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Effect of presenting robot hand 
stiffness to human arm on 
human-robot collaborative 
assembly tasks
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1Human Robotics Laboratory, Nara Institute of Science and Technology, Ikoma, Japan, 2Department 
of Mechanical Engineering, Kyushu University, Fukuoka, Japan

In response to the growing need for flexibility in handling complex tasks, 
research on human–robot collaboration (HRC) has garnered considerable 
attention. Recent studies on HRC have achieved smooth handover tasks 
between humans and robots by adaptively responding to human states. 
Collaboration was further improved by conveying the state of the robot 
to humans via robotic interactive motion cues. However, in scenarios such 
as collaborative assembly tasks that require precise positioning, methods 
relying on motion or forces caused by interactions through the shared object 
compromise both task accuracy and smoothness, and are therefore not 
directly applicable. To address this, the present study proposes a method 
to convey the stiffness of the robot to a human arm during collaborative 
human-robot assembly tasks in a manner that does not affect the shared 
object or task, aiming to enhance efficiency and reduce human workload. 
Sixteen participants performed a collaborative assembly task with a robot, which 
involved unscrewing, repositioning, and reattaching a part while the robot held 
and adjusted the position of the part. The experiment examined the effectiveness 
of the proposed method, in which the robot’s stiffness was communicated to a 
participant’s forearm. The independent variable, tested within-subjects, was the 
stiffness presentation method, with three levels: without the proposed method 
(no presentation) and with the proposed method (real-time and predictive 
presentations). The results demonstrated that the proposed method enhanced 
task efficiency by shortening task completion time, which was associated with 
lower subjective workload scores.
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human-robot collaboration, human-robot interactions, human-machine teaming, 
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 1 Introduction

The transition from mass production to diverse, small-scale production has posed 
challenges such as increased production costs and demand for flexibility in industrial 
processes (Okimoto and Niitsuma, 2020). Although industrial robots excel in repetitive and 
precise tasks, their limited adaptability to dynamic production lines renders them unsuitable 
for tasks involving intricate and variable designs (Okimoto and Niitsuma, 2020). In contrast, 
collaborative robots designed to work alongside humans without safety fences have gained 
attention because of their ability to combine human adaptability with robotic efficiency
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(Kildal et al., 2018; Joseph et al., 2020; Okimoto and Niitsuma, 
2020). This growing interest in human–robot collaboration (HRC) 
is evident from the appearance of safety requirements in the ISO 
standards, specifically for industrial robot systems (ISO 10218-
1:2011, 2011; ISO 10218-2:2011, 2011).

Conventional industrial robots are usually operated without 
direct human contact, separated by safety fences. In contrast, 
collaborative robots are designed to work effectively in close 
proximity to or in direct physical contact with humans (Kildal et al., 
2018). A previous study (Wilhelm et al., 2016) defined the types of 
interactions between a human and a robot as illustrated in Figure 1. 
These include “coexistence,” wherein there are no fences but the 
workspace is not shared. They also include “cooperation,” wherein 
the workspace is shared but the occupants (human and robot) 
do not simultaneously handle the same products or components 
(Wilhelm et al., 2016; Kildal et al., 2018). At these levels safety 
functions such as safety-rated monitored stops or protective stops 
triggered by safeguarding devices (ISO 10218-1:2011, 2011) are 
typically employed to prevent physical contact between a human and 
a robot. In contrast, “collaboration” involves simultaneous handling 
of the same products or components by humans and robots, which 
has recently gained significant attention in the field of HRC. The 
present research focuses on this “collaboration,” aiming to deepen 
the understanding of how humans and robots can efficiently and 
fluidly perform tasks while manipulating the same object together.

Safety (ISO 10218-1:2011, 2011; ISO 10218-2:2011, 2011; 
Kildal et al., 2018; Joseph et al., 2020; Schepp et al., 2022) is 
a fundamental prerequisite for HRC. Once safety is ensured, 
many studies focus on enhancing efficiency by enabling robots 
to recognize human states (Kupcsik et al., 2018; Pan et al., 2019; 
Mohammed and Wada, 2023; Mohammed et al., 2024). However, 
collaborative work with robots can potentially impose cognitive 
and physical burdens on humans. This is particularly the case for 
humans who lack a full understanding of the force, speed, movement 
direction, and actions of the robot (Segura et al., 2021), or who do 
not trust the robot as a competent team member (Mukherjee et al., 
2022). These challenges are particularly evident in industrial settings 
such as factories, where humans are required to interact with 
diverse and unfamiliar types of robots. Therefore, to achieve safe 
and efficient collaboration, ensuring human physical safety, building 
trust, and alleviating human workload by intuitively conveying the 
robot’s intentions are imperative.

Several studies have been actively conducted on object handover 
as examples of HRC. Moon et al. (2014) proposed a method to 
convey the robot’s handover target position to humans through 
the robot’s gaze, enabling humans to acquire the object faster 
before the robot arrives at the handover position. Okimoto and 
Niitsuma (2020) suggested utilizing sound to indicate the robot’s 
destination to humans, which would enable humans to move faster 
before the robot arrives at its destination. Maccio et al. (2022) 
concluded that visualizing the forthcoming actions of a robot using 
mixed reality devices could facilitate the interaction and result in 
fewer collisions. Previous studies (Mohammed and Wada, 2023; 
Mohammed et al., 2024) demonstrated that presenting the robot’s 
future handover position to humans via a vibrotactile armband 
improves task efficiency. These methods help humans perceive 

the robot’s future destination (Moon et al., 2014; Okimoto and 
Niitsuma, 2020) and actions of the robot (Maccio et al., 2022). 
Such perception enhances work efficiency and reduces human 
workload during the motion planning phase preceding physical 
contact with the robot.

In collaboration, however, consideration of the phase involving 
physical contact becomes crucial, rather than relying solely on 
recognition of the robot’s state before the contact. For example, 
in handover (Costanzo et al., 2021) or assembly (Bonilla and 
Asada, 2014) tasks, issues such as danger or discomfort may 
arise if one party forcibly pulls the object while the other holds 
it or if one party releases the object prematurely. Such issues 
may result from a lack of recognition of the mechanical state 
of the robot. Therefore, in collaboration, the mechanical state is 
deemed a crucial element because it is challenging to perceive 
visually and can significantly impact performance. Costanzo et al. 
(2021) proposed a method in which a robot slightly retracts 
its hand just before pulling it back when holding an object 
together with a human. This indicates that the robot securely 
holds the object and is ready to take over it. This method 
communicates the robot’s intention through the force resulting 
from the dynamic interaction between the human and the robot. 
Additionally, an existing study (Yamamoto et al., 2024) proposed 
a method that conveys the internal mechanical states of a robot, 
such as mechanical impedance, which emerge before any interaction 
force arises. This approach demonstrated smoother handover, 
which can be further enhanced by incorporating predicted future
state changes.

The present study focuses on collaborative assembly tasks. 
In certain situations, conveying the mechanical state of a robot 
via an object, as in Costanzo et al. (2021), may not be feasible. 
For example, when the robot’s interaction force or movement 
inadvertently alters the shared object’s position or orientation, this 
can be undesirable for precise positioning. In our preliminary study, 
Yamamoto et al. (2024) proposed a method that conveys the robot’s 
internal states to humans through sensory augmentation without 
affecting the shared object or task. Building on this approach, the 
present study explores its potential applicability to collaborative 
assembly scenarios. While the method in Yamamoto et al. 
(2024) has demonstrated its effectiveness in handover tasks, 
its application to collaborative assembly tasks remains
underexplored.

Therefore, the purpose of the present study is to develop a 
method to convey the robot’s mechanical impedance to humans 
via tightening forces during collaborative human-robot assembly 
tasks where both a human and a robot engage with the same 
products or components simultaneously. The present study 
aims to investigate the effectiveness of the method to enhance 
efficiency and reduce human workload through human-in-the-
loop experiments.

The remainder of this paper is organized as follows. Section 2 
introduces a haptic presentation method for humans to intuitively 
discern the robot’s mechanical impedance. Section 3 presents an 
experiment to evaluate the effectiveness of the proposed method 
in an assembly task. Finally, Section 4 discusses the findings of this 
study and future research direction. 
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FIGURE 1
Various levels of cooperation between a human worker and a robot. Redrawn based on the conceptual framework described in (Wilhelm et al., 2016;
International Federation of Robotics IFR, 2020).

2 Methods

2.1 Conveying stiffness of robots to 
humans

Smooth collaboration between humans and robots requires 
effective communication between the two distinct agents to 
comprehend each other’s intentions or states. We convey the 
robot’s intentions through non-verbal information, as verbal 
communication may introduce further delays. Given the importance 
of the robot’s mechanical state in collaboration, where humans and 
robots jointly grasp a single component, this state is deemed crucial, 
because it is challenging to visually perceive and it significantly 
affects the performance.

Leveraging the robot’s stiffness—an internal state measurable 
before interaction—is advantageous for promptly responding to 
changes in the robot’s mechanical state. In contrast, relying 
on gripping force, which is detectable only after interaction, 
delays the response. Consequently, understanding the robot’s 
intention is equated with understanding the robot’s stiffness in
this paper.

The stiffness of the robot’s end-effector was conveyed to 
the human through the stiffness changes corresponding to the 
tightening or loosening of a device attached to the human forearm 
(Figure 2). The rationale for selecting the compressive force to 
convey the state is because tactile sense requires the shortest reaction 
period among visual, auditory, and tactile senses (Chan and Ng, 
2012). Additionally, this method is particularly useful even when 
humans are visually occupied, which is often the case in HRC 
scenarios (Mohammed et al., 2024).

The tightening device, weighing 160 g, comprises a DC 
motor (XM430-W210-T, Dynamixel) and gripping components 
fabricated using a 3D printer. We experimented with various 
materials, including rubber bands; however, the elasticity of 
rubber significantly impeded presentation speed compared to rigid 

FIGURE 2
Schematic diagram illustrating how the robot’s stiffness Kp(t) is 
presented to a human. A specific direction of the stiffness, denoted by 
k(t), is mapped to the tightening device. In this study, s: =
[0,1,0]T was used.

acrylonitrile butadiene styrene (ABS). The torque of the tightening 
device was determined as follows:

τt(t): = −c · k(t+Δt)(qt(t) − qt
d(t)), (1)

where the scalar k(t) denotes the stiffness of the robot end-effector 
in a certain direction within the task coordinates, which will be 
described later, and qt(t) and qt

d(t) represent the measured and 
desired angles of the tightening device, respectively. The scalar c acts 
as a scaling factor that maps the stiffness of the robot end-effector 
k(t) to the equivalent stiffness of the tightening device c · k(t). The 
scalars c and qt

d(t) were determined according to the experimental 
task as described in the following subsection. Additionally, Δt (≥ 0)
was introduced to advance the timing of communicating the robot’s 
state by a few seconds to compensate for the human reaction time, 
as research (Fujita et al., 2010) has demonstrated that presenting 

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1660691
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Yamamoto et al. 10.3389/frobt.2025.1660691

signals immediately before the robot’s action can reduce human 
cognitive load.

The present study posits the following hypotheses:

H1: Presenting the robot’s stiffness through compression on the 
forearm will facilitate the recognition of the robot’s mechanical state, 
which is difficult to visually perceive, thereby reducing the workload 
and improving work efficiency. 

H2: Advancing the timing of presenting the robot’s stiffness by Δt
will reduce the delay in responding to variations in the mechanical 
state of the robot, thereby improving work efficiency.

To validate these hypotheses, we conducted experiments in 
assembly tasks. Additionally, objective evaluations such as reaction 
time and subjective evaluations such as workload were performed. 

2.2 Robot

As depicted in Figure 3, a 3-degree-of-freedom (DOF) planar 
robot was utilized for the experiment, and the motion of the 
end-effector was mechanically restricted to one DOF in the 
vertical direction using a linear rail. Task-space position control in 
Equation 2 was employed for the robot:

τ: = −JT(q)Kp(z(t) − zd) −Kvq̇(t)

z(t): = [x(t),y(t),α(t)]T,zd: = [0,yd,0]
T,

(2)

where q(t) = [q1,q2,q3]
T(∈ R3) denotes the joint angles of the robot. 

In this context, z(t) represents the position and orientation of the 
robot hand in task coordinates and α( = q1 + q2 + q3) indicates the 
orientation. Here, α = 0 when the longitudinal direction of the 
hand is aligned with the y-axis, as in Figure 3. Additionally, Kp: =
diag[kx,ky,kα] represents the stiffness matrix of the end-effector in 
the task coordinates. In the present study, the stiffness in the y-
direction was conveyed to a human, meaning that k = [0,1,0]TKp =
ky was employed in Equation 1 as the motion of the end-effector was 
restricted along the y direction. Furthermore, kx and kα were fixed 
to zero, as they had no physical significance under the one-DOF 
constraint of the end-effector motion. Note that the desired value 
of y, denoted as yd, varied over time according to the task.

2.3 Task scenario

This experiment, illustrated in Figure 4, centers on an assembly 
task involving collaborative positional adjustments of a metal frame 
facilitated by a robot manipulator. The task involves changing the 
installation height of the detachable part (designated as P in the 
figure), which is affixed horizontally to the base frames with screws. 
Movement of part P is required from a higher position y = yU to 
a lower position y = yL (downward condition), or conversely, from 
y = yL to y = yU (upward condition). It was assumed that the robot 
lacked prior knowledge of the target location for relocating the 
detachable part.

Given that the detachable part was secured to the base frames 
with screws, it was imperative to first unscrew them, relocate the 
part, and then reattach it. The robot held the object so that the human 
could remove their hands from the detachable part. This allowed the 

FIGURE 3
Planar 3-DoF robot arm.

use of both hands to loosen and tighten the screws, thus improving 
work efficiency.

The task details are as follows (also refer to Figures 4, 5). For 
clarity, this description predominantly addresses the downward 
condition, as the upward condition is nearly identical. 

1. Preparation phase: Initially, the robot arm was at a starting 
position (y = ytop). When a human pressed a button, the robot 
moved to the location of the detachable part, depicted by y =
yU, by setting the desired position for the robot’s position 
control to yd = ybottom and the stiffness of the arm to low (ky =
klow). After a few seconds pause, the robot hand closed and 
grasped the detachable part.

2. Screw-loosening phase: This phase started at time tSL, which 
occurred 2–3 s after the robot grasped the object. During 
this phase, the robot adopted a high end-effector stiffness 
(ky = khigh) and set its desired position to yd = y(tSL), which 
corresponded to the robot’s position at the moment it started 
to hold the object. In this phase, the human could remove 
their hands from the detachable part P and loosen the screws 
with both hands. Here, it is noted that y(tSL) ideally matches 
yU. However, the observed value y(tSL) is used because the 
position of the detachable part inevitably involves uncertainty, 
due to dimensional tolerances of the assembled components. 
In addition, the position of the end effector when grasping 
the detachable part is not uniquely determined, as it depends 
on where the part is grasped. To ensure that the end effector 
remains nearly at the same position even when the screw is 
released under such uncertainty, we set the reference to the 
observed position after grasping, y(tSL).

3. Part-Moving phase: The human grasped the detachable part 
with both hands and lowered it to y = yL, then halted. 
Initially, the robot endeavored to maintain its current position 
with high stiffness. When the human applied a 4 mm 
downward movement (or 1 mm upward movement for the 
upward condition), the robot lowered its stiffness (ky =
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FIGURE 4
Experimental setup (left) and a participant in the assembly task (right). The top image shows the location of the detachable part (P) at the end of the 
preparation phase in the downward condition. From this state, the participant loosens the screws, moves the part P to y = yL with both hands, releases 
it with robotic assistance, and then tightens the screws again. Finally, the robot returns to ytop. Pressure sensors measure the timing of the participant’s 
grasping and releasing.

klow). Then, the desired position was updated to yd = ybottom, 
thereby facilitating movement of the object and robot by 
the human. As previously mentioned, it was presumed 
that the robot was unaware of the desired location of the 
part (yL); thus, it had to be determined by the operator’s 
actions. In the experiment, tapes indicating y = yL were affixed 
to the base frames. Participants were instructed to align 
the detachable part with this tape prior to commencing
the experiment.

4. Screw-Tightening phase: This phase initiated at time t =
tST, defined as the moment when the robot’s hand stopped 
moving. This was determined when the changes in the position 
obtained from the joint sensors remained within a certain 
range over a given period. During this phase, the robot set its 
desired position as yd: = y(tST) and adopted high end-effector 
stiffness (ky = khigh). Subsequently, the human released their 
hands from the part and tightened the screws to secure the part 
to the base frame.

5. Completion phase: When the human pressed the button again, 
the robot opened the hand, released the detachable part, and 
returned to the initial position (yd = ytop).

The present study employed the following setting ytop = 0.196 m, 
ybottom = 0.302 m, yU = 0.24 m, and yL = 0.28 m (Figure 4).

The values for the stiffness ky used in the object-holding and 
compliant modes are set as follows.

klow: The stiffness level at which the robot alone cannot secure the 
object in a fixed position, enabling easy movement when released by 
the human. In this study, klow = 0.1 was used.

khigh: The stiffness level at which the robot alone can sustain the 
object in a fixed position even if the human releases their hands from 
it. In the present study, khigh = 70 was used. 

2.4 Experimental design

This experiment employed a within-subjects design where each 
participant experienced all three levels of the robot hand stiffness 

presentation method, which was introduced as the independent 
variable. The three conditions tested were as follows: 

- No Presentation (No): Participants did not wear the 
tightening device, and the task was executed without any 
knowledge of the robot’s stiffness change.
- Current Presentation (Current): Participants wore the 
tightening device, and the real-time stiffness of the robot arm 
(Δt = 0 s) was communicated.
- Future Presentation (Future): Participants wore the 
tightening device, and the future stiffness of the robot arm 
after a given time (Δt = 0.25 s) was presented, aimed at 
compensating for the delay in human reaction time. The value 
of 0.25 s was determined through a brief pilot test for the 
present assembly task, based on a previous study (Tanaka et al., 
2012), which demonstrated that the typical human reaction 
time to haptic stimuli ranges from 0.2 to 0.25 s. The order 
of presenting the three levels of experimental conditions was 
counterbalanced.

2.5 Participants

Sixteen participants aged 21–30 years (13 males and 3 females) 
provided informed consent and were involved in the experiment 
approved by the Ethics Review Committee for Human Research 
at Nara Institute of Science and Technology (2023-I-33). The 
participants were compensated with approximately $10 for their 
participation. 

2.6 Experimental design

The procedure of this experiment is illustrated in Figure 6. 
Initially, the participants were briefed on the experiment, including 
the procedures and data collection, and provided informed 
consent. The participants were informed that the tightening device 
conveyed the stiffness of the robot arm, while the timing of the 
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FIGURE 5
Phases in the task and how robot and human collaborate.

stiffness presentation was not mentioned. After a 2-min break, the 
participants wore the tightening device and practiced the task while 
experiencing changes in the stiffness of the robot arm under the 
Current condition. This practice continued until participants felt 
confident in performing the task adequately. Following another 2-
min break, the participants completed detachable object movement 
tasks with the assistance of the robot for one of the three stiffness-
presentation method conditions, as described in Section 2.2, twice: 
first with downward movement of the detachable object and then 
with upward movement. After each task execution, the participants 
completed a questionnaire to assess the various subjective aspects 
of the task as mentioned in the following sections. Additionally, the 
NASA-TLX questionnaire was completed after both trials of each 
stiffness-presentation method condition were finished. Similarly, 
for the remaining two stiffness-presentation method conditions, 
participants performed two trials—one downward movement and 
one upward movement of the detachable object—followed by 
completing the questionnaire after each trial. The NASA-TLX 
questionnaire was completed after both trials for each stiffness-
presentation method condition were finished. As described earlier, 
the order of these conditions was counterbalanced and varied for 
each participant.

Participants were instructed not to grasp the detachable part 
during the screw-loosening and screw-tightening phases. In the 
part-moving phase, they were instructed to hold the section of the 
part where the pressure sensor was attached while moving the part. 
They were also instructed to complete the tasks as quickly as possible. 

2.7 Evaluation method

2.7.1 Objective evaluation by temporal indices
To investigate the smoothness of task execution, the following 

four temporal indices are introduced (Figure 7). 

1. Screw-loosening timing (ΔtSL): This is defined as ΔtSL: = tSL2 −
tSL, where tSL denotes the time the robot enters position-
holding mode in the screw-loosening phase, as already defined 
in the previous section. The time tSL2 is defined as the time 

FIGURE 6
Experimental procedure for human–robot assembly. The procedures 
depicted inside the dotted square were repeated three times, one for 
each condition: No, Current, and Future.

when the human begins to loosen the screw, indicated by the 
slight downward movement of the detachable object due to 
gravitational force.

2. Part-moving timing (ΔtPM): This is defined as ΔtPM: = tPM2 −
tPM, where tPM is defined as the time when both hands start to 
grasp the part, measured by the pressure sensors. The time tPM2
is defined as the time when the robot becomes compliant (ky =
klow) to be moved by human hands.

3. Screw-tightening timing (ΔtST): This is defined as ΔtST: =
tST2 − tST. Here, tST is defined as the time when the robot 
enters position-holding mode in the screw-tightening phase, 
as already defined earlier, and tST2 is defined as the time when 
both human hands release the part for starting to tighten one 
of the screws, measured by the pressure sensors attached to the 
detachable part P.

4. Total Task Completion Time (Δttotal): This is defined as 
Δttotal: = tComp − tStart, where tStart is defined as the time when 
the human first pushes the button in the preparation phase 
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FIGURE 7
Four temporal indices to evaluate the effectiveness of the proposed method to the collaborative task is illustrated with signals related to states of robot, 
human, as well as their interactions. Please refer the text of the paper for the detail.

to start the task, and tComp is defined as the time when the 
human pushes the button in the completion phase to signal the 
completion of the task.

A trial of the task is judged as ‘failure’ when the detachable 
part P is dropped at least once during the trial. There are two 
opportunities to ‘fail’ in a trial: just before the screw-loosening and 
screw-tightening phases, during which both hands are released from 
the detached part. Releasing the part before entering each of these 
phases, i.e., before the robot’s stiffness switches to ky = khigh, it is 
judged as ‘failure.’ If a trial is judged as ‘failure,’ the data regarding 
the temporal indices of the participants are replaced by the mean 
value over successful participants. 

2.7.2 Subjective evaluations
We evaluated participants’ perception of trust in the robot, 

clarity of the presentation of robot stiffness, subjective smoothness 
of the task, and anxiety about dropping the detachable part. For 
this purpose, the questionnaire items Q1–Q5 listed in Table 1 were 
administered using a Visual Analog Scale (VAS). The left and right 
sides of the VAS were labeled “strongly disagree” and “strongly 
agree,” respectively. Scores of 0 and 100 were assigned to the left and 
right ends for Q1 through Q4, and inversely for Q5.

For Q5, “Strongly Disagree” was assigned a score of 100, and 
“Strongly Agree” was assigned a score of 0. For all other questions, 
“Strongly Disagree” was assigned a score of 0, and “Strongly Agree” 
was assigned a score of 100. Additionally, the workload for each 
presentation method was assessed using the Japanese version (Haga 
and Mizukami, 1996) of the NASA-TLX (Hart and Staveland, 1988). 

TABLE 1  Questionnaire items (Q1–Q5) used in the subjective 
evaluations.

Id Questionnaire item

Q1 Were you able to trust the robot to perform the task?

Q2 Was your experience working with the robot one of dependable 
performance?

Q3 Was it clear when the stiffness of the robot’s arm changed?

Q4 Was it clear when the stiffness of the robot’s arm changed?

Q5 Did you feel anxious about dropping the metal part?

3 Results

Under the No presentation condition, wherein the proposed 
method was not utilized, a total of six failures were observed—three 
during screw-loosening in the downward direction and three 
during screw-tightening in the upward direction. Conversely, no 
failures were noted under the Current presentation condition, 
where the current stiffness of the robot end-effector was provided 
to participants. In the Future presentation condition, one failure 
occurred during the screw-tightening phase in the upward direction.

For data in which normality and homoscedasticity were 
not rejected, a one-way repeated measures analysis of variance 
(ANOVA) was used to investigate the main effects, followed by 
post hoc paired t-tests with Bonferroni correction. Otherwise, 
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TABLE 2  Overview of statistical results.

Temporal indices Future vs. current Future vs. no Current vs. no Test

Condition Indices p df/n r/d p df/n r/d p df/n r/d

Down

Screw-loosening - - - - - - - - - - - - n/a

Part-moving - - - - - - - - - - - - n/a

Screw-tightening ∗ 0.043 16 −0.54 ∗∗∗ 0.000 16 −0.88 ∗∗∗ 0.000 16 −0.88 WSR

Task completion - 1.0 16 0.12 † 0.050 16 −0.53 ∗∗ 0.008 16 −0.67 WSR

Up

Screw-loosening - - - - - - - - - - - - n/a

Part-moving - - - - - - - - - - - - n/a

Screw-tightening ∗∗ 0.009 16 −0.66 ∗∗∗ 0.000 16 −0.85 ∗ 0.011 16 −0.65 WSR

Task completion - 1.0 15 −0.063 ∗∗ 0.009 15 −0.79 ∗ 0.012 15 −0.76 Paired t

Questionnaire

Condition Question No.

Down

Q1 - 0.49 13 0.28 ∗∗ 0.003 16 0.72 ∗ 0.043 16 0.54

WSR

Q2 ∗ 0.026 13 0.67 ∗∗ 0.008 15 0.73 ∗ 0.049 15 0.56

Q3 - 0.13 10 0.56 ∗∗∗ 0.000 16 0.88 ∗∗∗ 0.000 16 0.79

Q4 - 0.11 11 0.55 ∗∗ 0.002 15 0.84 ∗ 0.027 16 0.59

Q5 - 0.41 14 −0.30 - 0.076 16 0.49 ∗ 0.023 16 0.60

Up

Q1 - 1.0 14 0.12 ∗∗∗ 0.000 16 0.88 ∗∗∗ 0.000 16 0.87

Q2 - 1.0 13 0.048 ∗∗∗ 0.000 16 0.87 ∗∗∗ 0.000 16 0.87

Q3 - 0.62 12 0.25 ∗∗∗ 0.000 16 0.88 ∗∗∗ 0.000 16 0.88

Q4 - 0.11 14 0.12 ∗∗∗ 0.000 16 0.88 ∗∗∗ 0.000 16 0.87

Q5 - 0.12 14 −0.48 ∗∗∗ 0.000 16 0.84 ∗∗∗ 0.000 16 0.88

WWL - 1.0 15 −0.09 ∗∗ 0.006 15 −0.85 ∗ 0.011 15 −0.78 Paired t

Statistical significances indicate the proposed method outperforms the “No” condition, and the Future condition outperforms the Current condition. The “test” column shows the tests (“WSR” 
for Wilcoxon signed-rank test and “paired t” for paired t-test). “df /n” shows degrees of freedom (df ) for the paired t-test and the sample size (n) for the Wilcoxon test, while “d/r” column 
indicates effect size (Cohen’s d or r). See the main text for details. †p < 0.1,∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

Friedman tests followed by post hoc Wilcoxon signed-rank tests with 
Bonferroni correction were applied. The results for each evaluation 
index are presented in the following subsections, while the details of 
the post hoc statistical analyses are summarized in Table 2.

3.1 Temporal indices

Figure 8a through (d) illustrate the four temporal indices for 
each presentation method condition.

3.1.1 Screw-loosening time
A one-way repeated measures ANOVA was used to analyze 

the screw-loosening time. The results revealed no significant 
difference in both downward (p = 0.63) and upward (p = 0.73)
scenarios. 

3.1.2 Part-moving time
Friedman tests for part-moving time also revealed no significant 

difference in both downward (p = 0.087) and upward scenarios 
(p = 0.066). 
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FIGURE 8
Results of four temporal indices. (a) Screw-loosening timing (ΔtSL). (b) Part-moving timing (ΔtPM). (c) Screw-tightening timing (ΔtST). (d) Total task 
completion time.

3.1.3 Screw-tightening time
Regarding screw-tightening time, the Friedman test revealed 

significant differences in both downward (p < 0.001) and upward (p
< 0.001) scenarios.

As shown in Table 2, the post hoc test showed that screw-
tightening time was significantly longer under the No condition than 
under both conditions using the stiffness presentation device in both 
downward and upward scenarios. It also revealed that the time under 
the Future condition was significantly shorter than that under the 
Current condition in both scenarios. 

3.1.4 Task completion time
For the total task completion time, the Friedman test and 

ANOVA revealed significant differences in the downward (p
=0.0030) and upward (p =0.0033) conditions, respectively.

Post-hoc tests showed that, in the downward scenario, the No 
condition resulted in a significantly longer time than the Current 
condition and a marginally longer time than the Future condition. 
In the upward scenario, the No condition was significantly longer 
than both conditions using the stiffness presentation device. 

3.2 Subjective indices

Figures 9a,d depict the results of the five questionnaires in 
the downward and upward scenarios, respectively. Friedman 

tests for Q1 through Q5 revealed the statistical significance 
of the main effect of the stiffness-presentation method factor
(Table 3).

As shown in Table 2, post hoc tests for Q1, Q3, and Q4 revealed 
that the No condition had significantly lower scores than both the 
Future and Current conditions, while no significant difference was 
observed between the Future and Current conditions in both the 
downward and upward scenarios.

For Q2, the No condition was significantly lower than both 
the Future and Current conditions in both downward and upward 
scenarios. However, unlike the other questions, the Future condition 
was also significantly higher than the Current condition in the 
upward scenario, while no significant difference was found between 
them in the downward scenario.

For Q5 (downward), the Current condition scored higher than 
the No condition, while no significant difference was found between 
the No and Future conditions or between the Current and Future 
conditions. The upward scenario followed the same pattern as the 
other questions.

Figure 10 illustrates the WWL score of the NASA-TLX. The 
one-way repeated measure ANOVA revealed a significant main 
effect of the stiffness-presenting method factor (p = 0.00047) on 
the WWL score. The paired-t tests with Bonferroni correction 
showed that the WWL score under the No condition was 
significantly higher than those in both conditions using the stiffness
presentation device.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1660691
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Yamamoto et al. 10.3389/frobt.2025.1660691

FIGURE 9
Questionnaire on Q1 on trust in the robot, Q2 on feeling secure with the robot, Q3 on ease of understanding the timing of the change in stiffness of 
the robot arm, Q4 on smoothness of the work, and Q5 on anxiety about dropping the metal frame. (a) Downward scenario. (b) Upward scenario.

TABLE 3  Results of Friedman test for questionnaires.

Condition Q1 Q2 Q3 Q4 Q5

Downward ∗ ∗∗ ∗∗∗ ∗∗ ∗

Upward ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

4 Discussion and conclusion

The significant decrease in the total task completion time and 
the screw-tightening time in the Current and Future conditions 
demonstrates the effectiveness of the proposed method, which 
presents the robot’s stiffness to the human forearm via the tightening 
device. A significant difference was observed in the screw-tightening 
time under the Current condition; however, no significant difference 
was found in the screw-loosening time under the same condition. 
This can be interpreted as follows: the onset of the screw-loosening 
time is determined solely by the robot’s behavior, making it relatively 
straightforward for human operators to predict, whereas the onset 
of the screw-tightening time depends on the interaction between 
the human and robot, which introduces additional complexity 
and makes it more challenging for humans to understand. The 
proposed method was found to be effective in such situations, where 

determining whether a transition to the next phase had occurred 
is challenging. This successful enhancement of human–robot 
collaboration efficiency is evident regardless of the presentation 
method (Current or Future). While the reduction in total task 
time around a few seconds may not be large, it is not negligible 
in the context of repetitive industrial operations. In particular, 
the reduction in screw-tightening time represents a substantial 
relative improvement, indicating that the proposed method can 
effectively enhance performance in key subprocesses. Furthermore, 
the significant decrease in subjective workload is noteworthy. 
The ability of the proposed method to reduce workload while 
maintaining—or even slightly improving—temporal performance is 
especially important for industrial applications, since high workload 
conditions often cause fatigue and reduced task performance or 
quality. Furthermore, the results of the subjective evaluations 
indicated a significant increase in all scores of the Q1–Q5 
questionnaires for the Current and Future conditions.

This finding suggests that presenting the stiffness of the robot 
to the human clearly conveyed the invisible robot stiffness (Q3), 
thereby may have enhanced trust (Q1) and reliance (Q2) in 
robot coworkers. This is also reflected in the decrease in anxiety 
regarding failure (Q5), which lead to the subjective smoothness of 
collaboration (Q3) and potentially contributes to the shorter task 
completion times. The enhanced smoothness of collaboration is 
evident from the trend in the WWL score of the NASA-TLX. In 
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FIGURE 10
WWL score of NASA-TLX for human-robot assembly.

conclusion, the results suggest that the timing of object transfer 
became clearer by using a tightening device to communicate the 
stiffness of the robot arm, facilitating the perception of changes 
in the challenging mechanical states of the robot arm. It is also 
suggested that this improvement leads to enhanced task efficiency 
through reductions in task completion time and screw-tightening 
time, as well as reduced workload, thereby providing evidence in 
support of hypothesis H1.

As observed from the results, providing cues in advance (Future 
condition) resulted in a further significant reduction in screw-
tightening time for both the downward and upward movement 
conditions compared to cues provided in the Current condition. 
However, no significant difference was observed in the total 
task completion time, suggesting that the reduction in time by 
communicating the future information was insufficient to affect the 
total task time. Therefore, H2, which concerns additional enhancement 
of task efficiency with the Future over the Current condition, was not 
supported in terms of overall task efficiency, while improvements were 
observed in a sub-process (i.e., screw-tightening time).

Okimoto and Niitsuma (2020) conducted a study on HRC by 
focusing on the motion planning phase until physical contact with a 
robot was established; however, they excluded the phase of physical 
interaction. Their findings revealed that presenting the current state 
of the robot using an auditory signal reduces human workload, while 
providing information regarding future movements enables humans 
to initiate actions early. Thus, one of the contributions of the present 
study is that it is the first to show that this knowledge can be extended 
to the phase of physical interaction with a robot by using tactile 
signals. This extension was accomplished by presenting the stiffness 
of the robot arm, which was associated with improved collaborative 
task efficiency, reduced subjective workload scores, and enhanced 
subjective trust ratings in the robot. Furthermore, presenting the 
stiffness of the robot in advance could reduce the delay in response to 
changes in its mechanical state. 

In the preliminary research for the present study, we investigated 
the effectiveness of presenting the mechanical state of a robot 
hand during a task focused on a simple handover–takeover of 
objects between a human and a robot (Yamamoto et al., 2024). 
The results demonstrated that although subjective trust rating was 
enhanced, the improvement in task effectiveness was limited, as 
evaluated by temporal indices. In contrast, the present study builds 

upon these findings to examine the applicability of this approach 
to a collaborative assembly task. Notably, applying the method 
proposed in object-handover research (Yamamoto et al., 2024) to 
assembly tasks is not straightforward. This is because the type 
of information that needs to be conveyed varies depending on 
given tasks, requiring careful design considerations regarding which 
internal states should be communicated. In fact, in Yamamoto et al. 
(2024), the robot conveyed changes in its object grasping state via 
stiffness information of the robot ‘hand’ to enhance the smoothness 
of the handover process. In contrast, given the requirements of 
the assembly task, the present study redesigned the method to 
convey the robot’s ability to hold an object or to be moved by 
an external human force using the robot arm’s stiffness in a 
specific direction. As a result, the present study demonstrated not 
only the feasibility of applying this approach to assembly tasks 
but also a significant improvement in task efficiency, specifically 
through reductions in task completion time and screw-tightening 
time. The findings suggest that presenting robot stiffness to 
humans is particularly beneficial in complex, multistep tasks 
where precise coordination is essential. Furthermore, research 
(Mart et al., 2025) has demonstrated the effectiveness of a new 
device that combines the communication of the stiffness of the 
robot (Yamamoto et al., 2024) with a robot-intended handover 
position conveyed by vibrotactile stimuli (Mohammed et al., 2024), 
specifically for handover tasks. Although this approach may not 
be directly applicable to the assembly tasks targeted in the present 
study, combining the proposed method with other approaches holds 
promise for further improving the efficiency of assembly tasks. This 
can be a potential direction for future research.

The present research has a few limitations. First, the validation of 
the proposed method was limited to a single type of assembly task, 
involving only two conditions of stiffness changes. Consequently, 
it remains uncertain whether the proposed method is applicable 
to tasks involving multiple or continuous levels of stiffness change. 
However, a preliminary study (Yamamoto et al., 2024) showed that 
the same method can be applied to a simple handover–takeover 
task in which the stiffness of the robot changes across four levels. 
Therefore, the benefits of this method can potentially be extended to 
similar tasks, particularly those in which changes in impedance are 
crucial for collaboration. Further research is required in this field. 
Furthermore, given individual differences in human perception 
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and behavior, caution should be exercised when generalizing the 
present findings, and further validation with a larger and more 
diverse sample is recommended. It should also be noted that several 
findings, such as improvements in trust and perceived clarity, relied 
on subjective ratings. While subjective measures are inherently 
vulnerable to bias, in the present study they were consistent with 
temporal indices, implying that the subjective ratings provided valid 
reflections of participants’ experiences. Nevertheless, future work 
should incorporate a broader range of behavioral indicators to 
strengthen the link between subjective and behavioral evidence, 
because in the present study only temporal indices were employed 
as behavioral data.

Moreover, we did not investigate individual characteristics such 
as arm diameter dimensions or just noticeable differences for force 
sensation on the arm. For instance, concerning the Δt timing of 
the Future presentation condition, an optimal value is considered 
to exist for each participant. Consequently, determining Δt for each 
individual is crucial in elucidating the performance of the future 
presentation method. Furthermore, as the experiments lasted only 
for an hour, the effectiveness of this presentation method during 
prolonged use and the time required for users to become accustomed 
to it have not been verified.

Additionally, the present study utilized force or haptic sensation 
to convey the stiffness information of the robot owing to its rapid 
transmission (Chan and Ng, 2012). However, the effectiveness of this 
communication method using other sensory modalities, including 
visual or auditory signals, remains unclear. It should be noted that 
the proposed method using haptic signals is particularly useful 
even when humans are visually occupied, which is often the case 
in HRC scenarios (Mohammed et al., 2024). Finally, the primary 
objective of this study was to verify the effects of conveying the state 
of a robot to humans, thereby limiting its ability to comprehend 
human behavior. By integrating efforts to enhance robot intelligence 
(for example, Costanzo et al. (2021)) with the proposed method, 
more advanced collaboration can be achieved, representing a crucial 
direction for future research.

To conclude, the contributions of the present study are 2-
fold: (1) to introduce a method for conveying the stiffness of 
a robot to a human in a manner that does not affect the 
shared object or task, particularly in collaborative assembly tasks 
requiring accurate positioning, and (2) to demonstrate through 
human-in-the-loop experiments that the proposed method could 
reduce the workload and improve task efficiency by decreasing 
the time required for task completion. Furthermore, the proposed 
method may be applicable to a broader range of applications in 
tasks requiring close human–robot collaboration, such as precise 
manufacturing processes or tasks involving dynamic adjustments to 
shared objects, where both humans and robots interact with a single 
object simultaneously. By addressing the challenges of conveying 
mechanical states without affecting task execution, the proposed 
method could serve as a foundation for future research to explore 
its applicability to diverse collaborative scenarios.
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