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Visuo-tactile feedback policies 
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Industrial terminal assembly tasks are often repetitive and involve handling 
components with tight tolerances that are susceptible to damage. Learning 
an effective terminal assembly policy in real-world is challenging, as collisions 
between parts and the environment can lead to slippage or part breakage. In 
this paper, we propose a safe reinforcement learning approach to develop a 
visuo-tactile assembly policy that is robust to variations in grasp poses. Our 
method minimizes collisions between the terminal head and terminal base by 
decomposing the assembly task into three distinct phases. In the first grasp
phase,a vision-guided model is trained to pick the terminal head from an 
initial bin. In the second align phase, a tactile-based grasp pose estimation 
model is employed to align the terminal head with the terminal base. In 
the final assembly phase, a visuo-tactile policy is learned to precisely insert 
the terminal head into the terminal base. To ensure safe training, the robot 
leverages human demonstrations and interventions. Experimental results on 
PLC terminal assembly demonstrate that the proposed method achieves 100% 
successful insertions across 100 different initial end-effector and grasp poses, 
while imitation learning and online-RL policy yield only 9% and 0%.
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 1 Introduction

Terminal assembly (McKee et al., 1985) is a precision manipulation task that 
involves part-to-part contact. Its four key sub-tasks—part feeding, object reorientation, 
peg insertion, and terminal buckling—have been widely investigated (McKee et al., 
1985; Goldberg, 1993; Lozano-Pérez, 1986; Lozano-Perez et al., 1984; Natarajan, 1989). 
Early research primarily focused on mechanical design aspects (Lozano-Pérez, 1986; 
Natarajan, 1989) and motion planning strategies (Goldberg, 1993; Lozano-Perez et al., 
1984; Qiao et al., 1995). With the aid of Computer-Aided Design (CAD), the assembly 
sequence can be pre-defined in simulation using accurate pose information (De Mello 
and Sanderson, 1989), enabling robots to plan the required actions for executing the 
assembly (Koga et al., 2022). Recently, reinforcement learning (RL)-based approaches 
have demonstrated potential in handling assembly tasks involving parts with complex 
geometries (Wen et al., 2022; Lian et al., 2021). However, RL remains challenging 
due to the requirement for frequent human inputs during learning (Luo et al., 2021) 
or high-precision sensors for collecting training data (Wen et al., 2022). Meanwhile, 
because the terminal head has the characteristics of irregular shape, easy damage,
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there is also a need for a safe training and data collection method for 
learning assembly tasks.

Another challenge in terminal assembly tasks is that the 
precise initial pose of the terminal is often unknown. Since the 
grasped object is frequently visually occluded by the gripper, 
tactile sensing provides a more effective means for grasp pose 
estimation (Okumura et al., 2022; Dang et al., 2023). Although 
recent advances have demonstrated improved simulation accuracy 
for industrial insertion tasks (Narang et al., 2022), and successful 
Sim2Real transfer has been achieved for tactile-based insertion 
tasks (Kelestemur et al., 2022; Wang et al., 2022), simulating 
soft contacts between tactile sensors and objects with complex 
geometries remains an open challenge (Wang et al., 2021). This 
issue often hinders real-world transfer, as accurate object models are 
rarely publicly available. Additionally, a major obstacle in applying 
reinforcement learning (RL) to real-world terminal assembly tasks 
involving tactile feedback is the frequent slippage of parts caused 
by environmental collisions and the inherently smooth surface of 
the tactile sensor’s gel pad. Such slippage makes it difficult for 
RL methods to succeed without human intervention or the use 
of a dedicated pose estimation algorithm to detect and correct 
misalignments.

In this work, we present a novel method to safely learn visuo-
tactile feedback policies in real for terminal assembly tasks under 
grasp pose uncertainties, with inexpensive off-the-shelf sensors. 
Our approach draws on tactile and visual feedback to deal with 
the uncertainty of grasp pose and a safe RL training procedure, 
minimizing damage during the training phase. We use Sample-
Efficient Robotic reinforcement Learning (SERL) (Luo et al., 
2024), a software suite that provides a well-designed foundation 
for robotic RL, to develop a data collection and training 
pipeline that minimizes collision between the part and its
environment.

The whole pipeline can be divided into three steps: First, 
Training Reward Classifier: Labeling visual and tactile images 
from human instruction instances to train a reward classifier 
to decide when to give policy rewards throughout the RL 
training process. Second, Recording Demonstrations: To accelerate 
training, record a predetermined number of human-operated 
robot demonstrations to finish terminal assembly. This will 
serve as a demo buffer for RL. Third, Policy Training: Using 
the trained reward classifier and recorded demonstrations 
to complete the task training (during training, human 
interventions can be added to avoid collisions and speed up the
training).

The main contributions of this paper are as follows: the 
development of a policy for complex terminal assembly in real-world 
scenarios, which leverages visual and tactile information through 
reinforcement learning and can be acquired in less than 60 min; 
the introduction of a safe exploratory strategy for reinforcement 
learning, accompanied by a secure data collection methodology 
grounded in a designated manual remote operation technique; 
and the presentation of experimental findings that indicate the 
policy attains a success rate of 100 out of 100 in Programmable 
Logic Controller (PLC) terminal assembly, thereby surpassing two 
baseline approaches that recorded success rates of 0 out of 100 and 
nine out of 100, respectively. 

2 Related work

For many years, terminal assembly has been an essential part 
of robotics. The parts’ fragility, the moderate force during terminal 
buckling, the occlusions caused by the robot gripper, the grasp 
uncertainty from the acquisition process and its collision with 
the environment, and the precision required to control the robot 
for insertion render the task challenging. Early work approached 
this problem using CAD information to infer desired assembly 
sequences (De Mello and Sanderson, 1989) and generating designs 
of part feeders based on object geometry (Natarajan, 1989). 
Other work approached the problem from an algorithmic design 
perspective, with a focus on developing motion planning strategies 
for peg insertion (Lozano-Pérez, 1986; Qiao et al., 1995).

Recently, learning-based methods have shown success on this 
task. This includes learning assembly policies with a physical robot 
via Sim2Real transfer (Johannink et al., 2019), online adaptation 
with meta-learning (Schoettler et al., 2020b; Zhao et al., 2022), 
reinforcement learning (Luo et al., 2021; Schoettler et al., 2020a), 
self-supervised data collection with impedance control (Spector and 
Di Castro, 2021), accurate state estimation (Wen et al., 2022), or 
decomposing the assembly algorithm into a residual policy that 
relies on conventional feedback control (Johannink et al., 2019). 
These approaches assume that the parts are grasped with a fixed pose. 
To overcome this assumption, Wen et al. (Wen et al., 2022) perform 
accurate pose estimation and motion tracking with a high-precision 
depth camera and use a behavioral cloning algorithm to insert the 
part. Spector et al. (Spector and Di Castro, 2021; Spector et al., 
2022) proposed Insertionnet for industrial assembly, which requires 
contact between the part and the environment to occur during 
data collection, a process that is expensive and often impractical 
for fragile parts. Ozalp et al. (2024) made advancements in deep 
RL and inverse RL for robotic manipulation. In comparison, we use 
inexpensive tactile sensors and a safe human-guided data collection 
and RL procedure that does not require such contact.

In systems using only visual perception, grasped parts are 
often visually occluded by the gripper, and changes in environment 
light can affect the accuracy of visual recognition. However, tactile 
perception is not affected by these factors: the camera of the tactile 
sensor is placed inside the body, so the collected tactile images 
will not be blocked by itself or environmental objects; the light 
source for tactile images is a built-in LED strip, so the image 
brightness, color, etc. are also not affected by environment light. 
Meanwhile, tactile images contain rich physical information such as 
object geometric features, contact force, contact deformation, and 
displacement. Based on this information, the system can achieve 
more precise contact control. Therefore, tactile feedback can be an 
alternative sensing modality for grasp pose estimation. Recent work 
uses tactile images from vision-based tactile sensors such as GelSight 
(Yuan et al., 2017), DIGIT (Lambeta et al., 2020) and GelSlim3.0 
(Taylor et al., 2022) to estimate the relative pose and 3D motion 
field between grasped objects and tactile grippers. Meanwhile, many 
new types of tactile fingers (DexiTac (Lu et al., 2024)) and tactile 
sensors (Evetac (Funk et al., 2024)) are being applied in robotic 
operations. Li et al. (Li et al., 2014) use Gelsight sensors, BRISK 
features and RANSAC to estimate grasp pose. Gelsight produces 
high-quality 3D tactile images and can determine depth imprint, 
which improves feature detection by isolating the object from the 
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background. DIGIT, a more affordable tactile sensor, provides a 2D 
RGB image but not the light incident direction (to generate the depth 
image). Liu et al. (2024) develops a method to reconstruct 3-D tactile 
motion field in real-time, that can provide rich tactile information 
(such as contact force) and serve as the foundation for many 
downstream tasks. Kelestemur et al. (2022) generates tactile image 
data in simulation for pose estimation of bottle caps but simulating 
contact and physical interaction between tactile sensors and objects 
with more intricate geometry is still challenging (Wang et al., 2021). 
In this work, we combine tactile images from a real-world PLC 
terminal with reinforcement learning process as part of observation. 
By means of contact tactile information analysis, these images enable 
the policy to precisely locate the terminal base and so try to minimize 
the contact force needed for terminal buckling.

Most prior work on tight tolerance assembly tasks (Wen et al., 
2022; Li et al., 2014; Fan et al., 2019; Florence et al., 2022; Wu et al., 
2025; Lin et al., 2024) leverages a single modality, such as vision, 
tactile, or force-torque, limiting the accuracy of the system due 
to occlusion, perspective effect, and sensory inaccuracy. Multi-
modal systems have been explored to improve the robustness of 
automated insertion. Spector and Di Castro (2021), Spector et al. 
(2022) use RGB cameras and a force-torque sensor for learning 
contact and impedance control. Chaudhury et al. (2022) couple 
vision and tactile data to perform localization and pose estimation, 
and demonstrate that vision helps with disambiguating tactile 
signals for objects without distinctive features. Ichiwara et al. (2022) 
leverage tactile and vision for deformable bag manipulation by 
performing auto-regressive prediction. Hansen et al. (Hansen et al., 
2022) use a contact-gated tactile, vision and proprioceptive 
observation to train reinforcement learning policies. Okumura et al. 
(2022) also tackle the problem of grasp pose uncertainty for 
insertion by using Newtonian Variational Autoencoders to combine 
camera observations and tactile images. Hao et al. (2025), 
Zhao et al. (2024) and Zhang et al. (2025) combined tactile 
information with large language models, achieving robotic arm 
manipulation of articulated objects and preference learning for 
insertion manipulation, respectively. They demonstrate results for 
USB insertion accounting for grasp pose uncertainty in one 
translation direction. In this work, we address terminal grasping, 
path planning, and terminal buckling as the whole reinforcement 
learning task. As the observation for the RL policy, combine two 
wrist camera images, one side camera image, and two tactile gripper 
images into visual-tactile multi-modal information. Concurrent 
with this was an artificial intervention program designed to 
guarantee a safe exploration for the policy. Our policy is able to 
handle both grasp pose rotation and translation uncertainty for the 
PLC terminal’s assembly. 

3 Problem statement and 
preliminaries

Overview: We sort out a terminal assembly task for a 7-DoF 
robot with a parallel-jaw gripper and tactile sensors on both jaws. 
The end-effector has two wrist-mounted RGBD cameras, and one 
RGB side-camera is configured to capture the entire assembly 

scenario. The objective is to learn a policy that can robustly insert the 
terminal head into the terminal base with an unknown part’s pose 
within the gripper, while minimizing head-base collisions by human 
guidance during training. Figure 1A shows the experiment setup.

Details of the assembled terminal: As seen in Figures 1B,C, 
our work accomplished the PLC terminal assembly. The terminal 
base and the terminal head are the two components that make 
up the hardware. Three barbed elastic latches and ten parallel-
positioned pins make up the major mating components of the 
terminal head. The terminal base mating area is partially enlarged 
in the upper right corner, where the base’s inner wall has three guide 
grooves that match the three spring clips, and the base’s bottom 
has insertion holes that match the pins. The main challenge of this 
work is correctly inserting the pins into the holes and snapping 
the three spring clips into their respective guiding grooves without 
causing any damage to the pins, such as bending or breaking 
them. Therefore, we use tactile sensing and manual intervention to 
minimize collision forces during the assembly process to ensure the 
safety of the terminal hardware.

Robotic Reinforcement Learning: Robotic reinforcement 
learning tasks can be defined via an Markov Decision Process 
(MDP) M = {S ,A,ρ,P , r,γ}, where s ∈ S  is the state observation 
(e.g., the combination of the current environmental image, tactile 
image, and end-effector position), a ∈A is the action (e.g., the 
desired end-effector pose), ρ(s0) is a distribution over initial states, 
P  is the unknown and potentially stochastic transition probabilities 
that depend on the system dynamics, and r:S ×A→ℝ is the 
reward function, which encodes the task. An optimal policy 
π is one that maximizes the cumulative expected value of the 
reward, i.e., E[∑∞t=0γtr(st,at)], where the expectation is taken with 
respect to the initial state distribution, transition probabilities, and
policy π.

While the specification of the RL task is concise and simple, 
turning real-world robotic learning problems into RL problems 
requires care. First, the sample efficiency of the algorithm for 
learning π is paramount: when the learning must take place in 
the real world, every minute and hour of training comes at a 
cost. Sample efficiency can be improved by using effective off-
policy RL algorithms (Konda and Tsitsiklis, 1999; Haarnoja et al., 
2018; Fujimoto et al., 2018), but it can also be accelerated by 
incorporating prior data and demonstrations (Rajeswaran et al., 
2017; Ball et al., 2023; Nair et al., 2020), which is important 
to achieve the fastest training times. Beyond π optimization, 
robotic RL has to figure out reward functions from image 
observations and automate initial state resets. Particularly in 
contact-rich tasks, the controller layer interfaces MDP actions to 
low-level robot controllers, necessitating safety and precision so 
that the RL algorithm can experiment with random actions during
training.

4 Methods

In this section, we introduce our visuo-tactile feedback policies 
with the assistance of human intervention to address the terminal 
assembly problem. The overview of our method is shown in Figure 2.
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FIGURE 1
(A) An overview of the terminal assembly task is shown in the figure. The goal is to grasp the terminal head from the placement tray and guide the 
robot to the terminal base. Two RGBD cameras on the wrist and one RGB side camera are used to observe the environment. The final step is to insert 
the terminal head clamped by the tactile sensors onto the terminal base using visual-tactile feedback. (B,C) Exhibition of the components and specifics 
of each segment of the terminal.

4.1 Real-world RL for terminal grasp and 
assembly

4.1.1 Fundamental RL algorithm
For the reinforcement learning method to be used in terminal 

assembly, there are two requirements: It must be (1) effective 
and capable of making several gradient adjustments in a time 
step, and (2) readily integrate prior data and then get improved 
with further training. In pursuit of this objective, we expand 
upon the recently proposed RLPD algorithm (Ball et al., 2023), 
which has demonstrated remarkable outcomes in sample-efficient 
robotic learning. The off-policy actor-critic reinforcement learning 
algorithm, known as RLPD, relies on the success of temporal 
difference algorithms with soft-actor critic (Haarnoja et al., 2018), 
it undergoes some significant changes to satisfy the requirements 
above. Three main improvements are made by RLPD: (i) high 
update-to-data ratio training (UTD); (ii) symmetric sampling 
between on-policy and prior data, where half of each batch comes 
from the online replay buffer and half from prior data; and (iii) 
layer-norm regularization during training. In order to accelerate 
learning, this technique can either start from scratch or leverage 
prior data (e.g., demonstrations). Each step of the algorithm updates 
the parameters of a parametric Q-function Qϕ(s,a) and actor 
πθ(a|s) according to the gradient of their respective loss functions 
(Equations 1, 2):

LQ (ϕ) = Es,a,s′ [(Qϕ (s,a) − (r (s,a) + γEa′∼πθ
[Qϕ̄ (s′,a′)]))

2] (1)

Lπ (θ) = −Es [Ea∼πθ(a) [Qϕ (s,a)] + αHπθ (⋅|s)] (2)

where Qϕ̄ is a target network, and the actor loss uses entropy 
regularization with an adaptively adjusted weight α. Every update 
step employs a sample-based approximation of each expectation, 
with half of the samples receiving from the replay buffer and 
the other half from the prior data (e.g., demonstrations). For 
efficient learning, multiple update steps are performed per time 
step in the environment, which is referred to as the update-to-
date (UTD) ratio. Regularizing the critic with layer normalization 
enables higher UTD ratios and more effective training
(Ball et al., 2023).

In this work, πgrasp and πassemble are trained based on RLPD. 
And the three improvements of RLPD have also demonstrated their 
advantages in handling task-specific challenges in our experiments: 
(i) High UTD ratio: Our training shows that a UTD ratio of 20 
reduced wall-clock training time by 47% compared to a UTD ratio of 
5 (a common baseline in off-policy RL). This acceleration is critical 
for real-world assembly, where hardware access is constrained; (ii) 
Symmetric sampling: Replaying training data (without modifying 
hardware interactions) revealed that removing symmetric sampling 
(using 100% online data) increased Q-function loss variance 
by 63%—indicating unstable learning from contact-driven data 
fluctuations. In contrast, symmetric sampling maintained loss 
variance ≤5% across epochs; (iii) Layer normalization: Omitting 
layer normalization caused the policy to diverge in 32% of training 
trials (vs. 0% with normalization), as it failed to adapt to sudden 

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1660244
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Li et al. 10.3389/frobt.2025.1660244

FIGURE 2
Overview of the learned three-phase assembly policy: (A) The vision guided policy πgrasp estimates the position of the terminal head and grasps it at an 
initial pose. (B) The tactile guided policy πtac2pos estimates the grasp pose using the tactile image and aligns the z-axis of the terminal head with the 
insertion axis. (C) A vision-tactile multi-modal guided policy πassemble is used to assemble the terminal head and the terminal base. (D) Following the 
insertion of the elastic latches, a specific procedure is executed to insert the pins, and ultimately, the entire terminal assembly is successfully completed.

tactile signal shifts (e.g., from no contact to hard contact with the 
terminal base). 

4.1.2 Classifier-based reward specification
Reward functions are difficult to specify by hand when learning 

with image observations, as the robot typically requires some sort 
of perception system just to determine if the task was performed 
successfully. While some tasks can accommodate hand-specified 
rewards based on the location of the end effector (under the 
assumption that the object is held rigidly in the gripper), most tasks 
require rewards to be deduced from images. In this case, the reward 
function can be provided by a binary classifier that takes in the 
state observation s and outputs the probability of a binary “event” 
e, corresponding to successful completion. The reward is then given 
by r(s) = log p(e|s).

This classifier can be trained either using hand specified 
positive and negative examples, or via an adversarial method 
called VICE (Fu et al., 2018). The latter addresses a reward 
exploitation problem that can arise when learning with classifier 
based rewards, and removes the need for negative examples in the 
classifier training set: when the RL algorithm optimizes the reward 
r(s) = log p(e|s), it can potentially discover “adversarial” states that 
fool the classifier p(e|s) to erroneously output high probabilities. 
VICE addresses this issue by adding all states visited by the policy 
into the training set for the classifier with negative labels, and 
updating the classifier after each iteration. In this way, the RL process 

is analogous to a generative adversarial network (GAN), with the 
policy acting as the generator and the reward classifier acting as 
the discriminator. We trained corresponding classifiers for πgrasp and 
πassemble in this work. Set the visual image observation for πgrasp as a 
positive example (Np = 200) when the gripper successfully grabs the 
terminal head in the initial bin, and the others as negative examples 
(Nn = 800). In the case of πassemble, the visual-tactile multi-modal 
observation is set as a positive example (Np = 600) when the terminal 
head’s elastic latches gets inserted into the terminal base; the other 
situations are set as negative examples (Nn = 2400).The rationale 
for the Np:Nn = 1:4 ratio lies in the fact that, through our repeated 
experiments, classifiers trained on datasets adhering to this ratio 
yield the highest classification accuracy. 

4.1.3 Actor and learner nodes
In order to decouple inferring actions and updating policies, this 

work incorporates alternatives for training and acting in tandem, 
as seen in Figure 3. In sample-efficient real-world learning tasks with 
large UTD ratios, we discovered that this was advantageous. Our 
policy reduces the overall wall-clock time spent training in the real 
world while maintaining the control frequency at a fixed rate, which 
is essential for tasks requiring instant feedback and reactions, like 
deformable objects and contact-rich manipulations (e.g., terminal 
assembly). This is achieved by separating the actor and learner on 
two separate threads.
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FIGURE 3
Policy training and real-world robot architecture. Three parallel processes, consisting of the actor, which chooses actions, and the learner node, which 
actually runs the training code, and the robot environment, which executes the actions from the actor and contributes data back to the learner.

4.2 Supervised learning for tactile guided 
alignment

Data Collection: The terminal head fixed in the initial bin 
throughout data collection. We explore grasp pose variations in 
3-DoF (y,z translation and x-axis rotation roll, Figure 2A left). 
We perform uniform random sampling over the range [−6,6]mm, 
[−7,3]mm, [− π

6
, π

6
]rad for y,z, roll, with 12, 10 and 60 samples 

respectively. The robot closes the gripper with a force of 50N at each 
of the sampled poses and records the pair of tactile image readings 
and y,z, roll. We collect 7,200 pairs of tactile images (700× 400 pixels, 
RGB) by Xense G1-WS vision-based tactile sensor as data points in
300 min.

Alignment Policy: We adopted RegNet 3.2 GF 
(Radosavovic et al., 2020) as the backbone of the policy network 
and replaced its last layer with a linear layer producing 3 outputs. 
Using the aforementioned data—comprising pairs of tactile 
images (Figure 2B, 700× 800 pixels, RGB) corresponding to grasp 
poses of the PLC terminal (Figure 1C)—we trained an alignment 
policy πtac2pos that outputs the desired End-Effector displacement 
(y,z, roll) to align the terminal head with the terminal base 
(Figure 2B) given a tactile image. Tactile image augmentation was 
performed by randomly jittering brightness and contrast within 
the range U[0.8,1.2]; the jitter range settings were influenced 
to a certain extent by the geometric features of the grasped 
terminal head. Regarding hyperparameters, we used a batch 
size of 128, an initial learning rate of 1e-3 with a decay factor 
of 0.99 every 100 gradient steps, mean squared error as the 
loss function, and the Adam optimizer (Kingma, 2014). These 
hyperparameters represent optimal values determined through 
multiple experiments based on the collected raw data and are task-
adaptable rather than universal, requiring further adjustment when 
using different tactile sensors or grasping different objects in future
work. 

4.3 Impedance controller for terminal 
assembly

During the experiment, we found that the choice of controllers 
can heavily affect the final performance. This is more pronounced for 
contact-rich manipulation. In this work (Figures 2C,D), an overly 
stiff controller might bend the fragile pins and make insertion 
difficult, while an overly compliant controller might struggle to 
move the object into position quickly.

A typical setup for robotic RL employs a two-layered control 
hierarchy, where an RL policy produces setpoint actions at a much 
lower frequency than the downstream real-time controller. The 
RL controller can set targets for the low-level controller, but such 
targets may lead to physically undesirable consequences—especially 
in contact-rich manipulation tasks—if not regulated by a robust 
low-level control mechanism. To this end, the impedance controller 
is integrated into this hierarchy as a core component, with its 
framework encompassing a spring-damper-based force objective 
and a critical error-bounding safety constraint. A typical impedance 
control objective for this controller (Equation 3) is

F = kp ⋅ e+ kd ⋅ ̇e+ F f f + Fcor (3)

where e = p− pref, p is the measured pose of the end-effector, 
and pref is the target pose computed by the upstream controller. 
Here, F f f  is the feed-forward force (used to compensate for static 
loads like gravity), and Fcor is the Coriolis force (to mitigate 
dynamic disturbances from robot motion). This force objective is 
then converted into joint space torques by multiplying with the 
Jacobian transpose, offset by nullspace torques to maintain stable 
joint behavior. By design, the controller acts as a spring-damper 
system around the equilibrium set by pref: kp (stiffness coefficient) 
governs the response to position deviations, while kd (damping 
coefficient) smooths motion to avoid oscillations. As described 
above, this system will yield large forces if pref is far away from the 
current pose, which can lead to a hard collision or damage when 
the arm is in contact with objects (e.g., during PCB insertion). 
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Therefore, it’s crucial to constrain the interaction force generated 
by it. However, directly reducing kp or kd will hurt the controller’s 
positional accuracy. Thus, we bound e so that |e| ≤ Δ (a predefined 
safety threshold), and the generated force from the spring-damper 
system will be bounded to kp ⋅ |Δ| + 2kd ⋅ |Δ| ⋅ f, where f is the control 
frequency of the low-level controller. This error-bounding step 
completes the impedance controller framework, ensuring it balances 
precision and safety for real-world robotic RL tasks. 

5 Experiments

In this section, we introduce the experimental setup of the 
assembly task and the evaluation of the proposed methods. 

5.1 Experiment setup

We consider a terminal assembly task using a Franka Emika 
Panda Robot (7-DoF), equipped with a parallel-jaw gripper with 
XENSE G1-WS vision-based tactile sensors (used in AgiBot World 
Colosseo (Bu et al., 2025)) mounted on both jaws. The G1-WS 
sensor, independently developed by our laboratory, captures RGB 
tactile images with a fixed resolution of 700×  400 pixels—matching 
the sampling resolution of commercial GelSight (Yuan et al., 2017) 
mini sensors—and offers advantages including a lower cost ($300) 
compared to GelSight mini ($500), a larger sensing area (17.5 
(H)×  29.5 (V) mm) than GelSight mini (18.6 (H)×  14.3 (V) 
mm), and a wedge-shaped structure that adapts to diverse assembly 
environments. For the alignment policy training (4.2), paired tactile 
images from both gripper jaws were concatenated horizontally to 
form a single 700×  800 pixel input, ensuring simultaneous capture 
of contact information from both sides of the terminal head.

The end effector is equipped with two wrist-mounted Intel 
RealSense Depth Camera D435i RGBD cameras, selected for their 
high-quality 1,280×  720 RGB imaging at up to 90 fps—ensuring 
clear, temporally consistent visual data for dynamic manipulation 
scenarios. Time synchronization between visual and tactile data 
was achieved via two steps: (1) Hardware triggering: The D435i 
cameras and G1-WS tactile sensors were connected to a common 
GPIO trigger module, ensuring all sensors initiate sampling within 
a 1 ms time window; (2) Software timestamping: Each sensor frame 
(visual/tactile) was tagged with a high-precision system timestamp 
(resolution: 100μ s) via Robot Operating System (ROS) topics. 
The D435i’s 90 fps sampling frequency was downsampled to 30 fps 
(matching the G1-WS’s 30 Hz rate) by selecting the visual frame 
with the timestamp closest to each tactile frame—resulting in a 
maximum synchronization error of <5 ms, which is negligible for 
terminal assembly tasks. This setup guarantees consistency between 
multi-modal observations.

The D435i′s compact form factor minimizes interference 
with the gripper and assembly components, while its robust 
SDK (compatible with ROS and Python) facilitates seamless 
integration into our custom control pipeline. It also delivers reliable 
performance under varying lighting conditions, including low-light 
environments, ensuring stable data quality throughout experiments. 
Additionally, a jieruiweitong DF100 RGB side-camera is configured 

to capture the entire assembly scene (Figure 1), chosen for its 1,280×
 720 resolution, 30 Hz sampling rate, and cost-effectiveness ($20).

At the beginning of each training and evaluation episode, the 
initial end effector pose is sampled uniformly (N = 100) from a 
starting region Ω: x ∈ [−3,3]cm,y ∈ [−3,3]cm,z ∈ [−5,3]cm, roll ∈
[− π

6
, π

6
]rad. Meanwhile, we initialize RL training from 30 

teleoperated demonstrations (Section 4.1.1) using a Joystick (BTP-
A1N3S). All training was done on a single Nvidia RTX 4090 GPU. 

5.2 Experimental procedure

At the beginning of each test experiment, the end effector 
is set to the initial pose sampled from Ω (Figure 2A left). From 
this starting pose, the robot first executes the grasp policy πgrasp
to visuoservo and grasps the terminal head—leveraging RGB-
D data from the D435i cameras for precise localization of the 
terminal head in the initial bin. During the removal of the 
terminal head, minor jitter introduced by πgrasp may lead to a 
collision between the terminal head and the initial bin, thereby 
causing an error in the grasping posture. Specifically, the gripper 
remains vertically aligned downward, whereas the terminal head 
exhibits misalignment with the receptacle in both translational and 
rotational dimensions (Figure 2A right).

Then the robot activates the align policy πtac2pos, which processes 
tactile images from the G1-WS sensors to estimate the terminal 
head’s relative pose (y/z translation and roll rotation) and outputs 
corrective movements to align the terminal head’s insertion axis with 
the terminal base (Figure 2B). The G1-WS’s large sensing area and 
high-resolution imaging ensure accurate pose estimation, while its 
wedge-shaped design avoids interference with the gripper during 
alignment.

After the alignment, the vision-tactile guided assembly policy 
πassemble is executed to insert the elastic latches (Figure 2C), fusing 
D435i visual data (for environmental context) and G1-WS tactile 
feedback (for contact detection). Due to the structural redundancy 
and ductility of the assembled PLC terminal, once all elastic latches 
are properly inserted, a simple vertical downward force applied to 
the terminal head is sufficient to ensure complete insertion of all 
pins. Accordingly, we developed an open-loop control program to 
execute the final pin insertion process (Figure 2D). The robot then 
resets to the next initial sampled pose, waiting for the next test.

During the policy training and testing process, 
human intervention was triggered by a hybrid mechanism 
combining manual visual observation and automatic force 
sensing, with clearly defined termination conditions: (i) 
Successful termination: The robot successfully grasps the 
terminal head (grasp binary classi fier output = 1) and 
completes the assembly after adjusting the grasping pose 
(assemble binary classi fier output = 1). (ii) Grasp failure 
intervention: Triggered when the grasp binary classi fier output =
0 for 5 consecutive seconds (indicating unstable grasp). Intervention 
was initiated via Joystick by the experimenter to manually re-grasp 
until the grasp binary classi fier output = 1, after which the 
task terminates. (iii) Deviation/collision intervention: Triggered 
by two complementary cues: (a) Manual visual observation: the 
experimenter initiated intervention upon visually detecting the 
terminal head deviating from the terminal base or colliding 
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with non-target components; (b) Automatic force sensing: The 
system automatically paused motion and prompted intervention 
if the EE force-torque sensor detected a collision force ≥
30 N. Upon intervention, the experimenter manually completed 
assembly until the assemble binary classi fier output =
1, then the task terminates. Notably, in both conditions (ii) 
and (iii), the data collected during manual intervention is 
stored as expert demonstration data into the replay buffers of 
πgrasp and πassemble respectively, to guide and accelerate policy
training. 

5.3 Comparison and ablation studies

Examine the function and significance of the RLPD algorithm: 
As outlined in Section 4.1.1, the most distinctive characteristic 
of the RLPD algorithm lies in its integration of human prior 
demonstrations to guide the learning process, which effectively 
reduces both training time and sample complexity. To assess the 
necessity of these demonstrations, we compare our approach with 
the Twin Delayed Deep Deterministic Policy Gradient (TD3), 
an off-policy Actor-Critic algorithm derived from DDPG. TD3 
belongs to the class of online reinforcement learning algorithms 
that require continuous interaction with the environment and rely 
solely on trial-and-error learning to discover optimal policies, 
without incorporating human demonstrations. The comparison is 
conducted under identical environmental settings: (1) Exploration 
noise: Gaussian noise with standard deviation = 0.1 (applied 
to end-effector pose commands); (2) Learning rate: 1e-3 for 
actor/critic networks (Adam optimizer); (3) Training epochs: 
200 epochs (1,000 steps per epoch); (4) Network architecture: 
Same 3-layer actor/critic structure (consistent with RLPD’s base
design).

Furthermore, to demonstrate that expert demonstrations 
alone are insufficient for task completion, we also evaluate a 
behavioral cloning (BC) baseline trained on 150 high-quality 
expert teleoperated demonstrations. This dataset size approximately 
matches the total amount of data stored in the RLPD replay buffer at 
convergence. To ensure fair comparison: (1) Network architecture: 
BC used the same RegNet 3.2 GF backbone as RLPD’s alignment 
policy (πtac2pos), with an output layer predicting end-effector poses; 
(2) Training epochs: 200 epochs (matching RLPD), batch size = 
128. It is important to note that this BC baseline utilizes five times 
more demonstration data than the number of demonstrations 
required by our method. Meanwhile, to intuitively verify the role 
of “human prior demonstrations” in the RLPD algorithm, we 
replaced the demo buffer with a subset of replay buffer data in 
one training session to isolate and examine the function of human
demonstrations.

We report the results in Table 1, and show example executions 
in Figure 4. Training the TD3 policy in the physical environment 
resulted in divergence across all conducted training trials. In each 
case, the terminal head collided with the terminal base during the 
training of πassemble, causing significant changes to the relative grasp 
pose or inflicting damage to the pins and the tactile sensor gel pad. 
Such issues cannot be directly corrected due to the absence of a 
reliable recovery procedure that can systematically restore the grasp 
pose without human demonstrations. Our policies significantly 

outperform BC baselines, even when trained with five times fewer 
demonstrations than BC. This indicates that relying solely on 
demonstrations is insufficient for achieving optimal performance. 
In addition to achieving up to a tenfold improvement in success 
rate over BC methods, our approach also reduces training time 
by up to twofold. Removing real-time human intervention data 
from the buffer leads to a 68% drop in success rate (from 100 
to 32), confirming the buffer’s role in addressing rare failure 
modes (Table 1, RLPD (w/o demo)). We also observed from the 
aforementioned experiments that the terminal head rotation and 
translation estimated based on tactile images (πtac2pos) exhibit a high 
degree of accuracy (see Table 2).

Exploring Utility of Tactile and Vision Information: We perform 
study the relative benefits of using tactile and vision for assembly 
term (πassemble). We test 3 different approaches: (1) A Tactile Only 
approach (Figure 2C, the lower part of Visuo-Tactile Observation) 
(2) A Vision Only approach (Figure 2C, the upper part of Visuo-
Tactile Observation) and (3) a Combined Approach (Ours). We 
perform experiments with the three different approaches with 
the same procedure as in Section 5.2 and report results in
Table 3.

The Tactile Only model achieved successful assembly 23/100 
times. However, its training time exceeded 3 times that of the other 
two models. This is because, across much of the exploration range, 
no contact occurred between the terminal head and terminal base, 
resulting in static tactile sensor images. Consequently, a significant 
portion of the training process involved the policy exploring for 
the position of the terminal base. These findings suggest that 
visual observation is essential for estimating the approximate 
location of the terminal base, enabling the policy to actively reduce 
the exploration space and accelerate learning. In contrast, the 
Vision Only model exhibited faster convergence during training 
but performed poorly in completing the assembly task, achieving 
only one success in 100 attempts. This limitation stems from the 
absence of fine-grained tactile feedback regarding contact events, 
highlighting the necessity of tactile sensing for millimeter-level 
positional estimation in contact-rich tasks. The multi-modal model, 
which integrates both tactile and visual inputs, outperforms either 
modal approach by combining tactile-based terminal head position 
prediction with vision-based implicit estimation of environmental 
states. This synergy demonstrates that the integration of tactile 
and visual observations effectively reduces uncertainties inherent in 
assembly tasks. 

6 Discussion

In conclusion, we propose an effective and safe methodology 
for acquiring a visuo-tactile insertion policy within real-world 
reinforcement learning (RL) environments characterized by 
unknown component positions and grasping configurations. This 
is achieved by leveraging human demonstrations to accelerate the 
training process while maintaining the safety of the components, 
alongside the implementation of a structured three-phase assembly 
framework that delineates the task into distinct stages—grasping, 
alignment, and insertion—facilitated by integrated tactile and 
visual feedback. 
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TABLE 1  Results suggest that (1) frequent slippage and rotations of the terminal head caused by collisions with the terminal base lead to failure in 
training TD3, (2) the BC trained solely on 150 human demonstrations is insufficient for training an accurate assembly model and (3) the human 
demonstrations play an important role in improving training efficiency and policy success rate. Our approach outperforms both baseline policies.

Algorithms # Of demos Env input Training time Success/Total

TD3 0 Yes 285 min 0/100

BC 150 No 105 min 9/100

RLPD (w/o demo) 0 Yes 265 min 32/100

RLPD (Ours) 30 Yes 55 min 100/100

FIGURE 4
Illustration of the robot performing terminal assembly with our method. The green box indicates a state where the robot receives classifier reward for 
completing the task.

TABLE 2  Mean and standard deviation of the error in estimating the 
relative grasp pose (y,z,roll) of the terminal head using the tactile-based 
pose estimation policy πtac2pos, evaluated over 100 sampled initial end 
effector poses.

Error 
Dimension

y (mm) z (mm) roll (rad)

Mean Error 8.63e-2 1.28e-1 5.76e-3

Standard Deviation 4.28e-3 6.13e-2 4.23e-3

Success Threshold 
(ME)

1.50e-1 2.00e-1 1.80e-2

TABLE 3  Ablation study with comparing single modal Tactile Only, 
Vision Only, and a Combined two-modal approach leveraging tactile and 
visual information.

Observation Training time Success/Total

Tactile Only 195 min 23/100

Vision Only 60 min 1/100

Vision + Tactile 55 min 100/100

6.1 Limitations

Although our results are promising, several limitations of the 
proposed approach remain. First, the generalizability of our method 
has yet to be validated across various assembly tasks, particularly 

those involving objects with more intricate geometric properties 
(e.g., non-prismatic components with curved mating surfaces) or 
scenarios where the physical dimensions significantly deviate from 
the scale of the tactile sensor (e.g., micro-assembly tasks with 
parts <  5 mm or large components >  50 mm). The current 
tactile pose estimation policy πtac2pos is trained specifically on PLC 
terminals, and its performance degrades when applied to parts with 
distinct contact patterns (e.g., smooth metallic vs. textured plastic 
surfaces). Second, components composed of different materials may 
necessitate the application of distinct pose estimation algorithms: for 
example, slippery materials (e.g., Teflon-coated terminals) introduce 
slippage between the gripper and part, which the current tactile 
model does not explicitly account for. Third, during the collection 
of human demonstrations and the training phase, the unique 
characteristics of the assembled programmable logic controller 
(PLC) in this study require a human operator to manually detach 
the terminal head following each successful assembly to reset 
the environment. This manual intervention not only extends 
the training duration (adding 10s per trial) but also introduces 
variability due to inconsistencies in human execution (e.g., varying 
detachment forces that alter the initial bin’s part placement). 

6.2 Future work

To address these limitations, future research should focus on 
three main directions. First, generalizing the proposed methodology 
to encompass assembly tasks involving objects with diverse shapes, 
materials, and dimensions: this will involve developing few-shot 
tactile pose estimation models that adapt to new parts with
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minimal retraining data, as well as integrating material property 
estimation (e.g., friction coefficient) from tactile images to handle 
slippage—directly addressing the need for multi-material terminal 
adaptation in industrial scenarios. Specifically, we aim to extend 
the current PLC terminal-focused framework to metallic, Teflon-
coated, and composite-material terminals, where varying surface 
properties (e.g., friction coefficients ranging from 0.2 to 0.6) require 
adaptive tactile signal interpretation and grasp force adjustment. 
Second, the development of an automated reset learning framework 
tailored specifically for terminal insertion and extraction processes: 
this framework could leverage the existing πtac2pos policy to detect 
successful assembly, followed by a learned “extraction policy” that 
uses tactile feedback to safely detach the terminal head without 
human intervention—significantly improving the efficiency and 
reliability of such systems. Concurrently, we will investigate batch 
assembly efficiency optimization by integrating real-time sensor 
drift compensation (e.g., calibrating tactile image brightness and 
depth accuracy across 100+ consecutive assembly cycles) and 
adaptive RL policy updates to mitigate performance fluctuations 
induced by environmental wear (e.g., gripper fatigue) or component 
batch variations. Third, optimizing the multi-modal policy for 
edge deployment: techniques such as model quantization and 
knowledge distillation will be explored to reduce the computational 
footprint of the RegNet backbone and RLPD-based policy, enabling 
real-time inference on embedded GPUs. Additionally, future 
work will investigate the integration of foundation models for 
visual-tactile fusion, which could eliminate the need for task-
specific classifiers by leveraging pre-trained knowledge of object 
interactions. Finally, validating the method in industrial factory 
settings with variable lighting, vibration, and part tolerances will 
be critical to demonstrating its practical applicability—with a 
focus on validating multi-material adaptation and batch efficiency 
improvements in real-world production lines.
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