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Embodied intelligent systems build upon the foundations of behavioral 
robotics and classical cognitive architectures. They integrate multimodal 
perception, world modeling, and adaptive control to support closed-loop 
interaction in dynamic and uncertain environments. Recent breakthroughs 
in Multimodal Large Models (MLMs) and World Models (WMs) are profoundly 
transforming this field, providing the tools to achieve its long-envisioned 
capabilities of semantic understanding and robust generalization. Targeting 
the central challenge of how modern MLMs and WMs jointly advance 
embodied intelligence, this review provides a comprehensive overview across 
key dimensions, including multimodal perception, cross-modal alignment, 
adaptive decision-making, and Sim-to-Real transfer. Furthermore, we 
systematize these components into a three-stage theoretical framework termed 
“Dynamic Perception–Task Adaptation (DP-TA)”. This framework integrates 
multimodal perception modeling, causally driven world state prediction, 
and semantically guided strategy optimization, establishing a comprehensive 
“perception–modeling–decision” loop. To support this, we introduce a “Feature-
Conditioned Modal Alignment (F-CMA)” mechanism to enhance cross-modal 
fusion under task constraints.

KEYWORDS
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 1 Introduction

The early paradigm of artificial intelligence was largely grounded in the concept 
of “Disembodied intelligence”. The central goal of this approach was to mimic 
human intelligent behavior by focusing on enabling machines to simulate human-
like thought processes. However, this was done without considering a physical body 
or an environmental context. These systems’ reasoning relied on static data and pre-
defined rules. Because they lacked direct perception and interaction with the physical 
world, they faced significant limitations, often showing poor generalization, weak
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FIGURE 1
Development timeline of embodied intelligence.

adaptability to new tasks, and inefficient interactions in real-world 
scenarios (Nathan, 2023). Furthermore, real-world environments 
are increasingly characterized by uncertainty, sensory complexity, 
and task diversity, making the limitations of traditional disembodied 
AI increasingly clear. This has created a pressing need to 
develop intelligent systems that can interact effectively with their 
environment and adapt their structure accordingly.

In sharp contrast, the embodied intelligence paradigm 
emphasizes that intelligence arises through continuous closed-loop 
interaction between an agent and its environment. Such agents 
are defined by their physical bodies, sensors, and effectors, which 
together ground perception and action. The idea is not entirely 
new; its philosophical and engineering roots can be traced back 
to the cybernetics movement. Subsequent advances in behavioral 
robotics (Brooks, 1999; Arkin, 1998) and cognitive architecture 
theories (Laird et al., 1987) laid the foundations for the principles 
of embodiment and the perception–decision–execution loop. 
Building on these ideas, researchers demonstrated how autonomous 
agents could exhibit robust and adaptive behaviors in complex 
environments (Pfeifer and Scheier, 2001). This trajectory was 
further advanced by pioneering work in Evolutionary Robotics 
(Cliff et al., 1993), which explored automatic controller design, 
and by cognitive architectures like CLARION (Sun, 2007) and 
the Multilevel Darwinist Brain (MDB) (Bellas et al., 2010), which 
integrated learning, reasoning, and embodiment long before the 
current era of large models. The historical trajectory of embodied 
intelligence is shown in Figure 1.

For many years, applying these principles in practice has 
been challenging due to limitations in perception, computation, 
and reasoning. Recently, however, advances in multimodal large 
models (MLMs) and world models (WMs) have opened new 
possibilities. These developments provide researchers with powerful 

tools to tackle longstanding challenges, bringing us closer to 
building the embodied agents envisioned in earlier research. 
Driven by these technologies, the field is undergoing a profound 
transformation from early modular integration architectures to 
unified modeling frameworks (Roy et al., 2021). MLMs, including 
RT-2 (Zitkovich et al., 2023) and OpenVLA (Kim et al., 2024), 
are built on cross-modal Transformer architectures. This design 
enables them to create a unified representation from different input 
types, such as vision and language, and perform joint reasoning to 
achieve end-to-end control that directly translates natural language 
commands into physical actions. Concurrently, WMs (Ha and 
Schmidhuber, 2018b) aim to build an internal understanding of an 
environment by learning its latent states, enabling them to simulate 
potential future states and model causal relationships. This capability 
provides agents with a deeper understanding and facilitates effective 
knowledge transfer across different tasks (Deitke et al., 2020).

The combination of MLMs and WMs brings notable benefits, 
including improved system generality, support for cross-task 
learning, and facilitated deployment from simulation to reality 
(Sim-to-Real). This paper reviews how these modern advancements 
are revolutionizing the implementation of embodied systems. Our 
analysis centers on the synergistic integration of MLMs and WMs as 
a central focus for advancing embodied intelligence. The discussion 
is organized around key dimensions such as multimodal perception, 
cross-modal alignment, and Sim-to-Real transfer. Despite these 
advances, important gaps remain. Specifically, there is no complete 
framework that integrates all components systematically. As a 
result, issues such as information coupling, module decoupling, and 
interface design are still unresolved (Liu et al., 2025).

To address these challenges, this review proposes a structured 
modeling framework for embodied intelligent systems: the DP-
TA (Dynamic Perception–Task Adaptation) three-layer fusion 
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FIGURE 2
Dynamic perception–task adaptation framework.

architecture. This framework decomposes embodied systems into 
three core functional layers: multimodal perception and alignment, 
world modeling and task graph generation, and policy adaptation 
and execution scheduling. These layers correspond to the key 
processing stages from perceptual input to action output, as 
illustrated in Figure 2.

To support this architecture, we introduce the Feature-
Conditioned Modal Alignment (F-CMA) mechanism, which 
models how task semantics guide perceptual fusion strategies, 
thereby enhancing the system’s goal consistency and adaptability. 
The DP-TA framework not only provides a unified interface 
specification for multimodal perception, large-scale cognitive 
modeling, and policy execution but also offers a structured 

methodological framework for constructing embodied systems with 
high task generalization and flexible deployment capabilities.

The core contributions of this study are summarized as follows: 

1. We systematize the structural fusion of embodied intelligent 
systems into a framework termed DP-TA, which clearly 
delineates the functional boundaries of the three core 
layers—perception, modeling, and policy control—and their 
collaborative coupling paths.

2. We introduce the F-CMA mechanism, enriching the 
methodology for cross-modal information alignment.

3. From a system-functional perspective, we synthesize 
representative mechanisms and synergistic structures that 
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integrate multimodal large models and world models, 
analyzing their roles in behavior generation and task planning.

4. We examine core mechanisms and optimization pathways for 
the policy layer, encompassing advanced approaches such as 
Prompt-Policy structures, tokenized state representations, and 
skill graph scheduling. We also systematically identify key 
system-level optimization strategies for task deployment and 
module sharing.

5. We identify core challenges in current research and outline 
future trends, focusing on semantic consistency modeling, 
multi-policy architecture fusion, lightweight world model 
construction, and multi-task adaptation.

2 Multimodal perception and dynamic 
alignment

2.1 Research background and system value 
of multimodal perception

The perception module has long been recognized as the critical 
starting point for environmental information flow in intelligent 
systems, with its performance fundamentally determining the 
quality of subsequent modeling and decision-making processes. 
While early embodied systems relied on traditional sensor 
fusion techniques (Durrant-Whyte and Henderson, 2016) 
and state estimation methods (Thrun, 2002) for integrating 
limited modal data, the field has evolved significantly. In 
contrast to these traditional single-modal or basic multimodal 
perception paradigms, modern embodied environments require 
the sophisticated collaborative integration of heterogeneous 
modal data, including visual, linguistic, haptic, and depth 
information (Ma et al., 2024). This requirement elevates the core 
challenges of multimodal perception to cross-modal semantic 
fusion, modeling complementary information, dynamic temporal 
alignment, and robustness under environmental disturbances 
and sensor uncertainties. With breakthroughs in the theory of 
joint representation of language, vision, and action (Ma et al., 
2024), multimodal perception has emerged as a key enabling 
technology to achieve closed-loop collaboration between language 
instruction parsing, environmental state feedback, and adaptive 
task planning. Representative works such as LXMERT (Tan and 
Bansal, 2019) and MDETR (Kamath et al., 2021) establish semantic 
associations between modalities through cross-modal attention 
mechanisms, thus laying the theoretical foundation for perception-
cognition coupling in embodied tasks. Beyond this, very recent 
work continues to push the boundaries of multimodal integration. 
The OmniSegmentor framework (Yin et al., 2025) demonstrates a 
universal pre-training paradigm across five visual modalities (RGB, 
depth, thermal, etc.), significantly boosting perceptual capabilities 
and setting new state-of-the-art records on multiple segmentation 
benchmarks. This highlights a trend towards more flexible and 
powerful general-purpose multi-modal perception backbones for 
embodied agents. The universal applicability in scenarios such as 
robotics, human-computer interaction, and semantic navigation 
further highlights the systemic value of this paradigm. 

2.2 Modeling perceptual uncertainty and 
cross-modal alignment

Multimodal perception has increasingly become the core 
input component of Embodied Intelligent systems. However, 
modeling perceptual uncertainty and achieving cross-modal 
semantic alignment remain critical challenges. The theoretical 
challenge lies in establishing a paradigm for uncertainty modeling. 
Based on the sources of uncertainty, two fundamentally distinct 
theoretical categories can be identified. The first category stems 
from the inherent ambiguity, incompleteness, and environmental 
interference present in perceptual data itself, such as motion blur, 
sensor noise, and local occlusion. This type of uncertainty is referred 
to as intrinsic uncertainty, which possesses an irreparable nature. 
Its likelihood distribution must be modeled through mechanisms 
such as probabilistic heatmap prediction, multi-hypothesis output 
branches, and confidence regression (Kendall and Gal, 2017). 
The other category stems from insufficient prior knowledge in 
the model, typically manifested as a covariate shift between 
the training data distribution and the real-world scenario. This 
is referred to as cognitive uncertainty, and its modeling relies 
on theoretical frameworks such as Bayesian neural networks, 
Dropout random sampling (Gal and Ghahramani, 2016), and 
ensemble learning (Lakshminarayanan et al., 2017) to enhance the 
model’s robustness in unknown scenarios.

In embodied tasks, these two types of uncertainty often 
overlap and are further influenced by the heterogeneity among 
multimodal inputs. For instance, semantic ambiguity between 
vision and language modalities, as well as modality loss caused 
by sensor failures, can significantly interfere with policy learning 
and decision-making. To address this challenge, previous studies 
have proposed a series of cross-modal alignment mechanisms 
(see, e.g., (Hossain et al., 2025), Fed-CMA (Chen et al., 2020)) 
to mitigate the propagation of inconsistencies to downstream tasks. 
While these alignment methods cover a wide range of strategies, 
from explicit mappings (e.g., image-text labels) to implicit attention 
mechanisms (e.g., cross-modal Transformer fusion), they lack the 
ability to dynamically perceive task objectives. Consequently, when 
task semantics change or input modalities shift, such methods often 
struggle to achieve reliable alignment and adaptive fusion. For 
example, in language-guided grasping tasks, systems frequently 
cannot make robust fusion decisions when confronted with 
ambiguous language goals (e.g., “grab the edge”) or occluded image 
modalities. To mitigate these limitations, particularly the lack of 
semantic regulation and structural preservation during cross-modal 
alignment, recent work has incorporated the concept of feature-
conditioned guidance into local mechanisms. For example, FiLM 
(Perez et al., 2022) modulates the normalization parameters of 
the visual branch using language features, enabling conditionally 
aware visual encoding; MDETR (Kamath et al., 2021) uses text 
fragments as queries to explicitly guide the detection and alignment 
of objects in images, establishing semantic correspondences between 
phrases and image regions; BLIP-2 (Li et al., 2023) introduces a 
phased freezing and multimodal alignment modulation mechanism 
in its training policy, achieving cross-modal semantic modeling 
while maintaining the stability of the unimodal encoder structure; 
VIMA (Jiang et al., 2022) uses language prompts as conditional 
inputs for policy generation, achieving a conditional bridge from 
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perception to action. Very recently, research in 2024 has further 
advanced this paradigm by developing more generalizable and 
robust conditionally-aligned models. For instance, (Belkhale et al., 
2024), introduced RT-H (Robotic Transformer with Hierarchical 
Planning), which leverages a language-conditioned transformer 
architecture to generate precise motor control commands 
from complex natural language instructions and visual inputs, 
demonstrating superior real-world performance. These latest efforts 
highlight a clear shift towards building large-scale, task-aware, 
and semantically grounded conditional alignment systems that 
are both scalable and adaptable. Although these methods have 
different application objectives, they fundamentally embody the 
prototype mechanism of “using explicit features from one modality 
as conditions to guide the representation process of another 
modality.” Therefore, this study unifies such mechanisms under 
the name “Feature-Conditional Modality Alignment (F-CMA),” 
as illustrated in Figure 3. This paradigm is well-suited to the need 
for deep collaborative modeling of heterogeneous modalities in 
embodied intelligence, enabling task-semantics-driven multimodal 
fusion and uncertainty modeling.

3 Policy generation and task 
adaptation

The problem of how an agent maps world states to actions—the 
policy—has deep roots in control theory and early AI. Classical 
approaches ranged from deliberative planners (Fikes and Nilsson, 
1971) that operate on symbolic representations to reactive, behavior-
based systems (Brooks, 2003) that emphasize a tight coupling 
between sensors and actuators. These establish the fundamental 
trade-offs between planning and reactivity. In contemporary 
Embodied AI, the policy module continues to play a pivotal role, but 
its challenges have expanded. Operating in dynamic environments, 
it must not only comprehend the current state but also generate 
behavioral decisions characterized by generalization capability, 
stability, and efficiency, all under the guidance of complex semantic 
task objectives. 

3.1 Cognitive positioning of the policy 
module

The traditional definition of policy is limited to state-action 
mapping modeling. For embodied intelligence, this definition 
is clearly overly simplistic. Embodied systems must operate 
in open environments, utilizing multi-source sensory inputs, 
dynamic uncertainties, and diverse constraints arising from complex 
task objectives. Consequently, the policy module should be 
conceptualized not as an “end-effector controller” but as a Structural 
Task Adapter (STA). The role of the policy module in Embodied 
Intelligence should be reinterpreted as a multi-task decision path 
generator based on perceptual states and semantic goals, possessing 
task restructuring, resource scheduling, and semantic alignment 
capabilities. The design of the policy module should not be limited to 
mapping modeling but should include the following three cognitive 
functions. First, the policy should internalize the ability to model 
semantic task conditions. It should not merely “see the state and 

perform actions” but should deeply understand “what my current 
goal is” and seamlessly integrate task conditions in the form of text 
instructions or semantic graphs into the policy generation process. 
For example, text instructions are converted into embeddings and 
directly drive a multimodal Transformer for control prediction in 
the RT-H (Belkhale et al., 2024) system; and Prompt-DT (Xu et al., 
2022) encodes instructions and environmental trajectories together 
into generated plan tokens, which are typical examples of this 
capability. Second, the policy must have the core functionality of 
structured path generation. Modern embodied policies no longer 
output a single action but instead output structured trajectories 
that include causal dependencies between sub-goals. For example, 
DreamerV3 (Hafner et al., 2025) performs “inner loop prediction” 
in the world model to generate plans; SayCan (Ahn et al., 2022) 
uses an LLM to output multi-step sub-tasks, which are then 
executed by the actuator. Therefore, the policy network should 
have temporal awareness, semantic consistency, and planning 
capabilities (Kaelbling and Lozano-Pérez, 2011). Finally, the policy 
must achieve task scheduling and system interface decoupling, with 
the policy module automatically selecting sub-policies, functional 
modules, or control parameters based on task conditions. Successful 
implementations in multi-task systems like Gato (Reed et al., 2022) 
and ChatVLA (Zhou et al., 2025) demonstrate that policies are no 
longer “functions” but flexible “scheduling entry points.”

Within the DP-TA theoretical framework, the policy generation 
and adaptation layer occupies the top-level decision-making module 
of the system. Its inputs integrate multi-modal environmental states 
provided by the perception and alignment layer (Parisi et al., 2022), 
future states predicted by the world modeling layer and causal 
inference chains (Kaelbling and Lozano-Pérez, 2011), as well as 
semantic goal streams defined by user tasks (Ahn et al., 2022) 
or LLM (Xie et al., 2023) modules. The outputs of the policy 
layer must satisfy three key requirements: 1) direct executability 
by controllers or downstream modules (Liang et al., 2022); 2) 
effective responsiveness to task variations and resource constraints 
(Ge et al., 2023); 3) interpretability through visualization and 
analysis in the form of tokens, trajectories, or graph formats. The 
hierarchical structure of DP-TA relieves the policy module of the 
entire inference burden, freeing it to focus on integrating contextual 
structure and semantic goals; thereby, it functions as an efficient task 
scheduler (Liang et al., 2022), representing a fundamental departure 
from traditional pipeline-based control systems. In summary, the 
cognitive positioning of embodied policy modules is evolving 
from “action selectors” to “structural task schedulers” to support 
multimodal semantic fusion, task decomposition, and dynamic 
module invocation (Liang et al., 2022; Brohan et al., 2022). 

3.2 The evolutionary path of policy 
mechanisms and prompts

The policy generation mechanism in embodied intelligence 
has evolved progressively from action-supervised learning 
to structured decision generation. This evolution signifies a 
paradigm shift from “input-dimension constraints” to “structure-
modeling enhancement” (Levine et al., 2020), underscoring 
the transformation of policy modules from purely executive 
functions toward cognitive systems. Contemporary mainstream 
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FIGURE 3
Diagram of the proposed Feature-Conditioned Modality Alignment (F-CMA) framework. Task prompts modulate vision and language features through 
a dynamic conditioning mechanism, followed by structure-aware fusion to ensure geometric and semantic consistency. A feedback path maintains 
structural alignment under uncertainty.

approaches to policy generation can be broadly classified into three 
systematic paradigms: mapping-based, optimization-based, and 
structure-based.

The mapping paradigm represents the most direct supervised 
learning path for early perception-action systems, with Behavior 
Cloning (BC) (Torabi et al., 2018) and Imitation Learning (IL) 

(Zheng et al., 2024) serving as its representative methods. Its 
core assumption is that, given a state, supervised learning can 
approximate the expert policy, thereby achieving an end-to-
end mapping from perception to action. Methods within this 
paradigm, exemplified by systems such as RT-1 (Brohan et al., 
2022) and BC-Z (Jang et al., 2022), demonstrate effective cold-start 
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performance, particularly in fixed-process, single-task operational 
workflows. However, this modeling approach treats task objectives 
as implicit conditions, resulting in a policy that lacks adaptability to 
instruction variations or environmental dynamics (Shafiullah et al., 
2022). Consequently, when task objectives change, the policy 
cannot structurally adapt, leading to performance degradation in 
multi-task or temporally extended planning scenarios. Although 
characterized by high training efficiency, the inherent lack of 
structured representation within the policy hinders support for 
intra-task causal reasoning or cross-semantic transfer.

The optimization paradigm is based on reinforcement learning, 
which uses reward-driven behavioral strategy learning as its 
theoretical foundation. Starting from the task objective, the 
policy is iteratively optimized through reward signals (Josic, 
2021). Modeling typically combines a policy function with a 
state-value function or Q-function. In embodied tasks, systems 
like DreamerV3 (Hafner et al., 2025) leverage world models for 
“virtual interaction,” significantly enhancing learning efficiency 
and environmental generalization capabilities (Schrittwieser et al., 
2020). This approach incorporates long-term reward modeling 
and emergent policy self-organization, making it theoretically 
more suitable for complex goal-oriented planning. Nevertheless, 
it faces practical challenges including training instability 
and high sample complexity (Dulac-Arnold et al., 2019). 
Furthermore, the tight coupling between the policy and its 
training environment compromises module transferability and
policy reusability.

Recent research is advancing strategic modeling towards a 
structural planning paradigm. Here, language prompts, planning 
structures, and causal graphs serve as the primary entry points for 
strategy control. Prompts have evolved beyond mere instructions 
to function as task-driven mechanisms for strategy configuration 
(Shin et al., 2020). At the foundational level, task conditioning 
provides the core task semantics (“what to do”), exemplified 
by directives such as “place the red cup on the left shelf ”. At 
a deeper level, behavioral guidance navigates complex strategy 
spaces by offering “how to do it” directions. This effectively 
creates a “semantic roadmap” that identifies the optimal behavioral 
choice within multi-strategy contexts (Belkhale et al., 2024). The 
highest level structural interface transforms natural language 
or semantic prompts into tokens, graphs, or intermediate 
representations. This facilitates the strategy module’s uniform 
processing of interface information spanning language, perception, 
and control. This methodology departs from conventional 
approaches that directly learn state-to-action mappings. Instead, 
it frames strategy modeling as a structured generation task: 
sub-goal sequences, planning tokens, or semantic graphs are 
first constructed and subsequently decoded into specific control
instructions.

Integrating Prompts Deeply into Control Pipelines. The 
SayCan system exemplifies the “language prompt → sub-goal 
decomposition” approach. In this paradigm (Ahn et al., 2022), 
user instructions are initially processed by a large language model 
(LLM) to generate a structured sequence of sub-tasks (e.g., pick 
→ move → place). Subsequently, an actuator selects executable 
modules based on the current perceptual state, while a dedicated 
strategy controller handles only the final execution step. This 
approach significantly enhances strategy interpretability and 

composability. However, its effectiveness is critically dependent 
on the planning quality of the external LLM, and it lacks a real-
time feedback loop during execution. Conversely, the Prompt-DT 
paradigm employs a “prompt token → action sequence generation” 
strategy. Here, natural language prompts are concatenated with 
state trajectories and fed into a Transformer decoder to predict 
sequences of future behavior tokens (Xu et al., 2022). This 
method effectively integrates the efficiency of imitation learning 
with the flexibility of prompts, demonstrating robust multi-task 
adaptability and stable performance under low-data regimes. 
Its key innovation lies in decoupling task abstraction from 
the training architecture, thereby supporting instruction-level 
nesting and generalization. Representing the most promising 
end-to-end solution, the RT-2 (Zitkovich et al., 2023) system 
embodies the “unified token representation → multimodal policy 
control” paradigm. It encodes heterogeneous inputs (e.g., images, 
language instructions) into a unified token sequence, which is 
then processed by a multi-layer Transformer for direct strategy 
prediction and control output. This architecture not only unifies 
the input processing pipeline but also establishes a genuine 
end-to-end closed loop bridging perception and control. Such 
advancements are poised to endow strategy modules with “elastic 
structures” and “adaptive computation paths,” ultimately realizing 
a unified decision-making loop that translates natural language 
instructions into structured, interpretable, and high-performance
behavioral responses. 

3.3 System adaptation of the policy module

Embodied Intelligent systems are increasingly deployed not in 
closed experimental settings, but in open, dynamic, and resource-
limited real-world environments. Consequently, the evaluation 
metrics for strategy modules extend beyond mere “task completion 
rate” or “reward function maximization” to encompass.

A comprehensive set of factors includes system load 
capacity (latency, power consumption); multi-task versatility 
(prompt support, semantic compatibility); training-to-deployment 
transferability (Sim-to-Real stability (Liu et al., 2024), module 
consistency); and structural compression capability (decoder 
depth, module reusability). This paradigm shift necessitates 
the evolution of the strategy module beyond its traditional 
“strategy modeling” function into a “System Adapter.” This 
adapter forms a mediating layer between the strategy structure 
and deployment logic, implementing four key adaptation 
pathways (as illustrated in Figure 4). Figure 4 summarizes the 
four primary adaptation mechanisms employed in the strategy 
module design of current mainstream embodied systems, 
spanning critical areas such as simulation transfer, lightweight 
deployment (Xiao et al., 2023), task offloading, and control
precision scheduling.

First, the simulation-reality gap remains a core challenge 
in deploying embodied control systems. Relying solely on the 
policy itself is insufficient to address domain shifts, necessitating 
auxiliary mechanisms to ensure consistency in state representations. 
For instance, DreamerV3 (Hafner et al., 2025) enhances policy 
stability significantly by combining world model-based recurrent 
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FIGURE 4
Four key pathways for policy adaptation in embodied systems: Sim-to-Real transfer, lightweight deployment, multi-policy sharing, and task-aware 
precision scheduling.

rollouts with dynamic reward reconstruction. Similarly, Prompt-
DT (Xu et al., 2022) leverages language prompts to guide 
trajectory generation, maintaining alignment between instructions 
and behaviors across diverse task objectives, thereby demonstrating 
strong real-world transferability. Ultimately, Sim-to-Real is not 
a perception issue but fundamentally a challenge of structural 
consistency, requiring the establishment of a structural identity 
mapping between policy inputs, state representations, and trajectory 
generation logic.

Second, lightweight policy deployment is critical, particularly in 
edge devices or multi-task systems where model size and inference 
latency become key bottlenecks. Current mainstream approaches 
include utilizing the Prompt Pool mechanism to compress multiple 
instructions into a shared token space; replacing the policy 
decoder with structures like TinyMPC or LightweightHead; and 
strategically reducing input resolution while enhancing instruction 
semantic quality to achieve a complementary “control precision-
input intensity” trade-off. Beyond these algorithmic optimizations, 
groundbreaking work in full-system co-design has demonstrated 
the feasibility of deploying complex policies on affordable, mobile 
platforms. The Mobile ALOHA 2 system (Aldaco et al., 2024) 
exemplifies this by integrating a compact bimanual hardware design 
with a tailored imitation learning pipeline, enabling low-cost mobile 
manipulators to execute sophisticated bimanual tasks with high 
precision and robustness. This approach highlights that effective 
lightweight deployment often requires joint innovation across policy 
algorithms, hardware design, and data infrastructure. Taking RT-2 
as an example, its policy network leverages multimodal embedding 
and hierarchical token fusion to maintain inference latency below 
150 ms at 92 % accuracy (Zitkovich et al., 2023), demonstrating
practical deployability.

Third, multi-policy shared architectures offer a cost-effective 
solution for embodied systems, which typically encounter evolving 
tasks rather than structural changes. Consequently, a single 
universal policy is far less efficient than a shared backbone structure 
coupled with a dynamic switching mechanism. In the ChatVLA 
framework (Zhou et al., 2025), language prompts are employed to 

select sub-policy paths, while all tasks share the main representation 
module (visual → semantic → control). This mechanism achieves 
lightweight module invocation through structural distillation 
and adapter injection, maintaining <5 % accuracy degradation 
across nine distinct tasks while reducing memory usage by
over 60 %.

Fourth, task-aware precision adjustment is essential for 
embodied systems operating continuously or under power 
constraints, requiring policy modules to be resource-sensitive to 
task objectives. This can include reducing decoder depth, activating 
lightweight execution branches, or integrating external planners, for 
example, leveraging a world model to preprocess predictions. Within 
the DP-TA architecture, the policy layer can serve as a precision-
aware routing module, enabling resource-efficient control while 
maintaining task effectiveness. 

3.4 Unified interface and pathway design 
for policy modules in the DP-TA 
architecture

Within traditional embodied system architectures, the policy 
module is typically treated as the “model tail” or a “control module.” 
Its inputs and outputs are often tightly coupled with the specific 
implementation of preceding network components, lacking inherent 
structural independence and a well-defined interface. To address 
this limitation, we advocate for a redefinition of the policy layer 
within the DP-TA framework as a structurally explicit, interface-
unified, and semantically autonomous module. This module bridges 
perception-modeling outputs with downstream execution demands, 
adapting flexibly to varying task objectives. From a structural 
perspective, the DP-TA’s policy generation and adaptation layer 
receives two types of information: one from the perception and 
alignment layer’s modal fusion state and the other from the world 
modeling layer’s dynamic state prediction. These inputs, integrated 
with task-specific objectives such as language prompts, graph 
structures, and skill descriptions, constitute the complete input set 
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FIGURE 5
Unified structure and interface pathways of the policy module in the DP-TA architecture.

for the policy module. Its outputs encompass three critical elements: 
continuous motion commands (e.g., 6D poses (Wen et al., 2024) 
or trajectory point sequences (Bui et al., 2020)) directed to the 
robot controller; behavior routing directives (e.g., sub-policy IDs or 
skill invocation signals) governing mid-level skill orchestration; and 
structured plan graphs or trajectory confidence estimates provided 
to the explanation layer, furnishing verifiable decision evidence for
human oversight.

The core contribution of the DP-TA policy layer is not simply 
to identify “which policy performs best” but to define a unified 
structural interface that accommodates a diverse ensemble of policy 
mechanisms—including behavior cloning, reinforcement learning, 
and model predictive control. This design enables the integration 
of a policy library (policy ensemble) with a routing mechanism 
(policy router) (Lou et al., 2023), facilitating the dynamic selection, 
reconfiguration, and composition of policies based on contextual 
needs. Rather than focusing solely on selecting the best-performing 
policy model, we argue that a more critical research direction is 
how to architect a controllable and configurable policy space—one 
that can generalize across tasks, adapt across platforms, and 
respond to heterogeneous input modalities. To concretize this 
abstraction, Figure 5 illustrates the modular composition, interface 
pathways, and functional decoupling within the DP-TA policy
generation layer.

In summary, the role of the policy module in DP-TA extends far 
beyond single action generation. It provides structured interfaces, 
enables semantics-driven scheduling, and facilitates controllable 
policy generation for complex systems. This conceptual shift 
establishes a novel paradigm for future embodied intelligence 
research, redirecting focus from individual model performance 

towards the structural design of the policy space and the 
modeling of execution capabilities. This approach paves the 
way for achieving genuine cognitive unification and task
generalization. 

4 The structural function and system 
integration of world models in 
embodied intelligence

4.1 The evolutionary trajectory of model 
structure

The concept of an internal world model—an internal 
representation that allows an agent to simulate and predict the 
consequences of its actions—is a foundational idea in cognitive 
science and AI. It was central to the “sense-model-plan-act” 
paradigm (Nilsson, 1984) that dominated early robotics. While 
limited by computational power, these early models, often based 
on Bayesian filters (Kalman, 1960) or graphical models, aimed to 
maintain a belief state about the world.

Today, the term “World Model” (WM) has been revitalized 
by deep learning. Modern WMs, powered by vast data and 
neural networks, comprehend the dynamics of the real world at 
an unprecedented scale, encompassing its physical and spatial 
properties. Utilizing multimodal input data including text, images, 
videos, and motion, they generate predictive video sequences 
(Ding et al., 2025). Through learning, these models acquire an 
understanding of the physical characteristics governing real-
world environments, enabling them to represent and forecast 
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dynamics such as motion, stress, and spatial relationships within 
sensory data. Within the progression of embodied intelligence, 
the architectural evolution of world models has advanced from 
initial RNN encoders (Yu et al., 2022) through latent state space 
modeling to contemporary multimodal Transformers endowed 
with structural awareness and causal reasoning capabilities 
(Zhang et al., 2023). This evolution is now accelerating with 
the rise of generative world models that learn controllable 
dynamics from internet videos. Notable examples include Genie 
(Bruce et al., 2024), which generates actionable 2D worlds from 
image prompts, and its successors that explore 3D physical reasoning
(Shang et al., 2025).

This trajectory reflects three key evolutionary trends: from 
perceptual representation to state latent variable abstraction; from 
single-step prediction to trajectory rolling simulation and reward 
estimation; and from continuous variable generation to structural 
token combination modeling. A further significant evolution 
involves the shift from 2D-centric to 3D-grounded representations 
and from discriminative to generative world modeling. The recently 
proposed 3D-VLA model (Zhen et al., 2024) epitomizes this 
trend. It is built upon a 3D-based large language model (LLM) 
and introduces a generative world model that predicts future 3D 
scenarios (as point clouds and images) through embodied diffusion 
models. This approach moves beyond direct perception-action 
mapping by enabling the model to ‘imagine’ the consequences 
of actions in a 3D space prior to planning, thereby seamlessly 
integrating 3D perception, reasoning, and action generation. These 
trends signify that world models are no longer merely auxiliary 
tools for policy training but are increasingly becoming structural 
modules with independent cognitive functions within embodied 
intelligence systems.

As illustrated in Figure 6, contemporary world model designs 
are expanding from modeling mere state transitions to generating 
semantic structural graphs. This expansion provides enhanced 
interpretability and multi-task adaptability for policy generation. 
The underlying model structures now seek a new equilibrium 
between abstract representational unification and explicit 
structural interpretability. Modern research on world models 
is thus undergoing a conceptual transition—from optimizing 
for predictive fidelity to emphasizing structural coherence and 
causal planning capability. This evolution positions the world 
model not merely as a support module for behavior, but 
increasingly as a central inferential agent within embodied cognitive 
systems. In conclusion, the ultimate goal of world modeling is 
not simply to replicate the external world, but to construct a 
structural proxy—a model capable of generating semantic graph 
representations that can inform strategy synthesis, instruction 
interpretation, and system-level coordination. This redefinition 
elevates world models to the role of cognitive infrastructure, 
essential for achieving generalizable and interpretable
embodied intelligence.

4.2 The three functions of world modeling

Within embodied intelligent systems, the role of world models 
extends far beyond functioning as mere environment simulators or 
state predictors (Ha and Schmidhuber, 2018b). We argue that world 

models should be redefined as structural state inference engines 
within the system. Their crucial responsibilities extend beyond 
dynamic modeling to enabling the system to achieve a functional 
closed-loop encompassing structural perception, cognitive 
simulation, and task planning across three key dimensions. First, 
State Reconstruction addresses the spatio-temporal alignment issues 
of heterogeneous modalities such as vision, language, and haptics. 
Distinct from the instantaneous representations generated at the 
perceptual layer, world models focus on capturing the dynamical 
concepts inherent in historical state sequences. A representative 
example is the Recursive State Space Model (RSSM) (Hafner et al., 
2019b) utilized in DreamerV3 (Hafner et al., 2025). This mechanism 
encodes latent states to capture the structural evolution of the 
environment, thereby establishing a structured representational 
foundation for subsequent reasoning. Next, Behavior Simulation 
builds a virtual interaction space based on the representation, 
evaluating the long-term benefits of action sequences through 
rollout prediction (e.g., MPC optimization), significantly reducing 
the cost of real-world interaction. The frontier of this research is 
moving towards highly controllable and fine-grained simulations. 
The GEM model (Hassan et al., 2025) exemplifies this direction: 
it is a generative world model that predicts future ego-vision 
frames with precise, independent control over object dynamics, 
ego-agent motion, and human poses by conditioning on sparse 
features, trajectories, and pose data. By generating paired RGB 
and depth outputs autoregressively, GEM enables a rich, spatially-
aware simulation space for testing diverse ‘what-if ’ scenarios, 
greatly enhancing the robustness and versatility of policy learning 
in complex, multi-agent environments. Finally, Causal Graph 
Induction (CGI) essentially establishes an explicit reasoning chain 
of “goal → action → outcome”. This form of structured causal 
reasoning not only facilitates explainable task decomposition 
but also endows the system with counterfactual reasoning 
capabilities—predicting the potential consequences of actions 
not taken, which is critical for safety-aware decision-making in
high-risk scenarios. 

4.3 Cognitive architecture for world 
modeling and strategy coordination

In an ideal embodied intelligent system, the world model and 
the policy module should form a stable cognition–control feedback 
loop. Specifically, the world model handles structural state modeling 
and causal planning, while the policy module determines behavioral 
trajectories based on the world model’s outputs (Rohekar et al., 
2024). This interaction forms a closed-loop information flow 
integrating environmental perception, internal modeling, and 
execution control. Such coupling is reflected not only in the data flow 
but also in the functional alignment and structural co-design of the 
two modules. The following discusses three mainstream approaches 
to achieving this integration.

The most basic form of coordination treats the world 
model as a state prior generator for the policy. For 
instance, Dreamer (Hafner et al., 2019a) leverages a learned 
environmental dynamics model to generate synthetic trajectory 
rollouts. Concurrently, an internal reward model optimizes policy 
parameters. In this setup, the task of policy training is effectively 
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FIGURE 6
It illustrates the development trajectory from world models to representative systems such as DreamerV3 (Hafner et al., 2025), Gato (Reed et al., 2022), 
and DeepMind Genie. Each stage in the diagram summarizes its technical features and key models in chronological order, reflecting the evolution of 
world models from predictive tools to the core of cognitive structures.

delegated to the simulated environment, decoupling learning from 
physical interactions and significantly improving cross-environment 
generalization.

A more structured approach organizes the world model and 
policy module into a hierarchical decision-making pipeline. Here, 
the world model functions as a structural planner, decomposing 
high-level goals into structured sequences of sub-tasks (e.g., “clean 
spilled liquid on the table → fetch cloth → wipe surface”), 
while the policy module selects low-level control strategies under 
given constraints to execute each step. This architecture offers 
a clear separation between planning and execution, well-defined 
module boundaries, and strong interpretability. However, it places 
stringent demands on logical consistency—inconsistent sub-goals 
(e.g., “move an unsecured object”) may lead to irrecoverable 
execution failures.

The most advanced trend adopts a unified token-based 
architecture, embedding both the world model and policy module 
within a single Transformer framework to enable token-level 
inference–execution coupling. In this design, state observations, 
language instructions, and behavioral tokens are embedded 

in a single input sequence. Causal attention mechanisms are 
then employed to model cross-modal temporal dependencies 
(Chen et al., 2021). The policy decoder subsequently outputs 
either the next action or module invocation within the same 
token stream. This unified approach, exemplified by systems such 
as Gato and RT-2, tightly integrates perception → prediction →
decision into a shared latent space, achieving minimal architectural 
complexity, high coupling strength, and fast response to instructions 
(Reed et al., 2022; Zitkovich et al., 2023). Within the DP-TA 
framework, this paradigm reflects a convergence of structural 
compression and real-time scheduling. 

4.4 Interface paths and functional coupling 
of world models in DP-TA structures

Within the three-layer DP-TA architecture, the world model 
constitutes the intermediate modeling layer, functioning as a 
cognitive mediator that bridges perception outcomes and policy 
control. Unlike conventional approaches that regard the modeling 
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module as a loosely connected “task simulator” or “auxiliary 
predictor” (Ha and Schmidhuber, 2018a), we advocate for a more 
central role: the world model should be viewed as a generator of 
structured states, a simulator of behavioral trajectories, and the 
inference backbone for task graph construction. As the modeling 
core of the DP-TA architecture, the world model not only enables 
seamless information flow between perception and control but also 
provides a unified structural foundation for multi-task adaptation 
and reasoning-based execution. 

5 DP-TA theoretical structure

The design of contemporary embodied intelligence systems 
typically adheres to a modular paradigm, decomposing complex 
systems into relatively independent submodules—such as 
perception, planning, control, and world modeling. This modular 
approach builds upon classical robotic architectures that date back 
to the early sense-plan-act paradigm. While this design facilitates 
independent development, optimization, and iteration of each 
component, it often fails to explain how the system as a whole 
can adapt to dynamic tasks, coordinate resource allocation, and 
execute coherent behaviors (Batra et al., 2020). In recent years, 
multimodal large model (MLM)-based embodied systems, such as 
those leveraging LLaVA and Gemini, have emerged as a dominant 
direction (Liu et al., 2023; Team et al., 2023). These systems 
inherently challenge traditional modular boundaries, favoring 
unified architectures with joint perception, reasoning, and action 
generation. Parallel efforts (e.g., Meta’s Habitat 3.0 and Stanford’s 
Mobile ALOHA) focus on zero-shot task generalization in open 
and unstructured environments (Puig et al., 2023; Fu et al., 2024). 
Yet, generalization to novel objects remains a critical gap in current 
research. To address this limitation, we integrate classical principles 
with modern advances in DP-TA (Dynamic Perception–Task 
Adaptation) as a response to the structural fragmentation of existing 
embodied systems. DP-TA aims to enhance generalization to 
unknown objects and to explore a unified theoretical framework 
that integrates system functionality across hierarchical levels 
and task workflows. It provides a conceptual foundation for 
encapsulating perception inputs, world modeling, and policy control 
into standardized, composable, and schedulable task pipelines, 
facilitating greater adaptability and coordination in real-world, 
dynamic environments. 

5.1 Three-layer functional structure of the 
DP-TA framework

The DP-TA framework builds upon the classical perception-
modeling-control paradigm by introducing a three-layer system 
architecture. Each layer independently encapsulates a core 
system function, while structurally forming a closed loop via 
an intermediate state interface and a semantic token alignment 
mechanism. The Perception and Alignment Layer (P-layer) 
integrates multi-modal sensory inputs (e.g., vision, haptics) to 
produce semantically aligned token sequences that serve as 
unified state representations for downstream modeling and control 
modules. The World Modeling and Structure Prediction Layer 

(W-layer) simulates environmental dynamics and predicts task-
relevant structures to generate executable plans and action paths. 
The Strategy Generation and Adaptation Layer (T-layer) formulates 
concrete action strategies based on task goals and environmental 
states, while dynamically adjusting execution in response to 
environmental feedback. Although functionally distinct, these 
three layers are structurally interconnected through standardized 
interfaces and a shared semantic token space, forming a theoretically 
closed-loop system. This architecture extends traditional layered 
approaches by providing explicit coordination mechanisms, 
enabling more flexible task adaptation and enhanced generalization 
capabilities.

To facilitate effective coordination among the layers during 
runtime, the DP-TA framework defines three standardized 
interfaces: the Semantic State Interface (SSI), the Structure Planning 
Interface (SPI), and the Goal Dispatch Interface (GDI). The SSI 
standardizes the output of state token sequences, serving as a task-
oriented communication protocol between perception, modeling, 
and control modules. Inspired by hierarchical state representation 
methods found in classical world modeling frameworks such as 
Dreamer, the SSI ensures the semantic consistency of multimodal 
information across all layers. The SPI delivers structured outputs 
from the modeling layer in the form of interpretable causal graphs, 
task graphs, or sub-task dependency trees, enabling the strategy 
layer to understand and act upon the underlying task logic. The GDI 
enables top-down feedback from the strategy layer to the perception 
layer. Driven by task objectives or external prompts, it dynamically 
modulates perception routing, modeling resolution, and strategic 
planning pathways, as illustrated in Figure 7.

5.2 System coordination mechanism

To ensure theoretical coherence throughout the execution of 
the DP-TA three-layer architecture, the framework emphasizes 
coordination in data flow, functional roles, and structural 
adaptation. By transmitting state representations, predicted states, 
and behavior tokens across the three layers, DP-TA enables 
continuous and closed-loop information processing, ensuring both 
fluidity and consistency of data. The perception layer is responsible 
for generating semantic representations from multimodal sensory 
data; the modeling layer simulates environmental dynamics and 
predicts future states; and the policy layer formulates executable 
action plans. These layers form a progressive processing pipeline 
from perceptual input to action output. To facilitate interoperability, 
modules across all layers are designed to support a unified 
embedding format (e.g., token-based nested representations), 
shared attention mechanisms, and standardized interfaces for 
planning graphs. Such structural adaptation mechanisms enhance 
inter-module compatibility, system scalability, and cross-modal 
integration. The DP-TA framework draws inspiration from the 
form–behavior–learning paradigm, positioning state evolution as a 
central link that bridges semantic perception and action generation. 
For example, in a robotic manipulation task such as grasping a 
green object on a table, the DP-TA framework enables a closed-loop 
process from natural language instruction to physical execution. The 
perception layer detects the green object through visual and tactile 
sensing, generating a coherent state representation. The modeling 
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FIGURE 7
Layer-3 interface coordination mechanism.

layer predicts environmental dynamics and plans the grasping 
trajectory. The strategy layer then produces an object-specific 
grasping plan, dynamically adapted via a Grasp-Driven Interaction 
(GDI) mechanism. This enables the robot to determine how to 
grasp the object based on its unique properties and context. This 
closed-loop pipeline showcases the potential of DP-TA for tackling 
complex, multimodal tasks in embodied intelligence systems.

The DP-TA framework thus represents an evolution rather 
than a revolution—it systematizes and extends classical robotic 
principles with modern neural architectures, offering a unified 
theoretical approach to addressing the issue of modular 
fragmentation in embodied intelligent systems. By establishing 
a three-layer functional architecture, standardized interfaces, 
and collaborative coordination mechanisms, DP-TA creates 
a structured collaboration pathway for task-level integration, 
thereby providing theoretical guidance for system-level design. Its 
strengths in multi-agent collaboration, multi-modal integration, and 
interpretability position DP-TA as a promising research direction 
within the field of embodied intelligence. While its practical 
deployment still requires further investigation, the framework 
offers a coherent theoretical foundation and a standardized 
implementation pathway for the development of next-generation
intelligent systems. 

6 Research challenges

Although embodied intelligent systems have made substantial 
progress in perception modeling, language-conditioned control, 
world modeling, and cross-modal alignment, achieving system 
architectures that are structurally generalizable, semantically 
interpretable, and deployable in a controllable manner remains a 
significant challenge.

First, at the perception and alignment layer, semantic 
mismatches across modalities are still prevalent. Even with 
the application of large-scale models for joint image–language 

modeling, modal output inconsistencies persist in complex 
environments characterized by occlusion, weakened sensory 
representations, or ambiguous task objectives (Liu et al., 
2025). These stem primarily from the lack of task-conditioned 
cross-modal consistency constraints. Future directions may 
include the development of task-aware cross-modal routing 
mechanisms to adaptively align modalities under varying task 
demands. Moreover, language prompts are still difficult to 
translate directly into structured state representations. Current 
perception modules lack the capacity to convert high-level 
linguistic task instructions into attention-guided structures 
in state space, limiting their effectiveness in task transfer
and generalization.

Second, at the world modeling layer, current models struggle 
with structural task graph construction. Most world models 
remain confined to short-term predictive tasks, lacking the 
capability to explicitly model complex instruction hierarchies 
and causal chains of subtasks. A promising direction is the 
development of a language–behavior–causality Transformer that 
enables multidimensional joint modeling (Ding et al., 2025). 
In addition, long-horizon prediction models often suffer from 
high training costs and poor generalization. Training a stable 
world model requires extensive rollouts and high-dimensional 
reconstructions, but the resulting models are often vulnerable to 
behavioral drift and offer limited trajectory control in unseen 
environments.

Third, at the strategy generation layer, the formulation of 
strategy paths is still predominantly dictated by predefined 
model architectures. Most current multi-task policy systems 
rely on hard-coded modules or fixed policy heads (e.g., multi-
head architectures), rather than being dynamically driven 
by semantic task goals. This reveals a lack of intermediate 
structural representations that bridge task semantics and control 
strategies. Furthermore, strategy–resource coupling mechanisms 
remain underdeveloped. Critical components such as policy 
switching, precision adaptation, and energy consumption control 
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FIGURE 8
The three-stage evolution pathway of embodied intelligence systems. This pathway illustrates the progressive integration from multimodal perception 
to adaptive action generation.

have yet to be seamlessly integrated into multi-task systems, 
resulting in challenges in system stability, scalability, and 
maintainability during deployment. The three-stage evolution 
path of embodied intelligent systems from perception alignment 
to structural modeling and then to strategy control as illustrated
in Figure 8.

7 Summary and prospects

The development of embodied intelligence has evolved beyond 
isolated perception and control tasks into a systematic research 
paradigm that encompasses three fundamental pathways: perceptual 
input, world state modeling, and behavior generation. However, 
current research efforts often remain focused at the modular 
optimization level, lacking unified structural standards and task-
driven architectural guidance. This phenomenon—characterized by 
local refinement but systemic fragmentation—significantly hinders 
the transferability, semantic adaptability, and practical deployability 
of embodied systems. This study conducts a comprehensive analysis 
of this status quo. First, we review recent advancements in 
multimodal perception and dynamic alignment, and synthesize 
existing work to propose the concept of Feature-Conditioned Modal 
Alignment (F-CMA). Next, we examine the role of the strategy 
module in embodied systems and investigate the evolving functions 
of world models. We argue that a stable cognition–control feedback 
loop should be established between the world model and the strategy 
module to support adaptive, task-aware decision making. To address 
the aforementioned challenges, we propose the DP-TA three-
layer structural framework as a principled architectural solution. 
By decomposing the system into three functionally autonomous, 
interface-standardized, and semantically closed-loop layers, namely, 
perception alignment, world modeling, and strategy generation, 
DP-TA offers not only a reference paradigm for assessing the 
structural completeness of embodied intelligence systems, but also 
a clear roadmap for advancing system integration and inter-module 
collaboration. We hope that the structural-cognitive perspective and 
system integration framework proposed in this review will serve 

as a conceptual foundation and shared design language for future 
research in the field of embodied intelligence.

Author contributions

YZ: Writing – review and editing, Supervision, 
Conceptualization. JT: Writing – original draft, Writing – review 
and editing, Methodology, Visualization, Conceptualization. QX: 
Writing – review and editing, Validation. 

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported by the National Natural Science Foundation of China 
(51365019), and the Construction Project of Higher Educational 
Key Laboratory for Industrial Intelligence and Systems of Yunnan 
Province (KKPH202403003).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2025.1668910
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zhang et al. 10.3389/frobt.2025.1668910

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., et al. (2022). 
Do as i can, not as i say: grounding language in robotic affordances. arXiv preprint 
arXiv:2204.01691.

Aldaco, J., Armstrong, T., Baruch, R., Bingham, J., Chan, S., Draper, K., et al. (2024). 
Aloha 2: an enhanced low-cost hardware for bimanual teleoperation. arXiv preprint 
arXiv:2405.02292.

Arkin, R. C. (1998). Behavior-based robotics. London, UK: MIT press.

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng, J., Koltun, V., et al. (2020). 
Rearrangement: a challenge for embodied ai. arXiv preprint arXiv:2011.01975.

Belkhale, S., Ding, T., Xiao, T., Sermanet, P., Vuong, Q., Tompson, J., et al. (2024). 
Rt-h: action hierarchies using language. arXiv preprint arXiv:2403.01823.

Bellas, F., Duro, R. J., Faiña, A., and Souto, D. (2010). Multilevel darwinist brain 
(mdb): artificial evolution in a cognitive architecture for real robots. IEEE Trans. Aut. 
Ment. Dev. 2, 340–354. doi:10.1109/tamd.2010.2086453

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., et al. (2022). Rt-1: 
robotics transformer for real-world control at scale. arXiv preprint arXiv:2212.06817.

Brooks, R. A. (1999). Cambrian intelligence: the early history of the new AI. London, 
UK: MIT press.

Brooks, R. (2003). A robust layered control system for a mobile robot. IEEE J. Robotics 
Automation 2, 14–23. doi:10.1109/jra.1986.1087032

Bruce, J., Dennis, M. D., Edwards, A., Parker-Holder, J., Shi, Y., Hughes, E., 
et al. (2024). Genie: generative interactive environments. In: Forty-first international 
conference on machine learning; 2024 July 21–27; Vienna, Austria.

Bui, H.-D., Nguyen, H., La, H. M., and Li, S. (2020). A deep learning-based 
autonomous robot manipulator for sorting application. In: 2020 fourth IEEE 
international conference on robotic computing (IRC); 2020 November 9–11: IEEE. p. 
298–305.

Chen, Y., Qin, X., Wang, J., Yu, C., and Gao, W. (2020). Fedhealth: a federated 
transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35, 83–93. 
doi:10.1109/mis.2020.2988604

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., et al. (2021). Decision 
transformer: reinforcement learning via sequence modeling. Adv. neural Inf. Process. 
Syst. 34, 15084–15097. doi:10.48550/arXiv.2106.01345

Cliff, D., Husbands, P., and Harvey, I. (1993). Explorations in evolutionary robotics. 
Adapt. Behav. 2, 73–110. doi:10.1177/105971239300200104

Deitke, M., Han, W., Herrasti, A., Kembhavi, A., Kolve, E., Mottaghi, R., et al. (2020). 
Robothor: an open simulation-to-real embodied ai platform. In: Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition; 2024 June 16–22: 
IEEE. p. 3164–3174.

Ding, J., Zhang, Y., Shang, Y., Zhang, Y., Zong, Z., Feng, J., et al. (2025). Understanding 
world or predicting future? a comprehensive survey of world models. ACM Comput. 
Surv. 58, 1–38. doi:10.1145/3746449

Dulac-Arnold, G., Mankowitz, D., and Hester, T. (2019). Challenges of real-world 
reinforcement learning. arXiv preprint arXiv:1904.12901.

Durrant-Whyte, H., and Henderson, T. C. (2016). Multisensor data fusion. In: 
Springer handbook of robotics. Cham: Springer. p. 867–896.

Fikes, R. E., and Nilsson, N. J. (1971). Strips: a new approach to the application 
of theorem proving to problem solving. Artif. Intell. 2, 189–208. doi:10.1016/0004-
3702(71)90010-5

Fu, Z., Zhao, T. Z., and Finn, C. (2024). Mobile aloha: learning bimanual mobile 
manipulation with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117.

Gal, Y., and Ghahramani, Z. (2016). Dropout as a bayesian approximation: 
representing model uncertainty in deep learning. In: International conference on 
machine learning ; 2024 July 21–27; Vienna, Austria: PMLR. p. 1050–1059.

Ge, Y., Macaluso, A., Li, L. E., Luo, P., and Wang, X. (2023). Policy adaptation from 
foundation model feedback. In: Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition; 2024 June 16–22: IEEE. p. 19059–19069.

Ha, D., and Schmidhuber, J. (2018a). Recurrent world models facilitate policy 
evolution. In: Advances in neural information processing systems 37; 2023 December 
10–16; New Orleans, LA, USA. doi:10.5281/zenodo.1207631

Ha, D., and Schmidhuber, J. (2018b). World models. arXiv preprint arXiv:1803.10122.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2019a). Dream to control: learning 
behaviors by latent imagination. arXiv preprint arXiv:1912.01603.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., et al. (2019b). Learning 
latent dynamics for planning from pixels. In: International conference on machine 
learning ; 2024 July 21–27; Vienna, Austria: PMLR. p. 2555–2565.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2025). Mastering diverse control 
tasks through world models. Nature 640, 647–653. doi:10.1038/s41586-025-08744-2

Hassan, M., Stapf, S., Rahimi, A., Rezende, P., Haghighi, Y., Brüggemann, D., et al. 
(2025). Gem: a generalizable ego-vision multimodal world model for fine-grained 
ego-motion, object dynamics, and scene composition control. In: Proceedings of 
the computer vision and pattern recognition conference; 2024 June 16–22: IEEE. p. 
22404–22415.

Hossain, M. S., Hossain, M., Chaki, S., Mridha, M. F., Rahman, M. S., and Moni, M. 
A. (2025). Dimension-wise gated cross-attention for multimodal sentiment analysis. 
In: Companion proceedings of the ACM on web conference 2025. New York, NY, USA: 
Association for Computing Machinery. p. 1979–1987. doi:10.1145/3701716.3718381

Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F., Lynch, C., et al. (2022). Bc-z: 
zero-shot task generalization with robotic imitation learning: In: Conference on robot 
learning; 2024 November 6–9; Munich, Germany: PMLR. p. 991–1002.

Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y., et al. (2022). Vima: general 
robot manipulation with multimodal prompts. arXiv preprint arXiv:2210.03094 2, 6.

Josic, K. (2021). Reinforcement learning: an introduction. SIAM Rev. 63, 423–425.

Kaelbling, L. P., and Lozano-Pérez, T. (2011). Hierarchical task and motion planning 
in the now. In: 2011 IEEE international conference on robotics and automation: IEEE. 
p. 1470–1477. doi:10.1109/ICRA.2011.5980391

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. 
Fluids Eng. 82, 35–45. doi:10.1115/1.3662552

Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., and Carion, N. 
(2021). Mdetr-modulated detection for end-to-end multi-modal understanding. In: 
Proceedings of the IEEE/CVF international conference on computer vision: IEEE. p. 
1780–1790.

Kendall, A., and Gal, Y. (2017). What uncertainties do we need in 
bayesian deep learning for computer vision? Adv. neural Inf. Process. Syst. 30. 
doi:10.48550/arXiv.1703.04977

Kim, M., Pertsch, K., Karamcheti, S., Xiao, T., Balakrishna, A., Nair, S., 
et al. (2024). Openvla: an open-source vision-language-action model. arXiv preprint 
arXiv:2406.09246.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: an architecture for general 
intelligence. Artif. Intell. 33, 1–64. doi:10.1016/0004-3702(87)90050-6

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable 
predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst.
30. doi:10.48550/arXiv.1612.01474

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: 
tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Li, J., Li, D., Savarese, S., and Hoi, S. (2023). Blip-2: bootstrapping language-
image pre-training with frozen image encoders and large language models. In: 
International conference on machine learning ; 2024 July 21–27; Vienna, Austria: PMLR. 
p. 19730–19742.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., et al. (2022). 
Code as policies: language model programs for embodied control. arXiv preprint 
arXiv:2209.07753.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. (2023). Visual instruction tuning. Adv. Neural 
Inf. Process. Syst. 36, 34892–34916. doi:10.48550/arXiv.2304.08485

Liu, Y., Chen, W., Bai, Y., Liang, X., Li, G., Gao, W., et al. (2024). Aligning cyber 
space with physical world: a comprehensive survey on embodied ai. arXiv preprint 
arXiv:2407.06886.

Liu, H., Guo, D., and Cangelosi, A. (2025). Embodied intelligence: a synergy 
of morphology, action, perception and learning. ACM Comput. Surv. 57, 1–36. 
doi:10.1145/3717059

Lou, X., Guo, J., Zhang, J., Wang, J., Huang, K., and Du, Y. (2023). Pecan: leveraging 
policy ensemble for context-aware zero-shot human-ai coordination. arXiv preprint 
arXiv:2301.06387.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2025.1668910
https://doi.org/10.1109/tamd.2010.2086453
https://doi.org/10.1109/jra.1986.1087032
https://doi.org/10.1109/mis.2020.2988604
https://doi.org/10.48550/arXiv.2106.01345
https://doi.org/10.1177/105971239300200104
https://doi.org/10.1145/3746449
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.5281/zenodo.1207631
https://doi.org/10.1038/s41586-025-08744-2
https://doi.org/10.1145/3701716.3718381
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1115/1.3662552
https://doi.org/10.48550/arXiv.1703.04977
https://doi.org/10.1016/0004-3702(87)90050-6
https://doi.org/10.48550/arXiv.1612.01474
https://doi.org/10.48550/arXiv.2304.08485
https://doi.org/10.1145/3717059
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zhang et al. 10.3389/frobt.2025.1668910

Ma, Y., Song, Z., Zhuang, Y., Hao, J., and King, I. (2024). A survey on vision-language-
action models for embodied ai. arXiv preprint arXiv:2405.14093.

Nathan, M. J. (2023). Disembodied ai and the limits to machine 
understanding of students’ embodied interactions. Front. Artif. Intell. 6, 1148227. 
doi:10.3389/frai.2023.1148227

Nilsson, N. J. (1984). Shakey the robot. Menlo Park, CA: SRI International. 
doi:10.2214/ajr.172.3.10063854

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta, A. (2022). The unsurprising 
effectiveness of pre-trained vision models for control. In: International conference on 
machine learning; 2024 July 21–27; Vienna, Austria: PMLR. p. 17359–17371.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2022). 
Film: visual reasoning with a general conditioning layer. In: Proceedings of the 
AAAI conference on artificial intelligence: AAAI Publications. doi:10.1609/aaai.
v32i1.11671

Pfeifer, R., and Scheier, C. (2001). Understanding intelligence. London, UK: MIT press.

Puig, X., Undersander, E., Szot, A., Cote, M. D., Yang, T.-Y., Partsey, R., et al. 
(2023). Habitat 3.0: a co-habitat for humans, avatars and robots. arXiv preprint 
arXiv:2310.13724.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., 
et al. (2022). A generalist agent. arXiv preprint arXiv:2205.06175.

Rohekar, R. Y., Gurwicz, Y., Yu, S., Aflalo, E., and Lal, V. (2024). A causal world 
model underlying next token prediction: exploring gpt in a controlled environment. arXiv 
preprint arXiv:2412.07446.

Roy, N., Posner, I., Barfoot, T., Beaudoin, P., Bengio, Y., Bohg, J., et al. (2021). From 
machine learning to robotics: challenges and opportunities for embodied intelligence. arXiv 
preprint arXiv:2110.15245.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et al. 
(2020). Mastering atari, go, chess and shogi by planning with a learned model. Nature
588, 604–609. doi:10.1038/s41586-020-03051-4

Shafiullah, N. M., Cui, Z., Altanzaya, A. A., and Pinto, L. (2022). Behavior 
transformers: cloning k modes with one stone. Adv. Neural Inf. Process. Syst. 35, 
22955–22968. doi:10.48550/arXiv.2206.11251

Shang, Y., Zhang, X., Tang, Y., Jin, L., Gao, C., Wu, W., et al. (2025). Roboscape: 
physics-informed embodied world model. arXiv preprint arXiv:2506.23135.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and Singh, S. (2020). Autoprompt: 
eliciting knowledge from language models with automatically generated prompts. arXiv 
preprint arXiv:2010.15980.

Sun, R. (2007). The importance of cognitive architectures: an analysis based 
on clarion. J. Exp. and Theor. Artif. Intell. 19, 159–193. doi:10.1080/095281
30701191560

Tan, H., and Bansal, M. (2019). Lxmert: learning cross-modality encoder 
representations from transformers. arXiv preprint arXiv:1908.07490.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R., et al. (2023). Gemini: 
a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805.

Thrun, S. (2002). Probabilistic robotics. Commun. ACM 45, 52–57. 
doi:10.1145/504729.504754

Torabi, F., Warnell, G., and Stone, P. (2018). Behavioral cloning from observation. arXiv 
preprint arXiv:1805.01954.

Wen, B., Yang, W., Kautz, J., and Birchfield, S. (2024). Foundationpose: unified 
6d pose estimation and tracking of novel objects. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition; 2024 June 16–22: IEEE. p. 
17868–17879.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han, S. (2023). Smoothquant: 
accurate and efficient post-training quantization for large language models. In: 
International conference on machine learning; 2024 July 21–27; Vienna, Austria: 
PMLR. p. 38087–38099.

Xie, Y., Yu, C., Zhu, T., Bai, J., Gong, Z., and Soh, H. (2023). Translating natural 
language to planning goals with large-language models. arXiv preprint arXiv:2302.05128.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum, J., et al. (2022). Prompting 
decision transformer for few-shot policy generalization. In: International conference on 
machine learning; 2024 July 21–27; Vienna, Austria: PMLR. p. 24631–24645.

Yin, B., Cao, J.-L., Zhang, X., Chen, Y., Cheng, M.-M., and Hou, Q. (2025). 
Omnisegmentor: a flexible multi-modal learning framework for semantic segmentation.

Yu, J., De Antonio, A., and Villalba-Mora, E. (2022). Deep learning (cnn, 
rnn) applications for smart homes: a systematic review. Computers 11, 26. 
doi:10.3390/computers11020026

Zhang, W., Wang, G., Sun, J., Yuan, Y., and Huang, G. (2023). Storm: efficient 
stochastic transformer based world models for reinforcement learning. Adv. Neural Inf. 
Process. Syst. 36, 27147–27166. doi:10.48550/arXiv.2310.09615

Zhen, H., Qiu, X., Chen, P., Yang, J., Yan, X., Du, Y., et al. (2024). 3d-vla: a 3d 
vision-language-action generative world model. arXiv preprint arXiv:2403.09631.

Zheng, B., Verma, S., Zhou, J., Tsang, I. W., and Chen, F. (2024). Imitation 
learning: progress, taxonomies and challenges. IEEE Trans. Neural Netw. Learn. Syst.
35, 6322–6337. doi:10.1109/TNNLS.2022.3213246

Zhou, Z., Zhu, Y., Zhu, M., Wen, J., Liu, N., Xu, Z., et al. (2025). Chatvla: unified 
multimodal understanding and robot control with vision-language-action model. arXiv 
preprint arXiv:2502.14420.

Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F., et al. (2023). Rt-2: vision-language-
action models transfer web knowledge to robotic control. In: International conference 
on machine learning; 2024 July 21–27; Vienna, Austria: PMLR. p. 2165–2183.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2025.1668910
https://doi.org/10.3389/frai.2023.1148227
https://doi.org/10.2214/ajr.172.3.10063854
https://doi.org/10.1609/aaai. v32i1.11671
https://doi.org/10.1609/aaai. v32i1.11671
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.48550/arXiv.2206.11251
https://doi.org/10.1080/09528130701191560
https://doi.org/10.1080/09528130701191560
https://doi.org/10.1145/504729.504754
https://doi.org/10.3390/computers11020026
https://doi.org/10.48550/arXiv.2310.09615
https://doi.org/10.1109/TNNLS.2022.3213246
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Multimodal perception and dynamic alignment
	2.1 Research background and system value of multimodal perception
	2.2 Modeling perceptual uncertainty and cross-modal alignment

	3 Policy generation and task adaptation
	3.1 Cognitive positioning of the policy module
	3.2 The evolutionary path of policy mechanisms and prompts
	3.3 System adaptation of the policy module
	3.4 Unified interface and pathway design for policy modules in the DP-TA architecture

	4 The structural function and system integration of world models in embodied intelligence
	4.1 The evolutionary trajectory of model structure
	4.2 The three functions of world modeling
	4.3 Cognitive architecture for world modeling and strategy coordination
	4.4 Interface paths and functional coupling of world models in DP-TA structures

	5 DP-TA theoretical structure
	5.1 Three-layer functional structure of the DP-TA framework
	5.2 System coordination mechanism

	6 Research challenges
	7 Summary and prospects
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

