2018), evaluated five integration times and 
identified 50 ms as the optimal value. Additionally, tw also impacts 
noise accumulation (Silva D. et al., 2024). Besides, the volume 
of encoded data and the memory size required for storage and 
processing are not typically reported.

After converting the raw event data into a specific format 
suitable for processing, the model generates a set of preliminary 
predictions based on this input. These predictions typically include 
multiple overlapping bounding boxes for detected objects. To refine 
the results and eliminate redundant detections, a Non-Maximum 
Suppression (NMS) post-processing step is applied. NMS works by 
selecting the bounding box with the highest confidence score and 
suppressing all other boxes with significant overlap (as measured by 
Intersection over Union, IoU). This ensures that each detected object 
is represented by a single, most accurate bounding box.

Overall, a neuromorphic object detection system requires 
full integration of the entire processing pipeline, including 
event stream preprocessing, model training, and the final 
detection stage. The training pipeline time can be represented as

in Equation 16 below:

t = tw + tec + ttrain + tmc (16)

where tw is the intagration time-window, tec is the time required for 
converting the events to an intermediate format, ttrain is the training 
time of the model in GPU hours, and tmc is an optional stage and 
shows time required for model format conversion.

Similarly, as in Equation 17 the total computation time during 
inference can be summarized by:

t = tw + tec + teval + tnms (17)

where tw is the integration time window, tec is the time required for 
converting the events to an intermediate format and optional for 
certain models, teval is the processing time throughout the model, 
and tnms is the duration of the NMS post-processing.

As can be seen from Table 9, most of the works report only 
performance parameters during the processing of the model, 
excluding the processing step of adapting events to the required 
representation format, like frame or graph. In this work, the 
evaluation of the system throughput is included as part of the 
survey and summarized in Table 10. The results were obtained 
using 100 randomly chosen samples from the GEN1 and 1MP 
datasets on an RTX 4090 24GB GPU. Particularly, each sample 
consists of 60 s recordings Perot et al. (2020). Given 50-ms time 
windows in video slices, 100 samples result in 120,000 image 
samples. The tests were performed with a warm-up phase of 30 
epochs. We used a batch size of eight, which is the most common 
size used in literature, and multiplied the batch throughput by 
eight to obtain the image throughput. However, SSMS (Base) model 
encountered out-of-memory (OOM) issues. Alternatively, the SSMS 
(Small) variant was used instead. Similarly to RVT (Figure 7a), 
both SSMS (Figure 7c) is based on the transformer architecture and 
additionally employs the same SHIST encoding. However, RVT did 
not suffer from OOM. In the RVT, spatial and temporal feature 
aggregation are handled separately, with vanilla LSTM layers placed 
at the end of each block to model temporal dependencies. The 
use of LSTM cells slows down training, and the resulting weights 
tend to generalize only to data sampled at the same frequency 
as during training. On the other hand, SSMS offers adaptability 
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to varying frequencies during inference without the need for 
retraining. SSMS utilizes S4 or S5 layers for temporal aggregation 
instead of LSTM. SSMs enable parallel, efficient long-sequence 
modeling by reducing compute bottlenecks through learned state-
space kernels Somvanshi et al. (2025). As a result, the burden falls 
on GPU memory, and SSMS encounters OOM issues due to its 
long convolution kernels that generate large intermediate buffers, 
particularly with high-resolution images. LSTMs avoid this problem 
since they only keep a hidden state at each step.

Overall, it can be seen from Tables 9, 10 that the required 
number of FLOPs and MACs increased when event encoding was 
included. For example, processing RVT without encoding required 
3.5 GFLOPs, whereas with encoding, it increased to 10.2 GFLOPs. 
In the case of SAST, the increase was lower from 2.5 GFLOPs 
without encoding to 3.5 GFLOPs with it. This again highlights 
the importance of carefully considering event encoding, as it can 
significantly affect not only performance but also the computational 
cost, depending on the model. 

6 Discussion and future directions

In the realm of event-based vision, autonomous driving is 
one of the most prominent applications as it demands high-
speed motion handling, low-latency perception, and reliable 
operation under challenging lighting conditions (Chen et al., 
2020). This work surveys an end-to-end pipeline for the 
implementation of event-based object detection, starting from 
types of event-based sensors to the performance of the
state-of-the-art models. 

6.1 Datasets

As reflected in the survey results, event-based data remains 
underrepresented in data science and machine learning research, 
with a notable absence of standardized benchmarks for evaluating 
encoding techniques and model performance. Initially, DVS-
converted datasets were used to compensate for the lack of event-
based data. But these datasets generally exhibit lower sparsity 
and more uniform distributions compared to DVS-captured data, 
which more accurately represent real-world scenes. Development 
of synthetic datasets can be useful for pre-training models, 
which can then be fine-tuned on real-world data for improved
performance.

In addition, current event-based datasets lack a diverse range of 
object classes necessary to support full automation in Autonomous 
Driving Systems. Future work should prioritize the collection of 
more comprehensive data, including a broader set of classes relevant 
to real-world driving scenarios, including on-road and off-road. This 
includes dynamic agents such as pedestrians, cyclists, motorcyclists, 
cars, vans, buses, and trucks, as well as traffic infrastructure 
like signs, lane markings, crosswalks, and others. Additionally, 
the system must recognize temporary or rare obstacles such as 
construction equipment, road debris, and emergency vehicles. 
Contextual awareness of sidewalks, curbs, vegetation, and buildings 
further enhances scene understanding. 
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6.2 Sensors fusion

The collection of high-quality real-world event-based datasets 
requires advancements in current event camera technology, 
particularly in terms of control capabilities. Existing bias settings 
in event-based cameras are often insufficient to effectively manage 
noise, limiting data quality in complex environments. One of the key 
future directions should be the improvement of the controllability 
of event cameras.

Additionally, event-based vision systems face challenges in 
detecting static objects due to their motion-dependent sensing, 
highlighting the need for improvement and ensuring robust 
perception. One approach to overcoming this limitation is through 
sensor fusion of Dynamic Vision Sensors (DVS) and Active Pixel 
Sensors (APS), as demonstrated in DAVIS cameras Shawkat et al. 
(2024) or putting DVS and frame-based cameras side by side 
Perot et al. (2020). In addition, a setup that integrates event-
based sensors with complementary sensing modalities such as 
LiDAR, radar, and inertial measurement units (IMU) can further 
enhance perception capabilities Gehrig et al. (2021), Zhu et al. 
(2018a), Chaney et al. (2023). The next is a multi-view setup, where 
two or more event cameras capture a static object from different 
viewpoints, as in the DSEC dataset Gehrig et al. (2021). Particularly, 
in multi-modal datasets that include MVSEC Zhu et al. (2018a), 
DSEC Gehrig et al. (2021), and M3ED Chaney et al. (2023), static 
objects are mostly captured through ego-motion or sensor fusion. 
Similarly, SEVD represents a multi-view synthetic vision-based 
cooperative setup, where ego and fixed perception are combined 
Aliminati et al. (2024). FlexNet is a framework that integrates 
high-frequency event data with semantic information from RGB 
frames to enable object detection in both fast-moving and static 
scenarios Lu et al. (2024). Nevertheless, its performance gains 
over state-of-the-art methods are limited to the frequency range of 
20–180 Hz.

Challenges in sensor fusion arise from spatial calibration 
and temporal synchronization, since event-based sensors 
produce asynchronous outputs, whereas frame-based cameras, 
LiDAR, radar, and IMUs typically operate at synchronous, fixed 
rates. Moreover, these modalities differ in output format and 
resolution, complicating fusion. Finally, deploying multiple sensing 
architectures increases both power consumption and hardware 
footprint. Therefore, while fusing event-based cameras with 
complementary modalities such as IMU, LiDAR, and radar, 
RGB can help overcome the challenge of detecting static objects, 
it also introduces cost, calibration requirements, and system 
complexity Gehrig et al. (2021), Lu et al. (2024). As an alternative 
approach to static object detection, compensation algorithms 
can be introduced, for example, by generating pseudo-labels for 
non-moving objects Messikommer et al. (2022). 

6.3 Models

Recent progress in event-based vision underscores the unique 
benefits of asynchronous sensing; however, existing object detection 
models still underexploit the potential of event data. This gap stems 
largely from the reliance on frame-centric design principles, which 

do not align naturally with the sparse and continuous characteristics 
of event streams.

Currently, only a limited number of architectures are capable 
of natively handling event-based inputs. Spiking Neural Networks 
(SNNs) and Graph Neural Networks (GNNs) have emerged as 
promising candidates due to their ability to process asynchronous 
signals and non-Euclidean structures, respectively. Nevertheless, 
evaluations of these approaches remain confined to relatively simple 
benchmarks, such as GEN1, while their applicability to more 
demanding large-scale datasets (e.g., 1MP and eTraM) has not yet 
been demonstrated.

SNNs, in particular, face challenges in direct training due to the 
non-differentiability of spike generation functions. To mitigate this, 
several pipelines rely on training conventional deep neural networks 
followed by conversion into spiking counterparts, a process that 
introduces additional complexity and often compromises efficiency. 
GNN-based approaches, on the other hand, depend on transforming 
events into graph structures; however, this representation does 
not naturally capture the continuous temporal dynamics of 
event streams, leading to suboptimal performance. As a result, 
the most competitive results in event-based detection are still 
achieved using dense models that reformat events into frame-like 
structures, subsequently processed with CNNs or Transformers. 
While effective, these strategies diminish the temporal fidelity and 
sparsity advantages inherent to event cameras.

Addressing these limitations requires improving model 
scalability and developing systematic methods to identify 
architectures that are inherently well-suited to event-driven data. 
Recent advances in scalable training mechanisms and automated 
architecture search present promising directions in this regard. 

6.3.1 Scalability
Scalability constitutes a central bottleneck in extending event-

based models to real-world applications. In the case of SNNs, 
surrogate gradient methods have been instrumental in enabling 
stable backpropagation through spiking activity, thereby supporting 
deeper and more expressive architectures Su et al. (2023), Fan et al. 
(2025). These algorithmic advances, when paired with emerging 
neuromorphic hardware platforms such as Intel Loihi 2 and 
SpiNNaker 2, provide new opportunities for efficient large-scale 
training and inference.

For GNNs, the computational cost of message passing 
across large, dynamic event graphs remains prohibitive. 
Sampling-based strategies provide a path forward: cluster-
based sampling facilitates hardware-friendly partitioning for 
efficient event-to-graph conversion and real-time inference 
Chiang et al. (2019), while neighborhood sampling reduces 
training overhead by restricting aggregation to local regions 
of interest Yang et al. (2024). Additionally, stochastic subgraph 
sampling methods, such as GraphSAINT, improve scalability 
by lowering variance and complexity without sacrificing 
representational power Zeng et al. (2019).

More recently, hybrid approaches integrating sampling with 
spatiotemporal attention mechanisms have demonstrated improved 
scalability for event-driven GNNs, highlighting the potential of 
combining structural sparsity with adaptive temporal modeling. 
These efforts collectively emphasize that scalability solutions must 
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be tailored to the asynchronous and sparse nature of event-
based signals rather than directly borrowing from frame-based 
paradigms. 

6.3.2 NAS
Neural Architecture Search (NAS) offers a principled 

framework for automatically identifying architectures optimized 
for event-driven data. Unlike hand-crafted models, NAS 
can efficiently explore large design spaces, balancing task-
specific accuracy with computational efficiency. Within event-
based vision, early frameworks such as Chimera-NAS have 
shown the feasibility of tailoring architectures to asynchronous 
modalities Silva et al. (2024b).

Looking forward, extending NAS methodologies to support 
SNNs and GNNs represents an important research direction. Such 
extensions would allow the automatic discovery of models that 
are not only well-suited to the temporal sparsity of event data 
but also optimized for emerging neuromorphic hardware. Hybrid 
pipelines combining CNN, SNN, and GNN components could 
also be jointly optimized through NAS to achieve improved trade-
offs across accuracy, latency, and energy efficiency. Furthermore, 
hardware-in-the-loop NAS, where the search process directly 
incorporates constraints from neuromorphic accelerators, has the 
potential to further align architectural design with deployment 
feasibility. 

6.4 Hardware

The strong performance of dense models is largely enabled by 
the high computational power and parallel processing capabilities of 
GPUs. On the other hand, the research in neuromorphic hardware 
is rapidly growing, driven by its demonstrated advantages in 
reducing latency and enhancing power efficiency. Nevertheless, it 
is crucial to continue improving the performance of asynchronous 
models that can process raw event data directly, as these models 
are particularly well aligned with the inherent characteristics of 
event data.

Solutions like SPLEAT and TOFFE also reflect the current 
trend toward hybrid hardware architectures that combine 
conventional CPU/GPU processing with neuromorphic platforms 
(Kosta et al., 2025; Courtois et al., 2024). Additionally, there is 
significant potential for developing hardware-aware NAS strategies 
that optimize architectures based on the constraints and capabilities 
of event-driven hardware platforms. 

6.5 Encoding

Determining the most effective encoding format for event 
streams remains an unresolved challenge. Current practice 
shows that metrics such as throughput, memory usage, and the 
statistical distribution of encoded data are essential for meaningful 
comparisons Guo et al. (2021). Yet, most pipelines still rely on 
converting events into frame-like formats for compatibility with 
dense CNN or Transformer backbones. This approach is simple but 
introduces latency, discards fine temporal relationships, and can 
lead to information loss depending on the chosen frame rate.

A variety of alternative encodings have been proposed. Early 
works used grayscale reconstructions from event streams, while 
more recent approaches introduce time surfaces, voxel grids, or 
recurrent encoders such as ConvLSTMs Perot et al. (2020). Others, 
like the Agile Event Detector, adapt the encoding to motion speed, 
mitigating the limitations of fixed time windows Liu et al. (2023). 
Graph-based methods, such as AEGNN, preserve spatiotemporal 
continuity by incrementally updating event graphs rather than re-
encoding entire frames.

Despite these advances, no single encoding strategy consistently 
outperforms others across datasets and tasks. Each representation 
trades off temporal fidelity, latency, and compatibility with 
downstream architectures. As noted in recent surveys, a 
systematic, large-scale evaluation of encoding methods under 
controlled conditions is still missing. Extensive simulations across 
diverse scenarios will therefore be essential to establish clear
best practices. 

6.6 Data augmentation

The training methodology of object detectors also impacts 
the final performance. Several studies suggest that incorporating 
data augmentation techniques can improve the accuracy of the 
models. Most data augmentation techniques used in event-
based vision have been adapted from conventional frame-based 
processing and are typically applied after converting event 
data into frame-like representations. However, there are also 
augmentation methods specifically designed for event-based data, 
which can further improve performance in various vision tasks 
(Li Y. et al., 2022; Zoph et al., 2020). Further studies on augmentation 
techniques are required to improve model performance and 
adversarial robustness. 

6.7 Evaluation and benchmarking

In addition to the lack of well-established models and 
accelerators, there is a gap in their fair evaluation. Specifically, 
reported results often fail to account for the throughput and memory 
requirements of encoding techniques for dense models. The runtime 
teval is influenced by factors such as model complexity, encoding 
format, and the GPU used. However, only a limited number of 
studies provided details about the GPU models used to train the 
models. This lack of transparency can lead to misleading conclusions 
about model performance. Besides, GPUs are designed for vector-
based computations, which is useful in dense DNN models with 
large parameter count and Multiply-and-Accumulate (MAC) 
operations. However, neuromorphic hardware may better leverage 
the sparsity of event-based inputs and offer reduced computational 
cost, power consumption, and latency (Ahmed et al., 2025).

While this paper focused on enabling autonomous driving 
through the lens of object detection, achieving full vehicle autonomy, 
as defined by the six levels of automation, requires addressing a 
broader range of perception and decision-making tasks. Object 
detection is a foundational component, but additional capabilities 
such as semantic segmentation, instance segmentation, depth 
estimation, tracking, and scene understanding are essential for
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comprehensive environment modeling. These tasks enable 
more precise localization, obstacle avoidance, and dynamic 
path planning. Future work should therefore extend beyond 
object detection to develop and integrate these complementary 
functions, particularly in the context of event-based sensing, to 
move closer to robust, fully autonomous driving systems. Full 
autonomy will also require effective sensor fusion, combining 
event cameras with traditional RGB sensors, LiDAR, radar, 
and GPS to leverage the strengths of each modality. Besides, 
there is a need to study the robustness of these systems against
adversarial attacks.

Finally, establishing standardized evaluation benchmarks 
and simulation tools for event-driven driving tasks will be 
crucial to accelerate research and ensure safe, real-world 
deployment. This can be promoted through the release of 
large-scale, open-access data under diverse environmental 
conditions, including multimodal datasets. The development 
of simulation platforms, such as CARLA with realistic event 
camera models, would further enable reproducible testing and 
facilitate comparison of algorithms. Additionally, there is a need 
to adopt unified evaluation protocols that include not only mAP 
and runtime, but also event throughput, energy per inference, 
and robustness under adverse conditions. Together, these efforts 
will promote consistency, reproducibility, and trustworthiness 
in evaluating event-based detection systems for autonomous
driving.
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