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With the rise of large language models (LLMs), collaborative storytelling in 
virtual agents or chatbots has gained popularity. Despite storytelling has long 
been employed in social robotics as a means to educate, entertain, and 
persuade audiences, the integration of LLMs into such platforms remains 
largely unexplored. This paper presents the initial steps for a novel multimodal 
collaborative storytelling system in which users co-create stories with the social 
robot Pepper through natural language interaction and by presenting physical 
objects. The robot employs a YOLO-based vision system to recognize these 
objects and seamlessly incorporate them into the narrative. Story generation 
and adaptation are handled autonomously using the Llama model in a zero-shot 
setting, aiming to assess the usability and maturity of such models in interactive 
storytelling. To enhance immersion, the robot performs the final story using 
expressive gestures, emotional cues, and speech modulation. User feedback, 
collected through questionnaires and semi-structured interviews, indicates a 
high level of acceptance.
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 1 Introduction

Storytelling has been an essential form of communication throughout human history, 
serving as a means of education, entertainment, and persuasion. It plays a fundamental 
role in shaping culture, transmitting knowledge, and fostering social connections. In 
recent years, the integration of storytelling into Human-Robot Interaction (HRI) has 
opened new possibilities for engaging and meaningful interactions, particularly in fields 
such as education (Zhang C. et al., 2024), therapy (Alonso-Campuzano et al., 2024), and 
entertainment (Nichols et al., 2021). Social robots, with their ability to recognize speech, 
process language, and express emotions, are becoming increasingly sophisticated tools for 
presenting stories to listeners. Their physical presence can enhance engagement, making 
storytelling experiences more immersive and impactful compared to purely virtual or digital 
systems (Belpaeme et al., 2018; Fiske et al., 2019; Rasouli et al., 2022).

The rise of Large Language Models (LLMs) has significantly influenced HRI by 
equipping robots with advanced Natural Language Processing (NLP) capabilities, enabling 
them to generate original and contextually appropriate narratives in real-time. Unlike
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traditional scripted approaches that rely on preprogrammed 
dialogue, LLM-based storytelling may allow robots to dynamically 
adapt to user input, making interactions more flexible, immersive, 
and responsive. Beyond generating narratives, LLMs also should 
facilitate collaborative storytelling, transforming the robot from 
a passive narrator into an active co-creator. By integrating user 
suggestions, expanding ideas, and maintaining narrative coherence, 
these models foster more immersive and interactive storytelling 
experiences, enhancing creativity, engagement, and personalization.

Previous research in collaborative storytelling with social robots 
has primarily relied on LLMs that are fine-tuned for the specific 
task of storytelling (Nichols et al., 2020; Harmon and Rutman, 
2023). The primary advantage of storytelling systems that use 
LLMs over traditional approaches lies in the enhanced naturalness 
and flexibility with which users can interact with the robot. Such 
systems allow users to express themselves in an unconstrained 
manner, with the scope for interaction limited primarily by the 
user’s own imagination. However, current LLM-based storytelling 
systems exhibit several limitations. Notably, interactions remain 
predominantly turn-based, and inference times can be prohibitively 
long, which may hinder the fluidity of real-time engagement. These 
challenges highlight areas for further research and optimization in 
the development of more responsive and interactive storytelling 
agents, showing significant room for innovation in the context of 
social robotics.

The objective of this preliminary study is to present the initial 
steps toward a multimodal collaborative storytelling system in 
which users co-create stories with the social robot Pepper. This is 
achieved through natural language interaction and the presentation 
of physical objects, which the robot recognizes and incorporates 
into the narrative. The main contributions of this work can be 
summarized as follows:

• The design and implementation of a multimodal collaborative 
storytelling system architecture for the social robot Pepper, 
integrating natural language interaction, vision, speech, and 
expressive behavior.

• The incorporation of Llama 2 for zero-shot story generation and 
adaptation, together with YOLOv11-based object recognition, 
enabling users to influence the narrative both verbally and by 
presenting physical objects.

• The integration and orchestration of complementary 
modules, including text-to-speech (Nuance’s TTS), automatic 
speech recognition (Whisper), and emotion recognition 
(RoBERTuito), within an embodied social robot designed to 
enhance the expressiveness and immersion of human–robot 
storytelling interactions.

• An experimental evaluation combining standardized (UEQ), 
custom questionnaires, and qualitative analysis (Affinity 
Diagram) to capture user feedback on naturalness, engagement, 
and overall acceptance of the system.

2 Related work

Storytelling is a powerful communicative tool that supports 
language acquisition in children while fostering critical thinking, 
self-esteem, and cultural awareness in educational contexts 

(Davidhizar and Lonser, 2003; Wright, 1995). With technological 
advancements, storytelling has evolved from oral and written 
traditions to digital formats enriched with multimedia elements 
such as text, images, sound, and video (Alismail, 2015). Within 
this digital framework, tools like Storybird have been employed to 
enhance foreign language students’ writing skills by promoting 
creativity, vocabulary development, and grammatical accuracy 
through the design of engaging narrative projects (Castillo-
Cuesta et al., 2021). While digital storytelling (DST) has traditionally 
relied on virtual platforms and video-based systems (Essien 
and Parbanath, 2024), recent developments in LLMs and social 
robotics opened new possibilities for more interactive and adaptive 
storytelling experiences.

LLMs have significantly influenced storytelling by enabling 
coherent and adaptive text generation, eliminating the rigid 
constraints of scripted narratives. In some recent studies, such 
as Harmon and Rutman (2023), authors have explored how 
different open-source LLMs handle narrative dilemmas by analyzing 
their ability to generate logical story continuations based on 
varied prompts. Their study highlights the impact of prompt 
engineering in shaping the consistency and creativity of AI-
generated stories. Similarly, Venkatraman et al. (2024) introduced 
CollabStory, a dataset where multiple LLMs collaboratively generate 
narratives each contributing with different segments of a story, 
demonstrating the potential of multi-model storytelling. Expanding 
on multimodal storytelling approaches, (Yotam et al., 2024), 
developed a system where children’s drawings are used as prompts 
for a GPT-4-based model to generate character descriptions and 
background narratives, allowing for interactive and visually-driven 
storytelling. These studies showcase how LLMs enable more 
interactive and flexible storytelling, adapting to user input and
diverse formats.

Building on these advances, recent research has begun to 
explore how LLMs can also drive storytelling in immersive 
environments such as virtual or augmented reality. On the 
one hand, systems like Aisop explicitly frame the LLM as the 
storyteller, autonomously generating and narrating stories in virtual 
reality while complementing the narrative with speech and visual 
renderings (Gatti et al., 2024). On the other hand, LLMs have 
also been embedded within interactive agents, as demonstrated in 
recent work that deployed a GPT-4-based character in VRChat, 
capable of producing contextually appropriate verbal responses as 
well as coordinated gestures and facial expressions (Wan et al., 
2024). Together, these approaches highlight both the narrative 
potential of LLMs and their capacity to embody interactive roles in 
virtual environments, pointing to broad opportunities for human-AI 
interaction through storytelling.

Beyond purely digital environments, social robots have emerged 
as an alternative platform for storytelling, leveraging embodiment 
and multimodal engagement to enhance interaction, making 
storytelling experiences more immersive. For instance, Liang and 
Hwang (2023) conducted a comparative study on robot-based 
vs. video-based DST systems for English as a foreign language 
learners. Their results demonstrated that robot-assisted storytelling 
improved English-speaking skills, narrative engagement, and 
communication confidence, outperforming traditional video-based 
methods. Similarly, Chang et al. (2023) explored the use of robot-
assisted storytelling in pediatric healthcare, demonstrating that 
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robots were more effective than video-based health education 
methods in reducing children’s anxiety during medical procedures. 
Additionally, their findings indicate that robotic interventions 
enhanced emotional expression and strengthened therapeutic 
engagement, further highlighting their advantages in healthcare 
settings. Although not directly compared to video-based methods, 
the work of Alimardani et al. (2021) explored the use of the 
NAO robot in therapeutic interventions for children with Autism 
Spectrum Disorder (ASD). The robot tells short, one-sentence 
stories while expressing emotions through body language and 
LED color cues, helping children improve emotional recognition 
and social interaction skills. This highlights the potential 
of robotic storytelling as a tool for therapy and emotional
development.

Building on both LLM-driven storytelling and robot-assisted 
storytelling, collaborative storytelling introduces an interactive 
approach where the story evolves dynamically through user-
robot interaction. There are few studies that integrate LLMs 
into collaborative storytelling with social robots, leaving a largely 
unexplored area of research. A few notable examples identified in 
the literature include the work of Elgarf et al. (2022), who developed 
two storytelling models (one creative and one non-creative) to 
analyse their impact on children’s engagement. Their findings 
suggest that the creative model enhanced children’s imagination, 
though the mode of interaction (robot-led or child-led) did not 
significantly alter the outcomes. Nichols et al. (2020), Nichols et al. 
(2021) introduced a turn-based collaborative storytelling system 
with the Haru robotic head, where storytelling is initiated from a 
database and progresses through user input and LLM-generated 
continuations, allowing for a more interactive and engaging 
storytelling experience.

In contrast to previous research, our approach uses zero-shot 
LLMs, avoiding the need for fine-tuning or multiple specialized 
models, while still enabling coherent, real-time storytelling. While 
such models can yield improved task-specific responses, this 
approach often comes at the expense of generalization capabilities, 
thereby limiting the adaptability of the system and constraining 
future extensions of the activity. Combined with multimodal 
interaction through natural language and object-based input, this 
results in a novel and streamlined framework for dynamic story co-
creation with social robots. Furthermore, embodied agents showed 
up as a powerful alternative to wearables as it is closer collaborative 
storytelling between two humans. 

3 Collaborative storytelling: Behavior 
generation

The storytelling process begins with the user requesting a story, 
to which the robot responds by offering a selection of five classic 
fairy tales. After the user selects one, the robot reads the story 
aloud without enacting it, dividing it into the three act structure: 
Setup, Confrontation, and Resolution. At the end of each segment, 
the user is given the option to personalize the story, submitting 
requests for changes of any type, given the unrestricted nature of 
the modification system. Once all modifications have been gathered, 
the robot proceeds to perform the adapted version of the story, 
integrating both verbal and non-verbal expressiveness.

The core of the proposed approach can be summarized in three 
main steps: (1) story selection and reading, (2) story adaptation and 
integration of user input, and (3) final story enactment.

The following subsections provide a detailed description of 
these steps, along with an overview of the different modules 
that compose the robot’s architecture, including the creative 
module as well as, the verbal communication, vision, sentiment 
analysis, and gesticulation modules. To better understand how 
these elements are interconnected, Figure 1 presents an overview
of the system.

3.1 Choosing and introducing the story

The creative module is responsible for producing and 
structuring the story texts that serve as the foundation for the 
narrative.

When deploying large language models (LLMs) for specialized 
applications, two common strategies are contextual adaptation and 
one-shot or few-shot prompting. Contextual adaptation consists 
of enriching the model’s input with domain-specific knowledge, 
thereby facilitating more accurate and relevant responses. 
Conversely, one-shot and few-shot prompting provide exemplar 
demonstrations of the desired task within the input prompt, which 
improves the model’s ability to generalize the expected output 
structure and task-specific behavior. Since collaborative storytelling 
requires multiple instructions that are difficult to capture in a few 
examples, it was decided to use the context modification technique.

The LLM was instructed to emulate Pepper, an interactive 
storytelling robot, and respond to a story request by letting it 
presenting a list of five children’s stories (showing the title and 
the author). Although the LLM is responsible for generating the 
five stories, this process is inherently non-deterministic due to 
the stochastic nature of language model outputs. Therefore, the 
resulting list may vary across different executions, even with the 
same prompt (see Table 1). Once the user selected a story, the 
model narrated it dividing the story in Setup, Confrontation, and 
Resolution.

An evaluation was conducted to identify the most suitable 
LLM for this task, considering three locally deployable models: 
Llama 2 13B, Vicuna 13B, and Mistral 7B v0.1, all utilizing 4-bit 
Activation-aware Weight Quantization (AWQ) (Lin et al., 2024). 
To compare their performance, an objective assessment was carried 
out, measuring video memory usage and inference speed, as 
detailed in Table 2. The evaluation was performed on two GPUs 
(RTX 2080Ti 11 GB and RTX 4080 16 GB), ensuring that all models 
met the minimum memory and processing requirements.

Llama 2 13B1 was ultimately selected for two key reasons. First, 
its original model was optimized for dialogue-based tasks, making 
it a better fit for interactive storytelling compared to Mistral 7B 
v0.1, which is primarily optimized for reasoning and coding tasks. 
Second, when compared to Vicuna 13B, which also specializes in 
chat-based interactions and shows similar performance, Llama 2 
13B showed higher creativity in generating modified story outputs.

1 https://huggingface.co/TheBloke/Llama-2-13B-AWQ
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FIGURE 1
System overview.

TABLE 1  List of stories selected by Llama2 and the times they have been 
proposed to the user. Others are other stories that appear just once.

Story name Num. Appearances

Where the Wild Things Are by Maurice Sendak 23

The Very Hungry Caterpillar by Eric Carle 23

The Giving Tree by Shel Silverstein 21

Corduroy by Don Freeman 22

The Velveteen Rabbit by Margery Williams 10

Make Way for Ducklings by Robert McCloskey 4

Charlotte’s Web by E.B. White 4

Llama Llama Red Pajama by Anna Dewdney 3

The Lion, the Witch and the Wardrobe by C.S. 
Lewis

2

Others 13

To capture the user’s requests, the system employs Whisper2 
as the Automatic Speech Recognition (ASR). In this step, Whisper 

2 https://openai.com/index/whisper/

TABLE 2  Memory usage of different LLM models and mean 
inference time.

Name Memory (MiB) Speed (token/s)

Llama 2 13B Chat AWQ 9358 ∼18

Mistral 7B v0.1 AWQ 7140 ∼89

Vicuna 13B Chat AWQ 9642 ∼20

processes the spoken input, transcribing the user’s request into 
text. This transcribed text is then passed to the Creative Module, 
which interprets the request and generates an appropriate response 
following the rules defined in the context.

Once the creative module produces a text-based response, it 
is processed by the TTS module, which converts it into natural-
sounding speech. In this step, the robot does not need to enact but 
only “read” the response and thus, a neutral voice was selected and 
converted to audio using Nuance’s TTS tool integrated in Pepper for 
fast speech synthesis. 

3.2 Personalizing the story

Personalization requires the system to process the modifications 
introduced by the user and to reconstruct the narrative to 
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ensure coherence and logical flow. As mentioned before, these 
modifications are gathered while the robot completes the narration 
of the original version of the story, and only after this end enacts the 
final personalized story.

To achieve this, various key modules are involved. The 
creative module, powered by the Llama 2 model, integrates 
user modifications into the storyline, adapting characters, scene 
descriptions, etc. accordingly. Additionally, as the system is designed 
for multimodal interaction, it incorporates both speech and 
vision-based inputs. The ASR module captures user-proposed 
modifications through voice commands, ensuring seamless verbal 
interaction. Meanwhile, the Vision Module allows the user to 
introduce visual elements into the story. By showing objects to the 
robot, users can further personalize the narrative.

The robot relies on the Ultralytics YOLOv113 model for 
object recognition. Since the model is used without fine-tuning, 
only objects belonging to categories that YOLOv11 can already 
classify are considered during the interaction. To confirm successful 
recognition, an image of the detected object is displayed on 
Pepper’s tablet. 

3.3 Bringing the story to life

Finally, the robot performs the adapted version of 
the story using expressive speech, synchronized gestures, 
and emotional modulation, creating a more natural and 
immersive storytelling experience. This process integrates gesture 
generation, emotion display, and speech adaptation, ensuring 
that the robot conveys the narrative with greater naturalness
and engagement.

The gesticulation module is responsible for generating body 
gestures that enhance the robot’s expressive storytelling. It follows a 
hybrid approach that combines beat-like gestures with semantically 
related gestures. Beat-like gestures, which provide rhythm and 
emphasize the prosody of speech, are synthesized using a Generative 
Adversarial Network (GAN) trained on motion capture data of 
people speaking Zabala et al. (2020). The GAN takes speech 
duration as input and produces sequences organized into Units 
of Movement (UM), each composed of four consecutive poses. 
However, beat gestures alone are insufficient for fully expressive 
storytelling. To address this, semantically related gestures, such 
as deictic, metaphoric, and iconic movements, are incorporated 
through a gesture database linked to specific lexemes. These gestures 
are sourced both from NAOqi’s library of predefined animations and 
from custom-designed motion sequences. When multiple relevant 
lexemes appear in a sentence, a probabilistic model governs selection 
to balance gesture distribution and avoid repetition by favoring less 
frequently used gestures. For precise temporal alignment, Whisper is 
used to transcribe the speech and determine the onset of each target 
word; gestures are scheduled to begin one motion unit before the 
detected start of the corresponding word, resulting in more natural 
and synchronized gesture execution (see (Zabala et al., 2022) for 
more details).

3 https://docs.ultralytics.com/models/yolo11/

TABLE 3  Population details. The KD levels are denoted as Z (zero 
knowledge), I (interacted with), W (worked with), and D (developed).

Age T M F KD Knowledge level

Z I W D

20–29 15 10 5
R 6.6% 40% 26.6% 26.66%

L 0% 33.3% 53.3% 13.33%

30–39 4 2 2
R 25% 75% 0% 0%

L 25% 25% 50% 0%

40+ 6 4 2
R 16.6% 66.6% 16.6% 0%

L 16.6% 50% 33.3% 0%

Total 25 16 9
R 12% 52% 20% 16%

L 8% 36% 48% 8%

Given Pepper’s limited facial expressiveness, alternative 
modalities such as body language, speech modulation, and LED-
based visual cues are employed to effectively convey emotions. To 
analyse sentiment in the LLM-generated sentences, a RoBERTuito-
based model (Pérez et al., 2021) is used to produce a normalized 
sentiment vector with negative, neutral, and positive values. These 
values are mapped to a continuous scale between 0 (negative), 1 
(neutral), and 2 (positive), as shown in Equation 1.

Snew = Sneu ∗ 1+ Spos ∗ 2 (1)

The extracted sentiment influences multiple expressive channels. 
Body language is modulated by adjusting the speed of movement 
through the temporal spacing between poses in each Unit of 
Movement (UM). Simultaneously, speech rate and pitch are 
dynamically adapted to reflect the emotional tone of the story. 
Additionally, Pepper’s eye color is used as a visual indicator of 
sentiment, with the color selection inspired by Plutchik’s wheel 
of emotions (Plutchik, 1980): yellow represents positive emotions, 
blue indicates negative ones, and white is used for neutral sentiment. 

4 Experimental setup

We conducted a user study to assess the robot’s ability to engage 
users, integrate their modifications into the narrative, and deliver an 
expressive and coherent storytelling performance.

The demographic characteristics of the 25 participants are 
summarized in Table 3. This table categorizes participants by age 
and gender, with designations for total (T), male (M), and female (F) 
populations. For each demographic subgroup, the level of experience 
within the Knowledge Domain (KD) is reported separately for both 
Robotics (R) and Large Language Models (LLMs) (L). The last row 
(Total) of the table provides a comprehensive overview of the entire 
participant cohort.

Participants were seated facing the robot, with a table positioned 
between them. A box with multiple objects was placed on the table, 
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FIGURE 2
Diagram of the experimental setup.

FIGURE 3
Interaction flow with Pepper.

providing participants with tangible tools to intuitively modify the 
story by incorporating physical elements into the narrative (see 
Figure 2). At the beginning of the session, the robot introduced itself 
and explained the experiment’s rules, ensuring participants fully 
understood the interaction process. Two different voices were used: 
a neutral voice generated with Google’s gTTS for the experiment 
narration, and a Nuance’s voice for telling the story. The storytelling 
system was activated upon the participant’s request, initiating the 
interaction as the robot guided them through story selection and 
modification, facilitating engagement and personalization. Figure 3 
shows an overview of the interaction flow.

Right after the experiment, the user was asked to fulfil 
two questionnaires: the User Experience Questionnaire (UEQ) 
(Laugwitz et al., 2008), designed to measure user experience; 
and a Self-Designed Questionnaire (SDQ), designed to asses 
the quality of the robot’s behavioral development (see Table 4). 
The questionnaire gathers information across different key areas, 
such as user background, aspects related to the LLM, voice and 

body expression, gameplay experience, and overall satisfaction. 
After submitting both questionnaires, the users were asked for 
informed consent to record a brief semi-structured interview 
(audio only), covering topics such as object usage, interaction 
experience, and differences between the original and modified story 
presentations. The responses were later analysed using the Affinity 
Diagram method (Lucero, 2015), a technique for organizing abstract 
concepts into meaningful relationships to extract objective insights 
from unstructured data.

5 Results

5.1 User experience questionnaire

Table 5 and Figure 4 present the system’s user experience 
results based on the UEQ benchmark. The outcomes are rated as 
excellent for attractiveness, perspicuity, stimulation, and novelty; 
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TABLE 4  Self-Designed Questionnaire content.

Question Type

Aspects related to the LLM

Q4: Were the proposed changes applied in the final version of 
the story?

Yes/No

Q5: The robot asks questions about possible changes to the 
story while telling the tale in order to make the changes at the 
end. Do you think this format is correct?

Yes/No

Q6: Does Pepper succeed in telling the story? Yes/No

Q7: Do you think the system is creative? Yes/No

Q8: Is the system consistent Yes/No

Voice expression

Q9: How many voices did you identified? 1, 2, 3, More

Q10: What emotions did you identify? 5 multi-choice

Body expression

Q11: The body gesturing accompanies the emotions? 5 point Likert

Q12: The body gesturing accompanies the semantic of the 
text?

5 point Likert

Gameplay experience

Q13: How well did Pepper keep you engaged throughout the 
story?

5 point Likert

Q14: Did you find the story entertaining and amusing? 5 point Likert

Q15: Did you find the storytelling system easy to understand 
and to interact with?

5 point Likert

Q16: Is the interaction flow adequate? 5 point Likert

Q17: Did you find the information displayed on the robot’s 
tablet useful?

5 point Likert

Global satisfaction

Q18: Evaluate your global experience playing with Pepper 5 point Likert

good for efficiency; and above average for dependability. However, 
these promising results should be interpreted with caution, as the 
Cronbach’s Alpha coefficient does not provide strong support. Due 
to the small sample size, minor variations in user responses led to 
significant fluctuations in the reliability estimates.

5.2 Self-designed questionnaire

Regarding the questionnaire defined to asses the quality 
of the developmental state of the robot’s behavior, analysis 
of LLM-related queries revealed that 88% of user-requested 
modifications were successfully implemented while maintaining 

TABLE 5  User Experience Questionnaire score, SD and Cronbach’s 
Alpha-Coefficient values.

Category UEQ score SD Chronbachs alpha

Attractiveness 2.429 ∓0.510 0.88

Perspicuity 2.106 ∓0.355 −0.50

Efficiency 1.519 ∓0.724 0.69

Dependability 1.385 ∓0.785 0.55

Stimulation 2.077 ∓0.767 0.74

Novelty 1.865 ∓0.766 0.66

narrative coherence. Experimental log files were preserved for 
subsequent analysis. These records suggest that 12% of participants 
reported unsuccessful application of their requested changes, 
primarily attributed to deficiencies in the speech recognition system. 
The ASR component exhibited imprecise transcription of user 
speech in 30.3% of instances. Notably, four subjects experienced 
suboptimal transcription in three out of five interactions. This 
ASR limitation also resulted in one participant reporting a 
complete failure in story narration by the Pepper robot. Regarding 
system performance evaluation, 96% of participants perceived the 
system as creative. Furthermore, all subjects (100%) affirmed the 
system’s consistency and endorsed the experimental design, which 
incorporated iterative interactions during the original narrative 
followed by the application of modifications in a novel version.

The analysis of voice expression revealed that the majority 
of participants accurately distinguished between the two distinct 
voices used in the experiment: the narrator and the storyteller. 
However, 28% of the participants identified three voices, likely due 
to confusion caused by tonal variations in the voice of the storyteller 
perceived as a separate entity. Only one participant identified 
a single voice. Regarding emotional recognition, happiness (22 
responses) and sadness (10 responses) were the most frequently 
identified emotions, followed by anger and disgust (3 responses 
each) and fear (2 responses). Examination of the log files from the 
sentiment analysis module indicated that 217 sentences (53.06%)
were classified as positive, 123 sentences (30.07%) as negative, and 
69 sentences (16.87%) as neutral. This distribution suggests an 
imbalance in the perception of positive versus negative emotions.

Regarding body expression, users gave an average rating of 3.72 
out of 5 to the body gesture/emotion correlation, and 4.24 out of 5 
on the gesticulation/text semantic interdependence.

The overall gameplay experience was evaluated positively by 
participants. The robot, Pepper, effectively engaged users, achieving 
a mean score of 4.28 out of 5. The participants rated the experience 
as entertaining and enjoyable, with an average score of 4.44 out of 
5. The system was perceived as intuitive and easy to interact with, 
receiving a score of 4.64 out of 5. Additionally, the interaction flow 
was deemed appropriate, with a mean score of 4.36 out of 5, and the 
information displayed on the robot’s tablet was considered highly 
useful, achieving the highest score of 4.84 out of 5. Overall, the 
global experience was rated very positively, with an average score 
of 4.56 out of 5.
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FIGURE 4
UEQ results for attractiveness, perspicuity, efficiency, dependability, stimulation and novelty.

The two-way random-effects, average-measures intraclass 
correlation coefficient (ICC) was computed (Koo and Li, 2016), 
specifically ICC(2,k), to assess the reliability of the average 
ratings across raters. The results indicated good to excellent 
reliability, ICC(2,k) = 0.87, 95% CI [0.70, 0.97]. The associated 
F-test (F(7,168) = 8.78, p = 3.512665e− 09 < 0.001) confirmed that 
the reliability is statistically greater than zero. Overall, these results 
demonstrate a high degree of agreement among raters. 

5.3 Affinity diagram

As mentioned earlier, a semi-structured interview was 
conducted immediately after the experiment. These interviews 
were later transcribed, and participants’ comments were annotated 
using sticky notes for analysis (see Figure 5). During the interviews, 
participants were asked to evaluate the use of physical objects as 
an interaction modality, describe their overall experience with 
the system, and provide a general assessment of the interaction. 
They were also invited to reflect on any perceived differences 
between the original and modified versions of the story beyond 
the narrative content. Finally, participants were encouraged to 
suggest possible improvements to enhance the system’s functionality 
and user experience. Subsequently, these notes were grouped into 
clusters following the criteria of three non-participant researchers, 
yielding three primary categories (behavior, interaction, and overall 
experience) and a total of 16 subcategories (see Figure 6). This 
process facilitated systematic organization and analysis of the 
qualitative data collected from the interviews.

5.4 Timing and interaction fluidity

The latency experienced between the initiation of a user request 
and the receipt of the corresponding system response is a critical 
factor in human–robot interaction, as delays have been shown 
to strongly influence how users perceive the naturalness and 

fluidity of LLM-driven systems. To address this, we measured 
the average processing time of each module in the pipeline, 
including the large language model (LLM), text-to-speech (TTS), 
automatic speech recognition (ASR), emotion recognition (EMO), 
and the gesticulation (GAN) modules. Table 6 presents a detailed 
breakdown of these waiting times across 10 interactions with Pepper.

Notably, the LLM was invoked only once to generate the 
complete story, and subsequent segments corresponding to the 
Setup, Confrontation, and Resolution were buffered for offline 
deployment, preventing additional delays during storytelling. 
Nevertheless, the initial generation of the modified story required 
the longest latency (≈25 s), primarily due to the combination of LLM 
output length and TTS processing. In contrast, modules such as ASR 
and the GAN exhibited stable performance regardless of segment 
length or gesture complexity.

From a user experience perspective, shorter latencies (≈3–8 s) 
during story selection, Setup, and Confrontation were generally 
tolerated, whereas longer delays, particularly during the modified 
story narration, were more noticeable. This aligns with previous 
findings that response time directly affects how engaging and 
“human-like” an interaction feels. Importantly, several participants 
noted in interviews that pauses were acceptable when framed as the 
robot “thinking,” but excessive waiting risks reducing immersion 
and disrupting the narrative flow. 

6 Discussion

The performance of the robot as a collaborative storyteller can 
be appreciated in the video4. The video demonstration highlights 
both the strengths and limitations of the proposed system. It shows 
how the robot provides feedback to guide user interaction, such as 
audio tones and LED signals that indicate when it is listening. The 
robot’s expressiveness is also evident: while the original story is told 

4 Demo: https://youtu.be/u74-QV5LFD0
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FIGURE 5
Sticky notes with annotations from the semi-structured interview.

FIGURE 6
Results of the affinity diagram.
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TABLE 6  Average processing times (in seconds) per module for different 
stages of story narration during 10 interactions with Pepper.

LLM TTS ASR EMO GAN Total

Story selection 2.64 3.60 6.24

Setup 5.42 2.52 0.54 0.38 8.86

Confrontation 2.16 0.54 0.33 3.03

Resolution 3.24 0.54 0.49 4.27

Modified story 
narration

9.84 11.88 0.54 1.24 1.81 25.31

in a neutral manner, the modified story includes gestures tied to 
specific words (e.g., branches (4:44, 4:50, 5:31), all (5:09), elephant 
(5:44, 5:59, 6:42), no (5:52) and thought (6:11) and emotions 
conveyed through speech modulation and LED color changes. These 
multimodal features enhance the storytelling experience by making 
it feel more dynamic and engaging.

However, some limitations were observed. The speech 
recognition module occasionally misidentified words (e.g., 
confusing “girl” with “guy”), which affected the accuracy of user 
inputs. Additionally, delays were noticeable during the generation of 
new stories, particularly at the modification stage, which may reduce 
the perceived fluidity of the interaction. While some participants 
tolerated pauses by interpreting them as the robot “thinking”, 
excessive latency risks breaking immersion.

Feedback from the affinity diagram analysis was largely positive. 
Participants valued the robot’s gesturing, emotional expression, and 
narrative adaptation, although a few noted abrupt gestures or sudden 
vocal modulations. These issues were seen as minor, suggesting that 
fine-tuning could further improve naturalness. Interaction design 
was also well received, especially the use of physical objects and 
multiple communication channels. While some participants desired 
clearer guidance, others found the system intuitive, pointing to a 
trade-off between simplicity and detailed instructions depending on 
user expertise.

It is important to stress, however, that this is a preliminary study, 
and the results should be interpreted with caution. The current 
evaluation does not include a comparison baseline, meaning we 
cannot yet conclude whether the proposed approach is objectively 
better than alternative methods. Narrative diversity was also 
limited: although the LLM produced 125 proposals across 25 
interactions, only 23 unique titles appeared, with three stories 
dominating more than half of the suggestions. This bias toward 
familiar titles suggests the need for alternative prompting strategies 
or controlled story assignments to ensure greater variety. In 
addition, some participants noted that interacting in a non-native 
language restricted their spontaneity and creativity, underscoring 
the importance of supporting multiple languages in future versions.

Moreover, the relatively small sample size (N = 25) in this study 
may have contributed to the instability of the Cronbach’s alpha 
estimates, as reliability coefficients are known to be highly sensitive 
to sample size. As recommended in the UEQ handbook, results from 
small samples (below 30–40 participants) should be interpreted with 
caution, and potential sampling effects considered when evaluating 
internal consistency. Therefore, the negative alpha observed for the 

perspicuity scale should not be overinterpreted, and these results are 
reported as exploratory.” 

7 Conclusion and further work

This study presents a preliminary step toward multimodal 
collaborative storytelling with social robots. Pepper’s integration of 
natural language interaction, object recognition, gesture generation, 
and emotional expression demonstrated the feasibility of combining 
existing technologies into a unified storytelling framework. User 
feedback confirmed the novelty and appeal of the system, although 
several limitations remain regarding naturalness, latency, and 
narrative diversity. It is important to stress that this is a preliminary 
study, and the results should be interpreted with caution, since no 
comparison baseline was included.

In the context of storytelling, achieving high expressiveness 
across multiple modalities is crucial. While Pepper’s gesticulation and 
voice intonation generally aligned with the narrative, its expressive 
range is limited by the absence of facial expressions beyond LED 
modulation. More advanced gesture models, such as the Semantic 
Gesticulator (Zhang Z. et al., 2024), could generate semantically 
relevant movements, but their computational cost currently does 
not permit real-time execution. Similarly, although fine-tuned LLMs 
typically yield superior results, this process is resource-intensive. A 
zero-shot approach, as explored here, proved to be a viable alternative, 
and the continuous release of new LLMs opens the door to more 
creative, flexible, and open-ended interactions. 

Future work should directly address the lack of a comparison 
baseline. Systematic evaluations are needed to compare Pepper 
narrating with and without gestures or tonal modulation, telling 
stories alone versus co-creating them with the user, and collaborative 
storytelling against a human narrator. Such studies would clarify the 
role of each expressive channel and assess the extent to which robots 
could complement, or eventually substitute, human facilitators, 
especially in educational or therapeutic contexts for children. 
Follow-up studies will also investigate why the LLM favored certain 
stories repeatedly, testing different prompting strategies to mitigate 
this bias or determine whether it reflects inherent model tendencies.

Finally, expanding evaluations to include larger and more age-
diverse participant groups, ideally in their native language, will 
provide more representative feedback and reveal whether our work 
should be redirected to better address the needs and experiences of 
younger children.
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