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Symbolic feedback for
transparent fault anticipation in
neuroergonomic brain-machine
interfaces

Abdelaali Mahrouk*

Independent Researcher, Algiers, Algeria

Background: Brain-Machine Interfaces (BMIs) increasingly mediate human
interaction with assistive systems, yet remain sensitive to internal cognitive
divergence. Subtle shifts in user intention—due to fatigue, overload, or schema
conflict—may affect system reliability. While decoding accuracy has improved,
most systems still lack mechanisms to communicate internal uncertainty or
reasoning dynamics in real time.

Objective: We present NECAP-Interaction, a neuro-symbolic architecture that
explores the potential of symbolic feedback to support real-time human-Al
alignment. The framework aims to improve neuroergonomic transparency by
integrating symbolic trace generation into the BMI control pipeline.

Methods: All evaluations were conducted using high-fidelity synthetic agents
across three simulation tasks (motor control, visual attention, cognitive
inhibition). NECAP-Interaction generates symbolic descriptors of epistemic
shifts, supporting co-adaptive human-system communication. We report trace
clarity, response latency, and symbolic coverage using structured replay analysis
and interpretability metrics.

Results: NECAP-Interaction anticipated behavioral divergence up to 2.3 + 04 s
before error onset and maintained over 90% symbolic trace interpretability
across uncertainty tiers. In simulated overlays, symbolic feedback improved
user comprehension of system states and reduced latency to trust collapse
compared to baseline architectures (CNN, RNN).

Conclusion: Cognitive interpretability is not merely a technical concern—it is
a design priority. By embedding symbolic introspection into BMI workflows,
NECAP-Interaction supports user transparency and co-regulated interaction in
cognitively demanding contexts. These findings contribute to the development
of human-centered neurotechnologies where explainability is experienced
in real time.

KEYWORDS

neuroergonomics, brain-machine interfaces, symbolic feedback, cognitive
transparency, fault anticipation, human-Al alignment, traceability, closed-loop
interpretability

1 Introduction: toward transparent
neuroergonomic interfaces

Brain-Machine Interfaces (BMIs) enable direct coupling between neural activity and
external systems, supporting a wide spectrum of assistive, clinical, and augmentative
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applications (Wolpaw et al., 2002; Shenoy and Carmena, 2014).
These technologies are increasingly deployed in safety-sensitive
contexts—such as mobility control, communication support,
or cognitive assistance—where accurate interpretation of user
intent is essential for operational reliability. Recent advances
in hybrid BMI architectures have emphasized the need for
interpretable feedback mechanisms
(Lee et al., 2024; Roy et al., 2023).
Despite ongoing improvements in decoding accuracy and

in closed-loop systems

latency optimization, a persistent challenge remains: the fragile
alignment between the system’s internal state and the user’s
cognitive dynamics. Cognitive fluctuations—including attentional
drift, implicit intention reversal, or overload-induced schema
conflict—can lead to system decisions that diverge from user
expectations, often without producing explicit external warning
signs (Farah, 2021; Kriegeskorte and Douglas, 2018). These
phenomena are increasingly modeled in neuroadaptive systems
using symbolic reasoning and domain-adapted EEG protocols
(Zhang et al., 2022; Chan et al., 2024).

Most BMI systems address such divergences reactively, through
threshold-based signal correction or heuristic rejection. However,
these approaches offer limited transparency regarding how internal
decisions evolve. The user typically receives feedback based on
system output, but not on the system’s epistemic confidence, decision
cascades, or internal uncertainties—creating a neuroergonomic
blind spot.

To explore this gap, we propose a framework that complements
functional decoding with symbolic feedback channels. These
channels translate internal inferential states into user-interpretable
descriptors, such as indicators of drift detection, schema
arbitration, or intent recalibration. By emitting structured
traces—representing evolving hypotheses, conflict events, and
system-level adjustments—the architecture aims to support
situational awareness and adaptive trust calibration.

This study presents a neuro-symbolic BMI architecture
evaluated through synthetic high-fidelity agents under paradigms
simulating motor control, cognitive inhibition, and attention-
demanding decision contexts. All evaluations were performed in
simulation, using parameterized EEG-like protocols inspired by
empirical literature. No human participants or clinical data were
involved at any stage of the research.

Rather than claiming full cognitive alignment or trust recovery,
this work introduces a testable framework for embedding semantic
feedback within BMI workflows. It contributes to the broader effort
of designing neurotechnologies where explainability is not post-
processed, but experienced in real time (Ghosh et al., 2023).

2 Methods—architecture, simulation,
and symbolic feedback design

2.1 Simulation-only cognitive protocols

As shown in Figure 1, the simulation pipeline integrates
fault injection across cognitive paradigms all experiments were
conducted using synthetic agent-based simulations, carefully
designed to reproduce realistic patterns of internal cognitive
variation. These agents emulate neurocognitive phenomena such
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Signal
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Dynamics
Synthetic cognitive simulation pipeline. This figure illustrates the
simulation pipeline linking three cognitive paradigms—motor control,
inhibition, and visual overload—to fault injection points and modeled
signal dynamics. Each task type leads to a fault node, which converges
into a central signal processing unit. Arrows indicate temporal
embedding of faults within agent task flow.

as attentional drift, intentional reversal, and schema conflict, under
task conditions parameterized using canonical paradigms from
cognitive neuroscience (e.g., oddball/P300, Go/No-Go, RSVP)
(Nguyen et al., 2022; Kriegeskorte and Douglas, 2018).

These simulation protocols allow for full reproducibility and
ethical compliance, with no involvement of human subjects or
clinical recordings at any stage.

2.2 Architecture of the symbolic
feedback-enabled inference engine

Figure 2 illustrates the symbolic trace feedback loop architecture
the core inference engine integrates three asynchronous modules:

1. A Discriminator: which monitors latent cognitive
inconsistency;

2. A Simulator: which projects possible near-term cognitive
trajectories;

3. A Symbolic Feedback Emitter: which outputs real-time, user-

readable symbolic markers tied to inference evolution.

These modules operate without explicit rule encoding. Instead,
symbolic descriptors are triggered when the system detects
mismatches between expected and evolving cognitive paths (e.g.,
conflicting hypotheses, entropy spikes, goal misalignment).
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FIGURE 2
Transparent symbolic trace feedback loop. This figure presents the

modular architecture of the symbolic feedback engine. Input signals
are processed through three asynchronous modules—Discriminator,
Simulator, and Symbolic Feedback Emitter—resulting in a stream of
symbolic events. Arrows indicate inferential cycles and conditional
emission of descriptors such as o1, DriftEvent, and ConflictEscalate.

[ 01 J [Reject (H)} Conflict
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hypothesis  attention or Esc;llatmg
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Drifft-
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FIGURE 3

Example timeline of symbolic feedback events. This timeline visualizes
the unfolding of symbolic feedback events during a simulated task.
Each symbol (o, Reject(H,), DriftEvent, ConflictEscalate) is
time-stamped and aligned with task phases. Annotations highlight
user-facing markers and system corrections triggered by internal
inference shifts.

2.3 Symbol trace generation and
UX-Facing projection

Figure 3 presents a timeline of symbolic feedback events
the symbolic output stream is composed of structured
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elements designed for semantic clarity and user perceptibility.
These include:

o 0,: Initial hypothesis engagement

» Reject(H,): Hypothesis invalidation

« DriftEvent: Detected attention or intention deviation

« ConflictEscalate: Schema competition exceeding threshold

Table 1 defines symbolic event types and their cognitive roles
each symbol is time-stamped and visualized on a simulated user
interface overlay to assess interpretability and temporal salience.

2.4 Experimental task design and fault
injection scenarios

Table 2 details task types, fault triggers, and simulation
parameters three were designed to stress inferential coherence in
BMI-relevant conditions:

« Motor control task: Involves trajectory alteration under gradual
intent drift.

« Inhibition task: Introduces late-stage decision reversals.

« Cognitive overload task: Uses RSVP sequences to generate
inference ambiguity and overload-induced errors.

Faults are injected probabilistically, following Gaussian or
exponential decay schedules. Metrics of interest include reaction
time to emit symbolic descriptors, clarity of user-facing feedback,
and accuracy retention under noise (Farah, 2021; Chan et al., 2024).

3 Results:Ssmbolic Transparency
Improves Ffult Awareness

3.1 Performance and comprehension
outcomes

Table 3 compares performance indicators under symbolic
and baseline conditions across all simulated task conditions,
the symbolic feedback system demonstrated consistent fault
anticipation capabilities. Specifically, symbolic trace activation
preceded behavioral performance degradation by 2.3 + 0.4s,
allowing sufficient time for user-system co-regulation mechanisms
to take effect.

To evaluate the ergonomic efficacy of these symbolic events, we
measured two core indicators:

o Human-AI Alignment Index (HAI), computed via a simulated
comprehension model incorporating trace clarity, event timing,
and perceptual interpretability;

o Trust Recovery Latency, defined as the delay between symbolic
warning onset and restoration of simulated user confidence
following a system-level divergence.

Symbolic feedback was found to significantly reduce

comprehension latency and enhance alignment dynamics compared
to non-symbolic baselines.
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TABLE 1 Symbolic event types and cognitive interpretive roles.

Symbolic event = Trigger condition Interpretive function Expected user effect

o, (Sigma-1) Initial hypothesis formed with high Signals system commitment to intent Supports user anticipation of forthcoming

confidence action

Reject(H,) Hypothesis rejected after inconsistent input Indicates system-level reconsideration Alerts user to possible system self-correction
or entropy spike

DriftEvent Divergence from previous inference Reveals latent misalignment or internal Promotes user vigilance or re-engagement
trajectory detected conflict

ConflictEscalate Competing goals or schema cross thresholds Marks decision paralysis or ambiguity Warns of possible control instability

without resolution

A table summarizing each symbol, its trigger conditions, and its intended ergonomic function (e.g., informing the user, delaying action, increasing awareness).

TABLE 2 Task types, fault triggers, and behavioral conditions.

Task type

Fault injected Trigger model Key simulation

parameters

Cognitive function
modeled

Motor Control Task Gradual Intent Drift Gaussian drift over trajectory Drift amplitude = 0.12, Onset p Dynamic motor planning under
intention =55s50=10 uncertainty
Inhibition Task Late-Stage Decision Reversal Intent flip triggered by entropy Entropy cutoff = 0.6, Decision Response inhibition and

threshold delay = 300-500 ms commitment stability

Cognitive Overload Task | Schema Collapse via Ambiguity | Decaying precision during rapid Input rate = 5 Hz, Precision Working memory and schema

input stream decay T = 2.2 s, Ambiguity index selection under load

>0.7

This table outlines the three task scenarios, corresponding fault dynamics, and the simulation parameters that drive their activation (e.g., drift strength, latency windows, entropy thresholds).

TABLE 3 Performance indicators under symbolic and baseline
conditions.
] ] ] ] . Task Episode ‘
Metric Symbolic Baseline Relative —— T " Phase3 |
feedback | (CNN/RNN) improvement . ASOUNE i dSC
system race | |
y State: ] ]
(of DriftEvent  Reject(H,)
Fault 23+04s 06+0.5s +283%
Anticipation O—Cl) ‘ (5
Latency o :
Initial Detected Hypothesis
Human-AI 0.87 £ 0.06 0.64 +0.09 +36% hypathesis ataniontlvalidation
) engagement deviation
Alignment "
Index (HAT) Time T T T T T T 1
n 0 2 4 6 8 10 10
Trust Recovery 19£03s 32+04s -41% Time (S)
Latency
This table will present a comparative analysis of anticipation latency, HAI scores, and trust FIGURE 4 o . . o o
) . . . . Interpretable Symbol Activation Timeline. This figure will display a
recovery delay across simulated agents using the symbolic model vs. classical architectures . - - o - - d
(CNN, RNN). time-aligned visualization of symbolic events (o;, DriftEvent, Reject(H))
across an entire task episode. Overlays will indicate task phase,
inference transitions, and user-perceived event markers.

3.2 Symbol trace metrics

Figure 4 displays the interpretable Table 4 reports symbol 3.3 Sym bolic module implementation
activation frequency and predictive validity timeline symbolic trace
sequences exhibited high stability and interpretability under varying Figure 5 outlines the symbolic module architecture overview to
degrees of internal perturbation. We computed the Traceability Score ~ ensure methodological transparency and reproducibility, we detail
(T_trace)—defined as the ratio of semantically interpretable segments
to total symbolic emissions—across all replayed simulations. The
mean T_trace was 0.91, indicating robust semantic alignment of trace

sequences with agent-level reasoning states.

the three core modules underpinning symbolic feedback generation:
the Discriminator, the Simulator, and the Symbolic Feedback
Emitter. These components form the operational backbone of the
symbolic trace pipeline.
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TABLE 4 Symbol activation frequency and predictive validity.

Symbolic marker Task Type(s) Activation Correct False positive rate | Average lead
frequency prediction rate time (s)

o, All tasks 100% 92% 0% 0.0 (initial inference)

Reject(H,) Inhibition, Overload | 43% 81% 9% 0.8+0.2

DriftEvent Motor, Overload 68% 89% 6% 1.4+03

ConflictEscalate Inhibition, Overload | 22% 74% 13% 1.1+£04

This Table will summarize the frequency of each symbolic marker across task types and their precision in anticipating relevant performance deviations (e.g., false positives, early warnings,
neutral events).

TABLE 6 Simulator parameters.
Parameter Description Default value
Synthetic iscrimi
yEE G Dlscrlmlnator duration Total signal duration (s) 60
Signal S sampling_rate Samples per second 256
( ) drift_start Perturbati t (s) 20
. rift_star erturbation onset (s
DriftEvent Symbolic
& ) Em |tter drift_end Perturbation end (s) 40
p ¢ & segment functions | Baseline and drift signal —
P generators
Event detection A\ System
. . Configuration parameters for the synthetic EEG signal generator. The Simulator module
D rlft Event dlverg I ng emulates baseline, drift, and recovery phases to test symbolic feedback mechanisms under
. . controlled perturbation.
ConflictEscalate A\ Conflict
\. J reae
rising
TABLE 7 Symbolic mapping parameters.
FIGURE 5 Event type Symbolic label ‘ Code
Symbolic module architecture overview. This figure illustrates the
modular pipeline used to generate symbolic feedback in assistive DriftEvent System diverging A
neuroergonomic systems. Synthetic EEG signals are generated by the
Simulator, analyzed by the Discriminator to detect cognitive events . L
such as DriftEvent and ConflictEscalate, and transformed into ConflictEscalate Conflict rising A
user-facing symbolic cues by the Symbolic Emitter. Each module ) o
contributes to realtime introspection and interpretability, enabling Reject (H,) Hypothesis rejected @
transparent coregulation between system and user.
Accept (H;) Hypothesis accepted v
NoEvent Stable state .

TABLE 5 Discriminator parameters.

Mapping between detected cognitive events and their corresponding symbolic labels and

Parameter Descri ptiOI’l Default value codes. This table defines the semantic vocabulary used in the feedback layer to externalize

system reasoning in real time.

window_size EEG samples per analysis window | 512

threshold_drift Trigger for DriftEvent 0.35

or empirical—using a sliding window analysis. Key features

threshold_conflict | Trigger for ConflictEscalate 0.5

such as divergence entropy, phase synchrony, and spectral

features Entropy, synchrony, alpha power —

shifts are extracted and evaluated
thresholds.

If divergence exceeds 0.35, a DriftEvent is emitted. If the conflict

against  predefined

Parameter definitions for the Discriminator module used to detect symbolic cognitive
events from EEG signals. Thresholds and feature types are calibrated to trigger DriftEvent
and ConflictEscalate markers under divergence and instability conditions. ratio surpasses 0.5, a ConflictEscalate is triggere d. This enables
real-time symbolic introspection without full semantic decoding.
Python: def Discriminator(eegsignal, windowsize = 512,

3.3.1 Discriminator logic thresholddrift = 0.35, thresholdconflict = 0.5):

Table 5 lists the parameters used in the Discriminator
module detects cognitive misalignment in EEG signals—synthetic

Frontiers in Robotics and Al

events = []
for window in slidingwindows(eegsignal, size = windowsize):
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Validation overlay using real EEG data. This figure overlays symbolic
Time (s) feedback markers on real EEG segments from BCI IV 2a, showing
temporal alignment and interpretive continuity.
FIGURE 6

Trust trajectories under fault conditions with vs. without symbolic
feedback. A comparative plot showing the evolution of simulated trust
scores over time across different architectures, emphasizing recovery
dynamics around fault episodes.

Symbolic Non-Symbolic
Feedback Feedback

FIGURE 7
Symbolic vs. non-symbolic feedback cognitive load comparison. This

figure compares simulated user cognitive load under symbolic vs.
non-symbolic feedback conditions. Symbolic traceenabled interaction
consistently reduces perceived workload.

features = extract_features(window)
if features['divergence'] > thresholddrift:
events.append(‘DriftEvent’)
elif features['conflictratio'] > thresholdconflict:
events.append(‘ConflictEscalate’)
return events.

3.3.2 Simulator logic

Table 6 describes the Simulator configuration parameters
module generates EEG-like signals for controlled testing. It models
baseline activity, perturbation phases, and recovery transitions using
parametric constructs.
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FIGURE 9

Traceability score with bootstrap confidence intervals. This figure
shows the distribution of traceability scores under symbolic and
non-symbolic feedback conditions, with statistical significance
annotated.

Python: def Simulator(duration = 60, samplingrate = 256, driftstart

=20, driftend = 40):
signal = []
for t in range(duration*samplingrate):
if driftstart™samplingrate<t < driftend*samplingrate:
segment = generatedriftsegment(t)
else:
segment = generatebaselinesegment(t)
signal.append(segment)
return signal.
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FIGURE 10
Traceability score with bootstrap confidence intervals. This figure presents traceability scores over time with 95% bootstrap confidence intervals,
comparing full architecture vs. ablated variants.

TABLE 8 Theoretical alignment of symbolic feedback with neuroergonomic models.

Symbolic mechanism

Neuroergonomic concept

Functional interpretation Cognitive theory reference

aligned
Drift Event Prediction Error Minimization Signals divergence between expected and Clark (2013)
actual cognitive trajectory, prompting
reorientation
Conflict Escalate Joint Attention & Mutual Prediction Marks unresolved schema competition, Yuste et al. (2017)
enabling anticipation of collapse
Reject (H,) Transparency of Internal Revisions Exposes internal model retraction, Doshi-Velez and Kim (2017)
supporting adaptive trust calibration
o, (Sigma-1) Co-Adaptation Bootstrapping Communicates epistemic commitment, — (conceptual, no citation given)
anchoring shared belief

A mapping of key symbolic mechanisms (e.g., DriftEvent, ConflictEscalate) to concepts from cognitive ergonomics (e.g., prediction error minimization, mutual transparency, joint attention).

3.3.3 Symbolic Feedback Emitter

This module transforms detected events into interpretable

symbolic cues. Table 7 maps symbolic events to semantic labels and

visual codes, enabling real-time user alignment.

Python: def SymbolicEmitter(events):
symbols = []
for event in events:
if event = = ‘DriftEvent’:
symbols.append({label’: ‘System diverging) ‘code’: ‘A’})
elif event = = ‘ConflictEscalate’:
symbols.append({label’: ‘Conflict rising, ‘code’: ‘A\’})
elif event = = ‘Reject(H1)”:
symbols.append({‘label: ‘Hypothesis rejected, ‘code’
‘@})
return symbols.

Frontiers in Robotics and Al

3.4 Trust preservation under fault injection

Figure 6 compares trust trajectories under fault conditions
symbolic feedback not only enhanced system comprehension but
also contributed to trust preservation under cognitive stress.

Compared to baseline models (CNN, RNN), the symbolic
system achieved:

o A 41% reduction in collapse-to-correction latency (i.e., the time
from trust breakdown to user-system realignment),

o A 29% increase in post-task reported understanding of system
behavior and decision justifications, as measured through
simulated subjective feedback overlays.

These results suggest that embedding interpretable symbolic
cues within the inference cycle meaningfully enhances perceived
supporting  better
between internal Al states and user expectations.

transparency, neuroergonomic coherence
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FIGURE 11

Coverage boundaries of symbolic descriptors across task types. This
figure presents a heatmap of symbolic descriptor coverage across task
types (Motor Control, Inhibition, Overload). It visualizes the frequency
and interpretive validity of each symbol (o1, DriftEvent, Reject(H1),
ConflictEscalate), identifying semantic gaps and generalization
constraints.

4 Discussion: neuroergonomics of
symbolic introspection

The integration of symbolic feedback into BMI systems

introduces a new paradigm in cognitive transparency,
enabling users not only to operate assistive interfaces but
to comprehend and monitor their internal dynamics. This
section reflects on the key ergonomic implications of the
proposed architecture and its relevance within neuroergonomic

frameworks.

4.1 Reducing cognitive load through
trace-based clarity

Figure 7 shows cognitive load comparisons across feedback
conditions traditional BMI systems often provide control without
explanation, forcing users to infer system reliability from outcomes
alone. Figure 8 overlays symbolic feedback markers on real EEG data
this implicit cognitive burden can lead to misalignment, especially
under stress or ambiguity. In contrast, NECAP-Interaction
introduces symbolic introspection: a feedback mechanism that
emits interpretable cues reflecting the system’s internal reasoning
in real time. This challenge has been increasingly addressed
in recent neuroergonomic studies that emphasize the role of
real-time interpretability in reducing cognitive workload under
uncertainty (Miiller et al., 2023).

To assess the ergonomic impact of symbolic feedback, we
conducted comparative simulations using both symbolic and non-
symbolic BMI architectures. We measured subjective cognitive load,
anticipation latency, and trace clarity across agents exposed to
identical task conditions.

Frontiers in Robotics and Al
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4.1.1 Empirical extension using public EEG
datasets

To partially validate the symbolic feedback framework under
real neural conditions, we integrated two publicly available EEG
datasets:

1. BCI Competition IV 2a (motor imagery)
2. PhysioNet EEG Motor/Imagery Set

Using domain adaptation techniques, we aligned synthetic and
empirical signal distributions and re-ran the symbolic feedback
pipeline. Results confirmed that symbolic trace emissions remained
interpretable and temporally aligned with cognitive transitions in
real EEG data.

4.1.2 Comparative results

Symbolic feedback reduced subjective workload by 38%
compared to baseline models (CNN/RNN), as measured by
simulated NASA-TLX scores and comprehension latency. The
Traceability Score remained above 0.89 across both synthetic
and empirical runs. These findings are consistent with emerging
models of symbolic feedback in closed-loop BMI systems,
where semantic traceability is linked to ergonomic performance
(Zhang et al., 2022).

This challenge has been increasingly addressed in recent
neuroergonomic studies that emphasize the role of real-
time interpretability in reducing cognitive workload under
uncertainty (Miiller et al., 2023).

4.2 Alignment with cognitive
co-adaptation and intention perception
theories

Figure 9 presents traceability scores with bootstrap confidence
intervals the architecture’s ability to emit semantic markers linked
to inferential state transitions aligns with theoretical models of
human-AI co-adaptation, where trust is not simply a function of
performance but of intention perception (Clark, 2013; Yuste et al.,
2017). Figure 10 compares traceability over time between full
and ablated architectures by making internal decision conflicts,
rejections, or instabilities transparent, the system enables the user to
form an accurate and dynamic mental model of its operation—an
essential component in sustained co-regulation. This perspective
aligns with recent work on human-in-the-loop BMI architectures,
where intention perception and epistemic transparency are central
to adaptive trust formation (Roy et al., 2023; Lee et al., 2024). This
aligns with predictive processing and neuro-symbolic integration
perspectives (Friston, 2020; Garcez and Lamb, 2020), which
emphasize the role of structured inference and epistemic traceability
in adaptive human-Al interaction.

To empirically support this alignment, we conducted
comparative simulations and partial validations using public EEG
datasets (BCI Competition IV 2a, PhysioNet). Table 8 aligns
symbolic feedback mechanisms with neuroergonomic models was
evaluated across three dimensions: anticipation latency, traceability
score, and subjective cognitive load. Each metric was statistically
analyzed to ensure robustness and reproducibility.
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TABLE 9 Alignment of simulated paradigms with validated cognitive protocols.

Mulation task Corresponding cognitive

paradigm

Neuropsychological function
modeled

Justification for inclusion

Motor Control Task Oddball/P300 Attentional reorientation, intention updating | Widely used to index decision salience and
motor-preparation modulation
Inhibition Task Go/No-Go Response inhibition and conflict resolution Standard protocol for frontal executive

control and task suppression

Cognitive Overload Task | Rapid Serial Visual Presentation

Working memory saturation, ambiguity
tolerance

Simulates attentional blink and fatigue-based
schema collapse

-
Data Generation

[ Synthetic task inputs

-

Non-human

Inference Operation

[ Cognitive model

-

( Symbolic Trace

[ Event emission }

-

Reproducibility
Checkpoint

Validation

‘ Evaluation layer

.

FIGURE 12
Synthetic simulation workflow with ethical safeguards. A flow diagram

illustrating data generation, inference loop activation, symbolic trace
emission, and validation layers—annotated to emphasize non-human
operation boundaries and reproducibility checkpoints.

Sample sizes (n) were reported for each condition. Normality
was assessed using Shapiro-Wilk tests. Depending on distribution,
we applied either paired t-tests or Wilcoxon signed-rank tests. All
results include mean + standard deviation (p + o), corrected p-
values, and effect sizes (Cohen’s d or rank-biserial correlation).
Bootstrap confidence intervals (95%) were computed for traceability
scores and cognitive load comparisons.

Additionally, ablation studies were performed to isolate
the contribution of each module (Discriminator, Emitter) to
overall performance. Removal of symbolic feedback resulted in
a significant increase in cognitive load (p < 0.01), confirming its
ergonomic value. These ablation results reinforce the hypothesis
that symbolic introspection contributes not only to performance
but to cognitive legibility, as explored in recent neuroadaptive
interface studies (Ghosh et al., 2023).
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4.3 Practical limitations and symbolic
generalization constraints

Figure 11 visualizes coverage boundaries across task types while
the results demonstrate clear ergonomic benefits, several limitations
must be considered:

o The current framework operates entirely in synthetic
simulation, and has not yet been validated in live neural or
hybrid signal environments.

o The symbolic vocabulary, while effective for interpretive
purposes, remains limited to prototyped constructs. Further
expansion is needed to cover broader semantic ranges and user
specificity.

Table 9 maps simulated paradigms to validated cognitive
protocols these constraints suggest future work must include

adaptation of the symbolic grammar to accommodate
individual variability, as well as the incorporation of
neurophysiological ~validation loops to ensure cross-user
generalization.

4.4 Toward legible interfaces: from internal
inference to shared understanding

Ultimately, the architecture reflects a shift from control-
in BMI
By translating internal cognitive computations into user-

centered to legibility-centered design systems.

perceivable  markers, symbolic introspection  transforms
the system from a silent operator into a communicative
co-agent.

This shift toward legibility-centered design echoes recent
feedback
neurotechnologies, emphasizing shared understanding and
mutual correction (Zhang et al, 2022; Ghosh et al, 2023).

These findings support a vision of assistive interfaces that are

proposals for semantic integration in assistive

not merely functional, but meaningfully understandable by
their users.

This evolution is critical in contexts where shared responsibility,
mutual adjustment, and real-time correction are not optional—such
as in cognitive augmentation, prosthetic control, and human-AI
collaborative reasoning.
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5 Ethical and simulation compliance
statement

Figure 12 summarizes the synthetic simulation workflow
and ethical safeguards to ensure methodological transparency
and ethical clarity, this study was conducted entirely under
synthetic experimental conditions, with no involvement of human
participants, clinical data, or subject-specific recordings. All
simulated tasks were grounded in validated cognitive neuroscience
paradigms selected for their relevance to fault-prone states in BMI

usage. These include:

« P300-based

reorientation

oddball  detection: modeling attentional

o Go/No-Go protocols: capturing inhibitory control and
decision latency

 Rapid Serial Visual Presentation (RSVP): inducing controlled

cognitive overload

Each paradigm was chosen to simulate internally destabilizing
cognitive dynamics in a reproducible and interpretable manner.
While these simulations do not replicate full human variability, they
provide a structured environment for testing symbolic feedback
mechanisms under controlled perturbations.

All experiments were implemented in a modular Python-based

simulation framework, featuring:

o Access to source code, inference pipelines, and symbolic
feedback logic

« Replayable task agents and fault injection parameters

o Fixed

configurations for reproducibility

randomization seeds and  version-controlled

These materials are documented in accordance with ISO/IEC
TR 24028 (trustworthiness in intelligent systems) and IEEE P2731
standards on brain-computer interface data harmonization. They
will be made available under an open license to support transparency
and replicability.

This study anticipates full compliance with ethical guidelines
as defined by Frontiers in Neuroergonomics, the principles of the
Declaration of Helsinki (as applicable to simulation-only research),
and emerging neurotechnology oversight frameworks advocating
for transparency, replicability, and participant-independent
validation paths (Yuste et al., 2017; Doshi-Velez and Kim, 2017).
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