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Energy consumption is a key concern in modern industrial facilities. Power 
peak is also a relevant feature in industrial energy analysis and managment, 
since the electrical infrastructure must be implemented to provide not only the 
total consumed energy, but the power peaks. Collaborative robots are gaining 
popularity due to its flexible use and convenient set up. In this context, a power 
and energy consumption study of the popular UR10 collaborative robot of 
Universal Robots is reported in this work. For this, an experiment was conducted 
to obtain current consumption data from the UR10 API, when performing 
movements with different loads and parameters. Next, the dependency of the 
trajectory programming parameters on the power peak, total consumed energy, 
and time spent per trajectory was analyzed. The results show that the higher 
the speed limit and acceleration limit, the lower the total energy consumed per 
trajectory, but the higher the power peak. This behavior represents a trade-off: 
reducing the consumed energy involves increasing the peak power. Based on 
the captured data, artificial neural network models were trained to predict the 
power peak and the total energy consumed by the robot when performing a 
movement under certain parameters. These models were later used by a genetic 
optimization algorithm to obtain the best parameters for a given target position, 
providing the most efficient performance while fulfilling a power peak bound.
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 1 Introduction

The use of smart manufacturing concepts and technologies is becoming fundamental 
for improving productivity, driven by the rapid rise of automation in fast-paced mass 
manufacturing environments. This growth is reflected in the number of installed robots 
during the last years. According to the International Federation of Robotics (IFR), the 
operational stock of industrial robots has been increasing by 12% each year since 2018. 
Starting in 2025, growth is projected at an average annual rate of 4%. This trend requires 
the search for strategies to optimize the resources needed for their operation. In the same 
way, the IFR states that human-robot collaboration continues developing and expanding in 
different applications.

Collaborative robotics has brought new opportunities to factory automation. Nowadays, 
cobots offer an economically feasible way to begin robotic automation, in contrast 
to traditional industrial robots, which often require larger investments, dedicated
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infrastructure, and specialized personnel. Collaborative robots 
can be used to support workers in complex assembly tasks, 
they are capable of detecting collisions and automatically 
stopping for preventing robot and operators damage, they 
have intuitive programming interfaces that allow workers with 
minimal training to re-deploy robots to new tasks, they can be 
easily relocated within the factory due to their lightweight and 
compact design (International Federation of Robotics, 2021), they 
incorporate sensors that allow control force, they require fewer 
safety devices, which helps reduce overall costs for manufacturers, 
among others.

As pointed out by the IFR, a rising concern for the future 
of robotics is the sustainability, driving manufacturing companies 
to seek more efficient ways to utilize robots. Energy consumption 
in robotics is a critical resource that needs to be optimized, as 
it significantly impacts the return of investment, and is part of 
the sustainable indicators of the complete manufacturing process. 
Moreover, the complexity of robotic solutions is increasing due to 
the new functionalities of modern robotic manufacturing systems, 
the growing production demands, and the rise of customized 
mass production (Schäffer et al., 2019). As a result, robotic 
programs must be carefully optimized to ensure efficiency and 
adaptability. In this context, the open communication architecture 
of collaborative robots can contribute to greater efficiency by 
enabling the collection and sharing of data from their sensors, 
which facilitates the improvement and optimization of their
operation.

The analysis of energy consumption in robotics has received 
attention in the literature in recent years. In Gadaleta et al. (2019); 
Pellicciari et al. (2013), the optimization of motion parameters 
of an industrial (traditional) robot for efficient energy use was 
addressed. In these studies, an algorithm for an efficient use of 
energy, by correctly adjusting the maximum speed and acceleration, 
was presented. Figure 1b in Pellicciari et al. (2013) shows the energy 
consumption versus the time required to perform a task: it can 
be seen that a too slow and a too fast execution (corresponding 
to a large and a small task execution time, respectively) requires 
more energy; the most efficient execution is performed at a 
certain medium speed (1/Topt in Figure 1b in Pellicciari et al. 
(2013)). Guerra-Zubiaga and Luong (2021) analyzed the energy 
consumption of an industrial (traditional) robot using a linear 
factorial experiment analysis, its goal was to determine the 
parameters that contribute most to the robot energy consumption. 
Carabin et al. (2017); Soori et al. (2023) reviewed energy-saving 
optimization methodologies for robotic systems, including works 
that explore saving energy by optimizing robot trajectories and 
performing operation scheduling. For instance, De Laet et al. 
(2025) proposed a motion profile optimization based on Chebyshev 
polynomials, so the energy consumption through a trajectory is 
minimized while the trajectory time is maintained. Hou et al. (2021) 
studied the energy consumption on mobile robots, focusing on 
motion planning and task planning by using a Matlab simulator. 
Nonoyama et al. (2022) researched on the energy optimization 
for optimal motion planning for an industrial robot, by tuning a 
PID controller using a Genetic Algorithm. There is special interest 
in the literature for energy consumption prediction: Jiang et al. 
(2023) proposed and LSTM neural network model for the energy 
prediction of an industrial robot, considering a time scaling function 

as a parameter to be optimized; in Wang et al. (2025b), a model 
architecture that predicts the joints torques and power losses in 
a separated way are applied, these variables are later used to 
calculate the energy consumption; in Wang et al. (2025a), a different 
architecture is considered, and transfer learning is proposed as a 
mechanism for adapting the model to a different robot. Aliev et al. 
(2021) proposed a prediction and estimation model for energy 
demand of a mobile robot and a cobot by using linear regression, its 
objective was to evaluate the battery behavior during the robots task
execution.

Some works have recently considered the energy consumption 
in collaborative robots (cobots). In Boscariol et al. (2023), a 
framework for studying the energy consumption of a cobot 
UR5e is presented, which consists in a dynamic model based 
on physics whose parameters are tuned with data obtained 
from real experiments. A similar model is implemented in a 
digital twin of a cobot UR3e in Heredia et al. (2023) for 
training purposes, so the user can try different programs that 
result in better power consumptions. The authors argue that the 
power estimation can be used to detect anomalies in the real 
robot. A Deep Deterministic Policy Gradient scheme is used 
in Gorkavyy et al. (2025) for the trajectory optimization in 
collaborative robots. In Vodovozov and Raud (2025), a data-driven 
procedure for robot tool location and parameters optimization is
presented.

Nevertheless, despite the large amount of studies addressing the 
energy consumption of industrial robots, the power peak has not 
been properly studied. Power peak is a relevant feature in industrial 
energy analysis and managment, since the electrical infrastructure 
must be implemented to provide not only the total consumed energy, 
but the power peaks. Moreover, power peak affects the energy costs. 
Energy managers may implement strategies for reducing power peak 
demands in the facilities, a concept know as peak load shaving, 
which may include the limitation or peak power requirements at 
certain hours Silva et al. (2020).

Inspired by the referenced works on energy consumption in 
industrial robots and mobile robots, this work analyzes the power 
and energy consumption of a collaborative robot UR10 from 
Universal Robots, one of the most popular cobot in the market, 
as a function of the motion parameters (load, initial and target 
coordinates, speed limit, acceleration limit, and movement type). 
For this, an experimental setting is implemented with the cobot, 
taking data from the robot sensors via the manufacturer’s API (a 
key difference from the works dealing with industrial robots, where 
data is usually obtained from simulations since those robots do 
not provide sensors data). The analysis performed shows that the 
larger the speed limit of the collaborative robot movement, the 
lower the total energy consumption in the movement, obtaining a 
relation between execution time and energy consumption different 
from that of industrial robots (Figure 1b in Pellicciari et al. (2013)). 
On the other hand, increasing the speed limit causes the increase 
of the power peak. The experimental data, obtained from 1,450 
performed trajectories, is later used to train a couple of artificial 
neural networks (ANN) to predict the energy consumption during 
a movement, as a function of the movement parameters, and the 
power peak. Finally, these models are used by an optimization 
genetic algorithm to obtain the parameters (speed limit and 
acceleration limit) that provide the lowest energy consumption 
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TABLE 1  Experiment 1. In all the trials, the movement was of type MoveL, 
and the traveled distance was 800mm in axis Z.

Trial v (m/s) a (m/s2) d (mm) Load (kg)

1 0.1–0.9 1.6 800 0

2 0.1–0.9 1.6 800 2.58

3 0.1–0.9 1.6 800 5

4 0.5–0.9 1.6 800 0

5 0.5–0.9 1.6 800 2.58

6 0.5–0.9 1.6 800 5

7 0.1–0.9 3.5 800 0

8 0.1–0.9 3.5 800 2.58

9 0.1–0.9 3.5 800 5

10 0.5–0.9 3.5 800 0

11 0.5–0.9 3.5 800 2.58

12 0.5–0.9 3.5 800 5

while keeping the power peak inside a required bound, given the 
initial and targe coordinates and payload. The difference of this 
study in comparison with those of the literature relies in four 
aspects: 1) here a collaborative robot is analyzed rather than an 
industrial (traditional) robot, 2) a real robot is used (no simulators) 
without additional sensors or equipment, the data used is that 
already provided by the robot (allowing to replicate and scale the 
predictor algorithms), 3) the power peak is also analyzed, since 
this variable is relevant for energy planning, 4) and optimization 
algorithm is introduced for obtaining the parameters that provide 
the minimum energy consumption while keeping the power peak 
inside a required bound. Trajectory planning is not considered here, 
since a practical optimization in industrial environments should 
only involve the adjustment of the motion parameters in the cobot 
controller, avoiding the modification of the controller path planning 
algorithm.

Some preliminary results were presented in the 
conference paper Miranda and Vázquez (2023), where the energy 
consumption analysis and the ANN predictor were reported, 
without addressing the power peak analysis and prediction, and 
the energy optimization.

The organization of the manuscript is as follows. The 
experimental setting and methodology are described in Section 2. 
The results obtained from the experiments are reported 
in Section 3. A discussion on these results, describing the 
relation between the movement parameters and the energy 
consumption, power peak and trajectory time, is presented in 
Section 4. The training of energy consumption and peak power 
predictors are reported in Section 5. The use of these predictors 
for calculating the optimal speed and acceleration limits is 
described in Section 6. Finally, some conclusions are presented in
Section 7. 

TABLE 2  Experiment 2. In all the trials, the acceleration limit was set to 
3.5m/s2, and the displacement was 400mm in axis X and 
400mm in axis Z.

Trial Type v (m/s) Load (kg)

1 MoveL 0.5–0.9 0

2 MoveL 0.5–0.9 2.58

3 MoveL 0.5–0.9 5

4 MoveJ 0.5–0.9 0

5 MoveJ 0.5–0.9 2.58

6 MoveJ 0.5–0.9 5

TABLE 3  Positions for Experiment 3. The X, Y and Z coordinates are 
expressed in m, RX, RY and RZ are expressed in rad.

P X Y Z RX RY RZ

1 −0.6303 −0.7869 0.5295 −0.7995 −2.7028 −0.0962

2 −0.0275 −0.6599 −0.6599 −0.4853 2.9140 −0.8602

3 0.7200 −0.4777 0.2224 1.6754 −2.2398 −0.7478

4 0.4855 −0.0305 1.1396 −1.4307 0.8210 −0.9978

5 −0.1410 0.4735 0.5214 2.1715 0.8002 0.1797

6 −0.7575 0.1527 0.4897 −1.9442 −2.2191 0.3603

7 0.5637 0.3216 0.2721 2.9271 −1.0571 −0.1375

8 0.6165 −0.4870 −0.1024 1.3697 −2.0370 −1.2442

2 Materials and methods

In this section, the experimental setting and the three performed 
experiments are described. 

2.1 Hardware description

This work focuses on a collaborative robot from Universal 
Robots, the UR10 model, which is among the most widely used in 
the market. The UR10 is a 6-axis articulated robot with a maximum 
payload capacity of 10 kg and a reach of up to 1300 mm from its base 
axis. The robot itself has a total mass of 28.9 kg.

The maximum velocity of each axis is defined by the technical 
specifications of the motors and gear mechanisms. In the case of 
the UR10 robot, the maximum velocity is 120°/s for axes 1 and 2, 
and 180°/s for axes 3 through 6. Each axis has current and voltage 
sensors, which makes possible to compute the energy consumption 
in every axis of the robot.

In order to store the data generated by the robot during 
operation, a PC is used. The transfer of the data is done through a 
TCP/IP protocol, establishing the communication between the PC 
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FIGURE 1
Positions of the UR10 robot, described in Table 3, for Experiment 3.

TABLE 4  Experiment 3.

Trial Type v (m/s) a (m/s2) Load 
(kg)

1 MoveL 0.1–0.7 1.4–2.2 0

2 MoveL 0.1–0.7 1.4–2.2 2.58

3 MoveL 0.1–0.7 1.4–2.2 5

Trial Type ω
(rad/s)

a 
(rad/s2)

Load 
(kg)

4 MoveJ 1–4.2 1–7 0

5 MoveJ 1–4.2 1–7 2.58

6 MoveJ 1–4.2 1–7 5

and the robot controller via the Real-Time Data Exchanger (RTDE) 
interface. The output messages are generated at a frequency of 
125Hz. The extracted data are then stored in a. csv file for subsequent 
offline analysis.

In particular, the DC current and voltage consumed by the robot 
actuators were recorded during its operation. These measurements 
enabled the calculation of the instantaneous real power at each time, 
which was then numerically integrated over time to determine the 
total energy consumption for a single trial (i.e., the execution of one 
trajectory). 

2.2 Experiment 1

In the first experiment, the robot performs vertical movements 
to analyze the influence of movement parameters (such as 

speed and acceleration limits) on the energy consumption and
power peak.

For this experiment, the robot’s tool center point (TCP) 
was moved exclusively along the z-axis, without displacements 
in other directions. The motion followed a straight-line path 
using a linear movement command (MoveL). All test runs in 
this experiment followed the same trajectory, covering a distance
of 800 mm.

The maximum speed of the TCP was varied between 0.1 m/s to 
0.9 m/s. In the case of acceleration, it was set to 1.6 m/s2 or 3.5 m/s2. 
Additionally, during different test runs, the robot carried loads of 
0 kg, 2.58 kg, and 5 kg. Table 1 briefly presents the test runs of this 
experiment. 

2.3 Experiment 2

For the second experiment, the robot performs horizontal and 
vertical movements using the commands MoveL and MoveJ to study 
the influence of the movement parameters on the consumed energy 
and power peak.

In this experiment, the robot’s TCP was programmed to 
move through four distinct positions involving both horizontal 
and vertical displacements, specifically along the X and Z axes. 
All test runs in this experiment followed the same trajectory, 
in which the robot’s TCP reaches the corners of a square. The 
trajectory begins with a displacement of 400 mm along the X-
axis, followed by a second move of 400 mm along the Z-axis. The 
third move involves a return of 400 mm in the negative direction 
of the X-axis, and the TCP returns to its starting point with a 
400 mm displacement in the negative Z direction. For achieving 
this trajectory, some test runs were performed using a movement 
of type MoveL, and another ones were done using a movement of
type MoveJ.
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FIGURE 2
Experiment 1. Power consumed while moving along Z axis for the cases, (a) different payloads with the same speed and acceleration limits, (b) different 
speed limits with the same payload and acceleration limit, (c) different acceleration limits with the same payload and speed limit, (d) Energy consumed 
with different speed limits moving along Z axis with payload 0 kg and acceleration limit 1.6 m/s2.

TABLE 5  Results of Experiment 1 for a speed limit 0.7 m/sand 
acceleration limit 1.6m/s2.

Load Power peak (W) Trajectory time (s)

0 152.96 1.54

2.58 195.93 1.54

5 201.09 1.56

The maximum speed of the TCP was varied between 
0.5 m/s and 0.9 m/s, while the acceleration was kept constant 
at 3.5 m/s2. For different test runs, the robot carried loads of 
0 kg, 2.58 kg and 5 kg. Table 2 summarizes the trials conducted in
this experiment. 

2.4 Experiment 3

For the third experiment, the robot follows a trajectory 
composed by eight points that were randomly generated. 
These points are listed in Table 3 and the corresponding 
positions are shown in Figure 1. The robot’s TCP moves 

sequentially through these points, starting at P1, continuing 
through P8, and finally returning to P1 to complete
the loop.

In this experiment, the speed limit, acceleration limit and load 
were varied, according to Table 4. 

3 Results

3.1 Experiment 1

Figure 2 presents the power consumption results for various 
trials conducted in Experiment 1. To be more specific:

•Figure 2a illustrates the power consumed during the vertical 
movement phase (from the lower to the upper position) 
for different payloads, while maintaining a constant speed 
limit and acceleration limit. As expected, an increase in 
payload results in higher power consumption. For instance, 
Table 5 reports the power peak and trajectory time for the 
specific case of speed limit 0.7 m/s and acceleration limit 
1.6 m/s2 (trajectory times are similar, since they depend on 
the speed and acceleration limit parameters, rather than
the load).

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1671336
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Miranda et al. 10.3389/frobt.2025.1671336

FIGURE 3
(a) Energy consumed while moving along Z axis for different speed limits, for different combinations of payload and acceleration limit. (b) Energy 
consumption per trajectory vs. execution time, for trials of Experiment 1 with different speed limits and accelerations but the same load of 5 kg.

FIGURE 4
Power consumed for two movements, one along axis X and the other along axis Z, for the same speed limit, acceleration limit and payload. These trial 
were obtained from Experiment 2.

•Figure 2b displays the power consumption for different limit 
speeds, keeping both the payload and acceleration constant. 
As anticipated, higher speeds lead to greater power peaks. 
Similarly, the trajectory time becomes lower for a larger speed 
limit.
•Figure 2c shows the effect of varying acceleration on power 
consumption, with a fixed payload and speed limit. As 
expected, higher acceleration values result in higher peak 
power usage and lower trajectory times.

Figure 2d depicts the power consumed for different trials 
regarding Experiment 1. The payload was kept at 0 kg for 

all trials, and the acceleration remained constant. The only 
parameter that was varied was the limit speed. Interestingly, the 
results show that higher limit speeds lead to lower total energy 
consumption. This may appear counter-intuitive, as Figure 2b shows 
that higher speeds lead to greater power peak consumption. 
However, operating at a lower speed causes the robot to take 
more time to complete the trajectory, which in turn leads to 
greater total energy consumption. In other words, when following 
the same trajectory, a higher limit speed results in a shorter 
execution time, thereby enabling a more energy-efficient execution
per trajectory.
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FIGURE 5
Pearson matrix. The most relevant input variables (correlation coefficient >0.12) are: Q_distance_0, Q_distance_1, TCP_distance_x, TCP_distance_z, 
TCP_actual_z, TCP_target_z, Q_actual_1, Q_target_0, Q_target_2, TCP_force_0, TCP_force_2, Actual_force, Payload, Move_type, Velocity, 
Acceleration.

Finally, Figure 3a illustrates the energy consumption in 
Experiment 1 as the speed limit is varied, considering different 
combinations of acceleration limit and payload. It is interesting to 
note that for every payload and acceleration limit, by increasing the 
speed limit the total energy consumed is decreased, concluding 
that neither the acceleration limit nor the payload affect the 
observation of Figure 2d.

Figure 3b shows the energy consumption per trajectory versus 
the total execution time per trajectory, for trials of Experiment 
1 with different speed limits and acceleration limits but the 
same load of 5 kg. It can be observed that the relation between 
energy consumption and execution time is almost linear, being 
far different from the behavior observed in industrial (traditional) 
robots (Figure 1b in Pellicciari et al. (2013)).

3.2 Experiment 2

Regarding the data obtained from Experiment 2, Figure 4 
illustrates the power consumption when the robot reaches 
the points of the square described above using two different 
movements: one along the X-axis and the other along the 
Z-axis. Both movements were performed under the same 
conditions of speed, acceleration, and payload. As expected, 
movement along the vertical Z-axis requires more power than 
movement along the X-axis, even when displacement, speed, 
acceleration, and payload are identical in both cases. The results 
from Experiment 2 consistently showed this pattern: while the 
influence of the parameters on power consumption is similar 
for movements along both axes, the overall power consumption 
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TABLE 6  Data partitioning.

Partition Total percentage Data quantity

Training 70% 1,014

Validation 15% 218

Test 15% 218

TABLE 7  Neural network architecture for the Energy consumption and 
Power peak models.

Parameter Value

Input Layer 10

Hidden Layer 64

Output Layer 1

Activation Function ReLU

Optimization Method Adam

Learning Rate 0.01

Cost Function MSE

Epochs 800

is noticeably higher when the robot moves vertically along
the Z-axis.

4 Discussion from experiments 1 and 2

The findings of the obtained results from experiment 1 and 2 are 
the following. 

• Movement along Z axis consumes the most of energy. A path 
optimization should focus on the reduction of the movement 
on axis Z.
• For any given constant load and acceleration limit: 
increasing the speed limit increases the power peak, but 
decreases the trajectory time and the consumed energy per
trajectory.
• For any given constant load and speed limit: increasing 
the acceleration limit increases the power peak, but 
decreases the trajectory time and the consumed energy per
trajectory.
• The resulting relation between execution time and energy 
consumption per trajectory for a cobot (Figure 3b) is different 
from that of traditional industrial robots (Figure 1b in 
Pellicciari et al. (2013)). In particular, the cobot behavior 
seems to lie in the slow motion zone (right zone of 
Figure 1b in Pellicciari et al. (2013)), since cobots are slow 
in any case, thus the power required to accelerate the cobot 
is always small in comparison with the power required to 
compensate the gravity force.

• Consequently, for any given constant load, the fastest and 
most efficient trajectory (in terms of total energy consumed) 
is obtained by maximizing both the acceleration limit and 
the speed limit, inside the allowed ranges. Nevertheless, 
maximizing speed and acceleration maximizes power peak 
as well, thus, if there are power-peak constraints, the 
optimal parameters should be obtained through a deeper
analysis.

The reported results were obtained with linear movements 
(MoveL), but similar findings were obtained for joint movements 
(MoveJ). However, it is important to mention that the power 
consumed with MoveL and MoveJ are different, for the same 
payload, speed limit, and acceleration limit. This is explored with 
more detail in the following section. 

5 Energy and power peak predictors

The initial steps involves identifying the variables that are most 
strongly correlated with the energy consumption and power peak 
from the 32 variables obtained from the UR robotic arm.

For this, a Pearson correlation matrix was constructed, 
as shown in Figure 5. The matrix describes the correlation between 
inputs and the energy consumption. The most relevant input 
variables were: Q_distance_0, Q_distance_1, TCP_distance_x, 
TCP_distance_z, TCP_actual_z, TCP_target_z, Q_actual_1, Q_
target_0, Q_target_2, TCP_force_0, TCP_force_2, Actual_force, 
Payload, Move_type, Velocity, and Acceleration. However, some of 
these variables are redundant, such as initial coordinates, target 
coordinates and distance (difference between initial and target 
coordinates). By removing some of these, the variables that were 
selected as the input variables to train the ANN model were the 
initial coordinates (x,y,z), the target coordinates (x,y,z), payload, 
movement type, limit speed and acceleration limit. 

5.1 Architecture

The architecture of the ANN used for both models is composed 
by an input layer with 10 neurons (number of input variables), a 
hidden layer with 64 neurons, and an output layer with one neuron, 
which gives the energy consumption or power peak prediction, 
depending on the case. In this network, the ReLU (Rectified Linear 
Unit) activation function is used.

More sophisticated architectures were tested, such as nets with 
two or three hidden layers and ResNets. However, no meaningful 
advantages with respect to accuracy or efficiency were obtained, thus 
only the results with the aforementioned architecture are reported 
in this work. 

5.2 Training

An amount of 1,450 data points (movements of the robotic arm) 
were used for the training of the model, that were divided into 
training, validation, and test sets as described in Table 6.

The optimization algorithm employed was the Adaptive 
Movement Estimation (Adam), with a learning rate set on 0.01. 
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FIGURE 6
(a) Training and validation loss for the Energy consumption model. (b) Training and validation loss for the Power peak model.

FIGURE 7
Comparison between real and predicted values from test data, (a) Energy model, (b) Power peak model.

Mean Squared Error (MSE) was used as the cost function, commonly 
used to measure the performance of regression models. Table 7 
summarizes the information of the ANN architecture and training 
parameters. The training was performed in Google Colab, using 
TensorFlow2 with standard sequential layers. 

5.3 Validation

According to the training loss curves, shown in Figure 6 for 
the training of both models, there is neither under-fitting nor 

over-fitting. After training, the mean absolute percentage error 
(MAPE) for the energy model was 0.0298 (i.e., an average absolute 
error of 2.98%), and 0.0544 for the power peak model. The R2

score was 0.998 for the energy model and 0.984 for the power
peak model.

Figures 7a,b show real and predicted values from the Test 
dataset for the Energy consumption model and the Power 
peak model, respectively. The resulting ANN models accurately 
predicted both the energy consumption per trial and the 
power peak, when the movement parameters are provided
as input.
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TABLE 8  Motion mode comparison.

Target position MoveJ energy (J) MoveL energy (J) Best option Saved energy (%)

P1 2,125 2,115 MoveL 0.45

P2 1,335 1,182 MoveL 11.50

P3 2,334 7,284 MoveJ 67.95

P4 1,621 1783 MoveJ 9.12

P5 1,198 1,159 MoveL 3.24

P6 1,348 1,164 MoveL 13.59

P7 1985 2,107 MoveJ 5.77

P8 1,283 1,239 MoveL 3.38

FIGURE 8
(a) Energy consumed for different speed and acceleration limit values. (b) Power peak consumed for the same values. The payload, initial and target 
coordinates are fixed.

5.4 Example

The trained predictors can be used to select the best parameters 
before implementing the robot program. For instance, Table 8 shows 
the prediction of the energy consumed by performing the trajectory 
of Experiment 3 (i.e., moving from position P1 >  P2 >  … >
P8) for the movement types MoveJ and MoveL, with speed 0.5 m/s
and acceleration 1 m/s2 for MoveL type, and speed 1 rad/s and 
acceleration 1 rad/s2 for MoveJ type. The last column of Table 8 
shows the saved energy as percentage (w.r.t. the movement type with 
the largest energy consumption). By selecting the movement type 
with the lower energy consumption for each target position, the 
energy consumed after the complete trajectory is 12803 J. The energy 
consumed if all the movements are MoveJ or MoveL are 13232 J and 
18037 J, respectively. Thus, by selecting the best type for each target 
position, the energy consumed is reduced by 29.02% w.r.t. Using 
MoveL in all the movements, and 3.24% w.r.t. Using MoveJ in all 

the movements. In this way, the energy predictor allows to select 
the best parameters in each movement, obtaining an optimized 
robot program.

Both predictors described in this section are a practical solution, 
since the models exhibit one of the most basic ANN architectures: 
a sequential net with only one hidden layer, which can be easily 
implemented in any device. 

6 Optimization

The models obtained in the previous section for energy 
and power peak consumption can be used to optimize the 
movement parameters, so the robot programmer can set the 
best parameters that produce the robot movement with the 
lowest energy consumption, but keeping the power peak in a
convenient value. 
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FIGURE 9
Flow diagram: genetic algorithm for calculating optimal speed and 
acceleration limits based on the ANN energy and peak power 
predictors.

6.1 Problem formulation and method

Figure 8 shows the energy and power peak for different values 
of speed and acceleration limits, within the range (0.5 m/s,0.9 m/s)
and (1 m/s2,3.6 m/s2), respectively, obtained with the ANN models. 
The payload is fixed as 0.3 kg. The initial coordinates are those 
of position 6 in Table 3, and the target coordinates are those of 
position 7.

As it can be expected from previous discussion, given a 
fixed speed, the larger the acceleration limit, the lower the total 
energy and the higher the power peak. Similarly, for a given 
acceleration limit, the larger the speed, the lower the total energy 
and the higher the power peak. Thus, the question is to obtain 
the speed and acceleration limit parameters that provide the lowest 
energy consumption while keeping the power peak lower than a 
given bound.

For this, an optimization genetic algorithm is proposed, as 
described in Figure 9. In this, the population consists in pairs (speed 
limit, acceleration limit) within the allowable parameters range. 
Then, the consumed energy and power peak are calculated by the 
ANN predictors, for each member of the population. Classic genetic 
algorithm operators are used to update the population. 

6.2 Example

The optimization algorithm was applied by using the 
multi-objective optimization library pymoo (Blank and Deb, 
2020), considering speed and acceleration limits within ranges 
(0.5 m/s,0.9 m/s) and (1 m/s2,3.6 m/s2), respectively, a payload of 
0.3 kg, for moving the robot from position 6 to position 7, with 
a power peak bound of 200 W. The population was set as 20, 
performing 10 generations (terminate criterion), using a random 
selection, polynomial mutation with η = 1, and simulated binary 
crossover with η = 1. Figure 10 shows the energy consumed, as 
in Figure 8a, but only showing the cases where the power is 

lower than 200 W. The optimal speed and acceleration limits are 
calculated by the algorithm as v = 0.8 m/s and a = 2.756 m/s2, 
the consumed total energy is 1144.64 J and the power peak is 
200 W, thus obtaining the lowest energy consumption at the 
edge of the peak power constraint. Notice from Figure 10 that 
there are combinations of limit-speed/limit-acceleration that 
produce similar energy consumptions (the lower points in the
plot surface). 

6.3 Optimization with intermediate points

Intermediate points are usually programmed in robot 
trajectories to avoid obstacles. Given an initial, an intermediate 
and a target position, the energy consumed per trajectory can be 
estimated as the sum of the energy spent from the initial to the 
intermediate position, and the energy spent from the intermediate 
to the target position. This will result in an overestimation, 
since the robot may not need to completely decelerate when 
approaching the intermediate position, and then to accelerate 
from the intermediate position. However, the difference in the 
energy consumption will be small for collaborative robots. For 
instance, considering the data of Experiment 1 with payload 
5 kg and acceleration 1.6 m/s2, the energy consumed during 
acceleration can be approximately computed as 61.2 J, traveling a 
vertical distance of 0.128 m. However, if the robot travels the same 
distance at the limit speed 0.7 m/s (i.e., without accelerating), the 
energy spent would be approximately 29.25 J, i.e., a difference of 
31.95 J. This represents a minimal percentage of the total trajectory 
energy consumption (take for reference the data in Figure 3, 
where energy per trajectory is above 1000 J for the corresponding 
payload and acceleration limit). This small energy contribution 
due to acceleration is explained by the speed and acceleration 
limitations of collaborative robots, in comparison with the energy 
required to maintain the robot in a vertical pose, as discussed
in Subsection 4.

Another question that may arise is if the energy consumption 
can be decreased by including intermediate points at certain 
positions to be determined. To address this question, the 
optimization algorithm of Figure 9 can be modified, by including 
the intermediate position coordinates as decision variables, and 
calculating the energy spent as the sum of the energy required 
from the initial position to the intermediate position, and the 
energy required from the intermediate position to the target 
position. This was tested for the previous case (subsection 6.2), 
considering a population of 50 and 20 generations (more 
iterations are required due to the additional variables). In this 
case, an intermediate point was calculated as 0.218 m in X, 
0.00 m in Y, and 0.425 m in Z; the obtained total energy with 
the intermediate point was 1404.1 J, reaching a peak power of 
199.2 W. Thus, the obtained energy consumption is larger (in this 
case 256 J larger) than that obtained without the intermediate 
point. Part of this increase in the energy consumption is due 
to the deceleration and acceleration energy required for the 
intermediate position. More experiments were conducted with 
other initial and target positions obtaining similar results: the 
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FIGURE 10
Energy consumed for different speed and acceleration limit values, for those cases where power peak is lower than 200 W. The payload, initial and 
target coordinates are fixed.

inclusion of free intermediate positions do not improve the energy
consumption. 

7 Conclusion

This work presented an energy analysis for a collaborative robot 
UR10, paying particular attention to the total energy consumed 
and power peak in a movement trajectory, as a function of the 
initial and target coordinates, payload, movement type, maximum 
acceleration and maximum speed. Thanks to the capabilities offered 
by this robot model, the experimental data was collected by 
establishing a communication with the controller, without using 
any external sensor. Counterintuitively, it was found that the 
trajectory total consumed energy is lower for higher speed limits 
and higher acceleration limits. On the other hand, higher speed 
and acceleration limits produce higher power peaks. A couple 
of ANN models were trained to predict the power peak and 
the total energy consumed by the robot when performing a 
movement, under given parameters. The output of the models 
are the predicted energy consumption and the power peak, 
respectively, predicting these variables with high accuracy. These 
models are later used in an optimization genetic algorithm for 
obtaining the best speed and acceleration limit parameters that 
reduce the energy consumption while keeping the power peak 
under certain bound, for a given payload, initial and target
coordinates.

The proposed methodology can be applied to obtain energy 
and power predictors for other cobot models, and then use 
them with the same optimization algorithm to obtain the best 
parameters. Be aware that predictors for one cobot model should 

not be extrapolated to another cobot model, since changes 
in geometry and weights may greatly affect the input-output 
variables relations due to the nonlinear nature of robots dynamic
behaviors.
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