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Exploring multimodal
collaborative storytelling with
Pepper: a preliminary study with
zero-shot LLMs

Unai Zabala*, Juan Echevarria, Igor Rodriguez and
Elena Lazkano

Department of Computer Science and Artificial Intelligence, University of the Basque Country (EHU),
Donostia, Spain

With the rise of large language models (LLMs), collaborative storytelling in
virtual agents or chatbots has gained popularity. Despite storytelling has long
been employed in social robotics as a means to educate, entertain, and
persuade audiences, the integration of LLMs into such platforms remains
largely unexplored. This paper presents the initial steps for a novel multimodal
collaborative storytelling system in which users co-create stories with the social
robot Pepper through natural language interaction and by presenting physical
objects. The robot employs a YOLO-based vision system to recognize these
objects and seamlessly incorporate them into the narrative. Story generation
and adaptation are handled autonomously using the Llama modelin a zero-shot
setting, aiming to assess the usability and maturity of such models in interactive
storytelling. To enhance immersion, the robot performs the final story using
expressive gestures, emotional cues, and speech modulation. User feedback,
collected through questionnaires and semi-structured interviews, indicates a
high level of acceptance.

KEYWORDS

collaborative storytelling, social robotics, zero-shot LLM, gesture generation, human-
robot interaction

1 Introduction

Storytelling has been an essential form of communication throughout human history,
serving as a means of education, entertainment, and persuasion. It plays a fundamental
role in shaping culture, transmitting knowledge, and fostering social connections. In
recent years, the integration of storytelling into Human-Robot Interaction (HRI) has
opened new possibilities for engaging and meaningful interactions, particularly in fields
such as education (Zhang C. et al., 2024), therapy (Alonso-Campuzano et al., 2024), and
entertainment (Nichols et al., 2021). Social robots, with their ability to recognize speech,
process language, and express emotions, are becoming increasingly sophisticated tools for
presenting stories to listeners. Their physical presence can enhance engagement, making
storytelling experiences more immersive and impactful compared to purely virtual or digital
systems (Belpaeme et al., 2018; Fiske et al., 2019; Rasouli et al., 2022).

The rise of Large Language Models (LLMs) has significantly influenced HRI by
equipping robots with advanced Natural Language Processing (NLP) capabilities, enabling
them to generate original and contextually appropriate narratives in real-time. Unlike
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traditional scripted approaches that rely on preprogrammed
dialogue, LLM-based storytelling may allow robots to dynamically
adapt to user input, making interactions more flexible, immersive,
and responsive. Beyond generating narratives, LLMs also should
facilitate collaborative storytelling, transforming the robot from
a passive narrator into an active co-creator. By integrating user
suggestions, expanding ideas, and maintaining narrative coherence,
these models foster more immersive and interactive storytelling
experiences, enhancing creativity, engagement, and personalization.

Previous research in collaborative storytelling with social robots
has primarily relied on LLMs that are fine-tuned for the specific
task of storytelling (Nichols et al., 2020; Harmon and Rutman,
2023). The primary advantage of storytelling systems that use
LLMs over traditional approaches lies in the enhanced naturalness
and flexibility with which users can interact with the robot. Such
systems allow users to express themselves in an unconstrained
manner, with the scope for interaction limited primarily by the
user’s own imagination. However, current LLM-based storytelling
systems exhibit several limitations. Notably, interactions remain
predominantly turn-based, and inference times can be prohibitively
long, which may hinder the fluidity of real-time engagement. These
challenges highlight areas for further research and optimization in
the development of more responsive and interactive storytelling
agents, showing significant room for innovation in the context of
social robotics.

The objective of this preliminary study is to present the initial
steps toward a multimodal collaborative storytelling system in
which users co-create stories with the social robot Pepper. This is
achieved through natural language interaction and the presentation
of physical objects, which the robot recognizes and incorporates
into the narrative. The main contributions of this work can be
summarized as follows:

o The design and implementation of a multimodal collaborative
storytelling system architecture for the social robot Pepper,
integrating natural language interaction, vision, speech, and
expressive behavior.

« Theincorporation of Llama 2 for zero-shot story generation and
adaptation, together with YOLOv11-based object recognition,
enabling users to influence the narrative both verbally and by
presenting physical objects.

o The integration and orchestration of complementary
modules, including text-to-speech (Nuances TTS), automatic
speech recognition (Whisper), and emotion recognition
(RoBERTuito), within an embodied social robot designed to
enhance the expressiveness and immersion of human-robot
storytelling interactions.

o An experimental evaluation combining standardized (UEQ),
custom questionnaires, and qualitative analysis (Affinity
Diagram) to capture user feedback on naturalness, engagement,
and overall acceptance of the system.

2 Related work

Storytelling is a powerful communicative tool that supports
language acquisition in children while fostering critical thinking,

self-esteem, and cultural awareness in educational contexts
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(Davidhizar and Lonser, 2003; Wright, 1995). With technological
advancements, storytelling has evolved from oral and written
traditions to digital formats enriched with multimedia elements
such as text, images, sound, and video (Alismail, 2015). Within
this digital framework, tools like Storybird have been employed to
enhance foreign language students’ writing skills by promoting
creativity, vocabulary development, and grammatical accuracy
through the design of engaging narrative projects (Castillo-
Cuesta etal., 2021). While digital storytelling (DST) has traditionally
relied on virtual platforms and video-based systems (Essien
and Parbanath, 2024), recent developments in LLMs and social
robotics opened new possibilities for more interactive and adaptive
storytelling experiences.

LLMs have significantly influenced storytelling by enabling
coherent and adaptive text generation, eliminating the rigid
constraints of scripted narratives. In some recent studies, such
as Harmon and Rutman (2023), authors have explored how
different open-source LLMs handle narrative dilemmas by analyzing
their ability to generate logical story continuations based on
varied prompts. Their study highlights the impact of prompt
engineering in shaping the consistency and creativity of Al-
generated stories. Similarly, Venkatraman et al. (2024) introduced
CollabStory, a dataset where multiple LLMs collaboratively generate
narratives each contributing with different segments of a story,
demonstrating the potential of multi-model storytelling. Expanding
on multimodal storytelling approaches, (Yotam et al, 2024),
developed a system where childrens drawings are used as prompts
for a GPT-4-based model to generate character descriptions and
background narratives, allowing for interactive and visually-driven
storytelling. These studies showcase how LLMs enable more
interactive and flexible storytelling, adapting to user input and
diverse formats.

Building on these advances, recent research has begun to
explore how LLMs can also drive storytelling in immersive
environments such as virtual or augmented reality. On the
one hand, systems like Aisop explicitly frame the LLM as the
storyteller, autonomously generating and narrating stories in virtual
reality while complementing the narrative with speech and visual
renderings (Gatti et al., 2024). On the other hand, LLMs have
also been embedded within interactive agents, as demonstrated in
recent work that deployed a GPT-4-based character in VRChat,
capable of producing contextually appropriate verbal responses as
well as coordinated gestures and facial expressions (Wan et al.,
2024). Together, these approaches highlight both the narrative
potential of LLMs and their capacity to embody interactive roles in
virtual environments, pointing to broad opportunities for human-AI
interaction through storytelling.

Beyond purely digital environments, social robots have emerged
as an alternative platform for storytelling, leveraging embodiment
and multimodal engagement to enhance interaction, making
storytelling experiences more immersive. For instance, Liang and
Hwang (2023) conducted a comparative study on robot-based
vs. video-based DST systems for English as a foreign language
learners. Their results demonstrated that robot-assisted storytelling
improved English-speaking skills, narrative engagement, and
communication confidence, outperforming traditional video-based
methods. Similarly, Chang et al. (2023) explored the use of robot-
assisted storytelling in pediatric healthcare, demonstrating that
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robots were more effective than video-based health education
methods in reducing children’s anxiety during medical procedures.
Additionally, their findings indicate that robotic interventions
enhanced emotional expression and strengthened therapeutic
engagement, further highlighting their advantages in healthcare
settings. Although not directly compared to video-based methods,
the work of Alimardani et al. (2021) explored the use of the
NAO robot in therapeutic interventions for children with Autism
Spectrum Disorder (ASD). The robot tells short, one-sentence
stories while expressing emotions through body language and
LED color cues, helping children improve emotional recognition
and social interaction skills. This highlights the potential
of robotic storytelling as a tool for therapy and emotional
development.

Building on both LLM-driven storytelling and robot-assisted
storytelling, collaborative storytelling introduces an interactive
approach where the story evolves dynamically through user-
robot interaction. There are few studies that integrate LLMs
into collaborative storytelling with social robots, leaving a largely
unexplored area of research. A few notable examples identified in
the literature include the work of Elgarf et al. (2022), who developed
two storytelling models (one creative and one non-creative) to
analyse their impact on children’s engagement. Their findings
suggest that the creative model enhanced children’s imagination,
though the mode of interaction (robot-led or child-led) did not
significantly alter the outcomes. Nichols et al. (2020), Nichols et al.
(2021) introduced a turn-based collaborative storytelling system
with the Haru robotic head, where storytelling is initiated from a
database and progresses through user input and LLM-generated
continuations, allowing for a more interactive and engaging
storytelling experience.

In contrast to previous research, our approach uses zero-shot
LLMs, avoiding the need for fine-tuning or multiple specialized
models, while still enabling coherent, real-time storytelling. While
such models can yield improved task-specific responses, this
approach often comes at the expense of generalization capabilities,
thereby limiting the adaptability of the system and constraining
future extensions of the activity. Combined with multimodal
interaction through natural language and object-based input, this
results in a novel and streamlined framework for dynamic story co-
creation with social robots. Furthermore, embodied agents showed
up as a powerful alternative to wearables as it is closer collaborative
storytelling between two humans.

3 Collaborative storytelling: Behavior
generation

The storytelling process begins with the user requesting a story,
to which the robot responds by offering a selection of five classic
fairy tales. After the user selects one, the robot reads the story
aloud without enacting it, dividing it into the three act structure:
Setup, Confrontation, and Resolution. At the end of each segment,
the user is given the option to personalize the story, submitting
requests for changes of any type, given the unrestricted nature of
the modification system. Once all modifications have been gathered,
the robot proceeds to perform the adapted version of the story,
integrating both verbal and non-verbal expressiveness.
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The core of the proposed approach can be summarized in three
main steps: (1) story selection and reading, (2) story adaptation and
integration of user input, and (3) final story enactment.

The following subsections provide a detailed description of
these steps, along with an overview of the different modules
that compose the robots architecture, including the creative
module as well as, the verbal communication, vision, sentiment
analysis, and gesticulation modules. To better understand how
these elements are interconnected, Figure 1 presents an overview
of the system.

3.1 Choosing and introducing the story

The creative module is responsible for producing and
structuring the story texts that serve as the foundation for the
narrative.

When deploying large language models (LLMs) for specialized
applications, two common strategies are contextual adaptation and
one-shot or few-shot prompting. Contextual adaptation consists
of enriching the models input with domain-specific knowledge,
thereby facilitating more accurate and relevant responses.
Conversely, one-shot and few-shot prompting provide exemplar
demonstrations of the desired task within the input prompt, which
improves the model’s ability to generalize the expected output
structure and task-specific behavior. Since collaborative storytelling
requires multiple instructions that are difficult to capture in a few
examples, it was decided to use the context modification technique.

The LLM was instructed to emulate Pepper, an interactive
storytelling robot, and respond to a story request by letting it
presenting a list of five childrens stories (showing the title and
the author). Although the LLM is responsible for generating the
five stories, this process is inherently non-deterministic due to
the stochastic nature of language model outputs. Therefore, the
resulting list may vary across different executions, even with the
same prompt (see Table 1). Once the user selected a story, the
model narrated it dividing the story in Setup, Confrontation, and
Resolution.

An evaluation was conducted to identify the most suitable
LLM for this task, considering three locally deployable models:
Llama 2 13B, Vicuna 13B, and Mistral 7B v0.1, all utilizing 4-bit
Activation-aware Weight Quantization (AWQ) (Lin et al., 2024).
To compare their performance, an objective assessment was carried
out, measuring video memory usage and inference speed, as
detailed in Table 2. The evaluation was performed on two GPUs
(RTX 2080Ti 11 GB and RTX 4080 16 GB), ensuring that all models
met the minimum memory and processing requirements.

Llama 2 13B! was ultimately selected for two key reasons. First,
its original model was optimized for dialogue-based tasks, making
it a better fit for interactive storytelling compared to Mistral 7B
v0.1, which is primarily optimized for reasoning and coding tasks.
Second, when compared to Vicuna 13B, which also specializes in
chat-based interactions and shows similar performance, Llama 2
13B showed higher creativity in generating modified story outputs.

1 https://huggingface.co/TheBloke/Llama-2-13B-AWQ
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TABLE 1 List of stories selected by Llama2 and the times they have been
proposed to the user. Others are other stories that appear just once.

TABLE 2 Memory usage of different LLM models and mean
inference time.

Story name Num. Appearances Name ’ Memory (MiB)  Speed (token/s)

Where the Wild Things Are by Maurice Sendak 23 Llama 2 13B Chat AWQ 9358 ~18

The Very Hungry Caterpillar by Eric Carle 23 Mistral 7B v0.1 AWQ 7140 ~89

The Giving Tree by Shel Silverstein 21 Vicuna 13B Chat AWQ 9642 ~20

Corduroy by Don Freeman 22

The Velveteen Rabbit by Margery Williams 10
processes the spoken input, transcribing the user’s request into

Make Way for Ducklings by Robert McClosk 4 . . . .

ake Way tor Duciiings by Robert Mclloskey text. This transcribed text is then passed to the Creative Module,

Charlotte’s Web by E.B. White 4 which interprets the request and generates an appropriate response
following the rules defined in the context.

Llama Llama Red Pajama by Anna Dewdney 3 Once the creative module produces a text-based response, it
is processed by the TTS module, which converts it into natural-

The Lion, the Witch and the Wardrobe by C.S. 2 . .

Lewis sounding speech. In this step, the robot does not need to enact but
only “read” the response and thus, a neutral voice was selected and

Others 13 converted to audio using Nuance’s TTS tool integrated in Pepper for

To capture the user’s requests, the system employs Whisper?
as the Automatic Speech Recognition (ASR). In this step, Whisper

2 https://openai.com/index/whisper/
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fast speech synthesis.

3.2 Personalizing the story

Personalization requires the system to process the modifications
introduced by the user and to reconstruct the narrative to
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ensure coherence and logical flow. As mentioned before, these
modifications are gathered while the robot completes the narration
of the original version of the story, and only after this end enacts the
final personalized story.

To achieve this, various key modules are involved. The
creative module, powered by the Llama 2 model, integrates
user modifications into the storyline, adapting characters, scene
descriptions, etc. accordingly. Additionally, as the system is designed
for multimodal interaction, it incorporates both speech and
vision-based inputs. The ASR module captures user-proposed
modifications through voice commands, ensuring seamless verbal
interaction. Meanwhile, the Vision Module allows the user to
introduce visual elements into the story. By showing objects to the
robot, users can further personalize the narrative.

The robot relies on the Ultralytics YOLOv11® model for
object recognition. Since the model is used without fine-tuning,
only objects belonging to categories that YOLOv11 can already
classify are considered during the interaction. To confirm successful
recognition, an image of the detected object is displayed on
Pepper’s tablet.

3.3 Bringing the story to life

Finally, the robot performs the adapted version of

the story wusing expressive speech, synchronized gestures,
and emotional modulation, creating a more natural and
immersive storytelling experience. This process integrates gesture
generation, emotion display, and speech adaptation, ensuring
that the robot conveys the narrative with greater naturalness
and engagement.

The gesticulation module is responsible for generating body
gestures that enhance the robot’s expressive storytelling. It follows a
hybrid approach that combines beat-like gestures with semantically
related gestures. Beat-like gestures, which provide rhythm and
emphasize the prosody of speech, are synthesized using a Generative
Adversarial Network (GAN) trained on motion capture data of
people speaking Zabala et al. (2020). The GAN takes speech
duration as input and produces sequences organized into Units
of Movement (UM), each composed of four consecutive poses.
However, beat gestures alone are insufficient for fully expressive
storytelling. To address this, semantically related gestures, such
as deictic, metaphoric, and iconic movements, are incorporated
through a gesture database linked to specific lexemes. These gestures
are sourced both from NAOqji’s library of predefined animations and
from custom-designed motion sequences. When multiple relevant
lexemes appear in a sentence, a probabilistic model governs selection
to balance gesture distribution and avoid repetition by favoring less
frequently used gestures. For precise temporal alignment, Whisper is
used to transcribe the speech and determine the onset of each target
word; gestures are scheduled to begin one motion unit before the
detected start of the corresponding word, resulting in more natural
and synchronized gesture execution (see (Zabala et al., 2022) for
more details).

3 https://docs.ultralytics.com/models/yolo11/
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TABLE 3 Population details. The KD levels are denoted as Z (zero
knowledge), | (interacted with), W (worked with), and D (developed).

Knowledge level

R 6.6% 40% 26.6% 26.66%
20-29 15 10 5

L 0% 33.3% 53.3% 13.33%

R 25% 75% 0% 0%
30-39 4 2 2

L 25% 25% 50% 0%

R 16.6% 66.6% 16.6% 0%
40+ 6 4 2

L 16.6% 50% 33.3% 0%

R 12% 52% 20% 16%
Total 25 16 9

L 8% 36% 48% 8%

Given Pepper’s limited facial expressiveness, alternative
modalities such as body language, speech modulation, and LED-
based visual cues are employed to effectively convey emotions. To
analyse sentiment in the LLM-generated sentences, a RoBERTuito-
based model (Pérez et al., 2021) is used to produce a normalized
sentiment vector with negative, neutral, and positive values. These
values are mapped to a continuous scale between 0 (negative), 1
(neutral), and 2 (positive), as shown in Equation 1.

S

new

= Sppeu # L Spog # 2 (1)

The extracted sentiment influences multiple expressive channels.
Body language is modulated by adjusting the speed of movement
through the temporal spacing between poses in each Unit of
Movement (UM). Simultaneously, speech rate and pitch are
dynamically adapted to reflect the emotional tone of the story.
Additionally, Pepper’s eye color is used as a visual indicator of
sentiment, with the color selection inspired by Plutchik’s wheel
of emotions (Plutchik, 1980): yellow represents positive emotions,
blue indicates negative ones, and white is used for neutral sentiment.

4 Experimental setup

We conducted a user study to assess the robot’s ability to engage
users, integrate their modifications into the narrative, and deliver an
expressive and coherent storytelling performance.

The demographic characteristics of the 25 participants are
summarized in Table 3. This table categorizes participants by age
and gender, with designations for total (T), male (M), and female (F)
populations. For each demographic subgroup, the level of experience
within the Knowledge Domain (KD) is reported separately for both
Robotics (R) and Large Language Models (LLMs) (L). The last row
(Total) of the table provides a comprehensive overview of the entire
participant cohort.

Participants were seated facing the robot, with a table positioned
between them. A box with multiple objects was placed on the table,

frontiersin.org
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FIGURE 2
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providing participants with tangible tools to intuitively modify the
story by incorporating physical elements into the narrative (see
Figure 2). At the beginning of the session, the robot introduced itself
and explained the experiment’s rules, ensuring participants fully
understood the interaction process. Two different voices were used:
a neutral voice generated with Google’s gTTS for the experiment
narration, and a Nuance’s voice for telling the story. The storytelling
system was activated upon the participants request, initiating the
interaction as the robot guided them through story selection and
modification, facilitating engagement and personalization. Figure 3
shows an overview of the interaction flow.

Right after the experiment, the user was asked to fulfil
two questionnaires: the User Experience Questionnaire (UEQ)
(Laugwitz et al, 2008), designed to measure user experience;
and a Self-Designed Questionnaire (SDQ), designed to asses
the quality of the robots behavioral development (see Table 4).
The questionnaire gathers information across different key areas,
such as user background, aspects related to the LLM, voice and

Frontiers in Robotics and Al

body expression, gameplay experience, and overall satisfaction.
After submitting both questionnaires, the users were asked for
informed consent to record a brief semi-structured interview
(audio only), covering topics such as object usage, interaction
experience, and differences between the original and modified story
presentations. The responses were later analysed using the Affinity
Diagram method (Lucero, 2015), a technique for organizing abstract
concepts into meaningful relationships to extract objective insights
from unstructured data.

5 Results
5.1 User experience questionnaire
Table 5 and Figure 4 present the system’s user experience

results based on the UEQ benchmark. The outcomes are rated as
excellent for attractiveness, perspicuity, stimulation, and novelty;

frontiersin.org
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TABLE 4 Self-Designed Questionnaire content.

Question Type

Aspects related to the LLM

Q4: Were the proposed changes applied in the final version of Yes/No

the story?

Qb5: The robot asks questions about possible changes to the Yes/No

story while telling the tale in order to make the changes at the

end. Do you think this format is correct?

Q6: Does Pepper succeed in telling the story? Yes/No

Q7: Do you think the system is creative? Yes/No

Q8: Is the system consistent Yes/No
Voice expression

Q9: How many voices did you identified? 1,2, 3, More

Q10: What emotions did you identify? 5 multi-choice

Body expression

Q11: The body gesturing accompanies the emotions? 5 point Likert
Q12: The body gesturing accompanies the semantic of the 5 point Likert
text?

Gameplay experience
Q13: How well did Pepper keep you engaged throughout the 5 point Likert
story?
Q14: Did you find the story entertaining and amusing? 5 point Likert
Q15: Did you find the storytelling system easy to understand 5 point Likert
and to interact with?
Q16: Is the interaction flow adequate? 5 point Likert
Q17: Did you find the information displayed on the robot’s 5 point Likert
tablet useful?

Global satisfaction

Q18: Evaluate your global experience playing with Pepper 5 point Likert

good for efficiency; and above average for dependability. However,
these promising results should be interpreted with caution, as the
Cronbach’s Alpha coefficient does not provide strong support. Due
to the small sample size, minor variations in user responses led to
significant fluctuations in the reliability estimates.

5.2 Self-designed questionnaire
Regarding the questionnaire defined to asses the quality
of the developmental state of the robots behavior, analysis

of LLM-related queries revealed that 88% of user-requested
modifications were successfully implemented while maintaining
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TABLE 5 User Experience Questionnaire score, SD and Cronbach’s
Alpha-Coefficient values.

Category | UEQ score SD ‘ Chronbachs alpha ‘
Attractiveness 2.429 F0.510 0.88
Perspicuity 2.106 F0.355 -0.50
Efficiency 1.519 F0.724 0.69
Dependability 1.385 F0.785 0.55
Stimulation 2.077 F0.767 0.74
Novelty 1.865 F0.766 0.66

narrative coherence. Experimental log files were preserved for
subsequent analysis. These records suggest that 12% of participants
reported unsuccessful application of their requested changes,
primarily attributed to deficiencies in the speech recognition system.
The ASR component exhibited imprecise transcription of user
speech in 30.3% of instances. Notably, four subjects experienced
suboptimal transcription in three out of five interactions. This
ASR limitation also resulted in one participant reporting a
complete failure in story narration by the Pepper robot. Regarding
system performance evaluation, 96% of participants perceived the
system as creative. Furthermore, all subjects (100%) affirmed the
system’s consistency and endorsed the experimental design, which
incorporated iterative interactions during the original narrative
followed by the application of modifications in a novel version.

The analysis of voice expression revealed that the majority
of participants accurately distinguished between the two distinct
voices used in the experiment: the narrator and the storyteller.
However, 28% of the participants identified three voices, likely due
to confusion caused by tonal variations in the voice of the storyteller
perceived as a separate entity. Only one participant identified
a single voice. Regarding emotional recognition, happiness (22
responses) and sadness (10 responses) were the most frequently
identified emotions, followed by anger and disgust (3 responses
each) and fear (2 responses). Examination of the log files from the
sentiment analysis module indicated that 217 sentences (53.06%)
were classified as positive, 123 sentences (30.07%) as negative, and
69 sentences (16.87%) as neutral. This distribution suggests an
imbalance in the perception of positive versus negative emotions.

Regarding body expression, users gave an average rating of 3.72
out of 5 to the body gesture/emotion correlation, and 4.24 out of 5
on the gesticulation/text semantic interdependence.

The overall gameplay experience was evaluated positively by
participants. The robot, Pepper, effectively engaged users, achieving
a mean score of 4.28 out of 5. The participants rated the experience
as entertaining and enjoyable, with an average score of 4.44 out of
5. The system was perceived as intuitive and easy to interact with,
receiving a score of 4.64 out of 5. Additionally, the interaction flow
was deemed appropriate, with a mean score of 4.36 out of 5, and the
information displayed on the robot’s tablet was considered highly
useful, achieving the highest score of 4.84 out of 5. Overall, the
global experience was rated very positively, with an average score
of 4.56 out of 5.
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FIGURE 4
UEQ results for attractiveness, perspicuity, efficiency, dependability, stimulation and novelty.

The two-way random-effects, average-measures intraclass
correlation coeflicient (ICC) was computed (Koo and Li, 2016),
specifically ICC(2,k), to assess the reliability of the average
ratings across raters. The results indicated good to excellent
reliability, ICC(2,k) =0.87, 95% CI [0.70, 0.97]. The associated
F-test (F(7,168) = 8.78, p =3.512665¢ — 09 < 0.001) confirmed that
the reliability is statistically greater than zero. Overall, these results
demonstrate a high degree of agreement among raters.

5.3 Affinity diagram

As mentioned earlier, a semi-structured interview was
conducted immediately after the experiment. These interviews
were later transcribed, and participants’ comments were annotated
using sticky notes for analysis (see Figure 5). During the interviews,
participants were asked to evaluate the use of physical objects as
an interaction modality, describe their overall experience with
the system, and provide a general assessment of the interaction.
They were also invited to reflect on any perceived differences
between the original and modified versions of the story beyond
the narrative content. Finally, participants were encouraged to
suggest possible improvements to enhance the system’s functionality
and user experience. Subsequently, these notes were grouped into
clusters following the criteria of three non-participant researchers,
yielding three primary categories (behavior, interaction, and overall
experience) and a total of 16 subcategories (see Figure 6). This
process facilitated systematic organization and analysis of the
qualitative data collected from the interviews.

5.4 Timing and interaction fluidity

The latency experienced between the initiation of a user request
and the receipt of the corresponding system response is a critical
factor in human-robot interaction, as delays have been shown
to strongly influence how users perceive the naturalness and
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fluidity of LLM-driven systems. To address this, we measured
the average processing time of each module in the pipeline,
including the large language model (LLM), text-to-speech (TTS),
automatic speech recognition (ASR), emotion recognition (EMO),
and the gesticulation (GAN) modules. Table 6 presents a detailed
breakdown of these waiting times across 10 interactions with Pepper.

Notably, the LLM was invoked only once to generate the
complete story, and subsequent segments corresponding to the
Setup, Confrontation, and Resolution were buffered for offline
deployment, preventing additional delays during storytelling.
Nevertheless, the initial generation of the modified story required
the longest latency (=25 s), primarily due to the combination of LLM
outputlength and TTS processing. In contrast, modules such as ASR
and the GAN exhibited stable performance regardless of segment
length or gesture complexity.

From a user experience perspective, shorter latencies (=3-8s)
during story selection, Setup, and Confrontation were generally
tolerated, whereas longer delays, particularly during the modified
story narration, were more noticeable. This aligns with previous
findings that response time directly affects how engaging and
“human-like” an interaction feels. Importantly, several participants
noted in interviews that pauses were acceptable when framed as the
robot “thinking.” but excessive waiting risks reducing immersion
and disrupting the narrative flow.

6 Discussion

The performance of the robot as a collaborative storyteller can
be appreciated in the video*. The video demonstration highlights
both the strengths and limitations of the proposed system. It shows
how the robot provides feedback to guide user interaction, such as
audio tones and LED signals that indicate when it is listening. The
robot’s expressiveness is also evident: while the original story is told

4 Demo: https://youtu.be/u74-QV5LFDO
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FIGURE 5
Sticky notes with annotations from the semi-structured interview.
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FIGURE 6
Results of the affinity diagram.
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TABLE 6 Average processing times (in seconds) per module for different
stages of story narration during 10 interactions with Pepper.

Q LLM | TTS | ASR EMO | GAN Total
64 3.60

Story selection 2. 6.24
Setup 5.42 2.52 0.54 0.38 8.86
Confrontation 2.16 0.54 0.33 3.03
Resolution 3.24 0.54 0.49 4.27
Modified story 9.84 11.88 0.54 1.24 1.81 2531
narration

in a neutral manner, the modified story includes gestures tied to
specific words (e.g., branches (4:44, 4:50, 5:31), all (5:09), elephant
(5:44, 5:59, 6:42), no (5:52) and thought (6:11) and emotions
conveyed through speech modulation and LED color changes. These
multimodal features enhance the storytelling experience by making
it feel more dynamic and engaging.

However, some limitations were observed. The speech
(e.g.,
confusing “girl” with “guy”), which affected the accuracy of user

recognition module occasionally misidentified words

inputs. Additionally, delays were noticeable during the generation of
new stories, particularly at the modification stage, which may reduce
the perceived fluidity of the interaction. While some participants
tolerated pauses by interpreting them as the robot “thinking”,
excessive latency risks breaking immersion.

Feedback from the affinity diagram analysis was largely positive.
Participants valued the robot’s gesturing, emotional expression, and
narrative adaptation, although a few noted abrupt gestures or sudden
vocal modulations. These issues were seen as minor, suggesting that
fine-tuning could further improve naturalness. Interaction design
was also well received, especially the use of physical objects and
multiple communication channels. While some participants desired
clearer guidance, others found the system intuitive, pointing to a
trade-off between simplicity and detailed instructions depending on
user expertise.

It is important to stress, however, that this is a preliminary study,
and the results should be interpreted with caution. The current
evaluation does not include a comparison baseline, meaning we
cannot yet conclude whether the proposed approach is objectively
better than alternative methods. Narrative diversity was also
limited: although the LLM produced 125 proposals across 25
interactions, only 23 unique titles appeared, with three stories
dominating more than half of the suggestions. This bias toward
familiar titles suggests the need for alternative prompting strategies
or controlled story assignments to ensure greater variety. In
addition, some participants noted that interacting in a non-native
language restricted their spontaneity and creativity, underscoring
the importance of supporting multiple languages in future versions.

Moreover, the relatively small sample size (N = 25) in this study
may have contributed to the instability of the Cronbachs alpha
estimates, as reliability coefficients are known to be highly sensitive
to sample size. As recommended in the UEQ handbook, results from
small samples (below 30-40 participants) should be interpreted with
caution, and potential sampling effects considered when evaluating
internal consistency. Therefore, the negative alpha observed for the
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perspicuity scale should not be overinterpreted, and these results are
reported as exploratory”

7 Conclusion and further work

This study presents a preliminary step toward multimodal
collaborative storytelling with social robots. Pepper’s integration of
natural language interaction, object recognition, gesture generation,
and emotional expression demonstrated the feasibility of combining
existing technologies into a unified storytelling framework. User
feedback confirmed the novelty and appeal of the system, although
several limitations remain regarding naturalness, latency, and
narrative diversity. It is important to stress that this is a preliminary
study, and the results should be interpreted with caution, since no
comparison baseline was included.

In the context of storytelling, achieving high expressiveness
across multiple modalities is crucial. While Pepper’s gesticulation and
voice intonation generally aligned with the narrative, its expressive
range is limited by the absence of facial expressions beyond LED
modulation. More advanced gesture models, such as the Semantic
Gesticulator (Zhang Z. et al., 2024), could generate semantically
relevant movements, but their computational cost currently does
not permit real-time execution. Similarly, although fine-tuned LLMs
typically yield superior results, this process is resource-intensive. A
zero-shot approach, as explored here, proved to be a viable alternative,
and the continuous release of new LLMs opens the door to more
creative, flexible, and open-ended interactions.

Future work should directly address the lack of a comparison
baseline. Systematic evaluations are needed to compare Pepper
narrating with and without gestures or tonal modulation, telling
stories alone versus co-creating them with the user, and collaborative
storytelling against a human narrator. Such studies would clarify the
role of each expressive channel and assess the extent to which robots
could complement, or eventually substitute, human facilitators,
especially in educational or therapeutic contexts for children.
Follow-up studies will also investigate why the LLM favored certain
stories repeatedly, testing different prompting strategies to mitigate
this bias or determine whether it reflects inherent model tendencies.

Finally, expanding evaluations to include larger and more age-
diverse participant groups, ideally in their native language, will
provide more representative feedback and reveal whether our work
should be redirected to better address the needs and experiences of
younger children.

Data availability statement
The original contributions presented in the study are included in

the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

UZ: Writing - original draft, Investigation, Software, Formal
analysis, Methodology, Visualization, Funding acquisition. JE:
Software, Visualization, Conceptualization, Writing - original

frontiersin.org


https://doi.org/10.3389/frobt.2025.1662819
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zabala et al.

draft. IR: Supervision, Conceptualization, Writing - original draft,
Writing - review and editing, Validation, Data curation, Project
administration. EL: Supervision, Conceptualization, Writing -
original draft, Writing - review and editing, Formal analysis,
Funding acquisition, Resources

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work is partially
funded by the Spanish Ministry of Science and Innovation under
projects PID2021-1224020B-C22, TED2021-131019B-10, Author
Unai Zabala has received a PREDOKBERRI research Grant from
Basque Government.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

Alimardani, M., Neve, L., and Verkaart, A. (2021). “Storytelling robots for training of
emotion recognition in children with autism; opinions from experts,” in International
conference on human-computer interaction (Springer), 223-233.

Alismail, H. A. (2015). Integrate digital storytelling in education. J. Educ. Pract. 6,
126-129.

Alonso-Campuzano, C., Iandolo, G., Filosofi, E, Tardivo, A., Sosa-Gonzélez, N.,
Pasqualotto, A., et al. (2024). Tangible digital collaborative storytelling in adolescents
with intellectual disability and neurodevelopmental disorders. J. Appl. Res. Intellect.
Disabil. 37, €13159. doi:10.1111/jar.13159

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., and Tanaka,
F. (2018). Social robots for education: a review. Sci. robotics 3, eaat5954.
doi:10.1126/scirobotics.aat5954

Castillo-Cuesta, L., Quinonez-Beltran, A., Cabrera-Solano, P, Ochoa-Cueva, C.,
and Gonzalez-Torres, P. (2021). Using digital storytelling as a strategy for enhancing
efl writing skills. Int. J. Emerg. Technol. Learn. 16, 142. doi:10.3991/ijet.v16il3.
22187

Chang, C.-Y.,, Hwang, G.-J., Chou, Y.-L., Xu, Z.-Y,, and Jen, H.-J. (2023). Effects
of robot-assisted digital storytelling on hospitalized children’s communication during
the covid-19 pandemic. Educ. Technol. Res. Dev. 71, 793-805. doi:10.1007/s11423-023-
10209-0

Davidhizar, R., and Lonser, G. (2003). Storytelling as a teaching technique. Nurse
Educ. 28,217-221. doi:10.1097/00006223-200309000-00008

Elgarf, M., Zojaji, S., Skantze, G., and Peters, C. (2022). “Creativebot: a creative
storyteller robot to stimulate creativity in children,” in Proceedings of the 2022
international conference on multimodal interaction, 540-548.

Essien, G., and Parbanath, S. S. (2024). “Exploring the world of robot-assisted digital
storytelling: trends, models, and educational implications,’]. Inf. Technol. Educ., 23, 027.

Fiske, A., Henningsen, P,, and Buyx, A. (2019). Your robot therapist will see you now:
ethical implications of embodied artificial intelligence in psychiatry, psychology, and
psychotherapy. J. Med. Internet Res. 21, €13216. doi:10.2196/13216

Gatti, E., Giunchi, D., Numan, N., and Steed, A. (2024). “Aisop: exploring
immersive vr storytelling leveraging generative ai” in 2024 IEEE conference on
virtual reality and 3D user interfaces abstracts and workshops (VRW) (IEEE),
865-866.

Harmon, S., and Rutman, S. (2023). “Prompt engineering for narrative choice
generation,” in International conference on interactive digital storytelling (Springer),
208-225.

Koo, T. K, and Li, M. Y. (2016). A guideline of selecting and reporting
intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155-163.
doi:10.1016/j.jcm.2016.02.012

Frontiers in Robotics and Al

11

10.3389/frobt.2025.1662819

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,

the editors and the reviewers. Any product that may be

affiliated organizations, or

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Laugwitz, B., Held, T., and Schrepp, M. (2008). “Construction and evaluation of a user
experience questionnaire,” in HCI and usability for education and work: 4Th symposium
of the workgroup human-computer interaction and usability engineering of the Austrian
computer Society, USAB 2008, Graz, Austria, November 20-21, 2008. Proceedings 4
(Springer), 63-76.

Liang, J.-C., and Hwang, G.-J. (2023). A robot-based digital storytelling
approach to enhancing efl learners’ multimodal storytelling ability and narrative
engagement. Comput. &  Educ. 201, 104827. doi:10.1016/j.compedu.2023.
104827

Lin, ], Tang, ], Tang, H., Yang, S., Chen, W.-M., Wang, W.-C,, et al. (2024).
Awgq: Activation-aware weight quantization for on-device Illm compression
and acceleration. Proc. Mach. Learn. Syst. 6, 87-100. doi:10.48550/arXiv.2306.
00978

Lucero, A. (2015). “Using affinity diagrams to evaluate interactive prototypes,”
in Human-Computer Interaction-INTERACT 2015: 15th IFIP TC 13 International
Conference, Bamberg, Germany, September 14-18, 2015, Proceedings, Part II 15
(Springer), 231-248.

Nichols, E., Gao, L., and Gomez, R. (2020). “Collaborative storytelling with large-
scale neural language models,” in Proceedings of the 13th acm siggraph conference on
motion, interaction and games, 1-10.

Nichols, E., Gao, L., Vasylkiv, Y., and Gomez, R. (2021). “Collaborative storytelling
with social robots,” in 2021 IEEE/RS] international conference on Intelligent Robots and
Systems IROS (IEEE), 1903-1910.

Pérez, J. M., Furman, D. A., Alemany, L. A., and Luque, F. (2021). Robertuito: a pre-
trained language model for social media text in spanish. arXiv Prepr. arXiv:2111.09453.
doi:10.48550/arXiv.2111.09453

Plutchik, R. (1980). “A general psychoevolutionary theory of emotion,” in Theories of
emotion (Elsevier), 3-33.

Rasouli, S., Gupta, G., Nilsen, E., and Dautenhahn, K. (2022). Potential applications
of social robots in robot-assisted interventions for social anxiety. Int. J. Soc. Robotics 14,
1-32. doi:10.1007/s12369-021-00851-0

Venkatraman, S., Tripto, N. I, and Lee, D. (2024). Collabstory: Multi-llm
collaborative story generation and authorship analysis. arXiv Prepr. arXiv:2406.
doi:10.48550/arXiv.2406.12665

Wan, H., Zhang, J., Suria, A. A., Yao, B., Wang, D., Coady, Y., et al. (2024). Building
llm-based ai agents in social virtual reality. Ext. Abstr. CHI Conf. Hum. Factors Comput.
Syst., 1-7. doi:10.1145/3613905.3651026

Wright, A. (1995). Storytelling with children. Oxford, England: Oxford University.

Yotam, S., Gabriela, A., and Isa, A. (2024). Mystoryknight: a characterdrawing driven
storytelling system using llm hallucinations. Chiyoda, Japan: Interaction.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1662819
https://doi.org/10.1111/jar.13159
https://doi.org/10.1126/scirobotics.aat5954
https://doi.org/10.3991/ijet.v16i13.22187
https://doi.org/10.3991/ijet.v16i13.22187
https://doi.org/10.1007/s11423-023-10209-0
https://doi.org/10.1007/s11423-023-10209-0
https://doi.org/10.1097/00006223-200309000-00008
https://doi.org/10.2196/13216
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.compedu.2023.104827
https://doi.org/10.1016/j.compedu.2023.104827
https://doi.org/10.48550/arXiv.2306.00978
https://doi.org/10.48550/arXiv.2306.00978
https://doi.org/10.48550/arXiv.2111.09453
https://doi.org/10.1007/s12369-021-00851-0
https://doi.org/10.48550/arXiv.2406.12665
https://doi.org/10.1145/3613905.3651026
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zabala et al.

Zabala, U., Rodriguez, I, Martinez-Otzeta, J. M., and Lazkano, E. (2020). “Can a
social robot learn to gesticulate just by observing humans?,” in Workshop of physical
agents (Springer), 137-150.

Zabala, U, Rodriguez, I, and Lazkano, E. (2022). “Towards an automatic
generation of natural gestures for a storyteller robot,” in 2022 31st IEEE international
conference on robot and human interactive communication (RO-MAN) (IEEE),
1209-1215.

Frontiers in Robotics and Al

12

10.3389/frobt.2025.1662819

Zhang, C., Liu, X., Ziska, K., Jeon, S., Yu, C.-L., and Xu, Y. (2024a). “Mathemyths:
leveraging large language models to teach mathematical language through child-ai co-
creative storytelling,” in Proceedings of the 2024 CHI conference on human factors in
computing systems, 1-23.

Zhang, Z., Ao, T, Zhang, Y., Gao, Q, Lin, C., Chen, B,, et al. (2024b). Semantic
gesticulator: Semantics-aware co-speech gesture synthesis. ACM Trans. Graph. (TOG)
43,1-17. doi:10.1145/3658134

frontiersin.org


https://doi.org/10.3389/frobt.2025.1662819
https://doi.org/10.1145/3658134
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	3 Collaborative storytelling: Behavior generation
	3.1 Choosing and introducing the story
	3.2 Personalizing the story
	3.3 Bringing the story to life

	4 Experimental setup
	5 Results
	5.1 User experience questionnaire
	5.2 Self-designed questionnaire
	5.3 Affinity diagram
	5.4 Timing and interaction fluidity

	6 Discussion
	7 Conclusion and further work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

