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Industrial terminal assembly tasks are often repetitive and involve handling
components with tight tolerances that are susceptible to damage. Learning
an effective terminal assembly policy in real-world is challenging, as collisions
between parts and the environment can lead to slippage or part breakage. In
this paper, we propose a safe reinforcement learning approach to develop a
visuo-tactile assembly policy that is robust to variations in grasp poses. Our
method minimizes collisions between the terminal head and terminal base by
decomposing the assembly task into three distinct phases. In the first grasp
phase,a vision-guided model is trained to pick the terminal head from an
initial bin. In the second align phase, a tactile-based grasp pose estimation
model is employed to align the terminal head with the terminal base. In
the final assembly phase, a visuo-tactile policy is learned to precisely insert
the terminal head into the terminal base. To ensure safe training, the robot
leverages human demonstrations and interventions. Experimental results on
PLC terminal assembly demonstrate that the proposed method achieves 100%
successful insertions across 100 different initial end-effector and grasp poses,
while imitation learning and online-RL policy yield only 9% and 0%.

KEYWORDS

visual perception, tactile sensing, multi-modal fusion, terminal assembly, reinforcement
learning

1 Introduction

Terminal assembly (McKee et al, 1985) is a precision manipulation task that
involves part-to-part contact. Its four key sub-tasks—part feeding, object reorientation,
peg insertion, and terminal buckling—have been widely investigated (McKee et al,
1985; Goldberg, 1993; Lozano-Pérez, 1986; Lozano-Perez et al., 1984; Natarajan, 1989).
Early research primarily focused on mechanical design aspects (Lozano-Pérez, 1986;
Natarajan, 1989) and motion planning strategies (Goldberg, 1993; Lozano-Perez et al.,
1984; Qiao et al,, 1995). With the aid of Computer-Aided Design (CAD), the assembly
sequence can be pre-defined in simulation using accurate pose information (De Mello
and Sanderson, 1989), enabling robots to plan the required actions for executing the
assembly (Koga et al., 2022). Recently, reinforcement learning (RL)-based approaches
have demonstrated potential in handling assembly tasks involving parts with complex
geometries (Wen et al, 2022; Lian et al, 2021). However, RL remains challenging
due to the requirement for frequent human inputs during learning (Luo et al., 2021)
or high-precision sensors for collecting training data (Wen et al., 2022). Meanwhile,
because the terminal head has the characteristics of irregular shape, easy damage,
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there is also a need for a safe training and data collection method for
learning assembly tasks.

Another challenge in terminal assembly tasks is that the
precise initial pose of the terminal is often unknown. Since the
grasped object is frequently visually occluded by the gripper,
tactile sensing provides a more effective means for grasp pose
estimation (Okumura et al., 2022; Dang et al.,, 2023). Although
recent advances have demonstrated improved simulation accuracy
for industrial insertion tasks (Narang et al., 2022), and successful
Sim2Real transfer has been achieved for tactile-based insertion
tasks (Kelestemur et al, 2022; Wang et al, 2022), simulating
soft contacts between tactile sensors and objects with complex
geometries remains an open challenge (Wang et al., 2021). This
issue often hinders real-world transfer, as accurate object models are
rarely publicly available. Additionally, a major obstacle in applying
reinforcement learning (RL) to real-world terminal assembly tasks
involving tactile feedback is the frequent slippage of parts caused
by environmental collisions and the inherently smooth surface of
the tactile sensors gel pad. Such slippage makes it difficult for
RL methods to succeed without human intervention or the use
of a dedicated pose estimation algorithm to detect and correct
misalignments.

In this work, we present a novel method to safely learn visuo-
tactile feedback policies in real for terminal assembly tasks under
grasp pose uncertainties, with inexpensive off-the-shelf sensors.
Our approach draws on tactile and visual feedback to deal with
the uncertainty of grasp pose and a safe RL training procedure,
minimizing damage during the training phase. We use Sample-
Efficient Robotic reinforcement Learning (SERL) (Luo et al,
2024), a software suite that provides a well-designed foundation
for robotic RL, to develop a data collection and training
pipeline that minimizes collision between the part and its
environment.

The whole pipeline can be divided into three steps: First,
Training Reward Classifier: Labeling visual and tactile images
from human instruction instances to train a reward classifier
to decide when to give policy rewards throughout the RL
training process. Second, Recording Demonstrations: To accelerate
training, record a predetermined number of human-operated
robot demonstrations to finish terminal assembly. This will
serve as a demo buffer for RL. Third, Policy Training: Using
the trained reward classifier and recorded demonstrations
the
interventions can be added to avoid collisions and speed up the

to complete task training (during training, human
training).

The main contributions of this paper are as follows: the
development of a policy for complex terminal assembly in real-world
scenarios, which leverages visual and tactile information through
reinforcement learning and can be acquired in less than 60 min;
the introduction of a safe exploratory strategy for reinforcement
learning, accompanied by a secure data collection methodology
grounded in a designated manual remote operation technique;
and the presentation of experimental findings that indicate the
policy attains a success rate of 100 out of 100 in Programmable
Logic Controller (PLC) terminal assembly, thereby surpassing two
baseline approaches that recorded success rates of 0 out of 100 and

nine out of 100, respectively.
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2 Related work

For many years, terminal assembly has been an essential part
of robotics. The parts’ fragility, the moderate force during terminal
buckling, the occlusions caused by the robot gripper, the grasp
uncertainty from the acquisition process and its collision with
the environment, and the precision required to control the robot
for insertion render the task challenging. Early work approached
this problem using CAD information to infer desired assembly
sequences (De Mello and Sanderson, 1989) and generating designs
of part feeders based on object geometry (Natarajan, 1989).
Other work approached the problem from an algorithmic design
perspective, with a focus on developing motion planning strategies
for peg insertion (Lozano-Pérez, 1986; Qiao et al., 1995).

Recently, learning-based methods have shown success on this
task. This includes learning assembly policies with a physical robot
via Sim2Real transfer (Johannink et al., 2019), online adaptation
with meta-learning (Schoettler et al, 2020b; Zhao et al., 2022),
reinforcement learning (Luo et al., 2021; Schoettler et al., 2020a),
self-supervised data collection with impedance control (Spector and
Di Castro, 2021), accurate state estimation (Wen et al., 2022), or
decomposing the assembly algorithm into a residual policy that
relies on conventional feedback control (Johannink et al.,, 2019).
These approaches assume that the parts are grasped with a fixed pose.
To overcome this assumption, Wen et al. (Wen et al., 2022) perform
accurate pose estimation and motion tracking with a high-precision
depth camera and use a behavioral cloning algorithm to insert the
part. Spector etal. (Spector and Di Castro, 2021; Spector et al.,
2022) proposed Insertionnet for industrial assembly, which requires
contact between the part and the environment to occur during
data collection, a process that is expensive and often impractical
for fragile parts. Ozalp et al. (2024) made advancements in deep
RL and inverse RL for robotic manipulation. In comparison, we use
inexpensive tactile sensors and a safe human-guided data collection
and RL procedure that does not require such contact.

In systems using only visual perception, grasped parts are
often visually occluded by the gripper, and changes in environment
light can affect the accuracy of visual recognition. However, tactile
perception is not affected by these factors: the camera of the tactile
sensor is placed inside the body, so the collected tactile images
will not be blocked by itself or environmental objects; the light
source for tactile images is a built-in LED strip, so the image
brightness, color, etc. are also not affected by environment light.
Meanwhile, tactile images contain rich physical information such as
object geometric features, contact force, contact deformation, and
displacement. Based on this information, the system can achieve
more precise contact control. Therefore, tactile feedback can be an
alternative sensing modality for grasp pose estimation. Recent work
uses tactile images from vision-based tactile sensors such as GelSight
(Yuan et al,, 2017), DIGIT (Lambeta et al., 2020) and GelSlim3.0
(Taylor et al., 2022) to estimate the relative pose and 3D motion
field between grasped objects and tactile grippers. Meanwhile, many
new types of tactile fingers (DexiTac (Lu et al., 2024)) and tactile
sensors (Evetac (Funk et al., 2024)) are being applied in robotic
operations. Li etal. (Li et al., 2014) use Gelsight sensors, BRISK
features and RANSAC to estimate grasp pose. Gelsight produces
high-quality 3D tactile images and can determine depth imprint,
which improves feature detection by isolating the object from the
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background. DIGIT, a more affordable tactile sensor, provides a 2D
RGB image but not the light incident direction (to generate the depth
image). Liu et al. (2024) develops a method to reconstruct 3-D tactile
motion field in real-time, that can provide rich tactile information
(such as contact force) and serve as the foundation for many
downstream tasks. Kelestemur et al. (2022) generates tactile image
data in simulation for pose estimation of bottle caps but simulating
contact and physical interaction between tactile sensors and objects
with more intricate geometry is still challenging (Wang et al., 2021).
In this work, we combine tactile images from a real-world PLC
terminal with reinforcement learning process as part of observation.
By means of contact tactile information analysis, these images enable
the policy to precisely locate the terminal base and so try to minimize
the contact force needed for terminal buckling.

Most prior work on tight tolerance assembly tasks (Wen et al.,
2022; Li et al., 2014; Fan et al., 2019; Florence et al., 2022; Wu et al.,
2025; Lin et al., 2024) leverages a single modality, such as vision,
tactile, or force-torque, limiting the accuracy of the system due
to occlusion, perspective effect, and sensory inaccuracy. Multi-
modal systems have been explored to improve the robustness of
automated insertion. Spector and Di Castro (2021), Spector et al.
(2022) use RGB cameras and a force-torque sensor for learning
contact and impedance control. Chaudhury et al. (2022) couple
vision and tactile data to perform localization and pose estimation,
and demonstrate that vision helps with disambiguating tactile
signals for objects without distinctive features. Ichiwara et al. (2022)
leverage tactile and vision for deformable bag manipulation by
performing auto-regressive prediction. Hansen et al. (Hansen et al.,
2022) use a contact-gated tactile, vision and proprioceptive
observation to train reinforcement learning policies. Okumura et al.
(2022) also tackle the problem of grasp pose uncertainty for
insertion by using Newtonian Variational Autoencoders to combine
camera observations and tactile images. Hao et al. (2025),
Zhao et al. (2024) and Zhang et al. (2025) combined tactile
information with large language models, achieving robotic arm
manipulation of articulated objects and preference learning for
insertion manipulation, respectively. They demonstrate results for
USB insertion accounting for grasp pose uncertainty in one
translation direction. In this work, we address terminal grasping,
path planning, and terminal buckling as the whole reinforcement
learning task. As the observation for the RL policy, combine two
wrist camera images, one side camera image, and two tactile gripper
images into visual-tactile multi-modal information. Concurrent
with this was an artificial intervention program designed to
guarantee a safe exploration for the policy. Our policy is able to
handle both grasp pose rotation and translation uncertainty for the
PLC terminal’s assembly.

3 Problem statement and
preliminaries

Overview: We sort out a terminal assembly task for a 7-DoF
robot with a parallel-jaw gripper and tactile sensors on both jaws.
The end-effector has two wrist-mounted RGBD cameras, and one
RGB side-camera is configured to capture the entire assembly
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scenario. The objective is to learn a policy that can robustly insert the
terminal head into the terminal base with an unknown part’s pose
within the gripper, while minimizing head-base collisions by human
guidance during training. Figure 1A shows the experiment setup.

Details of the assembled terminal: As seen in Figures 1B,C,
our work accomplished the PLC terminal assembly. The terminal
base and the terminal head are the two components that make
up the hardware. Three barbed elastic latches and ten parallel-
positioned pins make up the major mating components of the
terminal head. The terminal base mating area is partially enlarged
in the upper right corner, where the base’s inner wall has three guide
grooves that match the three spring clips, and the base’s bottom
has insertion holes that match the pins. The main challenge of this
work is correctly inserting the pins into the holes and snapping
the three spring clips into their respective guiding grooves without
causing any damage to the pins, such as bending or breaking
them. Therefore, we use tactile sensing and manual intervention to
minimize collision forces during the assembly process to ensure the
safety of the terminal hardware.

Robotic Reinforcement Learning: Robotic reinforcement
learning tasks can be defined via an Markov Decision Process
(MDP) M ={S,A,p,P,r,y}, where s € S is the state observation
(e.g., the combination of the current environmental image, tactile
image, and end-effector position), a € A is the action (e.g., the
desired end-effector pose), p(s,) is a distribution over initial states,
‘P is the unknown and potentially stochastic transition probabilities
that depend on the system dynamics, and nSx.A— R is the
reward function, which encodes the task. An optimal policy
7 is one that maximizes the cumulative expected value of the
reward, i.e, E[Y.%y'r(s;,a,)], where the expectation is taken with
respect to the initial state distribution, transition probabilities, and
policy 7.

While the specification of the RL task is concise and simple,
turning real-world robotic learning problems into RL problems
requires care. First, the sample efficiency of the algorithm for
learning 7 is paramount: when the learning must take place in
the real world, every minute and hour of training comes at a
cost. Sample efficiency can be improved by using effective off-
policy RL algorithms (Konda and Tsitsiklis, 1999; Haarnoja et al.,
2018; Fujimoto et al, 2018), but it can also be accelerated by
incorporating prior data and demonstrations (Rajeswaran et al.,
2017; Ball et al, 2023; Nair et al, 2020), which is important
to achieve the fastest training times. Beyond 7 optimization,
robotic RL has to figure out reward functions from image
observations and automate initial state resets. Particularly in
contact-rich tasks, the controller layer interfaces MDP actions to
low-level robot controllers, necessitating safety and precision so
that the RL algorithm can experiment with random actions during
training.

4 Methods

In this section, we introduce our visuo-tactile feedback policies
with the assistance of human intervention to address the terminal
assembly problem. The overview of our method is shown in Figure 2.
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FIGURE 1

(A) An overview of the terminal assembly task is shown in the figure. The goal is to grasp the terminal head from the placement tray and guide the
robot to the terminal base. Two RGBD cameras on the wrist and one RGB side camera are used to observe the environment. The final step is to insert
the terminal head clamped by the tactile sensors onto the terminal base using visual-tactile feedback. (B,C) Exhibition of the components and specifics

of each segment of the terminal.

4.1 Real-world RL for terminal grasp and
assembly

4.1.1 Fundamental RL algorithm

For the reinforcement learning method to be used in terminal
assembly, there are two requirements: It must be (1) effective
and capable of making several gradient adjustments in a time
step, and (2) readily integrate prior data and then get improved
with further training. In pursuit of this objective, we expand
upon the recently proposed RLPD algorithm (Ball et al., 2023),
which has demonstrated remarkable outcomes in sample-efficient
robotic learning. The off-policy actor-critic reinforcement learning
algorithm, known as RLPD, relies on the success of temporal
difference algorithms with soft-actor critic (Haarnoja et al., 2018),
it undergoes some significant changes to satisfy the requirements
above. Three main improvements are made by RLPD: (i) high
update-to-data ratio training (UTD); (ii) symmetric sampling
between on-policy and prior data, where half of each batch comes
from the online replay buffer and half from prior data; and (iii)
layer-norm regularization during training. In order to accelerate
learning, this technique can either start from scratch or leverage
prior data (e.g., demonstrations). Each step of the algorithm updates
the parameters of a parametric Q-function Q¢(s,a) and actor
mg(als) according to the gradient of their respective loss functions
(Equations 1, 2):

Lo@)=E g [(Q¢ (s,a) — (r(s,a) +YEq [Qqs (s',al)]))Z] (1)
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L0) = ~E,[Eyp o) [Qy (5,0)] + Mg (-15)] )
where Qg is a target network, and the actor loss uses entropy
regularization with an adaptively adjusted weight a. Every update
step employs a sample-based approximation of each expectation,
with half of the samples receiving from the replay buffer and
the other half from the prior data (e.g., demonstrations). For
efficient learning, multiple update steps are performed per time
step in the environment, which is referred to as the update-to-
date (UTD) ratio. Regularizing the critic with layer normalization

enables higher UTD ratios and more effective training
(Ball et al., 2023).
In this work, 7, and 7., are trained based on RLPD.

And the three improvements of RLPD have also demonstrated their
advantages in handling task-specific challenges in our experiments:
(i) High UTD ratio: Our training shows that a UTD ratio of 20
reduced wall-clock training time by 47% compared to a UTD ratio of
5 (a common baseline in off-policy RL). This acceleration is critical
for real-world assembly, where hardware access is constrained; (ii)
Symmetric sampling: Replaying training data (without modifying
hardware interactions) revealed that removing symmetric sampling
(using 100% online data) increased Q-function loss variance
by 63%—indicating unstable learning from contact-driven data
fluctuations. In contrast, symmetric sampling maintained loss
variance <5% across epochs; (iii) Layer normalization: Omitting
layer normalization caused the policy to diverge in 32% of training
trials (vs. 0% with normalization), as it failed to adapt to sudden

04 frontiersin.org


https://doi.org/10.3389/frobt.2025.1660244
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Lietal.

10.3389/frobt.2025.1660244

(A) Vision Guided Grasp

(B) Tactile Guided Alignment

d Tactile Information

,7,7oll}

(D) Assembled

Control Procedure
Tassemble

| N

Visuo-Tactile Observation astic Latches Inserted Pins Inserted

FIGURE 2

Overview of the learned three-phase assembly policy: (A) The vision guided policy Tlgrasp €StiMates the position of the terminal head and grasps it at an
initial pose. (B) The tactile guided policy .0 €stimates the grasp pose using the tactile image and aligns the z-axis of the terminal head with the
insertion axis. (C) A vision-tactile multi-modal guided policy 7,ssempe 1S Used to assemble the terminal head and the terminal base. (D) Following the

insertion of the elastic latches, a specific procedure is executed to insert the pins, and ultimately, the entire terminal assembly is successfully completed.

tactile signal shifts (e.g., from no contact to hard contact with the
terminal base).

4.1.2 Classifier-based reward specification

Reward functions are difficult to specify by hand when learning
with image observations, as the robot typically requires some sort
of perception system just to determine if the task was performed
successfully. While some tasks can accommodate hand-specified
rewards based on the location of the end effector (under the
assumption that the object is held rigidly in the gripper), most tasks
require rewards to be deduced from images. In this case, the reward
function can be provided by a binary classifier that takes in the
state observation s and outputs the probability of a binary “event”
e, corresponding to successful completion. The reward is then given
by r(s) = log p(els).

This classifier can be trained either using hand specified
positive and negative examples, or via an adversarial method
called VICE (Fu et al., 2018). The latter addresses a reward
exploitation problem that can arise when learning with classifier
based rewards, and removes the need for negative examples in the
classifier training set: when the RL algorithm optimizes the reward
r(s) = log p(els), it can potentially discover “adversarial” states that
fool the classifier p(els) to erroneously output high probabilities.
VICE addresses this issue by adding all states visited by the policy
into the training set for the classifier with negative labels, and
updating the classifier after each iteration. In this way, the RL process
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is analogous to a generative adversarial network (GAN), with the
policy acting as the generator and the reward classifier acting as
the discriminator. We trained corresponding classifiers for 7,,,,, and

T

assemble 101 this work. Set the visual image observation for

Tlgrasp S A

positive example (N, = 200) when the gripper successfully grabs the
terminal head in the initial bin, and the others as negative examples
(N,, =800). In the case of 7,

assemble>
observation is setas a positive example (N, = 600) when the terminal

the visual-tactile multi-modal

head’s elastic latches gets inserted into the terminal base; the other
situations are set as negative examples (N, =2400).The rationale
for the N;:N,, = 1:4 ratio lies in the fact that, through our repeated
experiments, classifiers trained on datasets adhering to this ratio
yield the highest classification accuracy.

4.1.3 Actor and learner nodes

In order to decouple inferring actions and updating policies, this
work incorporates alternatives for training and acting in tandem,
as seen in Figure 3. In sample-efficient real-world learning tasks with
large UTD ratios, we discovered that this was advantageous. Our
policy reduces the overall wall-clock time spent training in the real
world while maintaining the control frequency at a fixed rate, which
is essential for tasks requiring instant feedback and reactions, like
deformable objects and contact-rich manipulations (e.g., terminal
assembly). This is achieved by separating the actor and learner on
two separate threads.

frontiersin.org
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Actor Node Learner Node
action learner_thread, learner queue
next obs, reward, done, truncated, info Replay Buffer
Parallel Training, Synchronize Policy Periodically
. 5 Transition
Actions Robot Environment T
uples
gym
Robot Controller Sensors
FIGURE 3

Policy training and real-world robot architecture. Three parallel processes, consisting of the actor, which chooses actions, and the learner node, which
actually runs the training code, and the robot environment, which executes the actions from the actor and contributes data back to the learner.

4.2 Supervised learning for tactile guided
alignment

Data Collection: The terminal head fixed in the initial bin
throughout data collection. We explore grasp pose variations in
3-DoF (y,z translation and x-axis rotation roll, Figure 2A left).
We perform uniform random sampling over the range [-6,6]mm,
[~7,3]mm, [-Z,Z]rad for y,zroll, with 12, 10 and 60 samples
respectively. The robot closes the gripper with a force of 50N at each
of the sampled poses and records the pair of tactile image readings
and y, z, roll. We collect 7,200 pairs of tactile images (700 x 400 pixels,
RGB) by Xense G1-WS vision-based tactile sensor as data points in
300 min.

Alignment ~ Policy: ~ We  adopted  RegNet 3.2 GF
(Radosavovic et al., 2020) as the backbone of the policy network
and replaced its last layer with a linear layer producing 3 outputs.
Using the aforementioned data—comprising pairs of tactile
images (Figure 2B, 700 x 800 pixels, RGB) corresponding to grasp
poses of the PLC terminal (Figure 1C)—we trained an alignment
policy .55 that outputs the desired End-Effector displacement
(y,z,roll) to align the terminal head with the terminal base
(Figure 2B) given a tactile image. Tactile image augmentation was
performed by randomly jittering brightness and contrast within
the range 1/[0.8,1.2]; the jitter range settings were influenced
to a certain extent by the geometric features of the grasped
terminal head. Regarding hyperparameters, we used a batch
size of 128, an initial learning rate of le-3 with a decay factor
of 0.99 every 100 gradient steps, mean squared error as the
loss function, and the Adam optimizer (Kingma, 2014). These
hyperparameters represent optimal values determined through
multiple experiments based on the collected raw data and are task-
adaptable rather than universal, requiring further adjustment when
using different tactile sensors or grasping different objects in future

work.
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4.3 Impedance controller for terminal
assembly

During the experiment, we found that the choice of controllers
can heavily affect the final performance. This is more pronounced for
contact-rich manipulation. In this work (Figures 2C,D), an overly
stiff controller might bend the fragile pins and make insertion
difficult, while an overly compliant controller might struggle to
move the object into position quickly.

A typical setup for robotic RL employs a two-layered control
hierarchy, where an RL policy produces setpoint actions at a much
lower frequency than the downstream real-time controller. The
RL controller can set targets for the low-level controller, but such
targets may lead to physically undesirable consequences—especially
in contact-rich manipulation tasks—if not regulated by a robust
low-level control mechanism. To this end, the impedance controller
is integrated into this hierarchy as a core component, with its
framework encompassing a spring-damper-based force objective
and a critical error-bounding safety constraint. A typical impedance
control objective for this controller (Equation 3) is

F:kp'e"'kd'é"'Fff"'Fcor (3)

where e=p-p,, p is the measured pose of the end-effector,
and p,, is the target pose computed by the upstream controller.
Here, F b is the feed-forward force (used to compensate for static
loads like gravity), and F,, is the Coriolis force (to mitigate
dynamic disturbances from robot motion). This force objective is
then converted into joint space torques by multiplying with the
Jacobian transpose, offset by nullspace torques to maintain stable
joint behavior. By design, the controller acts as a spring-damper
system around the equilibrium set by p,: k;, (stiffness coefficient)
governs the response to position deviations, while k; (damping
coefficient) smooths motion to avoid oscillations. As described
above, this system will yield large forces if p,; is far away from the
current pose, which can lead to a hard collision or damage when
the arm is in contact with objects (e.g., during PCB insertion).
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Therefore, it’s crucial to constrain the interaction force generated
by it. However, directly reducing k, or k; will hurt the controller’s
positional accuracy. Thus, we bound e so that |e| < A (a predefined
safety threshold), and the generated force from the spring-damper
system will be bounded to k, - |A[ + 2k, - |A] - f, where fis the control
frequency of the low-level controller. This error-bounding step
completes the impedance controller framework, ensuring it balances
precision and safety for real-world robotic RL tasks.

5 Experiments

In this section, we introduce the experimental setup of the
assembly task and the evaluation of the proposed methods.

5.1 Experiment setup

We consider a terminal assembly task using a Franka Emika
Panda Robot (7-DoF), equipped with a parallel-jaw gripper with
XENSE G1-WS vision-based tactile sensors (used in AgiBot World
Colosseo (Bu et al, 2025)) mounted on both jaws. The G1-WS
sensor, independently developed by our laboratory, captures RGB
tactile images with a fixed resolution of 700 x 400 pixels—matching
the sampling resolution of commercial GelSight (Yuan et al., 2017)
mini sensors—and offers advantages including a lower cost ($300)
compared to GelSight mini ($500), a larger sensing area (17.5
(H)x 29.5 (V) mm) than GelSight mini (18.6 (H)x 14.3 (V)
mm), and a wedge-shaped structure that adapts to diverse assembly
environments. For the alignment policy training (4.2), paired tactile
images from both gripper jaws were concatenated horizontally to
form a single 700 x 800 pixel input, ensuring simultaneous capture
of contact information from both sides of the terminal head.

The end effector is equipped with two wrist-mounted Intel
RealSense Depth Camera D435i RGBD cameras, selected for their
high-quality 1,280 x 720 RGB imaging at up to 90 fps—ensuring
clear, temporally consistent visual data for dynamic manipulation
scenarios. Time synchronization between visual and tactile data
was achieved via two steps: (1) Hardware triggering: The D435i
cameras and G1-WS tactile sensors were connected to a common
GPIO trigger module, ensuring all sensors initiate sampling within
a 1 ms time window; (2) Software timestamping: Each sensor frame
(visual/tactile) was tagged with a high-precision system timestamp
(resolution: 100y s) via Robot Operating System (ROS) topics.
The D435i’s 90 fps sampling frequency was downsampled to 30 fps
(matching the G1-WS’s 30 Hz rate) by selecting the visual frame
with the timestamp closest to each tactile frame—resulting in a
maximum synchronization error of <5 ms, which is negligible for
terminal assembly tasks. This setup guarantees consistency between
multi-modal observations.

The D435i's compact form factor minimizes interference
with the gripper and assembly components, while its robust
SDK (compatible with ROS and Python) facilitates seamless
integration into our custom control pipeline. It also delivers reliable
performance under varying lighting conditions, including low-light
environments, ensuring stable data quality throughout experiments.
Additionally, a jieruiweitong DF100 RGB side-camera is configured
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to capture the entire assembly scene (Figure 1), chosen for its 1,280 x
720 resolution, 30 Hz sampling rate, and cost-effectiveness ($20).
At the beginning of each training and evaluation episode, the
initial end effector pose is sampled uniformly (N =100) from a
starting region Q: x € [-3,3]cm,y € [-3,3]cm,z € [-5,3]cm, roll €
[—g, ’é]md. Meanwhile, we initialize RL training from 30
teleoperated demonstrations (Section 4.1.1) using a Joystick (BTP-
AINS3S). All training was done on a single Nvidia RTX 4090 GPU.

5.2 Experimental procedure

At the beginning of each test experiment, the end effector
is set to the initial pose sampled from Q (Figure 2A left). From
this starting pose, the robot first executes the grasp policy 7y,
to visuoservo and grasps the terminal head—leveraging RGB-
D data from the D435i cameras for precise localization of the
terminal head in the initial bin. During the removal of the

terminal head, minor jitter introduced by may lead to a

T ras
collision between the terminal head and thegin§t1a1 bin, thereby
causing an error in the grasping posture. Specifically, the gripper
remains vertically aligned downward, whereas the terminal head
exhibits misalignment with the receptacle in both translational and
rotational dimensions (Figure 2A right).

Then the robot activates the align policy 77;,.;0, which processes
tactile images from the GI1-WS sensors to estimate the terminal
head’s relative pose (y/z translation and roll rotation) and outputs
corrective movements to align the terminal head’s insertion axis with
the terminal base (Figure 2B). The G1-WS’s large sensing area and
high-resolution imaging ensure accurate pose estimation, while its
wedge-shaped design avoids interference with the gripper during
alignment.

After the alignment, the vision-tactile guided assembly policy

T

assemble 18 €xecuted to insert the elastic latches (Figure 2C), fusing

D435i visual data (for environmental context) and G1-WS tactile
feedback (for contact detection). Due to the structural redundancy
and ductility of the assembled PLC terminal, once all elastic latches
are properly inserted, a simple vertical downward force applied to
the terminal head is sufficient to ensure complete insertion of all
pins. Accordingly, we developed an open-loop control program to
execute the final pin insertion process (Figure 2D). The robot then
resets to the next initial sampled pose, waiting for the next test.

the  policy testing  process,
human intervention was triggered by a hybrid mechanism

During training  and

combining manual visual observation and automatic force

sensing, with clearly defined termination conditions: (i)
Successful termination: The robot successfully grasps the
terminal head (grasp binary classifier output=1) and

completes the assembly after adjusting the grasping pose
output =1). (i)
intervention: Triggered when the grasp ~ binary  classifier

(assemble  binary classifier Grasp failure
0 for 5 consecutive seconds (indicating unstable grasp). Intervention
was initiated via Joystick by the experimenter to manually re-grasp
output = 1, after which the

task terminates. (iii) Deviation/collision intervention: Triggered

until the grasp  binary classifier

by two complementary cues: (a) Manual visual observation: the

experimenter initiated intervention upon visually detecting the
terminal head deviating from the terminal base or colliding
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with non-target components; (b) Automatic force sensing: The
system automatically paused motion and prompted intervention
if the EE force-torque sensor detected a collision force >
30 N. Upon intervention, the experimenter manually completed
until  the output =
1, then the task terminates. Notably, in both conditions (ii)

assembly assemble  binary  classifier
and (iii), the data collected during manual intervention is
stored as expert demonstration data into the replay buffers of
Mrasp ADA Tyeoppre TeSpectively, to guide and accelerate policy

training.

5.3 Comparison and ablation studies

Examine the function and significance of the RLPD algorithm:
As outlined in Section 4.1.1, the most distinctive characteristic
of the RLPD algorithm lies in its integration of human prior
demonstrations to guide the learning process, which effectively
reduces both training time and sample complexity. To assess the
necessity of these demonstrations, we compare our approach with
the Twin Delayed Deep Deterministic Policy Gradient (TD3),
an off-policy Actor-Critic algorithm derived from DDPG. TD3
belongs to the class of online reinforcement learning algorithms
that require continuous interaction with the environment and rely
solely on trial-and-error learning to discover optimal policies,
without incorporating human demonstrations. The comparison is
conducted under identical environmental settings: (1) Exploration
noise: Gaussian noise with standard deviation = 0.1 (applied
to end-effector pose commands); (2) Learning rate: le-3 for
actor/critic networks (Adam optimizer); (3) Training epochs:
200 epochs (1,000 steps per epoch); (4) Network architecture:
Same 3-layer actor/critic structure (consistent with RLPD’s base
design).

Furthermore, to demonstrate that expert demonstrations
alone are insufficient for task completion, we also evaluate a
behavioral cloning (BC) baseline trained on 150 high-quality
expert teleoperated demonstrations. This dataset size approximately
matches the total amount of data stored in the RLPD replay buffer at
convergence. To ensure fair comparison: (1) Network architecture:
BC used the same RegNet 3.2 GF backbone as RLPD’s alignment
policy (7yczp05)> With an output layer predicting end-effector poses;
(2) Training epochs: 200 epochs (matching RLPD), batch size =
128. It is important to note that this BC baseline utilizes five times
more demonstration data than the number of demonstrations
required by our method. Meanwhile, to intuitively verify the role
of “human prior demonstrations” in the RLPD algorithm, we
replaced the demo buffer with a subset of replay buffer data in
one training session to isolate and examine the function of human
demonstrations.

We report the results in Table 1, and show example executions
in Figure 4. Training the TD3 policy in the physical environment
resulted in divergence across all conducted training trials. In each
case, the terminal head collided with the terminal base during the

training of 71

ussemble> €AUSING significant changes to the relative grasp

pose or inflicting damage to the pins and the tactile sensor gel pad.
Such issues cannot be directly corrected due to the absence of a
reliable recovery procedure that can systematically restore the grasp
pose without human demonstrations. Our policies significantly
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outperform BC baselines, even when trained with five times fewer
demonstrations than BC. This indicates that relying solely on
demonstrations is insufficient for achieving optimal performance.
In addition to achieving up to a tenfold improvement in success
rate over BC methods, our approach also reduces training time
by up to twofold. Removing real-time human intervention data
from the buffer leads to a 68% drop in success rate (from 100
to 32), confirming the buffer’s role in addressing rare failure
modes (Table 1, RLPD (w/o demo)). We also observed from the
aforementioned experiments that the terminal head rotation and
translation estimated based on tactile images (77;,5,,) exhibit a high
degree of accuracy (see Table 2).

Exploring Utility of Tactile and Vision Information: We perform
study the relative benefits of using tactile and vision for assembly
. We test 3 different approaches: (1) A Tactile Only
approach (Figure 2C, the lower part of Visuo-Tactile Observation)

term (7o mple)
(2) A Vision Only approach (Figure 2C, the upper part of Visuo-
Tactile Observation) and (3) a Combined Approach (Ours). We
perform experiments with the three different approaches with
the same procedure as in Section 5.2 and report results in
Table 3.

The Tactile Only model achieved successful assembly 23/100
times. However, its training time exceeded 3 times that of the other
two models. This is because, across much of the exploration range,
no contact occurred between the terminal head and terminal base,
resulting in static tactile sensor images. Consequently, a significant
portion of the training process involved the policy exploring for
the position of the terminal base. These findings suggest that
visual observation is essential for estimating the approximate
location of the terminal base, enabling the policy to actively reduce
the exploration space and accelerate learning. In contrast, the
Vision Only model exhibited faster convergence during training
but performed poorly in completing the assembly task, achieving
only one success in 100 attempts. This limitation stems from the
absence of fine-grained tactile feedback regarding contact events,
highlighting the necessity of tactile sensing for millimeter-level
positional estimation in contact-rich tasks. The multi-modal model,
which integrates both tactile and visual inputs, outperforms either
modal approach by combining tactile-based terminal head position
prediction with vision-based implicit estimation of environmental
states. This synergy demonstrates that the integration of tactile
and visual observations effectively reduces uncertainties inherent in
assembly tasks.

6 Discussion

In conclusion, we propose an effective and safe methodology
for acquiring a visuo-tactile insertion policy within real-world
reinforcement learning (RL) environments characterized by
unknown component positions and grasping configurations. This
is achieved by leveraging human demonstrations to accelerate the
training process while maintaining the safety of the components,
alongside the implementation of a structured three-phase assembly
framework that delineates the task into distinct stages—grasping,
alignment, and insertion—facilitated by integrated tactile and
visual feedback.
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TABLE 1 Results suggest that (1) frequent slippage and rotations of the terminal head caused by collisions with the terminal base lead to failure in
training TD3, (2) the BC trained solely on 150 human demonstrations is insufficient for training an accurate assembly model and (3) the human
demonstrations play an important role in improving training efficiency and policy success rate. Our approach outperforms both baseline policies.

Algorithms # Of demos Env input Training time Success/Total
TD3 0 Yes 285 min 0/100
BC 150 No 105 min 9/100
RLPD (w/o demo) 0 Yes 265 min 32/100
RLPD (Ours) 30 Yes 55 min 100/100

FIGURE 4

completing the task.

Illustration of the robot performing terminal assembly with our method. The green box indicates a state where the robot receives classifier reward for

TABLE 2 Mean and standard deviation of the error in estimating the
relative grasp pose (y,z,roll) of the terminal head using the tactile-based
pose estimation policy my,c;p0s, €valuated over 100 sampled initial end
effector poses.

Error y (mm) z (mm) roll (rad)
Dimension
Mean Error 8.63e-2 1.28e-1 5.76e-3
Standard Deviation 4.28e-3 6.13e-2 4.23e-3
Success Threshold 1.50e-1 2.00e-1 1.80e-2
(ME)

TABLE 3 Ablation study with comparing single modal Tactile Only,
Vision Only, and a Combined two-modal approach leveraging tactile and
visual information.

Observation Training time Success/Total

Tactile Only 195 min 23/100
Vision Only 60 min 1/100
Vision + Tactile 55 min 100/100

6.1 Limitations

Although our results are promising, several limitations of the
proposed approach remain. First, the generalizability of our method
has yet to be validated across various assembly tasks, particularly
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those involving objects with more intricate geometric properties
(e.g., non-prismatic components with curved mating surfaces) or
scenarios where the physical dimensions significantly deviate from
the scale of the tactile sensor (e.g., micro-assembly tasks with
parts < 5mm or large components > 50 mm). The current
tactile pose estimation policy 7,y is trained specifically on PLC
terminals, and its performance degrades when applied to parts with
distinct contact patterns (e.g., smooth metallic vs. textured plastic
surfaces). Second, components composed of different materials may
necessitate the application of distinct pose estimation algorithms: for
example, slippery materials (e.g., Teflon-coated terminals) introduce
slippage between the gripper and part, which the current tactile
model does not explicitly account for. Third, during the collection
of human demonstrations and the training phase, the unique
characteristics of the assembled programmable logic controller
(PLC) in this study require a human operator to manually detach
the terminal head following each successful assembly to reset
the environment. This manual intervention not only extends
the training duration (adding 10s per trial) but also introduces
variability due to inconsistencies in human execution (e.g., varying
detachment forces that alter the initial bin’s part placement).

6.2 Future work

To address these limitations, future research should focus on
three main directions. First, generalizing the proposed methodology
to encompass assembly tasks involving objects with diverse shapes,
materials, and dimensions: this will involve developing few-shot
tactile pose estimation models that adapt to new parts with
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minimal retraining data, as well as integrating material property
estimation (e.g., friction coeflicient) from tactile images to handle
slippage—directly addressing the need for multi-material terminal
adaptation in industrial scenarios. Specifically, we aim to extend
the current PLC terminal-focused framework to metallic, Teflon-
coated, and composite-material terminals, where varying surface
properties (e.g., friction coefficients ranging from 0.2 to 0.6) require
adaptive tactile signal interpretation and grasp force adjustment.
Second, the development of an automated reset learning framework
tailored specifically for terminal insertion and extraction processes:
this framework could leverage the existing 77,505 policy to detect
successful assembly, followed by a learned “extraction policy” that
uses tactile feedback to safely detach the terminal head without
human intervention—significantly improving the efficiency and
reliability of such systems. Concurrently, we will investigate batch
assembly efficiency optimization by integrating real-time sensor
drift compensation (e.g., calibrating tactile image brightness and
depth accuracy across 100+ consecutive assembly cycles) and
adaptive RL policy updates to mitigate performance fluctuations
induced by environmental wear (e.g., gripper fatigue) or component
batch variations. Third, optimizing the multi-modal policy for
edge deployment: techniques such as model quantization and
knowledge distillation will be explored to reduce the computational
footprint of the RegNet backbone and RLPD-based policy, enabling
real-time inference on embedded GPUs. Additionally, future
work will investigate the integration of foundation models for
visual-tactile fusion, which could eliminate the need for task-
specific classifiers by leveraging pre-trained knowledge of object
interactions. Finally, validating the method in industrial factory
settings with variable lighting, vibration, and part tolerances will
be critical to demonstrating its practical applicability—with a
focus on validating multi-material adaptation and batch efficiency
improvements in real-world production lines.
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