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Embodied intelligent systems build upon the foundations of behavioral
robotics and classical cognitive architectures. They integrate multimodal
perception, world modeling, and adaptive control to support closed-loop
interaction in dynamic and uncertain environments. Recent breakthroughs
in Multimodal Large Models (MLMs) and World Models (WMs) are profoundly
transforming this field, providing the tools to achieve its long-envisioned
capabilities of semantic understanding and robust generalization. Targeting
the central challenge of how modern MLMs and WMs jointly advance
embodied intelligence, this review provides a comprehensive overview across
key dimensions, including multimodal perception, cross-modal alignment,
adaptive decision-making, and Sim-to-Real transfer. Furthermore, we
systematize these components into a three-stage theoretical framework termed
“Dynamic Perception—Task Adaptation (DP-TA)". This framework integrates
multimodal perception modeling, causally driven world state prediction,
and semantically guided strategy optimization, establishing a comprehensive
“perception—modeling—decision” loop. To support this, we introduce a “Feature-
Conditioned Modal Alignment (F-CMA)" mechanism to enhance cross-modal
fusion under task constraints.

embodied Al, multimodal learning, world models, cross-modal learning, reinforcement
learning, sim-to-real transfer

1 Introduction

The early paradigm of artificial intelligence was largely grounded in the concept
of “Disembodied intelligence” The central goal of this approach was to mimic
human intelligent behavior by focusing on enabling machines to simulate human-
like thought processes. However, this was done without considering a physical body
or an environmental context. These systems reasoning relied on static data and pre-
defined rules. Because they lacked direct perception and interaction with the physical
world, they faced significant limitations, often showing poor generalization, weak
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FIGURE 1
Development timeline of embodied intelligence.

adaptability to new tasks, and ineflicient interactions in real-world
scenarios (Nathan, 2023). Furthermore, real-world environments
are increasingly characterized by uncertainty, sensory complexity,
and task diversity, making the limitations of traditional disembodied
Al increasingly clear. This has created a pressing need to
develop intelligent systems that can interact effectively with their
environment and adapt their structure accordingly.

In sharp contrast, the embodied intelligence paradigm
emphasizes that intelligence arises through continuous closed-loop
interaction between an agent and its environment. Such agents
are defined by their physical bodies, sensors, and effectors, which
together ground perception and action. The idea is not entirely
new; its philosophical and engineering roots can be traced back
to the cybernetics movement. Subsequent advances in behavioral
robotics (Brooks, 1999; Arkin, 1998) and cognitive architecture
theories (Laird et al., 1987) laid the foundations for the principles
of embodiment and the perception-decision-execution loop.
Building on these ideas, researchers demonstrated how autonomous
agents could exhibit robust and adaptive behaviors in complex
environments (Pfeifer and Scheier, 2001). This trajectory was
further advanced by pioneering work in Evolutionary Robotics
(Cliff et al., 1993), which explored automatic controller design,
and by cognitive architectures like CLARION (Sun, 2007) and
the Multilevel Darwinist Brain (MDB) (Bellas et al., 2010), which
integrated learning, reasoning, and embodiment long before the
current era of large models. The historical trajectory of embodied
intelligence is shown in Figure 1.

For many years, applying these principles in practice has
been challenging due to limitations in perception, computation,
and reasoning. Recently, however, advances in multimodal large
models (MLMs) and world models (WMs) have opened new
possibilities. These developments provide researchers with powerful
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tools to tackle longstanding challenges, bringing us closer to
building the embodied agents envisioned in earlier research.
Driven by these technologies, the field is undergoing a profound
transformation from early modular integration architectures to
unified modeling frameworks (Roy et al., 2021). MLMs, including
RT-2 (Zitkovich et al., 2023) and OpenVLA (Kim et al., 2024),
are built on cross-modal Transformer architectures. This design
enables them to create a unified representation from different input
types, such as vision and language, and perform joint reasoning to
achieve end-to-end control that directly translates natural language
commands into physical actions. Concurrently, WMs (Ha and
Schmidhuber, 2018b) aim to build an internal understanding of an
environment by learning its latent states, enabling them to simulate
potential future states and model causal relationships. This capability
provides agents with a deeper understanding and facilitates effective
knowledge transfer across different tasks (Deitke et al., 2020).

The combination of MLMs and WMs brings notable benefits,
including improved system generality, support for cross-task
learning, and facilitated deployment from simulation to reality
(Sim-to-Real). This paper reviews how these modern advancements
are revolutionizing the implementation of embodied systems. Our
analysis centers on the synergistic integration of MLMs and WMs as
a central focus for advancing embodied intelligence. The discussion
is organized around key dimensions such as multimodal perception,
cross-modal alignment, and Sim-to-Real transfer. Despite these
advances, important gaps remain. Specifically, there is no complete
framework that integrates all components systematically. As a
result, issues such as information coupling, module decoupling, and
interface design are still unresolved (Liu et al., 2025).

To address these challenges, this review proposes a structured
modeling framework for embodied intelligent systems: the DP-
TA (Dynamic Perception-Task Adaptation) three-layer fusion
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Dynamic perception—task adaptation framework.

architecture. This framework decomposes embodied systems into
three core functional layers: multimodal perception and alignment,
world modeling and task graph generation, and policy adaptation
and execution scheduling. These layers correspond to the key
processing stages from perceptual input to action output, as
illustrated in Figure 2.

To support this architecture, we introduce the Feature-
Conditioned Modal Alignment (F-CMA) mechanism, which
models how task semantics guide perceptual fusion strategies,
thereby enhancing the system’s goal consistency and adaptability.
The DP-TA framework not only provides a unified interface
specification for multimodal perception, large-scale cognitive
modeling, and policy execution but also offers a structured
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methodological framework for constructing embodied systems with
high task generalization and flexible deployment capabilities.
The core contributions of this study are summarized as follows:

1. We systematize the structural fusion of embodied intelligent
systems into a framework termed DP-TA, which clearly
delineates the functional boundaries of the three core
layers—perception, modeling, and policy control—and their
collaborative coupling paths.
We introduce the F-CMA mechanism, enriching the
methodology for cross-modal information alignment.
From a system-functional perspective,

we synthesize

representative mechanisms and synergistic structures that
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integrate multimodal large models and world models,
analyzing their roles in behavior generation and task planning.
We examine core mechanisms and optimization pathways for
the policy layer, encompassing advanced approaches such as
Prompt-Policy structures, tokenized state representations, and
skill graph scheduling. We also systematically identify key
system-level optimization strategies for task deployment and
module sharing.

We identify core challenges in current research and outline
future trends, focusing on semantic consistency modeling,
multi-policy architecture fusion, lightweight world model
construction, and multi-task adaptation.

2 Multimodal perception and dynamic
alignment

2.1 Research background and system value
of multimodal perception

The perception module has long been recognized as the critical
starting point for environmental information flow in intelligent
systems, with its performance fundamentally determining the
quality of subsequent modeling and decision-making processes.
While early embodied systems relied on traditional sensor
(Durrant-Whyte 2016)
and state estimation methods (Thrun, 2002) for integrating

fusion techniques and Henderson,
limited modal data, the field has evolved significantly. In
contrast to these traditional single-modal or basic multimodal
perception paradigms, modern embodied environments require
the sophisticated collaborative integration of heterogeneous
modal data, including visual, linguistic, haptic, and depth
information (Ma et al., 2024). This requirement elevates the core
challenges of multimodal perception to cross-modal semantic
fusion, modeling complementary information, dynamic temporal
alignment, and robustness under environmental disturbances
and sensor uncertainties. With breakthroughs in the theory of
joint representation of language, vision, and action (Ma et al,
2024), multimodal perception has emerged as a key enabling
technology to achieve closed-loop collaboration between language
instruction parsing, environmental state feedback, and adaptive
task planning. Representative works such as LXMERT (Tan and
Bansal, 2019) and MDETR (Kamath et al., 2021) establish semantic
associations between modalities through cross-modal attention
mechanisms, thus laying the theoretical foundation for perception-
cognition coupling in embodied tasks. Beyond this, very recent
work continues to push the boundaries of multimodal integration.
The OmniSegmentor framework (Yin et al., 2025) demonstrates a
universal pre-training paradigm across five visual modalities (RGB,
depth, thermal, etc.), significantly boosting perceptual capabilities
and setting new state-of-the-art records on multiple segmentation
benchmarks. This highlights a trend towards more flexible and
powerful general-purpose multi-modal perception backbones for
embodied agents. The universal applicability in scenarios such as
robotics, human—computer interaction, and semantic navigation
further highlights the systemic value of this paradigm.
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2.2 Modeling perceptual uncertainty and
cross-modal alignment

Multimodal perception has increasingly become the core
input component of Embodied Intelligent systems. However,
modeling perceptual uncertainty and achieving cross-modal
semantic alignment remain critical challenges. The theoretical
challenge lies in establishing a paradigm for uncertainty modeling.
Based on the sources of uncertainty, two fundamentally distinct
theoretical categories can be identified. The first category stems
from the inherent ambiguity, incompleteness, and environmental
interference present in perceptual data itself, such as motion blur,
sensor noise, and local occlusion. This type of uncertainty is referred
to as intrinsic uncertainty, which possesses an irreparable nature.
Its likelihood distribution must be modeled through mechanisms
such as probabilistic heatmap prediction, multi-hypothesis output
branches, and confidence regression (Kendall and Gal, 2017).
The other category stems from insufficient prior knowledge in
the model, typically manifested as a covariate shift between
the training data distribution and the real-world scenario. This
is referred to as cognitive uncertainty, and its modeling relies
on theoretical frameworks such as Bayesian neural networks,
Dropout random sampling (Gal and Ghahramani, 2016), and
ensemble learning (Lakshminarayanan et al., 2017) to enhance the
model’s robustness in unknown scenarios.

In embodied tasks, these two types of uncertainty often
overlap and are further influenced by the heterogeneity among
multimodal inputs. For instance, semantic ambiguity between
vision and language modalities, as well as modality loss caused
by sensor failures, can significantly interfere with policy learning
and decision-making. To address this challenge, previous studies
have proposed a series of cross-modal alignment mechanisms
(see, e.g., (Hossain et al.,, 2025), Fed-CMA (Chen et al., 2020))
to mitigate the propagation of inconsistencies to downstream tasks.
While these alignment methods cover a wide range of strategies,
from explicit mappings (e.g., image-text labels) to implicit attention
mechanisms (e.g., cross-modal Transformer fusion), they lack the
ability to dynamically perceive task objectives. Consequently, when
task semantics change or input modalities shift, such methods often
struggle to achieve reliable alignment and adaptive fusion. For
example, in language-guided grasping tasks, systems frequently
cannot make robust fusion decisions when confronted with
ambiguous language goals (e.g., “grab the edge”) or occluded image
modalities. To mitigate these limitations, particularly the lack of
semantic regulation and structural preservation during cross-modal
alignment, recent work has incorporated the concept of feature-
conditioned guidance into local mechanisms. For example, FiLM
(Perez et al, 2022) modulates the normalization parameters of
the visual branch using language features, enabling conditionally
aware visual encodingg MDETR (Kamath et al.,, 2021) uses text
fragments as queries to explicitly guide the detection and alignment
of objects in images, establishing semantic correspondences between
phrases and image regions; BLIP-2 (Li et al., 2023) introduces a
phased freezing and multimodal alignment modulation mechanism
in its training policy, achieving cross-modal semantic modeling
while maintaining the stability of the unimodal encoder structure;
VIMA (Jiang et al., 2022) uses language prompts as conditional
inputs for policy generation, achieving a conditional bridge from

frontiersin.org


https://doi.org/10.3389/frobt.2025.1668910
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhang et al.

perception to action. Very recently, research in 2024 has further
advanced this paradigm by developing more generalizable and
robust conditionally-aligned models. For instance, (Belkhale et al.,
2024), introduced RT-H (Robotic Transformer with Hierarchical
Planning), which leverages a language-conditioned transformer
architecture to generate precise motor control commands
from complex natural language instructions and visual inputs,
demonstrating superior real-world performance. These latest efforts
highlight a clear shift towards building large-scale, task-aware,
and semantically grounded conditional alignment systems that
are both scalable and adaptable. Although these methods have
different application objectives, they fundamentally embody the
prototype mechanism of “using explicit features from one modality
as conditions to guide the representation process of another
modality” Therefore, this study unifies such mechanisms under
the name “Feature-Conditional Modality Alignment (F-CMA),
as illustrated in Figure 3. This paradigm is well-suited to the need
for deep collaborative modeling of heterogeneous modalities in
embodied intelligence, enabling task-semantics-driven multimodal
fusion and uncertainty modeling.

3 Policy generation and task
adaptation

The problem of how an agent maps world states to actions—the
policy—has deep roots in control theory and early Al Classical
approaches ranged from deliberative planners (Fikes and Nilsson,
1971) that operate on symbolic representations to reactive, behavior-
based systems (Brooks, 2003) that emphasize a tight coupling
between sensors and actuators. These establish the fundamental
trade-offs between planning and reactivity. In contemporary
Embodied Al the policy module continues to play a pivotal role, but
its challenges have expanded. Operating in dynamic environments,
it must not only comprehend the current state but also generate
behavioral decisions characterized by generalization capability,
stability, and efficiency, all under the guidance of complex semantic
task objectives.

3.1 Cognitive positioning of the policy
module

The traditional definition of policy is limited to state-action
mapping modeling. For embodied intelligence, this definition
is clearly overly simplistic. Embodied systems must operate
in open environments, utilizing multi-source sensory inputs,
dynamic uncertainties, and diverse constraints arising from complex
task objectives. Consequently, the policy module should be
conceptualized not as an “end-effector controller” but as a Structural
Task Adapter (STA). The role of the policy module in Embodied
Intelligence should be reinterpreted as a multi-task decision path
generator based on perceptual states and semantic goals, possessing
task restructuring, resource scheduling, and semantic alignment
capabilities. The design of the policy module should not be limited to
mapping modeling but should include the following three cognitive
functions. First, the policy should internalize the ability to model
semantic task conditions. It should not merely “see the state and
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perform actions” but should deeply understand “what my current
goal is” and seamlessly integrate task conditions in the form of text
instructions or semantic graphs into the policy generation process.
For example, text instructions are converted into embeddings and
directly drive a multimodal Transformer for control prediction in
the RT-H (Belkhale et al., 2024) system; and Prompt-DT (Xu et al.,
2022) encodes instructions and environmental trajectories together
into generated plan tokens, which are typical examples of this
capability. Second, the policy must have the core functionality of
structured path generation. Modern embodied policies no longer
output a single action but instead output structured trajectories
that include causal dependencies between sub-goals. For example,
DreamerV3 (Hafner et al., 2025) performs “inner loop prediction”
in the world model to generate plans; SayCan (Ahn et al., 2022)
uses an LLM to output multi-step sub-tasks, which are then
executed by the actuator. Therefore, the policy network should
have temporal awareness, semantic consistency, and planning
capabilities (Kaelbling and Lozano-Pérez, 2011). Finally, the policy
must achieve task scheduling and system interface decoupling, with
the policy module automatically selecting sub-policies, functional
modules, or control parameters based on task conditions. Successful
implementations in multi-task systems like Gato (Reed et al., 2022)
and ChatVLA (Zhou et al., 2025) demonstrate that policies are no
longer “functions” but flexible “scheduling entry points.”

Within the DP-TA theoretical framework, the policy generation
and adaptation layer occupies the top-level decision-making module
of the system. Its inputs integrate multi-modal environmental states
provided by the perception and alignment layer (Parisi et al., 2022),
future states predicted by the world modeling layer and causal
inference chains (Kaelbling and Lozano-Pérez, 2011), as well as
semantic goal streams defined by user tasks (Ahn et al, 2022)
or LLM (Xie et al, 2023) modules. The outputs of the policy
layer must satisfy three key requirements: 1) direct executability
by controllers or downstream modules (Liang et al., 2022); 2)
effective responsiveness to task variations and resource constraints
(Ge et al, 2023); 3) interpretability through visualization and
analysis in the form of tokens, trajectories, or graph formats. The
hierarchical structure of DP-TA relieves the policy module of the
entire inference burden, freeing it to focus on integrating contextual
structure and semantic goals; thereby, it functions as an efficient task
scheduler (Liang et al., 2022), representing a fundamental departure
from traditional pipeline-based control systems. In summary, the
cognitive positioning of embodied policy modules is evolving
from “action selectors” to “structural task schedulers” to support
multimodal semantic fusion, task decomposition, and dynamic
module invocation (Liang et al., 2022; Brohan et al., 2022).

3.2 The evolutionary path of policy
mechanisms and prompts

The policy generation mechanism in embodied intelligence
has
to structured decision generation. This evolution signifies a

evolved progressively from action-supervised learning

paradigm shift from “input-dimension constraints” to “structure-
modeling enhancement” (Levine et al, 2020), underscoring
the transformation of policy modules from purely executive
functions toward cognitive systems. Contemporary mainstream
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approaches to policy generation can be broadly classified into three
systematic paradigms: mapping-based, optimization-based, and
structure-based.

The mapping paradigm represents the most direct supervised
learning path for early perception-action systems, with Behavior
Cloning (BC) (Torabi et al., 2018) and Imitation Learning (IL)
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(Zheng et al., 2024) serving as its representative methods. Its
core assumption is that, given a state, supervised learning can
approximate the expert policy, thereby achieving an end-to-
end mapping from perception to action. Methods within this
paradigm, exemplified by systems such as RT-1 (Brohan et al,
2022) and BC-Z (Jang et al., 2022), demonstrate effective cold-start
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performance, particularly in fixed-process, single-task operational
workflows. However, this modeling approach treats task objectives
as implicit conditions, resulting in a policy that lacks adaptability to
instruction variations or environmental dynamics (Shafiullah et al.,
2022). Consequently, when task objectives change, the policy
cannot structurally adapt, leading to performance degradation in
multi-task or temporally extended planning scenarios. Although
characterized by high training efficiency, the inherent lack of
structured representation within the policy hinders support for
intra-task causal reasoning or cross-semantic transfer.

The optimization paradigm is based on reinforcement learning,
which uses reward-driven behavioral strategy learning as its
theoretical foundation. Starting from the task objective, the
policy is iteratively optimized through reward signals (Josic,
2021). Modeling typically combines a policy function with a
state-value function or Q-function. In embodied tasks, systems
like DreamerV3 (Hafner et al., 2025) leverage world models for
“virtual interaction,” significantly enhancing learning efficiency
and environmental generalization capabilities (Schrittwieser et al.,
2020). This approach incorporates long-term reward modeling
and emergent policy self-organization, making it theoretically
more suitable for complex goal-oriented planning. Nevertheless,
it
and high sample complexity (Dulac-Arnold et al, 2019).

faces practical challenges including training instability
Furthermore, the tight coupling between the policy and its
training environment compromises module transferability and
policy reusability.

Recent research is advancing strategic modeling towards a
structural planning paradigm. Here, language prompts, planning
structures, and causal graphs serve as the primary entry points for
strategy control. Prompts have evolved beyond mere instructions
to function as task-driven mechanisms for strategy configuration
(Shin et al., 2020). At the foundational level, task conditioning
provides the core task semantics (“what to do”), exemplified
by directives such as “place the red cup on the left shelf”. At
a deeper level, behavioral guidance navigates complex strategy
spaces by offering “how to do it” directions. This effectively
creates a “semantic roadmap” that identifies the optimal behavioral
choice within multi-strategy contexts (Belkhale et al., 2024). The
highest level structural interface transforms natural language
or semantic prompts into tokens, graphs, or intermediate
representations. This facilitates the strategy module’s uniform
processing of interface information spanning language, perception,
and control. This methodology departs from conventional
approaches that directly learn state-to-action mappings. Instead,
it frames strategy modeling as a structured generation task:
sub-goal sequences, planning tokens, or semantic graphs are
first constructed and subsequently decoded into specific control
instructions.

Integrating Prompts Deeply into Control Pipelines. The
SayCan system exemplifies the “language prompt — sub-goal
decomposition” approach. In this paradigm (Ahn et al, 2022),
user instructions are initially processed by a large language model
(LLM) to generate a structured sequence of sub-tasks (e.g., pick
— move — place). Subsequently, an actuator selects executable
modules based on the current perceptual state, while a dedicated
strategy controller handles only the final execution step. This
approach significantly enhances strategy interpretability and
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composability. However, its effectiveness is critically dependent
on the planning quality of the external LLM, and it lacks a real-
time feedback loop during execution. Conversely, the Prompt-DT
paradigm employs a “prompt token — action sequence generation”
strategy. Here, natural language prompts are concatenated with
state trajectories and fed into a Transformer decoder to predict
sequences of future behavior tokens (Xu et al, 2022). This
method effectively integrates the efficiency of imitation learning
with the flexibility of prompts, demonstrating robust multi-task
adaptability and stable performance under low-data regimes.
Its key innovation lies in decoupling task abstraction from
the training architecture, thereby supporting instruction-level
nesting and generalization. Representing the most promising
end-to-end solution, the RT-2 (Zitkovich et al, 2023) system
embodies the “unified token representation — multimodal policy
control” paradigm. It encodes heterogeneous inputs (e.g., images,
language instructions) into a unified token sequence, which is
then processed by a multi-layer Transformer for direct strategy
prediction and control output. This architecture not only unifies
the input processing pipeline but also establishes a genuine
end-to-end closed loop bridging perception and control. Such
advancements are poised to endow strategy modules with “elastic
structures” and “adaptive computation paths,” ultimately realizing
a unified decision-making loop that translates natural language
instructions into structured, interpretable, and high-performance
behavioral responses.

3.3 System adaptation of the policy module

Embodied Intelligent systems are increasingly deployed not in
closed experimental settings, but in open, dynamic, and resource-
limited real-world environments. Consequently, the evaluation
metrics for strategy modules extend beyond mere “task completion
rate” or “reward function maximization” to encompass.

A comprehensive set of factors includes system load
capacity (latency, power consumption); multi-task versatility
(prompt support, semantic compatibility); training-to-deployment
transferability (Sim-to-Real stability (Liu et al, 2024), module
consistency); and structural compression capability (decoder
depth, module reusability). This paradigm shift necessitates
the evolution of the strategy module beyond its traditional
“strategy modeling” function into a “System Adapter” This
adapter forms a mediating layer between the strategy structure
and deployment logic, implementing four key adaptation
pathways (as illustrated in Figure 4). Figure 4 summarizes the
four primary adaptation mechanisms employed in the strategy
module design of current mainstream embodied systems,
spanning critical areas such as simulation transfer, lightweight
deployment (Xiao et al, 2023), task offloading, and control
precision scheduling.

First, the simulation-reality gap remains a core challenge
in deploying embodied control systems. Relying solely on the
policy itself is insufficient to address domain shifts, necessitating
auxiliary mechanisms to ensure consistency in state representations.
For instance, DreamerV3 (Hafner et al., 2025) enhances policy
stability significantly by combining world model-based recurrent
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FIGURE 4

Four key pathways for policy adaptation in embodied systems: Sim-to-Real transfer, lightweight deployment, multi-policy sharing, and task-aware

precision scheduling.

rollouts with dynamic reward reconstruction. Similarly, Prompt-
DT (Xu et al, 2022) leverages language prompts to guide
trajectory generation, maintaining alignment between instructions
and behaviors across diverse task objectives, thereby demonstrating
strong real-world transferability. Ultimately, Sim-to-Real is not
a perception issue but fundamentally a challenge of structural
consistency, requiring the establishment of a structural identity
mapping between policy inputs, state representations, and trajectory
generation logic.

Second, lightweight policy deployment is critical, particularly in
edge devices or multi-task systems where model size and inference
latency become key bottlenecks. Current mainstream approaches
include utilizing the Prompt Pool mechanism to compress multiple
instructions into a shared token space; replacing the policy
decoder with structures like TinyMPC or LightweightHead; and
strategically reducing input resolution while enhancing instruction
semantic quality to achieve a complementary “control precision-
input intensity” trade-off. Beyond these algorithmic optimizations,
groundbreaking work in full-system co-design has demonstrated
the feasibility of deploying complex policies on affordable, mobile
platforms. The Mobile ALOHA 2 system (Aldaco et al, 2024)
exemplifies this by integrating a compact bimanual hardware design
with a tailored imitation learning pipeline, enabling low-cost mobile
manipulators to execute sophisticated bimanual tasks with high
precision and robustness. This approach highlights that effective
lightweight deployment often requires joint innovation across policy
algorithms, hardware design, and data infrastructure. Taking RT-2
as an example, its policy network leverages multimodal embedding
and hierarchical token fusion to maintain inference latency below
150 ms at 92 % accuracy (Zitkovich et al.,, 2023), demonstrating
practical deployability.

Third, multi-policy shared architectures offer a cost-effective
solution for embodied systems, which typically encounter evolving
tasks rather than structural changes. Consequently, a single
universal policy is far less efficient than a shared backbone structure
coupled with a dynamic switching mechanism. In the ChatVLA
framework (Zhou et al., 2025), language prompts are employed to
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select sub-policy paths, while all tasks share the main representation
module (visual — semantic — control). This mechanism achieves
lightweight module invocation through structural distillation
and adapter injection, maintaining <5 % accuracy degradation
across nine distinct tasks while reducing memory usage by
over 60 %.

Fourth, task-aware precision adjustment is essential for
embodied systems operating continuously or under power
constraints, requiring policy modules to be resource-sensitive to
task objectives. This can include reducing decoder depth, activating
lightweight execution branches, or integrating external planners, for
example, leveraging a world model to preprocess predictions. Within
the DP-TA architecture, the policy layer can serve as a precision-
aware routing module, enabling resource-efficient control while
maintaining task effectiveness.

3.4 Unified interface and pathway design
for policy modules in the DP-TA
architecture

Within traditional embodied system architectures, the policy
module is typically treated as the “model tail” or a “control module”
Its inputs and outputs are often tightly coupled with the specific
implementation of preceding network components, lacking inherent
structural independence and a well-defined interface. To address
this limitation, we advocate for a redefinition of the policy layer
within the DP-TA framework as a structurally explicit, interface-
unified, and semantically autonomous module. This module bridges
perception-modeling outputs with downstream execution demands,
adapting flexibly to varying task objectives. From a structural
perspective, the DP-TAs policy generation and adaptation layer
receives two types of information: one from the perception and
alignment layer’s modal fusion state and the other from the world
modeling layer’s dynamic state prediction. These inputs, integrated
with task-specific objectives such as language prompts, graph
structures, and skill descriptions, constitute the complete input set
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Unified structure and interface pathways of the policy module in the DP-TA architecture

for the policy module. Its outputs encompass three critical elements:
continuous motion commands (e.g., 6D poses (Wen et al.,, 2024)
or trajectory point sequences (Bui et al., 2020)) directed to the
robot controller; behavior routing directives (e.g., sub-policy IDs or
skill invocation signals) governing mid-level skill orchestration; and
structured plan graphs or trajectory confidence estimates provided
to the explanation layer, furnishing verifiable decision evidence for
human oversight.

The core contribution of the DP-TA policy layer is not simply
to identify “which policy performs best” but to define a unified
structural interface that accommodates a diverse ensemble of policy
mechanisms—including behavior cloning, reinforcement learning,
and model predictive control. This design enables the integration
of a policy library (policy ensemble) with a routing mechanism
(policy router) (Lou et al., 2023), facilitating the dynamic selection,
reconfiguration, and composition of policies based on contextual
needs. Rather than focusing solely on selecting the best-performing
policy model, we argue that a more critical research direction is
how to architect a controllable and configurable policy space—one
that can generalize across tasks, adapt across platforms, and
respond to heterogeneous input modalities. To concretize this
abstraction, Figure 5 illustrates the modular composition, interface
pathways, and functional decoupling within the DP-TA policy
generation layer.

In summary, the role of the policy module in DP-TA extends far
beyond single action generation. It provides structured interfaces,
enables semantics-driven scheduling, and facilitates controllable
policy generation for complex systems. This conceptual shift
establishes a novel paradigm for future embodied intelligence
research, redirecting focus from individual model performance
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towards the structural design of the policy space and the
modeling of execution capabilities. This approach paves the
way for achieving genuine cognitive unification and task
generalization.

4 The structural function and system
integration of world models in
embodied intelligence

4.1 The evolutionary trajectory of model
structure

The concept of an internal world model—an internal
representation that allows an agent to simulate and predict the
consequences of its actions—is a foundational idea in cognitive
science and Al It was central to the “sense-model-plan-act”
paradigm (Nilsson, 1984) that dominated early robotics. While
limited by computational power, these early models, often based
on Bayesian filters (Kalman, 1960) or graphical models, aimed to
maintain a belief state about the world.

Today, the term “World Model” (WM) has been revitalized
by deep learning. Modern WMs, powered by vast data and
neural networks, comprehend the dynamics of the real world at
an unprecedented scale, encompassing its physical and spatial
properties. Utilizing multimodal input data including text, images,
videos, and motion, they generate predictive video sequences
(Ding et al., 2025). Through learning, these models acquire an
understanding of the physical characteristics governing real-
world environments, enabling them to represent and forecast
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dynamics such as motion, stress, and spatial relationships within
sensory data. Within the progression of embodied intelligence,
the architectural evolution of world models has advanced from
initial RNN encoders (Yu et al., 2022) through latent state space
modeling to contemporary multimodal Transformers endowed
with structural awareness and causal reasoning capabilities
(Zhang et al., 2023). This evolution is now accelerating with
the rise of generative world models that learn controllable
dynamics from internet videos. Notable examples include Genie
(Bruce et al., 2024), which generates actionable 2D worlds from
image prompts, and its successors that explore 3D physical reasoning
(Shang et al., 2025).

This trajectory reflects three key evolutionary trends: from
perceptual representation to state latent variable abstraction; from
single-step prediction to trajectory rolling simulation and reward
estimation; and from continuous variable generation to structural
token combination modeling. A further significant evolution
involves the shift from 2D-centric to 3D-grounded representations
and from discriminative to generative world modeling. The recently
proposed 3D-VLA model (Zhen et al, 2024) epitomizes this
trend. It is built upon a 3D-based large language model (LLM)
and introduces a generative world model that predicts future 3D
scenarios (as point clouds and images) through embodied diffusion
models. This approach moves beyond direct perception-action
mapping by enabling the model to ‘imagine’ the consequences
of actions in a 3D space prior to planning, thereby seamlessly
integrating 3D perception, reasoning, and action generation. These
trends signify that world models are no longer merely auxiliary
tools for policy training but are increasingly becoming structural
modules with independent cognitive functions within embodied
intelligence systems.

As illustrated in Figure 6, contemporary world model designs
are expanding from modeling mere state transitions to generating
semantic structural graphs. This expansion provides enhanced
interpretability and multi-task adaptability for policy generation.
The underlying model structures now seek a new equilibrium
between abstract representational unification and explicit
structural interpretability. Modern research on world models
is thus undergoing a conceptual transition—from optimizing
for predictive fidelity to emphasizing structural coherence and
causal planning capability. This evolution positions the world
model not merely as a support module for behavior, but
increasingly as a central inferential agent within embodied cognitive
systems. In conclusion, the ultimate goal of world modeling is
not simply to replicate the external world, but to construct a
structural proxy—a model capable of generating semantic graph
representations that can inform strategy synthesis, instruction
interpretation, and system-level coordination. This redefinition
elevates world models to the role of cognitive infrastructure,
essential  for achieving and

generalizable interpretable

embodied intelligence.

4.2 The three functions of world modeling
Within embodied intelligent systems, the role of world models

extends far beyond functioning as mere environment simulators or
state predictors (Ha and Schmidhuber, 2018b). We argue that world
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models should be redefined as structural state inference engines
within the system. Their crucial responsibilities extend beyond
dynamic modeling to enabling the system to achieve a functional
perception,
simulation, and task planning across three key dimensions. First,

closed-loop encompassing structural cognitive
State Reconstruction addresses the spatio-temporal alignment issues
of heterogeneous modalities such as vision, language, and haptics.
Distinct from the instantaneous representations generated at the
perceptual layer, world models focus on capturing the dynamical
concepts inherent in historical state sequences. A representative
example is the Recursive State Space Model (RSSM) (Hafner et al.,
2019b) utilized in DreamerV3 (Hafner et al., 2025). This mechanism
encodes latent states to capture the structural evolution of the
environment, thereby establishing a structured representational
foundation for subsequent reasoning. Next, Behavior Simulation
builds a virtual interaction space based on the representation,
evaluating the long-term benefits of action sequences through
rollout prediction (e.g., MPC optimization), significantly reducing
the cost of real-world interaction. The frontier of this research is
moving towards highly controllable and fine-grained simulations.
The GEM model (Hassan et al., 2025) exemplifies this direction:
it is a generative world model that predicts future ego-vision
frames with precise, independent control over object dynamics,
ego-agent motion, and human poses by conditioning on sparse
features, trajectories, and pose data. By generating paired RGB
and depth outputs autoregressively, GEM enables a rich, spatially-
aware simulation space for testing diverse ‘what-if’ scenarios,
greatly enhancing the robustness and versatility of policy learning
in complex, multi-agent environments. Finally, Causal Graph
Induction (CGI) essentially establishes an explicit reasoning chain
of “goal — action — outcome” This form of structured causal
reasoning not only facilitates explainable task decomposition
but also endows the system with counterfactual reasoning
capabilities—predicting the potential consequences of actions
not taken, which is critical for safety-aware decision-making in
high-risk scenarios.

4.3 Cognitive architecture for world
modeling and strategy coordination

In an ideal embodied intelligent system, the world model and
the policy module should form a stable cognition-control feedback
loop. Specifically, the world model handles structural state modeling
and causal planning, while the policy module determines behavioral
trajectories based on the world model’s outputs (Rohekar et al.,
2024). This interaction forms a closed-loop information flow
integrating environmental perception, internal modeling, and
execution control. Such coupling is reflected not only in the data flow
but also in the functional alignment and structural co-design of the
two modules. The following discusses three mainstream approaches
to achieving this integration.

The most basic form of coordination treats the world
the
instance, Dreamer (Hafner et al, 2019a) leverages a learned

model as a state prior generator for policy. For

environmental dynamics model to generate synthetic trajectory

rollouts. Concurrently, an internal reward model optimizes policy
parameters. In this setup, the task of policy training is effectively
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It illustrates the development trajectory from world models to representative systems such as DreamerV3 (Hafner et al., 2025), Gato (Reed et al,, 2022),
and DeepMind Genie. Each stage in the diagram summarizes its technical features and key models in chronological order, reflecting the evolution of
world models from predictive tools to the core of cognitive structures.

delegated to the simulated environment, decoupling learning from
physical interactions and significantly improving cross-environment
generalization.

A more structured approach organizes the world model and
policy module into a hierarchical decision-making pipeline. Here,
the world model functions as a structural planner, decomposing
high-level goals into structured sequences of sub-tasks (e.g., “clean
spilled liquid on the table — fetch cloth — wipe surface”),
while the policy module selects low-level control strategies under
given constraints to execute each step. This architecture offers
a clear separation between planning and execution, well-defined
module boundaries, and strong interpretability. However, it places
stringent demands on logical consistency—inconsistent sub-goals
(e.g., “move an unsecured object”) may lead to irrecoverable
execution failures.

The most advanced trend adopts a unified token-based
architecture, embedding both the world model and policy module
within a single Transformer framework to enable token-level
inference-execution coupling. In this design, state observations,
language instructions, and behavioral tokens are embedded

Frontiers in Robotics and Al

11

in a single input sequence. Causal attention mechanisms are
then employed to model cross-modal temporal dependencies
(Chen et al, 2021). The policy decoder subsequently outputs
either the next action or module invocation within the same
token stream. This unified approach, exemplified by systems such
as Gato and RT-2, tightly integrates perception — prediction —
decision into a shared latent space, achieving minimal architectural
complexity, high coupling strength, and fast response to instructions
(Reed et al., 2022; Zitkovich et al., 2023). Within the DP-TA
framework, this paradigm reflects a convergence of structural
compression and real-time scheduling.

4.4 Interface paths and functional coupling
of world models in DP-TA structures

Within the three-layer DP-TA architecture, the world model
constitutes the intermediate modeling layer, functioning as a
cognitive mediator that bridges perception outcomes and policy
control. Unlike conventional approaches that regard the modeling
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module as a loosely connected “task simulator” or “auxiliary
predictor” (Ha and Schmidhuber, 2018a), we advocate for a more
central role: the world model should be viewed as a generator of
structured states, a simulator of behavioral trajectories, and the
inference backbone for task graph construction. As the modeling
core of the DP-TA architecture, the world model not only enables
seamless information flow between perception and control but also
provides a unified structural foundation for multi-task adaptation
and reasoning-based execution.

5 DP-TA theoretical structure

The design of contemporary embodied intelligence systems
typically adheres to a modular paradigm, decomposing complex
systems into relatively independent submodules—such as
perception, planning, control, and world modeling. This modular
approach builds upon classical robotic architectures that date back
to the early sense-plan-act paradigm. While this design facilitates
independent development, optimization, and iteration of each
component, it often fails to explain how the system as a whole
can adapt to dynamic tasks, coordinate resource allocation, and
execute coherent behaviors (Batra et al., 2020). In recent years,
multimodal large model (MLM)-based embodied systems, such as
those leveraging LLaVA and Gemini, have emerged as a dominant
direction (Liu et al., 2023; Team et al., 2023). These systems
inherently challenge traditional modular boundaries, favoring
unified architectures with joint perception, reasoning, and action
generation. Parallel efforts (e.g., Meta’s Habitat 3.0 and Stanford’s
Mobile ALOHA) focus on zero-shot task generalization in open
and unstructured environments (Puig et al., 2023; Fu et al., 2024).
Yet, generalization to novel objects remains a critical gap in current
research. To address this limitation, we integrate classical principles
with modern advances in DP-TA (Dynamic Perception-Task
Adaptation) as a response to the structural fragmentation of existing
embodied systems. DP-TA aims to enhance generalization to
unknown objects and to explore a unified theoretical framework
that integrates system functionality across hierarchical levels
and task workflows. It provides a conceptual foundation for
encapsulating perception inputs, world modeling, and policy control
into standardized, composable, and schedulable task pipelines,
facilitating greater adaptability and coordination in real-world,

dynamic environments.

5.1 Three-layer functional structure of the
DP-TA framework

The DP-TA framework builds upon the classical perception-
modeling-control paradigm by introducing a three-layer system
architecture. Each layer independently encapsulates a core
system function, while structurally forming a closed loop via
an intermediate state interface and a semantic token alignment
mechanism. The Perception and Alignment Layer (P-layer)
integrates multi-modal sensory inputs (e.g., vision, haptics) to
produce semantically aligned token sequences that serve as
unified state representations for downstream modeling and control
modules. The World Modeling and Structure Prediction Layer
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(W-layer) simulates environmental dynamics and predicts task-
relevant structures to generate executable plans and action paths.
The Strategy Generation and Adaptation Layer (T-layer) formulates
concrete action strategies based on task goals and environmental
states, while dynamically adjusting execution in response to
environmental feedback. Although functionally distinct, these
three layers are structurally interconnected through standardized
interfaces and a shared semantic token space, forming a theoretically
closed-loop system. This architecture extends traditional layered
approaches by providing explicit coordination mechanisms,
enabling more flexible task adaptation and enhanced generalization
capabilities.

To facilitate effective coordination among the layers during
the DP-TA framework defines three standardized
interfaces: the Semantic State Interface (SSI), the Structure Planning
Interface (SPI), and the Goal Dispatch Interface (GDI). The SSI
standardizes the output of state token sequences, serving as a task-

runtime,

oriented communication protocol between perception, modeling,
and control modules. Inspired by hierarchical state representation
methods found in classical world modeling frameworks such as
Dreamer, the SSI ensures the semantic consistency of multimodal
information across all layers. The SPI delivers structured outputs
from the modeling layer in the form of interpretable causal graphs,
task graphs, or sub-task dependency trees, enabling the strategy
layer to understand and act upon the underlying task logic. The GDI
enables top-down feedback from the strategy layer to the perception
layer. Driven by task objectives or external prompts, it dynamically
modulates perception routing, modeling resolution, and strategic
planning pathways, as illustrated in Figure 7.

5.2 System coordination mechanism

To ensure theoretical coherence throughout the execution of
the DP-TA three-layer architecture, the framework emphasizes
coordination in data flow, functional roles, and structural
adaptation. By transmitting state representations, predicted states,
and behavior tokens across the three layers, DP-TA enables
continuous and closed-loop information processing, ensuring both
fluidity and consistency of data. The perception layer is responsible
for generating semantic representations from multimodal sensory
data; the modeling layer simulates environmental dynamics and
predicts future states; and the policy layer formulates executable
action plans. These layers form a progressive processing pipeline
from perceptual input to action output. To facilitate interoperability,
modules across all layers are designed to support a unified
embedding format (e.g., token-based nested representations),
shared attention mechanisms, and standardized interfaces for
planning graphs. Such structural adaptation mechanisms enhance
inter-module compatibility, system scalability, and cross-modal
integration. The DP-TA framework draws inspiration from the
form-behavior-learning paradigm, positioning state evolution as a
central link that bridges semantic perception and action generation.
For example, in a robotic manipulation task such as grasping a
green object on a table, the DP-TA framework enables a closed-loop
process from natural language instruction to physical execution. The
perception layer detects the green object through visual and tactile

sensing, generating a coherent state representation. The modeling
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Layer-3 interface coordination mechanism.

layer predicts environmental dynamics and plans the grasping
trajectory. The strategy layer then produces an object-specific
grasping plan, dynamically adapted via a Grasp-Driven Interaction
(GDI) mechanism. This enables the robot to determine how to
grasp the object based on its unique properties and context. This
closed-loop pipeline showcases the potential of DP-TA for tackling
complex, multimodal tasks in embodied intelligence systems.

The DP-TA framework thus represents an evolution rather
than a revolution—it systematizes and extends classical robotic
principles with modern neural architectures, offering a unified
theoretical approach to addressing the issue of modular
fragmentation in embodied intelligent systems. By establishing
a three-layer functional architecture, standardized interfaces,
DP-TA creates
a structured collaboration pathway for task-level integration,
thereby providing theoretical guidance for system-level design. Its

and collaborative coordination mechanisms,

strengths in multi-agent collaboration, multi-modal integration, and
interpretability position DP-TA as a promising research direction
within the field of embodied intelligence. While its practical
deployment still requires further investigation, the framework
offers a coherent theoretical foundation and a standardized
implementation pathway for the development of next-generation
intelligent systems.

6 Research challenges

Although embodied intelligent systems have made substantial
progress in perception modeling, language-conditioned control,
world modeling, and cross-modal alignment, achieving system
architectures that are structurally generalizable, semantically
interpretable, and deployable in a controllable manner remains a
significant challenge.

First, at the perception and alignment layer, semantic
mismatches across modalities are still prevalent. Even with
the application of large-scale models for joint image-language
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modeling, modal output inconsistencies persist in complex
environments characterized by occlusion, weakened sensory
representations, or ambiguous task objectives (Liu et al,
2025). These stem primarily from the lack of task-conditioned
cross-modal consistency constraints. Future directions may
include the development of task-aware cross-modal routing
mechanisms to adaptively align modalities under varying task
demands. Moreover, language prompts are still difficult to
translate directly into structured state representations. Current
perception modules lack the capacity to convert high-level
linguistic task instructions into attention-guided structures
in state space, limiting their effectiveness in task transfer
and generalization.

Second, at the world modeling layer, current models struggle
with structural task graph construction. Most world models
remain confined to short-term predictive tasks, lacking the
capability to explicitly model complex instruction hierarchies
and causal chains of subtasks. A promising direction is the
development of a language-behavior-causality Transformer that
enables multidimensional joint modeling (Ding et al., 2025).
In addition, long-horizon prediction models often suffer from
high training costs and poor generalization. Training a stable
world model requires extensive rollouts and high-dimensional
reconstructions, but the resulting models are often vulnerable to
behavioral drift and offer limited trajectory control in unseen
environments.

Third, at the strategy generation layer, the formulation of
strategy paths is still predominantly dictated by predefined
model architectures. Most current multi-task policy systems
rely on hard-coded modules or fixed policy heads (e.g., multi-
head architectures), rather than being dynamically driven
by semantic task goals. This reveals a lack of intermediate
structural representations that bridge task semantics and control
strategies. Furthermore, strategy-resource coupling mechanisms
remain underdeveloped. Critical components such as policy
switching, precision adaptation, and energy consumption control
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FIGURE 8

The three-stage evolution pathway of embodied intelligence systems. This pathway illustrates the progressive integration from multimodal perception

to adaptive action generation.

have yet to be seamlessly integrated into multi-task systems,
resulting in challenges in system stability, scalability, and
maintainability during deployment. The three-stage evolution
path of embodied intelligent systems from perception alignment
to structural modeling and then to strategy control as illustrated
in Figure 8.

7 Summary and prospects

The development of embodied intelligence has evolved beyond
isolated perception and control tasks into a systematic research
paradigm that encompasses three fundamental pathways: perceptual
input, world state modeling, and behavior generation. However,
current research efforts often remain focused at the modular
optimization level, lacking unified structural standards and task-
driven architectural guidance. This phenomenon—characterized by
local refinement but systemic fragmentation—significantly hinders
the transferability, semantic adaptability, and practical deployability
of embodied systems. This study conducts a comprehensive analysis
of this status quo. First, we review recent advancements in
multimodal perception and dynamic alignment, and synthesize
existing work to propose the concept of Feature-Conditioned Modal
Alignment (F-CMA). Next, we examine the role of the strategy
module in embodied systems and investigate the evolving functions
of world models. We argue that a stable cognition—control feedback
loop should be established between the world model and the strategy
module to support adaptive, task-aware decision making. To address
the aforementioned challenges, we propose the DP-TA three-
layer structural framework as a principled architectural solution.
By decomposing the system into three functionally autonomous,
interface-standardized, and semantically closed-loop layers, namely,
perception alignment, world modeling, and strategy generation,
DP-TA offers not only a reference paradigm for assessing the
structural completeness of embodied intelligence systems, but also
a clear roadmap for advancing system integration and inter-module
collaboration. We hope that the structural-cognitive perspective and
system integration framework proposed in this review will serve

Frontiers in Robotics and Al

14

as a conceptual foundation and shared design language for future
research in the field of embodied intelligence.
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