:' frontiers ‘ Frontiers in Robotics and Al

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Ziwei Wang,
Lancaster University, United Kingdom

REVIEWED BY
Ruthber Rodriguez Serrezuela,

Corporacion Universitaria del Huila, Colombia
Roberto Marino,

University of Messina, Italy

*CORRESPONDENCE
Carlos Renato Vazquez,
crvazquez@tec.mx

RECEIVED 22 July 2025
accepTED 03 October 2025
PUBLISHED 31 October 2025

CITATION

Miranda S, Vazquez CR and
Navarro-Gutiérrez M (2025) Energy
consumption analysis and optimization in
collaborative robots.

Front. Robot. Al 12:1671336.

doi: 10.3389/frobt.2025.1671336

COPYRIGHT

© 2025 Miranda, Vazquez and
Navarro-Gutiérrez. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Robotics and Al

TYPE Original Research
PUBLISHED 31 October 2025
pol 10.3389/frobt.2025.1671336

Energy consumption analysis and
optimization in collaborative
robots
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Energy consumption is a key concern in modern industrial facilities. Power
peak is also a relevant feature in industrial energy analysis and managment,
since the electrical infrastructure must be implemented to provide not only the
total consumed energy, but the power peaks. Collaborative robots are gaining
popularity due to its flexible use and convenient set up. In this context, a power
and energy consumption study of the popular UR10 collaborative robot of
Universal Robots is reported in this work. For this, an experiment was conducted
to obtain current consumption data from the UR10 API, when performing
movements with different loads and parameters. Next, the dependency of the
trajectory programming parameters on the power peak, total consumed energy,
and time spent per trajectory was analyzed. The results show that the higher
the speed limit and acceleration limit, the lower the total energy consumed per
trajectory, but the higher the power peak. This behavior represents a trade-off:
reducing the consumed energy involves increasing the peak power. Based on
the captured data, artificial neural network models were trained to predict the
power peak and the total energy consumed by the robot when performing a
movement under certain parameters. These models were later used by a genetic
optimization algorithm to obtain the best parameters for a given target position,
providing the most efficient performance while fulfilling a power peak bound.

KEYWORDS

sustainable manufacturing, smart manufacturing, industry 4.0, collaborative robot,
energy consumption

1 Introduction

The use of smart manufacturing concepts and technologies is becoming fundamental
for improving productivity, driven by the rapid rise of automation in fast-paced mass
manufacturing environments. This growth is reflected in the number of installed robots
during the last years. According to the International Federation of Robotics (IFR), the
operational stock of industrial robots has been increasing by 12% each year since 2018.
Starting in 2025, growth is projected at an average annual rate of 4%. This trend requires
the search for strategies to optimize the resources needed for their operation. In the same
way, the IFR states that human-robot collaboration continues developing and expanding in
different applications.

Collaborative robotics has brought new opportunities to factory automation. Nowadays,
cobots offer an economically feasible way to begin robotic automation, in contrast
to traditional industrial robots, which often require larger investments, dedicated

01 frontiersin.org


https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1671336
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1671336&domain=pdf&date_stamp=
2025-10-31
mailto:cr.vazquez@tec.mx
mailto:cr.vazquez@tec.mx
https://doi.org/10.3389/frobt.2025.1671336
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1671336/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1671336/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1671336/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Miranda et al.

infrastructure, and specialized personnel. Collaborative robots
can be used to support workers in complex assembly tasks,
they are capable of detecting collisions and automatically
stopping for preventing robot and operators damage, they
have intuitive programming interfaces that allow workers with
minimal training to re-deploy robots to new tasks, they can be
easily relocated within the factory due to their lightweight and
compact design (International Federation of Robotics, 2021), they
incorporate sensors that allow control force, they require fewer
safety devices, which helps reduce overall costs for manufacturers,
among others.

As pointed out by the IFR, a rising concern for the future
of robotics is the sustainability, driving manufacturing companies
to seek more efficient ways to utilize robots. Energy consumption
in robotics is a critical resource that needs to be optimized, as
it significantly impacts the return of investment, and is part of
the sustainable indicators of the complete manufacturing process.
Moreover, the complexity of robotic solutions is increasing due to
the new functionalities of modern robotic manufacturing systems,
the growing production demands, and the rise of customized
mass production (Schiffer et al, 2019). As a result, robotic
programs must be carefully optimized to ensure efficiency and
adaptability. In this context, the open communication architecture
of collaborative robots can contribute to greater efficiency by
enabling the collection and sharing of data from their sensors,
which facilitates the improvement and optimization of their
operation.

The analysis of energy consumption in robotics has received
attention in the literature in recent years. In Gadaleta et al. (2019);
Pellicciari et al. (2013), the optimization of motion parameters
of an industrial (traditional) robot for efficient energy use was
addressed. In these studies, an algorithm for an efficient use of
energy, by correctly adjusting the maximum speed and acceleration,
was presented. Figure 1b in Pellicciari et al. (2013) shows the energy
consumption versus the time required to perform a task: it can
be seen that a too slow and a too fast execution (corresponding
to a large and a small task execution time, respectively) requires
more energy; the most efficient execution is performed at a
certain medium speed (1/T,, in Figure 1b in Pellicciari et al.
(2013)). Guerra-Zubiaga and Luong (2021) analyzed the energy
consumption of an industrial (traditional) robot using a linear
factorial experiment analysis, its goal was to determine the
parameters that contribute most to the robot energy consumption.
Carabin et al. (2017); Soori et al. (2023) reviewed energy-saving
optimization methodologies for robotic systems, including works
that explore saving energy by optimizing robot trajectories and
performing operation scheduling. For instance, De Laet et al.
(2025) proposed a motion profile optimization based on Chebyshev
polynomials, so the energy consumption through a trajectory is
minimized while the trajectory time is maintained. Hou et al. (2021)
studied the energy consumption on mobile robots, focusing on
motion planning and task planning by using a Matlab simulator.
Nonoyama et al. (2022) researched on the energy optimization
for optimal motion planning for an industrial robot, by tuning a
PID controller using a Genetic Algorithm. There is special interest
in the literature for energy consumption prediction: Jiang et al.
(2023) proposed and LSTM neural network model for the energy
prediction of an industrial robot, considering a time scaling function
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as a parameter to be optimized; in Wang et al. (2025b), a model
architecture that predicts the joints torques and power losses in
a separated way are applied, these variables are later used to
calculate the energy consumption; in Wang et al. (2025a), a different
architecture is considered, and transfer learning is proposed as a
mechanism for adapting the model to a different robot. Aliev et al.
(2021) proposed a prediction and estimation model for energy
demand of a mobile robot and a cobot by using linear regression, its
objective was to evaluate the battery behavior during the robots task
execution.

Some works have recently considered the energy consumption
in collaborative robots (cobots). In Boscariol et al. (2023), a
framework for studying the energy consumption of a cobot
UR5e is presented, which consists in a dynamic model based
on physics whose parameters are tuned with data obtained
from real experiments. A similar model is implemented in a
digital twin of a cobot UR3e in Heredia et al. (2023) for
training purposes, so the user can try different programs that
result in better power consumptions. The authors argue that the
power estimation can be used to detect anomalies in the real
robot. A Deep Deterministic Policy Gradient scheme is used
in Gorkavyy et al. (2025) for the trajectory optimization in
collaborative robots. In Vodovozov and Raud (2025), a data-driven
procedure for robot tool location and parameters optimization is
presented.

Nevertheless, despite the large amount of studies addressing the
energy consumption of industrial robots, the power peak has not
been properly studied. Power peak is a relevant feature in industrial
energy analysis and managment, since the electrical infrastructure
must be implemented to provide not only the total consumed energy,
but the power peaks. Moreover, power peak affects the energy costs.
Energy managers may implement strategies for reducing power peak
demands in the facilities, a concept know as peak load shaving,
which may include the limitation or peak power requirements at
certain hours Silva et al. (2020).

Inspired by the referenced works on energy consumption in
industrial robots and mobile robots, this work analyzes the power
and energy consumption of a collaborative robot URI0 from
Universal Robots, one of the most popular cobot in the market,
as a function of the motion parameters (load, initial and target
coordinates, speed limit, acceleration limit, and movement type).
For this, an experimental setting is implemented with the cobot,
taking data from the robot sensors via the manufacturer’s API (a
key difference from the works dealing with industrial robots, where
data is usually obtained from simulations since those robots do
not provide sensors data). The analysis performed shows that the
larger the speed limit of the collaborative robot movement, the
lower the total energy consumption in the movement, obtaining a
relation between execution time and energy consumption different
from that of industrial robots (Figure 1b in Pellicciari et al. (2013)).
On the other hand, increasing the speed limit causes the increase
of the power peak. The experimental data, obtained from 1,450
performed trajectories, is later used to train a couple of artificial
neural networks (ANN) to predict the energy consumption during
a movement, as a function of the movement parameters, and the
power peak. Finally, these models are used by an optimization
genetic algorithm to obtain the parameters (speed limit and
acceleration limit) that provide the lowest energy consumption
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TABLE 1 Experiment 1. In all the trials, the movement was of type Movel,
and the traveled distance was 800 mm in axis Z.

Trial | v (m/s) a (m/s?) ‘ d (mm) Load (kg)
1 0.1-0.9 L6 800 0
2 0.1-0.9 1.6 800 2.58
3 0.1-0.9 16 800 5
4 0.5-0.9 1.6 800 0
5 0.5-0.9 L6 800 2.58
6 0.5-0.9 1.6 800 5
7 0.1-0.9 35 800 0
8 0.1-0.9 35 800 2.58
9 0.1-0.9 35 800 5
10 0.5-0.9 35 800 0
11 0.5-0.9 35 800 2.58
12 0.5-0.9 35 800 5

while keeping the power peak inside a required bound, given the
initial and targe coordinates and payload. The difference of this
study in comparison with those of the literature relies in four
aspects: 1) here a collaborative robot is analyzed rather than an
industrial (traditional) robot, 2) a real robot is used (no simulators)
without additional sensors or equipment, the data used is that
already provided by the robot (allowing to replicate and scale the
predictor algorithms), 3) the power peak is also analyzed, since
this variable is relevant for energy planning, 4) and optimization
algorithm is introduced for obtaining the parameters that provide
the minimum energy consumption while keeping the power peak
inside a required bound. Trajectory planning is not considered here,
since a practical optimization in industrial environments should
only involve the adjustment of the motion parameters in the cobot
controller, avoiding the modification of the controller path planning
algorithm.

results in

Some  preliminary presented the

conference paper Miranda and Vazquez (2023), where the energy

were

consumption analysis and the ANN predictor were reported,
without addressing the power peak analysis and prediction, and
the energy optimization.

The
experimental setting and methodology are described in Section 2.
The results obtained from the experiments are reported
in Section3. A discussion on these results, describing the

The organization of the manuscript is as follows.

relation between the movement parameters and the energy
consumption, power peak and trajectory time, is presented in
Section 4. The training of energy consumption and peak power
predictors are reported in Section 5. The use of these predictors
for calculating the optimal speed and acceleration limits is
described in Section 6. Finally, some conclusions are presented in
Section 7.
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TABLE 2 Experiment 2. In all the trials, the acceleration limit was set to
3.5m/s?, and the displacement was 400 mm in axis X and
400 mm in axis Z.

Trial Type v (m/s) ‘ Load (kg) ‘
1 MoveL 0.5-0.9 0
2 MoveL 0.5-0.9 2.58
3 MoveL 0.5-0.9 5
4 Move] 0.5-0.9 0
5 Move] 0.5-0.9 2.58
6 Move] 0.5-0.9 5

TABLE 3 Positions for Experiment 3. The X, Y and Z coordinates are
expressed in m, RX, RY and RZ are expressed in rad.

DEEEAENCEEAL

—-0.6303 —-0.7869 0.5295 —-0.7995 -2.7028 —-0.0962
2 -0.0275 —-0.6599 —-0.6599 —0.4853 2.9140 -0.8602
3 0.7200 -0.4777 0.2224 1.6754 —2.2398 —-0.7478
4 0.4855 -0.0305 1.1396 —-1.4307 0.8210 -0.9978
5 —-0.1410 0.4735 0.5214 2.1715 0.8002 0.1797
6 —-0.7575 0.1527 0.4897 —1.9442 -2.2191 0.3603
7 0.5637 0.3216 0.2721 2.9271 -1.0571 -0.1375
8 0.6165 -0.4870 —-0.1024 1.3697 -2.0370 —1.2442

2 Materials and methods

In this section, the experimental setting and the three performed
experiments are described.

2.1 Hardware description

This work focuses on a collaborative robot from Universal
Robots, the UR10 model, which is among the most widely used in
the market. The UR10 is a 6-axis articulated robot with a maximum
payload capacity of 10 kg and a reach of up to 1300 mm from its base
axis. The robot itself has a total mass of 28.9 kg.

The maximum velocity of each axis is defined by the technical
specifications of the motors and gear mechanisms. In the case of
the UR10 robot, the maximum velocity is 120%s for axes 1 and 2,
and 180°/s for axes 3 through 6. Each axis has current and voltage
sensors, which makes possible to compute the energy consumption
in every axis of the robot.

In order to store the data generated by the robot during
operation, a PC is used. The transfer of the data is done through a
TCP/IP protocol, establishing the communication between the PC
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FIGURE 1
Positions of the UR10 robot, described in Table 3, for Experiment 3.

TABLE 4 Experiment 3.

Type v (m/s)
1 MoveL 0.1-0.7 1.4-2.2 0
2 MoveL 0.1-0.7 1.4-2.2 2.58
3 MoveL 0.1-0.7 1.4-2.2 5
a
(rad/s?)
4 Move] 1-4.2 1-7 0
5 Move] 1-4.2 1-7 2.58
6 Move] 1-4.2 1-7 5

and the robot controller via the Real-Time Data Exchanger (RTDE)
interface. The output messages are generated at a frequency of
125Hz. The extracted data are then stored in a. csv file for subsequent
offline analysis.

In particular, the DC current and voltage consumed by the robot
actuators were recorded during its operation. These measurements
enabled the calculation of the instantaneous real power at each time,
which was then numerically integrated over time to determine the
total energy consumption for a single trial (i.e., the execution of one
trajectory).

2.2 Experiment 1

In the first experiment, the robot performs vertical movements
to analyze the influence of movement parameters (such as

Frontiers in Robotics and Al

speed and acceleration limits) on the energy consumption and
power peak.

For this experiment, the robot’s tool center point (TCP)
was moved exclusively along the z-axis, without displacements
in other directions. The motion followed a straight-line path
using a linear movement command (MoveL). All test runs in
this experiment followed the same trajectory, covering a distance
of 800 mm.

The maximum speed of the TCP was varied between 0.1 m/s to
0.9 m/s. In the case of acceleration, it was set to 1.6 m/s” or 3.5 m/s>.
Additionally, during different test runs, the robot carried loads of
0kg, 2.58 kg, and 5 kg. Table 1 briefly presents the test runs of this
experiment.

2.3 Experiment 2

For the second experiment, the robot performs horizontal and
vertical movements using the commands MoveL and Move] to study
the influence of the movement parameters on the consumed energy
and power peak.

In this experiment, the robots TCP was programmed to
move through four distinct positions involving both horizontal
and vertical displacements, specifically along the X and Z axes.
All test runs in this experiment followed the same trajectory,
in which the robot’s TCP reaches the corners of a square. The
trajectory begins with a displacement of 400 mm along the X-
axis, followed by a second move of 400 mm along the Z-axis. The
third move involves a return of 400 mm in the negative direction
of the X-axis, and the TCP returns to its starting point with a
400 mm displacement in the negative Z direction. For achieving
this trajectory, some test runs were performed using a movement
of type MoveL, and another ones were done using a movement of
type Move].
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Experiment 1. Power consumed while moving along Z axis for the cases, (a) different payloads with the same speed and acceleration limits, (b) different
speed limits with the same payload and acceleration limit, (c) different acceleration limits with the same payload and speed limit, (d) Energy consumed

Z Movement 0.7 m/s
200 —0kg
——2.58kg
— 5kg
175
150 4
B
T 125
H
o
a
100
75
50
25
00 02 04 06 08 10 12 14 16
Time (seconds)
a)
Z Movement with 5 kg load @ 0.9 m/s
300
250
200
=
1]
g 150
o
100
50
00 02 04 0‘6 o8 10 12 14
Time (seconds)
c)
FIGURE 2
with different speed limits moving along Z axis with payload 0 kg and acceleration limit 1.6 m/s?.

Z Movement with 5 kg load

225

200

175

150

Power (W)

125

100

50
%
0.00 025 050 075 100 125 150 175
Time (seconds)
Z+ Movement

2500 — 0Okg @1.6m/s2

2250

2000
S 1750
8
2 1500
w

1250

1000

750

01 0.2 05

04
Velocity (m/s)
d)

08

TABLE 5 Results of Experiment 1 for a speed limit 0.7 m/sand
acceleration limit 1.6 m/s?.

Load ‘ Power peak (W) ‘ Trajectory time (s)
0 152.96 1.54
2.58 195.93 1.54
5 201.09 1.56

The maximum speed of the TCP was varied between
0.5m/s and 0.9 m/s, while the acceleration was kept constant
at 3.5 m/s*. For different test runs, the robot carried loads of
0kg, 2.58 kg and 5 kg. Table 2 summarizes the trials conducted in
this experiment.

2.4 Experiment 3

For the third experiment, the robot follows a trajectory
composed by eight points that were randomly generated.
These points are listed in Table3 and the corresponding
positions are shown in Figure 1. The robots TCP moves
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sequentially through these points, starting at Pl, continuing
through P8, and finally to Pl
the loop.

In this experiment, the speed limit, acceleration limit and load
were varied, according to Table 4.

returning to complete

3 Results
3.1 Experiment 1

Figure 2 presents the power consumption results for various
trials conducted in Experiment 1. To be more specific:

eligure 2a illustrates the power consumed during the vertical
movement phase (from the lower to the upper position)
for different payloads, while maintaining a constant speed
limit and acceleration limit. As expected, an increase in
payload results in higher power consumption. For instance,
Table 5 reports the power peak and trajectory time for the
specific case of speed limit 0.7 m/s and acceleration limit
1.6 m/s* (trajectory times are similar, since they depend on
the speed and acceleration limit parameters, rather than
the load).
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Movement in Z- axis
1400 4 —>~ 0kg @1.6m/s2
~»~ 2.58kg @1.6m/s2
—~ 4.52kg @1.6m/s2
=3~ 0kg @3.5m/s2
— 2.58kg @3.5m/s2 1400
1200 - >~ 4.52kg @3.5m/s2
© 1350
>
% - B0
Lﬁ 1000 g 1250
2
1200
800 4 1150
1100
1050 . . . .
600 15 16 17 18 19
Execution time (5)
b)
050 055 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Velocity (m/s)
a)
FIGURE 3
(a) Energy consumed while moving along Z axis for different speed limits, for different combinations of payload and acceleration limit. (b) Energy
consumption per trajectory vs. execution time, for trials of Experiment 1 with different speed limits and accelerations but the same load of 5kg.

160 4

140 4

120 A

100 4

Power (W)

— Z Axis
— X Axis

00 02 04
FIGURE 4

were obtained from Experiment 2.

06 08 10

Time (seconds)

Power consumed for two movements, one along axis X and the other along axis Z, for the same speed limit, acceleration limit and payload. These trial

eligure 2b displays the power consumption for different limit
speeds, keeping both the payload and acceleration constant.
As anticipated, higher speeds lead to greater power peaks.
Similarly, the trajectory time becomes lower for a larger speed
limit.

eFigure 2c shows the effect of varying acceleration on power
consumption, with a fixed payload and speed limit. As
expected, higher acceleration values result in higher peak
power usage and lower trajectory times.

Figure 2d depicts the power consumed for different trials
regarding Experiment 1. The payload was kept at 0kg for
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all trials, and the acceleration remained constant. The only
parameter that was varied was the limit speed. Interestingly, the
results show that higher limit speeds lead to lower total energy
consumption. This may appear counter-intuitive, as Figure 2b shows
that higher speeds lead to greater power peak consumption.
However, operating at a lower speed causes the robot to take
more time to complete the trajectory, which in turn leads to
greater total energy consumption. In other words, when following
the same trajectory, a higher limit speed results in a shorter
execution time, thereby enabling a more energy-efficient execution
per trajectory.
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Finally, Figure3a illustrates the energy consumption in
Experiment 1 as the speed limit is varied, considering different
combinations of acceleration limit and payload. It is interesting to
note that for every payload and acceleration limit, by increasing the
speed limit the total energy consumed is decreased, concluding
that neither the acceleration limit nor the payload affect the
observation of Figure 2d.

Figure 3b shows the energy consumption per trajectory versus
the total execution time per trajectory, for trials of Experiment
1 with different speed limits and acceleration limits but the
same load of 5kg. It can be observed that the relation between
energy consumption and execution time is almost linear, being
far different from the behavior observed in industrial (traditional)
robots (Figure 1b in Pellicciari et al. (2013)).
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3.2 Experiment 2

Regarding the data obtained from Experiment 2, Figure 4
illustrates the power consumption when the robot reaches
the points of the square described above using two different
movements: one along the X-axis and the other along the
Z-axis. Both movements were performed under the same
conditions of speed, acceleration, and payload. As expected,
movement along the vertical Z-axis requires more power than
movement along the X-axis, even when displacement, speed,
acceleration, and payload are identical in both cases. The results
from Experiment 2 consistently showed this pattern: while the
influence of the parameters on power consumption is similar
for movements along both axes, the overall power consumption
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TABLE 6 Data partitioning.

Partition Total percentage Data quantity
Training 70% 1,014
Validation 15% 218
Test 15% 218

TABLE 7 Neural network architecture for the Energy consumption and
Power peak models.

Parameter ‘ Value
Input Layer 10
Hidden Layer 64
Output Layer 1

Activation Function ReLU

Optimization Method Adam
Learning Rate 0.01
Cost Function MSE
Epochs 800

is noticeably higher when the robot moves vertically along
the Z-axis.

4 Discussion from experiments 1 and 2

The findings of the obtained results from experiment 1 and 2 are
the following.

» Movement along Z axis consumes the most of energy. A path
optimization should focus on the reduction of the movement
on axis Z.

e For any given constant load and acceleration limit:
increasing the speed limit increases the power peak, but
decreases the trajectory time and the consumed energy per
trajectory.

e For any given constant load and speed limit: increasing
the acceleration limit increases the power peak, but
decreases the trajectory time and the consumed energy per
trajectory.

e The resulting relation between execution time and energy
consumption per trajectory for a cobot (Figure 3b) is different
from that of traditional industrial robots (Figure 1b in
Pellicciari et al. (2013)). In particular, the cobot behavior
seems to lie in the slow motion zone (right zone of
Figure 1b in Pellicciari et al. (2013)), since cobots are slow
in any case, thus the power required to accelerate the cobot
is always small in comparison with the power required to
compensate the gravity force.
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e Consequently, for any given constant load, the fastest and
most efficient trajectory (in terms of total energy consumed)
is obtained by maximizing both the acceleration limit and
the speed limit, inside the allowed ranges. Nevertheless,
maximizing speed and acceleration maximizes power peak
as well, thus, if there are power-peak constraints, the
optimal parameters should be obtained through a deeper
analysis.

The reported results were obtained with linear movements
(MoveL), but similar findings were obtained for joint movements
(Move]). However, it is important to mention that the power
consumed with MoveL. and Move] are different, for the same
payload, speed limit, and acceleration limit. This is explored with
more detail in the following section.

5 Energy and power peak predictors

The initial steps involves identifying the variables that are most
strongly correlated with the energy consumption and power peak
from the 32 variables obtained from the UR robotic arm.

For this, a Pearson correlation matrix was constructed,
as shown in Figure 5. The matrix describes the correlation between
inputs and the energy consumption. The most relevant input
variables were: Q_distance_0, Q_distance_1, TCP_distance_x,
TCP_distance_z, TCP_actual_z, TCP_target z, Q_actual 1, Q_
target_0, Q_target 2, TCP_force_0, TCP_force_ 2, Actual_force,
Payload, Move_type, Velocity, and Acceleration. However, some of
these variables are redundant, such as initial coordinates, target
coordinates and distance (difference between initial and target
coordinates). By removing some of these, the variables that were
selected as the input variables to train the ANN model were the
initial coordinates (x,y;z), the target coordinates (x,y,z), payload,
movement type, limit speed and acceleration limit.

5.1 Architecture

The architecture of the ANN used for both models is composed
by an input layer with 10 neurons (number of input variables), a
hidden layer with 64 neurons, and an output layer with one neuron,
which gives the energy consumption or power peak prediction,
depending on the case. In this network, the ReLU (Rectified Linear
Unit) activation function is used.

More sophisticated architectures were tested, such as nets with
two or three hidden layers and ResNets. However, no meaningful
advantages with respect to accuracy or efficiency were obtained, thus
only the results with the aforementioned architecture are reported
in this work.

5.2 Training

An amount of 1,450 data points (movements of the robotic arm)
were used for the training of the model, that were divided into
training, validation, and test sets as described in Table 6.

The optimization algorithm employed was the Adaptive
Movement Estimation (Adam), with a learning rate set on 0.01.
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Mean Squared Error (MSE) was used as the cost function, commonly
used to measure the performance of regression models. Table 7
summarizes the information of the ANN architecture and training
parameters. The training was performed in Google Colab, using
TensorFlow2 with standard sequential layers.

5.3 Validation

According to the training loss curves, shown in Figure 6 for
the training of both models, there is neither under-fitting nor
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over-fitting. After training, the mean absolute percentage error
(MAPE) for the energy model was 0.0298 (i.e., an average absolute
error of 2.98%), and 0.0544 for the power peak model. The R?
score was 0.998 for the energy model and 0.984 for the power
peak model.

Figures 7a,b show real and predicted values from the Test
dataset for the Energy consumption model and the Power
peak model, respectively. The resulting ANN models accurately
predicted both the energy consumption per trial and the
power peak, when the movement parameters are provided
as input.
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TABLE 8 Motion mode comparison.

10.3389/frobt.2025.1671336

Target position Moved energy (J) Movel energy (J) Best option Saved energy (%)
P1 2,125 2,115 Movel. 045
P2 1,335 1,182 MoveL 11.50
P3 2,334 7,284 Move] 67.95
P4 1,621 1783 Move] 9.12
P5 1,198 1,159 Movel, 3.24
P6 1,348 1,164 Movel, 1359
P7 1985 2,107 Move] 5.77
P8 1,283 1,239 Movel, 338
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(a) Energy consumed for different speed and acceleration limit values. (b) Power peak consumed for the same values. The payload, initial and target
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5.4 Example

The trained predictors can be used to select the best parameters
before implementing the robot program. For instance, Table 8 shows
the prediction of the energy consumed by performing the trajectory
of Experiment 3 (i.e., moving from position P1 > P2 > ... >
P8) for the movement types Move] and MoveL, with speed 0.5 m/s
and acceleration 1m/s* for MoveL type, and speed 1rad/s and
acceleration 1 rad/s* for MoveJ type. The last column of Table 8
shows the saved energy as percentage (w.r.t. the movement type with
the largest energy consumption). By selecting the movement type
with the lower energy consumption for each target position, the
energy consumed after the complete trajectory is 12803 J. The energy
consumed if all the movements are Move] or MoveL are 13232 J and
18037 J, respectively. Thus, by selecting the best type for each target
position, the energy consumed is reduced by 29.02% w.r.t. Using
MoveL in all the movements, and 3.24% w.r.t. Using Move] in all

Frontiers in Robotics and Al

the movements. In this way, the energy predictor allows to select
the best parameters in each movement, obtaining an optimized
robot program.

Both predictors described in this section are a practical solution,
since the models exhibit one of the most basic ANN architectures:
a sequential net with only one hidden layer, which can be easily
implemented in any device.

6 Optimization

The models obtained in the previous section for energy
and power peak consumption can be used to optimize the
movement parameters, so the robot programmer can set the
best parameters that produce the robot movement with the
lowest energy consumption, but keeping the power peak in a
convenient value.
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6.1 Problem formulation and method

Figure 8 shows the energy and power peak for different values
of speed and acceleration limits, within the range (0.5 m/s,0.9 m/s)
and (1m/s?,3.6 m/s%), respectively, obtained with the ANN models.
The payload is fixed as 0.3 kg. The initial coordinates are those
of position 6 in Table 3, and the target coordinates are those of
position 7.

As it can be expected from previous discussion, given a
fixed speed, the larger the acceleration limit, the lower the total
energy and the higher the power peak. Similarly, for a given
acceleration limit, the larger the speed, the lower the total energy
and the higher the power peak. Thus, the question is to obtain
the speed and acceleration limit parameters that provide the lowest
energy consumption while keeping the power peak lower than a
given bound.

For this, an optimization genetic algorithm is proposed, as
described in Figure 9. In this, the population consists in pairs (speed
limit, acceleration limit) within the allowable parameters range.
Then, the consumed energy and power peak are calculated by the
ANN predictors, for each member of the population. Classic genetic
algorithm operators are used to update the population.

6.2 Example

The optimization algorithm was applied by using the
multi-objective optimization library pymoo (Blank and Deb,
2020), considering speed and acceleration limits within ranges
(0.5 m/s,0.9m/s) and (1 m/s* 3.6 m/s*), respectively, a payload of
0.3 kg, for moving the robot from position 6 to position 7, with
a power peak bound of 200 W. The population was set as 20,
performing 10 generations (terminate criterion), using a random
selection, polynomial mutation with # =1, and simulated binary
crossover with 7 =1. Figure 10 shows the energy consumed, as
in Figure 8a, but only showing the cases where the power is
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lower than 200 W. The optimal speed and acceleration limits are
calculated by the algorithm as v=0.8m/s and a=2.756 m/s’,
the consumed total energy is 1144.64] and the power peak is
200 W, thus obtaining the lowest energy consumption at the
edge of the peak power constraint. Notice from Figure 10 that
there are combinations of limit-speed/limit-acceleration that
produce similar energy consumptions (the lower points in the
plot surface).

6.3 Optimization with intermediate points

Intermediate points are usually programmed in robot
trajectories to avoid obstacles. Given an initial, an intermediate
and a target position, the energy consumed per trajectory can be
estimated as the sum of the energy spent from the initial to the
intermediate position, and the energy spent from the intermediate
to the target position. This will result in an overestimation,
since the robot may not need to completely decelerate when
approaching the intermediate position, and then to accelerate
from the intermediate position. However, the difference in the
energy consumption will be small for collaborative robots. For
instance, considering the data of Experiment 1 with payload
5kg and acceleration 1.6m/s?, the energy consumed during
acceleration can be approximately computed as 61.2], traveling a
vertical distance of 0.128 m. However, if the robot travels the same
distance at the limit speed 0.7 m/s (i.e., without accelerating), the
energy spent would be approximately 29.25], i.e., a difference of
31.95J. This represents a minimal percentage of the total trajectory
energy consumption (take for reference the data in Figure 3,
where energy per trajectory is above 1000 J for the corresponding
payload and acceleration limit). This small energy contribution
due to acceleration is explained by the speed and acceleration
limitations of collaborative robots, in comparison with the energy
required to maintain the robot in a vertical pose, as discussed
in Subsection 4.

Another question that may arise is if the energy consumption
can be decreased by including intermediate points at certain
positions to be determined. To address this question, the
optimization algorithm of Figure 9 can be modified, by including
the intermediate position coordinates as decision variables, and
calculating the energy spent as the sum of the energy required
from the initial position to the intermediate position, and the
energy required from the intermediate position to the target
position. This was tested for the previous case (subsection 6.2),
considering a population of 50 and 20 generations (more
iterations are required due to the additional variables). In this
case, an intermediate point was calculated as 0.218m in X,
0.00m in Y, and 0.425m in Z; the obtained total energy with
the intermediate point was 1404.1], reaching a peak power of
199.2 W. Thus, the obtained energy consumption is larger (in this
case 256] larger) than that obtained without the intermediate
point. Part of this increase in the energy consumption is due
to the deceleration and acceleration energy required for the
intermediate position. More experiments were conducted with
other initial and target positions obtaining similar results: the
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inclusion of free intermediate positions do not improve the energy
consumption.

7 Conclusion

This work presented an energy analysis for a collaborative robot
URI10, paying particular attention to the total energy consumed
and power peak in a movement trajectory, as a function of the
initial and target coordinates, payload, movement type, maximum
acceleration and maximum speed. Thanks to the capabilities offered
by this robot model, the experimental data was collected by
establishing a communication with the controller, without using
any external sensor. Counterintuitively, it was found that the
trajectory total consumed energy is lower for higher speed limits
and higher acceleration limits. On the other hand, higher speed
and acceleration limits produce higher power peaks. A couple
of ANN models were trained to predict the power peak and
the total energy consumed by the robot when performing a
movement, under given parameters. The output of the models
are the predicted energy consumption and the power peak,
respectively, predicting these variables with high accuracy. These
models are later used in an optimization genetic algorithm for
obtaining the best speed and acceleration limit parameters that
reduce the energy consumption while keeping the power peak
under certain bound, for a given payload, initial and target
coordinates.

The proposed methodology can be applied to obtain energy
and power predictors for other cobot models, and then use
them with the same optimization algorithm to obtain the best
parameters. Be aware that predictors for one cobot model should

Frontiers in Robotics and Al

12

not be extrapolated to another cobot model, since changes
in geometry and weights may greatly affect the input-output
variables relations due to the nonlinear nature of robots dynamic
behaviors.
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