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As aquaculture expands to meet global food demand, it remains dependent 
on manual, costly, infrequent, and high-risk operations due to reliance on 
high-end Remotely Operated Vehicles (ROVs). Scalable and autonomous 
systems are needed to enable safer and more efficient practices. This paper 
proposes a cost-effective autonomous inspection framework for the monitoring 
of mooring systems, a critical component ensuring structural integrity and 
regulatory compliance for both the aquaculture and floating offshore wind 
(FOW) sectors. The core contribution of this paper is a modular and scalable 
vision-based inspection pipeline built on the open-source Robot Operating 
System 2 (ROS 2) and implemented on a low-cost Blueye X3 underwater drone. 
The system integrates real-time image enhancement, YOLOv5-based object 
detection, and 4-DOF visual servoing for autonomous tracking of mooring lines. 
Additionally, the pipeline supports 3D reconstruction of the observed structure 
using tools such as ORB-SLAM3 and Meshroom, enabling future capabilities in 
change detection and defect identification. Validation results from simulation, 
dock and sea trials showed that the underwater drone can effective inspect 
of mooring system critical components with real-time processing on edge 
hardware. A cost estimation for the proposed approach showed a substantial 
reduction as compared with traditional ROV-based inspections. By increasing 
the Level of Autonomy (LoA) of off-the-shelf drones, this work provides (1) 
safer operations by replacing crew-dependent and costly operations that require 
a ROV and a mothership, (2) scalable monitoring and (3) regulatory-ready 
documentation. This offers a practical, cross-industry solution for sustainable 
offshore infrastructure management.
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1 Introduction

Marine-based industries such as aquaculture and floating 
offshore renewable energy (ORE) are undergoing rapid expansion 
and modernisation to meet rising global demands for food and 
clean energy (United Nations, 2023; International Energy Agency, 
2024; Tiwari et al., 2012). The industry relies on mooring systems to 
maintain position, using anchored lines and connectors that must 
withstand harsh marine conditions. Figure 1 shows an example of 
catenary mooring system schematic including different segments 
and connection components (i.e., fairlead, shackle and anchor). 
These mooring lines degrade over time, e.g., fatigue, overload, 
corrosion, material degradation or mechanical damage (Kvitrud, 
2014; Qiao, 2022; Bureau of Safety and Environmental Enforcement 
(BSEE) and ABS Consulting, 2015; ISO, 2019; Det Norske Veritas, 
2015), so regular inspections are critical to ensure structural 
integrity (Det Norske Veritas, 2022). In practice, however, mooring 
inspections are infrequent–often only at scheduled intervals (annual 
or multi-year) – due to the high cost and complexity of current 
methods. This gap in coverage can allow failures to go unnoticed; 
indeed, there have been cases where a mooring line break remained 
undetected until the next periodic inspection (Bureau of Safety and 
Environmental Enforcement (BSEE) and ABS Consulting, 2015; 
Ford et al., 2020; Rahman et al., 2018). The consequences of 
an undetected mooring line failure can be severe, ranging from 
expensive downtime, economic loss of assets to even accidents, 
environmental catastrophes (Carpenter, 2015; United Nations, 2024; 
Labra et al., 2023; Yu et al., 2023). This highlights the need for more 
continuous and efficient monitoring.

Traditional mooring system inspection techniques are costly, 
labour-intensive, and not easily scalable (Subasinghe et al., 2009; 
Ford et al., 2020; Tait et al., 2023). Traditionally, divers or work-class 
ROVs (Remotely Operated Vehicles) are deployed to visually check 
mooring lines and hardware. Diver-based inspections, apart from 
exposing humans to risks, become exponentially more expensive 
and impractical in deep water environments (Bureau of Safety 
and Environmental Enforcement (BSEE) and ABS Consulting, 
2015). ROV inspections improve safety by keeping divers out of 
danger, but they still require large support vessels and specialized 
operators, leading to high operational costs (Ford et al., 2020; 
Fun Sang Cepeda et al., 2023). These resource demands make it 
impractical to inspect a large number of mooring lines frequently 
or on demand. As a result, operators often limit inspections to 

Abbreviations: AHE, Adaptive Histogram Equalization; AUV, Autonomous 
Underwater Vehicle; BRIE, FBinary Robust Independent Elementary 
Features; BlueROV2, Blue Robotics Remotely Operated Vehicle 2; CLAHE, 
Contrast Limited Adaptive Histogram Equalization; COTS, Commercial Off-
the-Shelf; CVIClose, Visual Inspections; DOF, Degree-of-Freedom; FOW, 
Floating Offshore Wind; GPS, Global Positioning System; GUI, Graphical 
User Interface; GVI, General Visual Inspections; IMU, Inertial Measurement 
Unit; LoA, Level of Autonomy; ORB-SLAM, Oriented FAST and Rotated 
BRIEF Simultaneous Localization and Mapping; ORE, Offshore Renewable 
Energy; PRISMA, Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses; RGB, Red, Green, Blue; ROI, Region of Interest; ROS 
2, Robot Operating System 2; ROV, Remotely Operated Vehicle; SDK, 
Software Developer Kit; SLAM, Simultaneous Localization and Mapping; 
UAV, Unmanned Aerial Vehicle; UUV, Unmanned Underwater Vehicle; 
VSLAM, Visual Simultaneous Localization and Mapping; YOLO, You Only 
Look Once (Computer Vision).

FIGURE 1
A simplified schematic of an offshore mooring system, with key 
components including line segments and connection components 
based on DNV-OS-E301 (Det Norske Veritas, 2024).

infrequent surveys, which compromises scalability–the ability to 
cover many assets or to increase inspection frequency is constrained 
by manpower and budget. While the petroleum industry can 
tolerate high costs due to greater financial margins, aquaculture 
and renewable energy industries demand significantly leaner, 
cost-effective inspection solutions (DNV, 2024). This economic 
constraint highlights the need for scalable and affordable approaches 
to mooring inspections for the expanding number of installations 
(and hence the number of mooring lines) in these sectors.

Recent advances in marine robotics offer a pathway toward 
cost-effective and scalable inspection solutions. In particular, 
observation-class underwater drones, as classified by the 
International Marine Contractors Association (IMCA, 2024), are 
emerging as a promising tool for mooring line inspection. These 
vehicles are low-cost, portable, and easier to deploy compared to 
traditional work-class ROVs (Akram et al., 2022; Blueye Robotics, 
2024). They can be launched from small vessels or platforms 
and operated by a minimal crew (Blueye Robotics, 2025), or 
can be a permanent residence in the sea (Skaugset et al., 2025), 
drastically reducing the logistics and expense per deployment. 
Modern observation-class ROVs can be equipped with monocular 
cameras, optional sonars, lights, a depth sensor, and Inertial 
Measurement Unit (IMU), enabling examinations of subsea 
structures. Researchers and early adopters report that such drones 
provide a viable solution, allowing more frequent and less costly 
underwater surveys without sacrificing coverage (Blueye Robotics, 
2025). These smaller ROVs have the potential to increase inspection 
frequency while lowering costs, thereby improving the integrity 
management of mooring systems. Furthermore, with advancements 
in automation, these drones can be augmented with software for 
autonomous navigation and anomaly detection (Akram et al., 
2022). This means that instead of a human manually piloting every 
inspection (which can be tiring and skill-intensive), the drone 
itself could follow a mooring line, gather footage/data, and flag 
potential issues, all with minimal human input. Such autonomy is 
key to enable scalability, as it would enable consistent inspections 
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across many mooring lines and facilities without a proportional 
increase in labour.

Enabling autonomous mooring inspections with observation-
class drones requires reliable perception and localisation methods. 
Recent techniques like camera-sonar fusion (Ludvigsen and 
Cardaillac, 2023) effectively combined visual detail and range 
detection but face challenges adapting to continuously changing 
mooring line angles (Hurtós et al., 2017). Acoustic communication 
was also suggested for underwater positioning (Garin et al., 2024). 
While Visual Simultaneous Localisation and Mapping (VSLAM) 
is promising (Zhang et al., 2022), real-time applications remain 
constrained by limited onboard processing of low-cost drones. 
IMU-based strategies (Santos et al., 2024) initially developed for 
floating offshore wind (FOW) platform’s structure could similarly 
benefit mooring inspections.

Today, manual review of lengthy video footage makes mooring 
inspection labour-intensive and subjective. VSLAM can offer 
autonomous, efficient inspection by enabling 3D reconstruction 
for automated defect detection (e.g., missing parts, marine growth, 
wear). Advances in monocular-inertial VSLAM from aerial robotics 
confirm feasibility in dynamic conditions (Alzugaray et al., 2017). 
Underwater applications using camera-sonar fusion (Hurtós et al., 
2017) could face complexity and cost issues, making monocular 
VSLAM a more practical choice for mooring inspections.

Despite recent advancements, fully autonomous mooring line 
inspections using observation-class ROVs have yet to be realized 
in practice. Challenging underwater conditions, such as strong 
currents, dynamic obstacles, and low visibility (Guo et al., 2022), 
complicate the task of maintaining a drone’s proximity to mooring 
lines. Although regulatory standards like DNV-RU-OU-0300 (Det 
Norske Veritas, 2022) mandate General Visual Inspections (GVI) 
and Close Visual Inspections (CVI) to ensure structural integrity, 
inspections typically remain infrequent and Risk-Based Inspection 
(RBI) due to high operational costs.

A main research gap remains in enabling robust and efficient 
autonomous monitoring of mooring lines using observation-class 
underwater drones equipped with a minimum sensor package, 
including camera, IMU, and depth sensor. There is also limited 
research on how to leverage video data from such low-cost platforms 
to enable 3D reconstruction to support the defect detection over 
time. The research questions are then “How can mooring lines be 
effectively monitored and inspected using cost-effective, off-the-shelf 
observation-class underwater drones, and how can the acquired visual 
data be used to perform 3D reconstruction for supporting the change 
detection and defect identification?”.

The objective of this research is to develop a framework for 
autonomous mooring line inspection and monitoring, based on 
increasing the autonomy of affordable, off-the-shelf underwater 
drones equipped with basic visual and inertial sensors. This study 
focuses on the use of a commercially available low-cost underwater 
drone and leverages computer vision and object detection to enable 
autonomous navigation and inspection. VSLAM is used for 3D 
reconstruction of mooring lines to support change and defect 
detection. The framework is validated through simulation and sea-
trial tests. The findings aim to serve as a foundation for developing 
standardised, scalable, and cost-effective solutions for mooring line 
inspection in both offshore aquaculture and ORE applications. The 

research builds upon and extends recent student work presented in 
Arntzen (2024) and Elseth and Øvstaas (2025).

This paper contributes with a modular and scalable approach 
that allows for an increased Level of Autonomy (LoA) while 
maintaining cost-effectiveness for inspection of mooring lines. By 
utilizing open-source tools such as Robot Operating System 2 (ROS 
2) and commercial off-the-shelf (COTS) hardware, the inspection 
system is designed to be replicable, adaptable, and accessible, 
particularly for operators in emerging markets or smaller-scale 
operations. Moreover, this unified inspection approach is applicable 
to both aquaculture and offshore renewable energy systems, 
addressing the common challenge of mooring line inspection in 
these industries.

The remainder of this paper is structured as follows. In section 2, 
related work is thoroughly reviewed to identify gaps in current low-
cost inspection technologies for underwater applications. Section 3 
presents the environment and regulatory challenges associated 
with mooring line inspections. The proposed system architecture 
and its implementations are detailed in Section 4, including 
autonomy levels, sensor integration, simulation setup, and hardware 
platform. Sections 5, 6 outline the perception and control strategies, 
respectively. The experimental results from dock and sea trials are 
presented in Section 7, followed by discussions and conclusions in 
Sections 8, 9, respectively. 

2 Literature review and research gap

This section provides an overview of relevant studies in 
underwater robotics, with a particular focus on technologies 
enabling low-cost autonomous inspection. The reviewed literature 
focuses on several key areas, i.e. (1) the use of Autonomous 
Underwater Vehicle (AUV), (2) ROS integration, (3) simulation 
frameworks using Gazebo, (4) VSLAM, (5) cost-efficient solution, 
(6) path-following strategies for applications such as mooring system 
inspections and related use cases, and (7) the target inspected object 
of mooring line (M) or others (O).

To ensure a systematic and transparent literature selection, 
the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) framework was applied (Haddaway et al., 2022). 
As shown in Figure 2, an initial pool of 2,500 articles was identified 
through searches in Web of Science, Semantic Scholar, and Scopus. 
After screening for duplicates and applying relevance criteria based 
on the seven (7) areas mentioned above, 22 studies were selected 
for detailed analysis. Further information on the search strategy is 
available in Elseth and Øvstaas (2025).

The selected literature is summarised in Table 1 where a 
checkmark indicates that a study explicitly addresses a given feature, 
and its relevance to mooring line inspection (the last column). A 
review of the matrix (Table 1) reveals that mooring line inspection 
remains underexplored, with most studies focusing on general 
underwater autonomy. Similarly, cost-effective solutions still need 
further research. Simulation using Gazebo and ROS are the next 
areas having room for more exploration. A horizon analysis of 
the matrix reveals that the studies from Manzanilla et al. (2019); 
Vithalani et al. (2020); Tipsuwan and Hoonsuwan (2015) align with 
several technical aspects of this paper in terms of cost-effective, 
autonomy, and path planning to follow a target object. However, 
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FIGURE 2
Study selection process using the PRISMA model (Haddaway et al., 2022, licensed under CC BY).

they did not address mooring line inspection directly. Among few 
studies that did, only Maurelli et al. (2016) explicitly considered 
cost-effective solutions; however, it lacks integration of VSLAM and 
does not explore automatic defect detection using visual data from 
inspection campaigns.

2.1 Research inspiration and foundations

With the expansion of floating offshore infrastructure across the 
aquaculture and renewable energy sectors, the need for scalable and 
cost-effective underwater inspection solutions of mooring lines is 
becoming increasingly important. To enable routine inspections in 
scalable deployments, there is a need towards low-cost underwater 
autonomy through vision-based navigation and lightweight sensing. 
Nevertheless, the wide range of previous work within underwater 
robotics, VSLAM, low-cost autonomy, and inspection technologies 
need to be reviewed.

The feasibility of real-time underwater navigation using 
affordable platforms has already been demonstrated using 
monocular cameras and inertial sensors, for instance using a 
BlueROV2 from Blue Robotics equipped with basic onboard sensors 
(Blue Robotics, 2023). Even though these implementations did 
not include advanced depth estimation or full ROS integration, 
they showed the potential of vision-based control in low-cost 
systems and motivated further exploration into practical, deployable 
solutions (Manzanilla et al., 2019).

More advanced navigation and inspection capabilities have 
been achieved using high-resolution sensors such as sonar and 
multibeam imaging. These systems have enabled robust chain-
following and localization in AUVs, albeit with potentially 

cost implications due to sonar sensors (Maurelli et al., 2016). 
While these results demonstrate the upper limits of inspection 
autonomy, their hardware requirements could limit adoption 
in cost-sensitive applications. Inspired by this, this paper aims 
to achieve similar levels of autonomy using only affordable
visual sensors.

Valuable insights have also emerged from adjacent fields. In 
aerial robotics, hybrid approaches that combine deep learning and 
classical image processing have been explored, where convolutional 
neural networks (CNNs) and Canny edge detection were used to 
follow linear structures such as pipelines (da Silva et al., 2022). This 
combination of robustness and computational efficiency informed 
the architecture of the proposed system, which fuses You Only Look 
Once v5 (YOLOv5)-based object detection with Canny edge-based 
rope fitting.

As vision-based autonomy evolved, the importance of real-time 
localization and mapping became more evident. Monocular VSLAM 
systems such as Oriented FAST and Rotated BRIEF Simultaneous 
Localization and Mapping 2 (ORB-SLAM2) have been implemented 
in ROS environments to support real-time navigation and mapping 
(Vithalani et al., 2020). While this method was first designed for 
land-based robots, it has also been adapted for underwater use. Here, 
OctoMap is often used to create probabilistic occupancy grids when 
more advanced Simultaneous Localization and Mapping (SLAM) 
systems are not feasible (Arntzen, 2024). These tools enable low-
cost spatial awareness within ROS-based systems, facilitating visual 
navigation in dynamic environments.

Simulation environments have played a crucial role in system 
development. The Gazebo simulator has been used for underwater 
drones, offering realistic force modelling and dynamic behaviour for 
control system development and validation (Manhães et al., 2016). 
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TABLE 1  Relevant studies relating to cost-effective underwater drones.

References Keyword AUV ROS GAZEBO VSLAM Low-cost Path Application 
(M/O)∗

Vargas et al. (2021) BluROV/VSLAM ✓ ✗ ✗ ✓ ✗ ✗ O

Guth et al. (2013) Hippo VSLAM ✓ ✓ ✗ ✓ ✗ ✗ O

Zhang et al. (2022) Underwater SLAM ✗ ✗ ✗ ✓ ✗ ✗ O

Shkurti et al. (2011) State estimation ✓ ✗ ✗ ✓ ✗ ✗ O

Manhães et al. (2016) Gazebo ROV ✓ ✓ ✓ ✗ ✗ ✗ O

Vithalani et al. (2020) Navigation SLAM ✗ ✓ ✓ ✓ ✓ ✓ O

Manzanilla et al. (2019) ROV VSLAM nav ✓ ✓ ✓ ✓ ✓ ✗ O

Zhao et al. (2022) Mooring ROV ✓ ✗ ✓ ✗ ✗ ✗ M

Tipsuwan and 
Hoonsuwan, (2015)

Pipeline Inspection ✓ ✓ ✓ ✓ ✗ ✗ O

Xiang et al. (2010) PI Multiple AUV’s ✓ ✗ ✗ ✗ ✗ ✓ O

Zeng et al. (2015) Long Range PI ✓ ✗ ✗ ✗ ✗ ✓ O

Maurelli et al. (2016) Chain following ✓ ✓ ✗ ✗ ✓ ✓ M

Li et al. (2020) VSLAM semantics ✗ ✗ ✗ ✓ ✗ ✗ O

Yang et al. (2022) Mooring ✗ ✗ ✗ ✗ ✗ ✗ M

Willners et al. (2021) Low-cost review ✓ ✗ ✗ ✗ ✓ ✗ O

Allibert et al. (2019) Girona-500 PI ✓ ✗ ✗ ✗ ✗ ✓ O

Da Silva et al. (2022) Aerial drone ✗ ✓ ✓ ✗ ✓ ✓ O

Santos et al. (2024) Dynamic path planning ✓ ✗ ✗ ✗ ✗ ✓ O

Garin et al. (2024) Tetherless positioning ✓ ✗ ✗ ✗ ✓ ✓ O

Bremnes et al. (2024) Risk modelling and path 
planning

✓ ✗ ✗ ✗ ✗ ✓ O

Akram et al. (2025) Net pen inspection ✗ ✗ ✗ ✓ ✓ ✗ O

Grotli et al. (2016) Autonomous job analysis ✓ ✗ ✗ ✗ ✗ ✗ M

∗M: Mooring system/O: other application.

While not focused on inspection tasks, such environments have been 
instrumental for prototyping visual guidance and autonomy logic 
before deployment in real-world conditions.

Recent advancements have also pointed toward future directions 
for autonomous inspection. For example, IMU-enhanced path 
planning has been applied to floating offshore platforms to 
improve navigation accuracy during inspection tasks (Santos et al., 
2024). Similarly, acoustic-based localisation techniques have been 
proposed to enable tetherless operation when GPS fixes are 
unavailable (Garin et al., 2024). Approaches that incorporate risk-
aware path planning have also been developed to support safer 
and more adaptive inspection strategies in uncertain offshore 

conditions (Bremnes et al., 2024). This state-of-the-art will help 
to increase the robustness of the underwater drones while 
increasing the LoA.

Altogether, these advancements point toward a convergence 
of cost efficiency and autonomy in underwater inspection. By 
building on developments in robotics, image processing, VSLAM, 
and simulation, this work aims to close the gap between expensive 
high-end systems and practical low-cost alternatives. The system 
presented here leverages commercially available hardware and open-
source software to enable vision-based autonomous inspection 
of mooring lines, offering a scalable solution for both offshore 
renewable energy and aquaculture applications. 
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TABLE 2  Classification of UUVs.

Class Description

Class I Pure observation level

Class II, A Observation level with load options

Class II, B Observation level with mild investigation and intervention ability

Class III, A Working level with weight around 1,000 kg and payload capability 
of 200 kg

Class III, B Working level with weight around 3,000 kg and payload capability 
above 200 kg

Class IV, A Towed underwater drone for cable laying

Class IV, B For more accurate cable laying

Class V Prototype or project-specific underwater drone

Class VI, A AUV with weight less than 100 kg

Class VI, B AUV weighing above 100 kg

2.2 Current cost-effective design

In the aquaculture and ORE industry, the use of ROVs has 
shown a significant potential to reduce operational and maintenance 
(O&M) costs (Tait et al., 2023; Capocci et al., 2017) as well as 
providing high quality data (Khalid et al., 2022). Some typical 
applications of ROVs are inspection and maintenance of subsea 
and aquaculture infrastructure, environmental monitoring and 
deep sea mapping. Reflecting their diverse use cases, IMCA 
classifies unmanned underwater vehicles (UUVs) which are 
summarised in Table 2 for reference.

In this paper, class I UUVs are of particular interest due to the 
availability of low-cost sensors such as a monocular camera, IMU, 
and depth sensors. Currently, Blueye Robotics is well established 
in the low-cost segment with drones such as the Blueye Pioneer 
and Blueye X3 (Blueye Robotics, 2024). At the time of writing this 
paper, the Blueye Pioneer has a lower price point ($5,554) compared 
to its successor, the Blueye X3, which is priced at $23,588. All 
Blueye Robotics drones are portable, user friendly, and come with 
open-source software. Although they are not autonomous out of 
the box, Blueye Robotics drones offer potential for implementing 
solutions that increase the LoA thanks to readily available Software 
Developer Kit (SDK).

Other cost-effective approaches to both underwater and aerial 
autonomy have been explored in recent studies. For instance, a 
COTS ROV is converted into an AUV in Willners et al. (2021). 
In this study the main focus was a BluROV2 (Blue Robotics, 
2023), where the hardware and software challenges involved 
in transitioning from manual to autonomous operations were 
highlighted. Further, the potential of low-cost systems for broader 
adoption in underwater robotics is discussed.

Similarly, a vision-based method for autonomous pipeline 
inspection using a unmanned aerial vehicle (UAV) is 

proposed in da Silva et al. (2022). The paper utilised a standard 
PX4 flight controller integrated with ROS and simulated using 
Gazebo. A CNN was deployed to provide an initial estimate of 
the pipeline’s location, which was then improved using image 
processing techniques such as Canny Edge Detection for a more 
precise localization and path following of the pipeline. 

2.3 Research gap in literature

While recent advancements in underwater robotics have 
demonstrated the potential of vision-based navigation and 
inspection, several key research gaps remain—particularly when it 
comes to creating cost-effective and scalable systems suited for real-
world deployment. This paper addresses these gaps by exploring 
the integration of classical and deep learning-based perception, 
vision-only control strategies, and modular autonomy within a ROS 
2-based architecture.

A major gap lies in the application of image processing 
techniques tailored to underwater environments. Few studies 
have examined how classical filtering approaches can suppress 
visual noise, such as marine snow, while retaining structural 
detail critical for reliable path following. Although such 
methods are computationally lightweight and compatible with 
resource-constrained hardware, their ability to generalize across 
lighting conditions and operational depths remains largely
unexplored.

In parallel, deep learning models such as YOLO have shown 
success in terrestrial and aerial robotics, but their use for detecting 
structural elements like shackles or chain connections in subsea 
inspections is still in its infancy. The lack of annotated underwater 
datasets and the computational limitations of small-form-factor 
drones further hinder widespread adoption.

Another key area of limited research is the feasibility of vision-
only control for underwater drones. Most documented systems rely 
on expensive navigation sensors such as Doppler Velocity Logs 
(DVLs) or multibeam sonar to ensure positioning and stability. 
While more affordable DVLs, like those offered by WaterLinked 
(2024), present promising alternatives, their integration in 
low-cost autonomous inspection systems remains largely
untested.

Simultaneously, there is a clear lack of robust SLAM-based 
solutions for mooring line inspection. While SLAM techniques 
are well-established for general navigation, their application 
to underwater scenarios involving repetitive structures and 
depth-dependent lighting is rare. As shown in Table 1, only 
a handful of studies tackle these challenges. Moreover, SLAM 
frameworks such as ORB-SLAM3 are not yet fully adapted to 
ROS 2 environments, and available wrappers often lack critical 
features like real-time 3D point extraction (Haebeom Jung, 2023). 
Deploying such pipelines on platforms like the Blueye X3 is 
particularly difficult due to limited onboard computation and
energy constraints.

Simulation is another underdeveloped aspect. Although Gazebo 
Garden provides next-generation capabilities for virtual testing, its 
integration with ROS 2 remains immature. For underwater systems, 
where real-world testing is costly, robust simulation environments 
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are essential for validating control and perception pipelines before 
deployment.

Finally, while ROS 2 has become a widely adopted robotics 
middleware, the implementation of fully integrated, low-cost, 
ROS 2-based pipelines for underwater inspection is still rare. 
Community-developed tools such as yolov5_ros (Ar-Ray, 2024) 
and ROS 2-compatible ORB-SLAM3 wrappers (Haebeom 
Jung, 2023) offer a technical foundation, but there is limited 
evidence of these components being brought together into 
coherent systems for autonomous operation in real marine
environments.

In summary, this paper responds to these gaps by proposing 
a vision-based, modular inspection system that relies solely on 
affordable sensors and operates without external positioning. It 
contributes to the field through the development of robust image 
processing pipelines, integration of deep learning-based detection, 
and validation of visual-only control through both simulation and 
sea trials. 

3 Regulatory and environmental 
challenges

3.1 Mooring systems

Mooring systems are critical for maintaining the position of 
floating offshore structures such as wind turbines, fish farms, and 
FPSOs. Depending on site conditions, these systems may be taut, 
catenary, or tension-leg configurations (Rui et al., 2024; Wang, 
2022a; b), each with specific challenges for autonomous inspection, 
especially across varying environments like midwater and seabed 
zones. Failures due to fatigue, overload, corrosion, material 
degradation or mechanical damage are well documented (Kvitrud, 
2014; Qiao, 2022; Bureau of Safety and Environmental Enforcement 
(BSEE) and ABS Consulting, 2015; ISO, 2019; Det Norske Veritas, 
2015) and can lead to severe operational and environmental 
consequences (Carpenter, 2015). This underlines the importance of 
regular and reliable inspection. A more detailed account of mooring 
system properties, configurations, and failure modes is available 
in the corresponding master’s theses (Arntzen, 2024; Elseth and 
Øvstaas, 2025). 

3.2 Rules and regulations

To ensure the station-keeping and operability of moored 
floating structures, several rules are defined by Det Norske 
Veritas (DNV). DNV-RU-OU-0300 defines in-service inspection 
regimes for FOW (Det Norske Veritas, 2021). Specifically, this 
standard sets requirements for annual interim surveys and 
a complete survey. The complete survey must be conducted 
within a 5 year interval and has different requirements 
dependent on the site-specific fatigue design life factor. Some 
relevant requirements include being a GVI of all mooring 
lines with comparison of video data from previous inspection 
campaigns, and a CVI of one mooring line from each mooring
line cluster. 

3.3 Properties of autonomous mooring line 
inspection using drones

Autonomous underwater inspection of mooring systems 
requires specific functional properties and system capabilities due 
to the geometric, environmental, and operational characteristics 
of the task. This section outlines the key requirements that 
inform the design of a vision-based, low-cost inspection
drone system. 

3.3.1 Mooring characteristics
Mooring lines extend from the fairlead at the floating structure 

to an anchor on the seabed, covering a trajectory that may shift from 
near-vertical to horizontal. In addition, a mooring line experiences 
dynamics due to platform motion, hydrodynamic forces, and line 
elasticity. The inspection system must be capable of following this 
continuous span—often tens to hundreds of metres in length—while 
maintaining a stable trajectory and viewing angle. This requires 
a navigation strategy that supports line-following over varying 
orientations and depths. 

3.3.2 Underwater visibility
For camera vision in underwater robotics, one of the dominant 

challenges is the presence of marine snow, especially in deeper 
waters where no sunlight is present. Marine snow is a somewhat 
loosely defined term, but can be summarised as the presence of 
particles of different dimensions and transparency. The particles 
mainly consist of organic matter from zooplankton remains, fecal 
materials, and suspended sediments (Guo et al., 2022). Marine snow 
tends to move towards the seabed, but can also move in other 
directions depending on currents and the relative movement of 
the drone. Another factor is the brightness emitted from the light 
onboard the drone. Analogous to driving a car in the darkness with 
headlights in snow or rain, increased lighting causes the particles to 
appear more prominent.

Various methods are available for removing marine snow, 
with filtering techniques like median blur and deep neural 
networks being the most common (Jiang et al., 2020). However, 
neural networks demand substantial computational resources, 
making them unsuitable for low-cost drones with limited onboard 
processing capabilities. Cardaillac and Ludvigsen (2022) introduced 
an image enhancement technique that successfully removed the 
majority of marine snow present in the frame. This approach was 
promising as it allowed for real-time processing of video data before 
applying camera vision techniques.

Another challenge is the variable illumination conditions 
encountered at different depths. Near the surface, sunlight creates 
strong gradients and overexposed regions in the upper part of 
the image, while at higher depths, the scene is predominantly 
illuminated by the onboard LED, resulting in uneven lighting. 
These variations complicate consistent feature extraction and object 
detection across the inspection path. 

3.3.3 3D reconstruction of mooring lines for 
change and defect detection

While change detection (Adam et al., 2022), comparing 
historical and current inspection data, can support automated 
identification of structural degradation or anomalies (e.g., wear, 
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TABLE 3  LoA in maritime robotics.

Level Description

0 – Manual Operation No autonomy; full human control

1 – Assistance Supports tasks; constant supervision required

2 – Partial Autonomy Some autonomy; still needs operator input

3 – Conditional Autonomy Autonomous in known settings; human fallback

4 – High Autonomy Fully autonomous in specific missions

5 – Full Autonomy Self-sufficiency across all situations

damage, or missing components), today common practices still rely 
heavily on manual video review. AI-based methods have shown 
promise in reducing manual effort and improving accuracy, but 
their application in the inspection and maintenance of floating 
underwater structures remains limited, with only a few studies, 
exemplified by marine growth detection (Palla, 2024) or changes in 
risk profiles (Bremnes et al., 2024).

A first step for change detection is the ability to reconstruct the 
mooring line in 3D over time. However, this task is complicated 
by the inherent difficulties of the underwater environment, such 
as large data volumes, the dynamic nature of mooring lines, 
poor visibility, sensor noise, biofouling as well as the scarcity 
of well-labeled datasets. Unlike applications such as coral reef 
monitoring, which benefit from static, texture-rich scenes, mooring 
line inspection must contend with moving targets and feature-poor 
backgrounds. This paper addresses these challenges by focusing 
on 3D reconstruction using low-cost visual sensors, laying the 
foundation for future automated change and defect detection in 
complex underwater settings. 

4 Proposed system architecture and 
implementation

4.1 Increased autonomy levels in COTS 
underwater drones

Defining autonomous control systems and distinguishing 
between an automatic and autonomous control system is not an 
easy task. In this paper, autonomy of a control system is defined as 
its ability to perceive an environment through sensors, process the 
information, and make context-appropriate decisions, and then act 
upon those decisions, all while adapting to familiar and unfamiliar 
conditions without human intervention. Autonomy is commonly 
characterised by levels. Currently, there is no internationally 
renowned taxonomy for the LoA applied to maritime robotics. In 
this paper, an adapted taxonomy from One Sea Ecosystem (2022) 
was used and summarised in Table 3.

COTS low-cost ROVs such as the Blueye X3 and BlueROV2 
operate at Level 0 - Manual Operation, as outlined in Table 3. 
One could also argue that they operate at Level 1- Assistance 
given their built-in capabilities of maintaining heading and depth 

without human intervention. However, the drones can also be 
interpreted as ROVs, and several control and perception systems 
must be implemented before approaching a higher LoA. The 
developments presented in this paper aim to increase the LoA 
to Level 3 - Conditional Autonomy, wherein the drone can 
operate autonomously in a defined set of conditions, but may 
opt to human control if uncertain conditions are met. Although 
existing infrastructure has been demonstrated to support residential 
UUV autonomy (NTNU, 2025), achieving full autonomy for low-
cost drones will necessitate further enhancements to enable reliable 
operation across a wider range of environmental conditions without 
human supervision.

Applying autonomy in maritime robotics is a tedious process. 
The primary challenge is the lack of GPS. In contrast to aerial 
applications of drones, GNSS sensor data is not available. Solutions 
do exist; for example, baseline (BL) acoustic positioning systems 
provide accurate positioning. However, such systems are not 
considered low-cost and are therefore not suited for cost-sensitive 
applications.

The scope of this paper is limited to vision-based autonomy 
without reliance on external positioning systems. First of all, unlike 
in aerial drone applications, underwater navigation lacks reliable 
GPS. Secondly, while accurate alternatives such as baseline acoustic 
positioning systems, they are not cost-effective and therefore fall 
outside the low-cost focus of this study. Similarly, sonar, with the 
capacity to fuse with cameras, is excluded in this paper due to 
additional payload and complexity it introduces. One may argue 
that acoustic and sonar technology could increase even further the 
Level of Autonomy (LoA), their integration is beyond the scope of 
this paper. 

4.2 Hardware platform

Two promising low-cost COTS drones have been considered in 
this paper. The most affordable among them is the BlueROV2 from 
Blue Robotics (2023), known for its open-source electronics and 
movement in six degrees-of-freedom (6-DOF). López-Barajas et al. 
(2024) demonstrated the BlueROV2’s capability for aquaculture 
inspections, using deep learning and YOLO object detection to 
detect holes in fish cage nets. However, Blueye Robotics X3 ROV 
(Blueye Robotics, 2024) was chosen for this study due to its 
availability at the authors’ institution. In addition, an agreement with 
the manufacturer provides necessary support. A comparison of key 
parameters for both platforms is presented in Table 4.

The Blueye X3 is equipped with four available thrusters, allowing 
for translational movement in surge, sway and heave, as well as 
rotational movement in yaw. The Blueye X3 has a tether, allowing 
real-time video transmission to the remote control console and 
serving as a fail-safe in the event of thruster failure or battery 
depletion. Although the tether can be removed, it remained kept 
attached during trials for safety reasons. The drone will be subject 
to tetherless inspection at a later stage, once a sufficient LoA 
is achieved.

An additional advantage of the Blueye X3 is the availability of 
a Python SDK, which provides easy access to telemetry data and 
sending of thruster commands to the drone. The Blueye X3 also 
features three guest ports that support peripheral equipment such 
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TABLE 4  Comparison of BlueROV2 and blueye X3 specifications.

Specification BlueROV2 Blueye X3

Dimensions (L ×  W ×
H)

457 ×  338 ×  254 mm 485 ×  257 ×  354 mm

Weight in Air 11–12 kg (with ballast 
and battery)

8.6 kg (with saltwater 
ballast)

Depth Rating 300 m 305 m

Forward Speed 1.5 m/s (3 knots) 1.5 m/s (3 knots)

Thrusters 6 (4 vectored, 2 vertical) 4 ×  350 W

Battery Runtime 2–4 h Up to 5 h

Camera Resolution 1080p, 110° FOV, ±90°
tilt

1080p, 115° vertical 
FOV, ±30° tilt

Lighting 2 or 4 ×  1,500 lumens, 
135° beam

3,300 lumens, 5,000 K, 
CRI 90

Estimated price 4,600 USD 23,588 USD

as acoustic sensors, cameras and grippers. Although guest ports are 
not utilised in this paper, they represent a desirable property that 
could support further advances of autonomy. 

4.3 Overview of the system architecture

The architecture of the system is designed around a modular 
perception-control loop, as illustrated in Figure 3. The system 
starts with the camera input from the ROV, which acts as the 
primary sensor for visual data collection. This data is sent to a 
pre-processing node, where classical computer vision techniques 
such as Guided Filtering, Contrast Limited Adaptive Histogram 
Equalization (CLAHE), and morphological operations are applied 
to improve image quality and noise filtering, including marine snow.

Further, the visual stream is divided into two parallel processing 
pipelines. One pipeline leads to an Object detection node (in 
Figure 3) driven by YOLOv5, which is trained to identify and mark 
shackles found on the mooring line. The other pipeline proceeds to 
a mooring line detection module (lower right corner of Figure 3), 
which extracts geometric features of the mooring line.

The outputs from both pipelines are fused in a unified 
perception node. This module generates a message containing 
both the visual tracking state of the mooring line and detection 
flags from the object detection model. This message is published 
as a YoloCannyChainPose and passed to the decision-
making node, which interprets the incoming visual data to 
determine actions.

Finally, the Control node (in Figure 3) translates these decisions 
into actuator commands in surge, sway, heave, and yaw which are 
then transmitted to the Blueye X3. The actuator commands are sent 
through the DesiredVelocity topic to the thrust allocation 
system onboard the drone.

It is noted that the VSLAM node in Figure 3 will 
be performed offline on recorded videos. This will be 
presented later in subsection 5.3. 

4.3.1 Calibration
Sensor calibration is important to ensure accurate operation 

of drone’s positioning. Camera calibration is necessary to correct 
for lens distortion and skewness, while IMU calibration enables 
estimation of key noise parameters such as white noise and random 
walk. The camera and IMU calibration parameters are listed in 
Tables 5, 6.

The camera was calibrated both in air and underwater using the 
ROS 2 camera calibration package. The calibration was performed 
with a 6× 8 checkerboard pattern at 30 frames per second 
(fps), using a native ROS 2 command. The resulting parameters 
are listed in Table 5, and the calibration images are shown
in Figure 4.

The IMU calibration was performed using the kalibr toolbox, 
where the Blueye X3’s onboard MEMS-based IMU was calibrated 
using AprilTags and a recorded ROS bag. The final noise model 
parameters are listed in Table 6. 

4.3.2 Drone sensors
The COTS Blueye X3 is equipped with internal sensors that 

publish data to specific ROS 2 topics, which can subsequently 
be subscribed to by other system components. These topics store 
data such as thruster forces, pose, orientation, and video from the 
onboard camera. Pose and orientation are gathered from an IMU 
sensor. The IMU gathers data from a gyroscope, an accelerometer, 
and a magnetometer. The IMU data indicates the relative pose 
and orientation in comparison to an earlier reference frame or 
initial state.

Depth and orientation data are handled by the BluEye_Pose
node, which publishes a pose message on the/BlueyePose topic. 
This message contains roll, pitch, and yaw data in addition to depth. 
Inertial motion data is provided by the IMU_to_ros2 node, which 
streams accelerometer, gyroscope, and magnetometer data to ROS 
topics such as/blueye/imu.

Moreover, to monitor the force set points from the drone in 
the 4-DOF, the BluEye_Force node reads thrust information 
in the surge, sway, and heave directions, and publishes it 
to/BlueyeForces. For visual feedback, the Video_to_ros2
node publishes the camera stream to the topic/camera. This video 
stream is used both for visual inspection and as input to the mooring 
line detection pipeline.

Together, these nodes form the interface layer of the control 
system, and the relationship between the sensor nodes and the rest 
of the system is illustrated in Figure 3. 

4.3.3 ROS 2 integration
The software architecture is implemented using ROS 2 

(Macenski et al., 2022), which provides a modular node-
based middleware for real-time message passing, node lifecycle 
management and topic-level Quality of Service (QoS) tuning. 
Perception nodes (image pre-processing, YOLOv5 detector, 
ORB-SLAM3 wrapper) publish visual state messages that are 
consumed by the guidance and control nodes (Figure 3). 
For simulation, the ROS2/GZ Bridge is used to forward 
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FIGURE 3
Proposed system architecture for Blueye X3 (Arntzen, 2024).

TABLE 5  Camera calibration parameters in air and 
underwater (Arntzen, 2024).

Parameter Air Underwater

Camera Type Pinhole Pinhole

fx 987.628 1,203.945

fy 998.105 1,202.857

cx 955.953 977.854

cy 529.845 537.217

k1 −0.216 −0.167

k2 0.0483 0.0396

p1 0.000816 0.002709

p2 0.000444 0.004614

k3 0.0 0.0

Image Width 1920 1920

Image Height 1,080 1,080

TABLE 6  IMU noise model parameters (Arntzen, 2024).

Parameter Value Units

Gyroscope “white noise” 1.698e-04 rad
s√Hz

Accelerometer “white noise” 2.0e-03 m
s2√Hz

Gyroscope “random walk” 1.939e-05 rad
s2√Hz

Accelerometer “random walk” 3.0e-03 m
s3√Hz

IMU sampling rate 1.0e3 Hz

simulated sensor topics from Gazebo to ROS 2 (Figure 5). 
Full topic/message definitions and launch files are provided in 
Arntzen (2024); Elseth and Øvstaas (2025) and in the accompanying
implementation repository.

4.4 Simulation platform

Virtual commissioning via simulation platforms enables early 
detection of problems, which can save both time and resources 
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FIGURE 4
Camera calibration performed in air (left) and underwater conditions (right) (Arntzen, 2024).

FIGURE 5
Simulated system architecture used for testing and validation (Arntzen, 2024).

during real-life deployment. However, careful considerations must 
be made to ensure that the results from the simulated environment 
are replicable in a real-life scenario.

A simulator from the Applied Underwater Robotics Laboratory 
(AUR-Lab) (AUR-Lab, 2024), which is built on Gazebo Garden 

(AURLab, 2025), has been used in this work due to its capability 
to render a 3D environment with hydrodynamic and thruster 
forces. Observing Table 1, Gazebo Garden is not used in 
a previous work. In this paper, we will use the simulator 
framework developed by the AUR-Lab.
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Gazebo Garden is a 3D dynamic simulator that works with ROS 
and a physics engine to develop and test robotic applications in 
a simulated environment. Gazebo is built on the physics engine 
Dynamic Animation and Robotics Toolkit (DART) which provides 
algorithms for the dynamics and kinematics of a robot’s movements 
in an environment. Gazebo Garden is the latest version of Gazebo 
which was released in 2022 (Gazebo, 2022).

Moreover Gazebo uses a modular architecture, and with its ROS 
integration, messages can automatically be converted between ROS 
and Gazebo. An explanation of how this is implemented in this 
project is discussed later in this section. 

4.4.1 Installation and system setup
To support development and testing of the autonomous 

inspection framework, a simulation environment was established 
using Ubuntu 22.04.5, ROS 2 Humble, and Gazebo Garden. Because 
Gazebo Garden is not yet fully supported on Windows platforms, 
a dual-boot configuration was required to ensure compatibility 
and performance. The system includes three principal components: 
Gazebo Garden for simulating the underwater environment, the
ros_gz bridge for interfacing ROS 2 with the simulation, 
and a ROS 2 workspace containing all custom perception and 
control nodes. 

4.4.2 Simulated system architecture
Figure 5 provides an overview of simulated system architecture 

used for testing and validation. Within the Gazebo simulator, 
a virtual model of the Blueye operates in a 3D world that 
includes hydrodynamics, thruster modelling, and a mooring chain. 
Simulated sensor data, such as video from the onboard camera and 
inertial measurements from the IMU, are published through Gazebo 
and bridged into ROS 2. This data is used by the perception pipeline, 
which includes both object detection and mooring line tracking 
algorithms. The output of these nodes is fused into a pose estimate 
for the mooring line, which is published to the topic/ChainPos.

Parallel to this, a joystick node provides manual control 
inputs via the/joy topic. These inputs are parsed and merged 
with autonomous control outputs in the/blueye_joystick_
parser node to form a desired velocity set-point. This set-
point is then published to/blueye/desired_velocity
and processed by the thrust allocation module. The resulting 
commands are distributed across the simulated thrusters 
and sent back to Gazebo using the following command:
/model/blueye/joint/thruster_joint_{1..4}/cmd

_thrust.
Throughout this process, the ros_gz_bridge maintains 

synchronization between the simulated world and the ROS 2 system. 
Visualization of the drone’s estimated motion and environment is 
handled through RViz2 (a visualisation tool for ROS 2), making 
effective testing of both perception and control in the loop possible. 

4.4.3 Image processing in simulation
The Gazebo simulator generates synthesis video data through 

a virtual camera, which is streamed in real time to the ROS 2-
based control system (Figure 5). Figure 6 illustrates a sample frame 
from the Gazebo environment alongside the corresponding image 
processing output. In this example, the detected mooring line 
is overlaid in green, and the estimated mid-point is marked in 

blue. Relevant features (centre coordinates, orientation angle, line 
width, and frame brightness) are extracted and published to the 
controller for further processing. Image processing will be presented 
in the next Section 2.

5 Perception system

This section iteratively introduces the theory and corresponding 
implementation for the perception system which has been developed 
to increase the LoA of the Blueye X3. 

5.1 Image processing

To enable mooring line detection using the Blueye X3’s 
camera, several image processing techniques were implemented, 
selected for their real-time performance and adaptability through 
parameter tuning. 

5.1.1 Theory
Colour Space Conversion converts the pixels found in the video 

frames from the Blueye camera from Red, Green, Blue (RGB) to a 
YCbCr format. In this space, the image is represented by a luminance 
component (Y) and two chrominance components (Cb and Cr), 
which encode colour differences. Each of the three RGB values 
is represented with an intensity value in the range 0–255. Marine 
snow appears as white and gray spots in the frame. This visual 
characteristic suggests that most of the relevant image information 
for marine snow is encapsulated in the luminance component Y
of the YCbCr colour space (Cardaillac and Ludvigsen, 2022). To 
retain image features relevant to marine snow while reducing data 
dimensionality, the RGB colour space is converted to YCbCr. The 
RGB image can be represented as a vector, given by

IRGB (x,y) =
[[[[

[

R (x,y)

G (x,y)

B (x,y)

]]]]

]

. (1)

The RGB image (Equation 1) can then be converted to YCbCr colour 
space, given by

IY CbCr (x,y) =
[[[[

[

0.299 0.587 0.114

−0.168736 −0.331264 0.5

0.5 −0.41688 −0.081312

]]]]

]

⋅
[[[[

[

R (x,y)

G (x,y)

B (x,y)

]]]]

]

+
[[[[

[

0

128

128

]]]]

]

. (2)

 For the subsequent steps in the image processing pipeline, only the 
luminance component, e.g., Equation 2, of each video frame is used.

Guided Filtering is applied to smooth out the image and reduce 
the noise from marine snow. First, given a guidance image, its 
intensity value I(i, j) of each pixel (i, j) is found. For each pixel, 
neighborhood pixels are selected with a window radius r containing 
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FIGURE 6
Visualization of the image processing pipeline in simulation. Left: Simulated environment. Right: Overlay with ROI (Region of Interest, red box) and 
fitted line representing the mooring line (green) (Elseth and Øvstaas, 2025).

ω pixels. The mean, correlation and variance of each pixel I and its 
neighborhood are calculated as

̄I (x,y) = 1
|ω|
∑
(i,j)∈ω(x,y)

I (i, j), (3)

Icorr (x,y) =
1
|ω|
∑
(i,j)∈ω(x,y)

I(i, j)2, (4)

Ivar = Icorr − ̄I
2, (5)

where I is the pixel intensity value at coordinates (i, j); ̄I(x,y) is the 
local average intensity within window ω(x,y) of radius r, serving as 
a baseline for smoothing; Icorr(x,y) is the local correlation; Ivar is 
the variance, i.e., high variance indicates edges, while low variance 
corresponds to smooth regions. Secondly, the three constants a, b
and q are calculated as

a =
Ivar

Ivar + ϵ
(6)

b =
̄I

1− a
(7)

q = ̄a∗ I+ b̄, (8)

where ϵ is a regularization term which balances between edge 
preserving and smoothing. The mean values of a and b are calculated 
with the same equations used for finding ̄I. Finally, the filtered output 
of the image q is calculated. The coefficient a controls the trade-off 
between smoothing and edge preservation (with a ≈ 1 at edges and 
a ≈ 0 in homogeneous regions); b adjusts the local intensity offset 
to maintain the neighborhood mean; and the output q combines 
these terms in a linear model to produce the final edge-preserving 
smoothed image. More details can be found in He et al. (2013).

Contrast Limited Adaptive Histogram Equalization (CLAHE) 
is applied to improve the contrast in the image. In this method, 
the pixel intensities in an image frame are visually represented in a 
histogram. CLAHE works by enhancing the contrast using Adaptive 
Histogram Equalization (AHE) (OpenCV, 2024b). In simpler terms, 
AHE stretches the histogram in order to improve the contrast 
of the image.

In this method, the image is divided into subsections called 
“tiles”. Each tile size is 8x8 as standard but is subject to tuning 
based on the desired output. For each tile in the image, AHE is 
applied to enhance the contrast. A major drawback with AHE is 
that it will introduce added noise to the image. To counter this, 
contrast limiting is applied to each tile. Contrast limiting ensures 
that the contrast of each individual tile does not surpass a set contrast 
limit. If a pixel is found to be above the set contrast level it is 
clipped and distributed evenly to other tiles within the image. The 
entire algorithm is described as follows, starting with histogram 
equalization at its core. Given a grayscale image with L possible 
intensity levels, the normalised histogram is defined as

p f (i) =
ni

n
, 0 ≤ i < L, (9)

where ni is the number of pixels with intensity i, and n is the 
total number of pixels in the image. In this paper, L is set to 255, 
corresponding to the maximum intensity value of a pixel in an 
8-bit image.

The cumulative distribution function (CDF) of the histogram 
is given by

T (i) =
i

∑
j=0

p f (j) , (10)
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and is used to map each intensity level i to a new level i′ according to

i′ = ⌊T (i) ⋅ (L− 1)⌋. (11)

The pixel values in the image are then updated using the 
transformation

feq (x,y) = ⌊T ( f (x,y)) ⋅ (L− 1)⌋, (12)

where feq denotes the histogram-equalized version of the 
input image.

In the case of CLAHE, the image is first divided into non-
overlapping tiles. A histogram is calculated for each tile, and the 
values are clipped at a predefined threshold, according to

Hclipped (i) =min(H (i) ,Tclip) , (13)

where Tclip is the clip limit. The clipped excess E is then redistributed 
uniformly across all histogram bins, according to

Hredistributed (i) =Hclipped (i) +
E
L
. (14)

The local cumulative distribution function Tk(i) for each tile k is 
computed as

Tk (i) =
i

∑
j=0

pk (j) . (15)

The remapped intensity is then given by

i′k = ⌊Tk (i) ⋅ (L− 1)⌋. (16)

Finally, bilinear interpolation is applied between adjacent tiles 
to avoid discontinuities, and the enhanced image is obtained as 
fCLAHE(x,y).

After obtaining the contrast-enhanced image, a Morphological 
Transformation is applied to improve the quality of the image 
used for mooring line detection. Morphological operations are 
particularly useful for refining shapes in images, especially in noisy 
or low-contrast underwater scenes. In this case, erosion is used to 
clean up the image by removing small, irrelevant noise and isolating 
more prominent features. Erosion works by scanning the image with 
a small structuring element (also called a kernel), which can be 
shaped as a rectangle, ellipse, or cross. When the kernel passes over 
the image, each pixel is set to zero (i.e., background) if any of its 
neighbouring pixels within the kernel area are also zero. This results 
in sharper edges around foreground objects and suppresses small, 
isolated noise, which might otherwise interfere with line detection.

Mathematically, let f:E→ℝ be the luminance component 
and b:B→ℝ be the structuring function. The erosion operation 
is defined as

( f ⊖ b) (x) = inf
y∈B
[ f (x+ y) − b (y)] , (17)

where, inf denotes the infimum (greatest lower bound). This 
operation computes the minimum value of the image f in the 
neighborhood defined by B, adjusted by the structuring function b.

Canny Edge Detection (OpenCV, 2024a) is the last part of the 
pipeline, but equally important, to support a binary representation 
of structural edges with optimal noise immunity. A prerequisite 
to applying edge detection is reducing the amount of noise found 

 

Algorithm 1. Non-maximum suppression.

in the image, and Canny Edge Detection does this by applying a 
Gaussian filter. Following, a Sobel kernel is applied horizontally and 
vertically to attain images with the first derivatives in horizontal Gx
and vertical Gy directions. These two images are used to calculate the 
edge gradient G and direction θ, given by

G = √G2
x +G2

y (18)

θG = tan−1
Gy

Gx
(19)

where G,θG are the edge strength and orientation at each pixel, 
respectively; and Gx,Gy are the horizontal and vertical gradients, 
respectively, calculated from Sobel kernels.

Subsequently, a non-maximum suppression is applied with a 
scan of the image in order to remove any pixels with no contribution 
to an edge. This is an iterative process where each pixel is checked 
with its neighbouring pixels in the vertical or horizontal plane. If the 
current pixel forms a local maximum compared to its neighbouring 
pixels, it is considered as an edge. Otherwise the pixel is suppressed 
and given a zero value. This scanning process is done horizontally, 
vertically and diagonally and is summarized in Algorithm 1.

5.1.2 Implementation
The proposed pipeline in this paper integrates multiple 

computer vision techniques as presented in Section 5.1.1) into 
a process, described in Algorithm 2. It is designed to balance 
performance and practicality, taking into account the computational 
limitations of the Blueye X3’s onboard hardware and the target frame 
rate of 30 FPS at 1080p resolution. By using OpenCV’s Python 
interface, the pipeline achieves both efficient real-time processing 
and development flexibility.

5.2 Object detection

A key part of a drone’s autonomy is its capability to detect 
different structural components on a mooring line. Detecting 
structural components is crucial for several reasons, with the major 
advantage being allowing for less use of manual human labor to 
detect structural changes on the mooring line. Another advantage, 
particularly relevant to this work, is the drone’s ability to switch 
from GVI to a CVI when approaching components on the mooring 
line that require detailed examination. Lastly, object detection can 
be used to determine the depth at which the AUV should initiate 
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Algorithm 2. Image processing pipeline.

its ascent by detecting different components typically found when 
approaching the seabed. 

5.2.1 Theory
To detect different components, YOLOv5s, a lighter variant 

of YOLOv5 (Ultralytics, 2025), is used due to favorable properties 
such as real-time capability and high accuracy. In short terms, 
YOLOv5s works by using a pre-trained model, trained on real image 
data of mooring lines. This technique is called supervised learning, 
where the model is trained on a set of annotated data and then uses 
a defined set of algorithms to detect and classify components found 
in the image.

A major challenge with this method is the lack of 
sufficiently large annotated data. To address this, an annotation 
tool from (Roboflow, 2025) has been used. This allows for combined 
use of artificial intelligence (AI) and manual labeling to create 
annotated data which can be used with a broad range of object 
detection models.

YOLOv5s exhibits lower latency than its successors, making it a 
favorable choice for achieving full autonomy, where all computations 
have to be completed locally on the AUV. It is a convolutional 
neural network (CNN)–based object detector. The model works 
by processing each frame through an input layer which is then 
sent to a backbone network that extracts three hierarchical feature 
maps—P3, P4, and P5—corresponding to fine, intermediate, and 
coarse spatial resolutions. Each of these feature maps consist of 
different dimensions in the range of 20× 20 to 80× 80 pixels, 
depending on the input size. These feature maps are able to detect 
small, medium and large objects within the frame. After obtaining 
these feature maps, a confidence prediction and bounding box 
regression is executed to acquire a multi-dimensional array named 
BBoxes. This array contains essential information for each detected 
object such as object class, class confidence, normalised coordinates 
and dimensions. This process as a whole is referred to as an 
inference process (Liu et al., 2022).

YOLOv5s predicts bounding boxes relative to grid cells in a 
feature map. For each cell, it predicts four values: sx, sy; normalised 
offsets for the box center within the cell, respectively; and sw, sh: 
normalised log-space scale values for width and height, respectively. 
These values must be transformed into actual positions of the 

bounding box in the input image space, given by

gx = 2σ(sx) − 0.5+ rx, (20)

gy = 2σ(sy) − 0.5+ ry, (21)

where gx,gy in Equations 20, 21 are the final absolute center position 
of the bounding box; σ is the sigmoid function, ensuring outputs are 
in (0,1), sx, sy are the raw outputs from the neural network, explained 
above; and rx, ry are the top-left corner coordinate of the current grid 
cell. The width and height of the bounding box are given by

gh = ph(2σ(sh))
2, (22)

gw = pw(2σ(sw))
2, (23)

where gh,gw in Equations 22, 23 are the final width and height of the 
bounding box; sx, sy are the raw predicted size offsets (learned by the 
network), as explained above; ph,pw are the anchor box dimensions 
(prior estimates for the box size in that grid cell).

To quantify the predictions of the model compared to 
ground truth values, a cost function is defined to include three 
components: classification, objectness, and localisation (Ultralytics, 
2025), according to:

Loss = λ1Lcls + λ2Lobj + λ3Lloc (24)

where Loss in Equation 24 is the cost function value; Lcls is the 
Classes Loss (or Binary Cross-Entropy loss) measuring the error 
for the classification task; Lobj is the Objectness Loss (another 
Binary Cross-Entropy loss) penalising incorrect presence/absence 
predictions; Lloc is the Location Loss (bounding-box) measuring the 
error in localizing the object within the grid cell; and λi represents 
weights which can be subject to tuning. In this work, default 
hyperparameter values (Ultralytics, 2025) are used. 

5.2.2 Implementation
Object detection in the perception system is handled by a 

lightweight YOLOv5 model integrated into a ROS 2 wrapper node 
developed by Ar-Ray (2024). The model was trained to detect 
shackles which are fixed structures that in the case of mooring 
lines are used as a connection point between rope and chain. When 
a shackle is detected with confidence above a set threshold, the 
system flags this event and notifies the operator. The operator then 
makes a decision whether to initiate an autonomous ascent or 
continue descending. In this way, YOLOv5s is now used in a more 
targeted role for event detection rather than continuous tracking. 
This approach represents a human-in-the-loop strategy, and lays the 
foundation for higher LoA later.

On the left side of Figure 7, the graphical user interface (GUI) 
feedback during a successful shackle detection is shown. The 
perception system confirms a detection and prompts the operator to 
decide on the further mission. On the right side, the corresponding 
visual output from the trained YOLOv5s model is presented, 
highlighting the identified shackle.
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FIGURE 7
Left: System GUI with HIL prompt. Right: YOLOv5s bounding box around shackle.

5.3 Mapping and localization

5.3.1 Theory
ORB-SLAM3 (Oriented FAST and Rotated BRIEF-SLAM3) is 

proposed as part of the 3D reconstruction of the mooring line 
structure (Arntzen, 2024). ORB-SLAM3 is an indirect feature-based 
SLAM framework suitable for real-time operation in challenging 
environments. Unlike direct methods, which are sensitive to 
lighting variability, ORB-SLAM3 uses Oriented FAST and Rotated 
BRIEF (ORB) OpenCV Team (2024) feature detection for robust 
pose estimation. However, it is important to note that ORB-SLAM3 
has only been utilised for post-processing in this system, rather than 
for real-time operation.

The ORB algorithm is an open-source library built on the 
Features from Accelerated Segment Test (FAST) (OpenCV Team, 
2018b) and BRIEF (OpenCV Team, 2018a). The FAST algorithm is 
a machine learning based approach that iterates through pixels in 
the image to determine if the pixel is a distinguishable feature in the 
image by examining the following criteria. Such a feature is typically 
a corner or an edge found in the image and is stored as a keypoint.

Sp→x =
{{{{
{{{{
{

d, Ip→x ≤ Ip − t (darker)

s, Ip − t < Ip→x < Ip + t (similar)

b, Ip + t ≤ Ip→x (brighter)

(25)

This is complemented with the BRIEF algorithm which iterates 
through the keypoints found from the FAST algorithm. BRIEF 
defines a binary vector τ based on the pixel intensity value 
corresponding to each keypoint that serves as numerical fingerprint 

which describes the area around each keypoint.

τ (p;x,y) =
{
{
{

1 :p (x) < p (y)

0 :p (x) ≥ p (y)
(26)

The ORB algorithm provides valuable information that can be 
used for loop closure by comparing each new frame in the video 
with previous keypoints found Loop closure is used to identify 
previously visited locations on a global map, and can reduce drift 
in system. A major challenge reported in Arntzen (2024) work 
is the repetitive structure of the mooring line. A mooring line 
is a homogeneous structure with few distinct features. Another 
challenge is the presence of marine snow. As shown in Figure 8, the 
system can to a certain extent successfully recognises features within 
the two frames, but struggles with some parts of the frames and also 
recognises particles as distinct features, which is not desired.

5.3.2 Implementation
Figure 9 illustrates how the ORB-SLAM3 is integrated into 

the system by Arntzen (2024). Input from a recorded video is 
published on the/camera topic by the/video_publisher_
node, acting as the image source for the/ORB_SLAM3_ROS2
node. This node performs feature extraction and tracking, and 
publishes both the estimated map points and pose information.

The tracked 3D landmarks are published on the/map_points
topic, while the robot’s estimated pose is shared via the/tf tree. 
To construct a map of the environment, the/map_points are 
forwarded to the/octomap_server, which builds an occupancy 
grid. The resulting map is then visualised through standard 
OctoMap topics. 
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FIGURE 8
Feature matching from the sea trial in Arntzen (2024).

FIGURE 9
ORB-SLAM3 RQT graph (Arntzen, 2024).

6 Control system

The control system allows the drone to navigate along a mooring 
line using visual information extracted from the onboard camera. 
The control system is structured into three levels: (1) Planning and 
replanning, (2) Guidance, and (3) Control execution. 

6.1 Planning and replanning

To ensure robustness, a fail-safe routine stops surge motion if 
no line is detected in a captured frame for 20 s. During this time, the 
drone slowly rotates in yaw in the direction the line was last seen to 
reacquire it.

Example 1: If the last recorded horizontal (x) coordinate of the 
fitted line is positive, indicating that the mooring line was last seen 
far right of the image, the yaw value is set slightly positive inducing a 
panning motion towards the most plausible position of the mooring 
line. The opposite logic would apply if the mooring line was last seen 
to the left of the image. 

6.2 Guidance

The guidance system is structured into three stages: (1) 
Vertical Inspection, (2) Vertical-to-Horizontal Transition, and (3) 
Horizontal Inspection, as illustrated in Figure 10. Image processing 
provides real-time estimates of mooring line features. The object 
detection algorithm, trained on chain, rope, and wire mooring 
lines, can identify and process any combination of these types. 

Once a mooring line is detected in the video frame, the system 
extracts three key features (see Section 5.1): (1) the line’s width (in 
pixels), (2) the line’s midpoint position, and (3) the inclination angle. 
These measurements serve as a guidance for the drone to follow 
the mooring line, with the objective of maintaining a consistent 
distance from the line and keeping it centred in the camera view. 
This guidance is described by. 

• Surge guidance is based on the perceived width of the mooring 
line, which acts as a proxy for distance.
• Sway and Yaw guidance is based on the midpoint horizon 

position of the mooring line in the captured frame. This guides 
the drone to right if the midpoint of the mooring line in 
the capture frame is on the right of the captured frame and 
vice versa.
• Heave guidance follows the inclination angle of the line such 

that it descends faster for a vertical incline angle and slower for 
a less vertical angle.

6.3 Control execution level

The control system ensures the drone follows the guidance 
system by regulating its motion in four degrees of freedom 
(DOF): surge, sway, heave, and yaw. Three control modes are 
defined based on the mooring line geometry: Vertical Inspection, 
Vertical-to-Horizontal Transition, and Horizontal Inspection, as 
illustrated in Figure 10. 
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FIGURE 10
Control strategy flow chart (adopted from Arntzen (2024)). In the right hand side, the spiral pattern is shown.

6.3.1 Vertical inspection
In this mode, the drone descends along a near-vertical mooring 

line. The control laws are defined as follows.
Surge regulates the distance to the mooring line, based on its 

width w in the image, according to a proportional controller:

Surge:Fvertical
surge =

{{{
{{{
{

ksurge ⋅ (1−
w
wd
), if w ≤ wd

−ksurge ⋅ (
w−wd

200
), if w > wd

(27)

where ksurge is the proportional gain to drive the width error to zero, 
ensuring the drone maintains the desired standoff distance; w is the 
observed line width in the captured frame; and wd is the target width.

Sway: two strategies are available. The first strategy (Sway1) 
regulates the drone on one side of the mooring line, given by

Sway1:Fvertical
sway = ksway ⋅ xnorm, (28)

where ksway is the proportional gain to keep the mooring line in 
the middle of the captured frame; xnorm ∈ [−1,1] is the normalised 
horizontal offset of the line midpoint in the captured frame. The 
second strategy (Sway2) regulates the drone in a “spiral” pattern 
by alternating the sway controlled force between two compass 
points or by using a timer. This control methodology creates an 

alternating semi-helical pattern down the vertical section of the 
mooring line, given by

Sway2:Fvertical
sway (t) = |Fsway2| ⋅ sign(sin( 2π

Ttimer
t)), (29)

where |Fsway2| is a tunable constant force amplitude, typical 
between 10%–40% of max sway thrust; and Ttimer is a timer or a 
switching period to change the direction of the sway controlled 
force. In the sea trial (Section 7.3; Arntzen (2024)), Ttimer =
60 s. The control law in Equation 29 will create a “yo-yo” sway 
motion, combined with constant descent, produces a spiral scan 
around the line.

For the yaw controller law, the goal is to keep the mooring line 
midpoint in the middle of the captured frame.

This is given by

Yaw:Mvertical
yaw = kyaw ⋅ xnorm, (30)

where kyaw is the proportional gain to keep the mooring line in the 
middle of the captured frame.

The heave controller law adjusts the descent rate based on the 
inclination angle θ, according to

Heave:Fvetical
heave = kheave ⋅ d ⋅ cos |θ|, (31)
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where kheave is a constant to scale the heave control force; d ∈ {−1,1}
is a user input for vertical direction (1 for descent and −1 for ascent), 
and θ is the inclination angle of the mooring line (θ = 0° for a vertical 
line and θ = 90° for a horizontal line). 

6.3.2 Vertical to horizontal
When the line becomes more horizontal (determined by depth 

or inclination threshold), the drone switches to a transition control 
mode. The objective is to align the drone horizontally with the 
mooring line. The controller law is detailed as below.

The surge controller law is the same as in Vertical mode
(Equation 27). The sway control force is kept to a constant value, 
moving the drone lengthwise along the mooring line, given by

Sway:Ftransition
sway = constant. (32)

The yaw controller is the same as in Vertical mode (Equation 30). 
The control force in heave is set to 0 such that it does not collide with 
the seafloor, given by.

Heave:Ftransition
heave = 0. (33)

 

6.3.3 Horizontal inspection
As the observed mooring line angle passes a threshold for 

transition mode, the controller is switched to the last part, i.e., the 
horizontal section. The goal is to wandering around the mooring line 
lying on the seabed. The control strategy in surge and sway is same 
as the transition “Vertical to Horizontal” mode.

The yaw controller goal is to wander around the mooring line 
lying on the seabed, according to

Yaw:Mhorizon
yaw = |Myaw| ⋅ sign(sin( 2π

Ttimer
t)), (34)

where |Myaw| is a tunable constant moment amplitude, with 
similar tuning strategy as in Equation 29; and Ttimer is a timer, 
same as in Equation 29. The heave is regulated such that the mooring 
line is in the bottom quarter of the camera frame, given by

Heave:Fhorizon
heave = kheave ⋅ (ynorm − ydesired) , (35)

where ynorm ∈ [−1,1] is the normalised vertical offset of the line 
midpoint in the captured frame; and ydesired is the desired vertical 
offset of the midpoint in the captured frame and is set to bottom 
quarter of the frame.

An illustration of the inspection path along the mooring line is 
shown in the right hand side of Figure 10 where the Sway2 strategy 
is visualised.

The resulting control vector is given by

Fc = [Fsurge Fsway Fheave Myaw]T, (36)

The control vector (Equation 36) is normalised and then sent to the 
drone using the Blueye SDK. Each axis includes a tunable gain that 
can be adjusted in real time via the GUI. The thrust allocation and 
thruster control will be done inside the drone’s software and will not 
be presented here. 

6.4 Implementation

The control strategy is implemented using ROS 2 due to its 
built-in support for real-time communication (Macenski et al., 
2022). The ROS 2 node chain_controller contains most of 
the control logic. This node subscribes to visual measurements of 
the mooring line, which are published after image processing, and 
computes continuous commands in surge, sway, heave, and yaw. 
These commands are sent as DesiredVelocity messages to 
the/desired_velocity topic, which interfaces with the drone’s 
internal thrust allocation system. 

7 Simulation and experimental results

This section presents the simulation and experimental results, 
along with corresponding analysis of the proposed vision-
based inspection framework for mooring lines using a low-cost 
underwater drone. The results are structured to demonstrate 
the performance of individual system components, i.e., image 
processing, control, object detection, and mapping. Simulation 
trials were conducted to validate the full inspection strategy, 
including vertical descent, transition, and horizontal inspection, 
and to verify the effectiveness of the spiral path generated by the 
control system. These simulations complement the dock and sea 
trials. Key observations and limitations are discussed alongside the 
results, providing insights into the robustness, effectiveness, and 
future improvement areas of the system. An overview of the key 
parameters and outcomes from the simulations and experiments 
is provided in Table 7. Full quantitative results, detailed parameter 
settings, other scenario runs and raw datasets are provided in the 
master’s theses by Arntzen (2024); Elseth and Øvstaas (2025).

7.1 Testing of image processing techniques

The image processing pipeline was evaluated using recorded 
video data from previous inspection campaigns (Arntzen, 2024; 
Elseth and Øvstaas, 2025) to assess its robustness under varying 
lighting conditions and the presence of marine snow. Figure 11 
illustrates the processing results. Subfigures A–D demonstrate the 
effective removal of marine snow through the successive filtering 
stages, while subfigures E–H show consistent detection of the 
mooring line across diverse lighting scenarios. The following video 
shows the successful detection of mooring line under a marine snow 
condition Image Processing Results.

7.2 Dock trials

Dock trials at Trondheim Biological Station (TBS) were carried 
out to test the drone’s capability to autonomously follow a mooring 
line. A mooring line was constructed by sinking a synthetic rope 
with a mass at the end. The water depth outside the dock is roughly 
10 m allowing for testing in a controlled and calm weather condition.

These dock trials focused on guidance system including mooring 
line detection and control execution levels. Gain and filtration 
parameters were iteratively tuned to optimise the drone’s ability to 
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TABLE 7  Summary of simulation and experimental results.

Trial Environment/
Conditions

Objective Key 
metrics/observation

Outcome

Simulation of full inspection Ideal. Depth: 0 → seabed Validate vertical descent, 
transition, and spiral 
horizontal inspection path

Spiral trajectory generation; 
Vertical-to-horizontal 
transition; No coverage gaps

Semi-helical path ensures full 
360° coverage; no missed 
sections

Dock trials (Guidance only) Calm water, synthetic rope. 
Depth: 0 → 10 m

Mooring line following Depth tracking error ±0.2 m; 
Thruster surge/sway/yaw 
within expected bounds; 
Automatic ascent at 4 m

Reliable mooring-line 
following; successful 
autonomous descent and 
ascent while keeping line 
centered

Sea trial Sway1 (31 Mar 2025) Open sea, surface currents up 
to 0.25 m/s, marine snow. 
Depth: 10 → 68 m

Mooring line following with 
Sway1 strategy; real-world 
condition

Surge thrust oscillations 
0%–75% max; Sway 
commands ≤25 % max; 
Manual CVI segment at 
400–450 s

Completed autonomous 
inspection 10–68 m; manual 
CVI captured shackle video for 
YOLOv5 training

Sea trial spiral (Spring 2024) Open sea, changing light 
conditions. Depth: 5 → 80 m

Mooring line following with 
Sway2 strategy; real-world 
condition

Downward heave + alternating 
sway; Continuous yaw 
adjustments

Spiral pattern executed as 
planned; reconstructed camera 
trajectory; and validated 
mapping feasibility

Dock trials (Shackle detection) Calm water, metal shackle at 
rope end. Depth: 0 → 3.5 m

Object detection YOLOv5 detection at 3.5 m; 
Detection flag triggered 
reverse command

Successful shackle detection to 
prompt the return, supporting 
completed autonomous 
inspection

Post-processing (ORB-SLAM3 
and Meshroom)

Video from sea trials (Spring 
2024). Depth: 5 → 80 m

Mooring line 3D 
reconstruction for change 
detection

Tracked ORB features 
highlight line structure; 
Meshroom yields coherent 3D 
mesh; RViz2 and ORB-SLAM3 
visualizations consistent

3D reconstructions

track the mooring line. The path following algorithm was also tested 
from several angles of the mooring line to ensure robustness and 
stability under varying conditions. The angle of the mooring line in 
the camera frame is dependent on the relative heading of the drone 
with respect to the mooring line. The relative heading will affect how 
the drone’s control system operates.

Following, a simple algorithm for automatic ascending 
when reaching the bottom of the rope was implemented and 
evaluated. Figure 12 shows the drone’s depth over time with a desired 
depth of 4 m. The desired depth is set ahead of the dive, and indicates 
the depth the drone initiates its ascent while still autonomously 
following the mooring line. This Figure shows that the drone can 
descending and ascending autonomously while controlling the surge 
force to keep a distance to the mooring line and controlling sway and 
yaw to keep the mooring line in the middle of the captured frame.

7.3 Sea trial

A sea trial was conducted on the 31st of March 2025. The 
purpose of this sea trial is to show the Sway1 control strategy in 
which one side of the mooring line was inspected. The weather 
during this sea trial was challenging. Surface currents reached 
approximately 0.25 m/s, exceeding the thrust capacity of the drone, 
especially when exposed to beam currents, where the effective cross-
sectional area is greatest. To bypass this, the autonomous inspection 
was initiated at a depth of 10 m, where current speeds were lower. In 

addition to strong currents, poor underwater visibility due to marine 
snow posed another major challenge.

The autonomous inspection of the mooring line was completed 
successfully from 10 to 68 m depth (Figure 13). At the latter depth, 
the drone was operated manually to conduct a CVI to capture video 
data of the structural integrity of the shackle. Gathering video of the 
shackle was deemed important as the data can be used for further 
training and improvement of the accuracy and robustness of the 
YOLOv5 object detection model. The manual CVI can be observed 
as the missing data found around 400–450 s in Figure 13.

The nominal commanded thrust in surge exhibited significant 
oscillations and had an output range of 0%–75% of the thruster’s 
maximum output. The sway commands are confined within 25% 
of the maximum thruster output. During this trial, the thruster 
commands in heave were rather high due to an almost vertical 
mooring line. A full video of this sea trial is shown here: Sea Trial.

A sea trial was conducted in spring 2024 (Arntzen, 2024), 
to demonstrate the Sway2 control strategy with inspection spiral 
pattern. The results, shown in Figure 14 show the estimated camera 
trajectory and the resulting point cloud reconstruction of the 
observed environment. The trajectory reveals that the drone performed 
a downward heave motion while executing a spiral inspection 
pattern—alternating sway from side to side and continuously adjusting 
its yaw to keep the mooring line centred in the camera frame. This 
coordinated movement enabled comprehensive visual coverage of the 
mooring line under real-world conditions. 
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FIGURE 11
(A) Luminance component; (B) Output after guided filter and morphological operations; (C) Result of Canny Edge Detection; (D) Final image with line 
detected within ROI; (E) Frame captured near the sea surface with strong sunlight at the top of the image, and its corresponding final result (G); (F)
Frame captured near the seabed illuminated only by onboard LED with strong light at the bottom, and its corresponding final process image (H).

7.4 Dock trials with shackle detection

To verify the YOLOv5 object detection model in a real 
environment, the Blueye X3 was tested at the TBS dock with a similar 
setup as in Section 7.2. For the testing, a rope with a metal shackle 
attached to its end was lowered into the water column solely for 
the purpose of testing if the object detection model was capable of 
detecting a shackle underwater.

After training the YOLOv5 model on images of shackles, the 
detection pipeline was integrated into the onboard perception node 
as described in Section 5.2. The shackle used in this testing was not 
part of the dataset used to train the object detection model. During 
the test, the live camera feed was processed through the YOLOv5 
object detection model which successfully detected the shackle at 

around 3.5 m depth. The detection triggered a flag in the system 
logic, which was then published to the/reverse_command topic. 
The operator was then prompted to decide on the drone’s further 
mission. In the case of this trial, the drone was prompted to 
continue inspection while ascending to the surface (Figure 15). This 
resulted in a successful autonomous inspection along the entire 
makeshift mooring line. A full video of this test is shown here: 
Object Detection Model.

7.5 Simulation results

The proposed control strategy was validated through simulation 
to demonstrate the drone’s ability to perform full-length mooring 
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FIGURE 12
Depth profile (A) and thruster commands (B–E) for initial dock testing (Elseth and Øvstaas, 2025).

FIGURE 13
Depth profile (A) and thruster commands (B–E) during sea trial (Elseth and Øvstaas, 2025).
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FIGURE 14
Point cloud and camera motion reconstructed from 
inspection video (Arntzen, 2024).

line inspection—from vertical descent, through the vertical-to-
horizontal transition, to horizontal exploration. The Sway2 strategy 
was applied to generate a semi-helical path around the mooring line 
during vertical inspection, ensuring comprehensive visual coverage.

Figure 16 shows the simulated drone trajectory during 
inspection. The side view provides an overview of the full flight 
path along the mooring line, including the transition to horizontal 
motion near the seabed. The chosen descent speed is tuned to ensure 
no sections of the mooring line are skipped during the inspection. 
The top view illustrates the alternating sway pattern that produces 
the spiral motion, highlighting the changing circumference angle 
around the mooring line. Further details of the simulation setup and 
parameters can be found in Arntzen (2024).

7.6 Post processing

To explore mapping from the inspection footage, both ORB-
SLAM3 and Meshroom were tested on video data from the sea 
trial conducted by Arntzen (2024). The first row of Figure 17 
illustrates the ORB-SLAM3 viewer (left), tracked features, and the 
resulting 3D reconstruction from Meshroom (right). The tracked 
ORB features clearly highlight the structure of the mooring line. 
The second row of Figure 17 compares map outputs in RViz2 (left),
ORB-SLAM3 viewer (middle), and Meshroom (right). These 
illustrate how the different tools visualise spatial information from 
the same video source.

8 Discussion

8.1 Summary of simulation and 
experimental results

In this subsection, the most important findings from both 
simulations and field experiments are summarised into a single, 
easy-to-read table. Table 7 summarizes each trial’s operating 
environment, depth range, key performance metrics, and overall 
outcome. This table provides a clear and side-by-side comparison 
of how the proposed vision-based inspection framework performs 
under ideal conditions, controlled dock tests, and challenging open-
sea deployments. 

8.2 Robustness of image processing

The image processing techniques developed in this paper 
showed an enhancement of the drone’s ability to autonomously 
inspect the mooring line. The image processing algorithm 
successfully detected the mooring line while removing noise 
(marine snow) and handling different illumination conditions.

A key challenge highlighted in Arntzen (2024) was the need for 
manual adjustment of filtering parameters depending on depth, due 
to varying lighting conditions. Near the surface, sunlight contributed 
to the illumination, while deeper depths relied solely on artificial 
lighting from the onboard LED. This made consistent filtering and 
detection difficult across a full mooring line inspection.

In the thesis of Elseth and Øvstaas (2025), the image processing 
pipeline (as described in Algorithm 2) was used at all depths without 
any parameter tuning. This adaptive pipeline, based on CLAHE and 
Canny Edge Detection, maintained reliable mooring line detection 
at both 19.3 m and 64.7 m depths (Elseth and Øvstaas, 2025). This 
marks a key improvement, as it eliminates the need for manual filter 
calibration between depth zones.

The parameter settings proved effective under the sea trial 
conditions at TBS; however, further tuning may be required when 
deploying the system in different environments with new visual 
challenges. While this robustness is promising, further investigation 
is needed to evaluate the limits of the pipeline under more extreme 
conditions—such as heavy marine snow or nighttime inspections. 
Future work could also explore dynamically tuned parameters or 
the inclusion of depth-aware filtering logic to further increase 
performance. 

8.3 Path following algorithm and control 
system

The path following algorithm developed in this paper 
demonstrates that a simple, camera-based control strategy can 
support autonomous mooring line inspection using a low-cost 
drone. The results from both TBS dock trial and the sea trials 
confirmed that the proportional control strategy was sufficient to 
maintain alignment with the mooring line across 4-DOF.

The simulation validates the full inspection concept to check 
whether the framework works before the sea trials with uncontrolled 
factors. The simulations demonstrated that the drone could 
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FIGURE 15
Depth profile (A) and thruster commands (B–E) for shackle detection testing (Elseth and Øvstaas, 2025).

FIGURE 16
Simulated drone trajectory during full-length mooring line inspection. Side view (left) illustrates the descent and transition to horizontal inspection; and 
top view (right) shows the spiral pattern around the mooring line.

successfully follow the entire mooring line, transitioning from 
vertical to horizontal inspection while maintaining coverage 
along the full length. The spiral path generated by the Sway2 
strategy was clearly visible in the simulated trajectory and ensured 
circumferential coverage of the mooring line during descent. 

However, the simulation were conducted in idea conditions where 
no environmental effect was accounted for.

In contrast, the sea trials were constrained by time and weather 
conditions, which prevented a full-length mooring line inspection. 
The sea trials primarily demonstrated the system’s ability to descend 
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FIGURE 17
3D Reconstruction using ORB-SLAM3, tracked features and Meshroom photogrammetry (top) together with map visualization in RViz2, ORB-SLAM3 
viewer, and Meshroom (Arntzen, 2024).

towards the shackle and ascend back to the surface, rather than 
executing a complete vertical-to-horizontal inspection sequence. 
Nonetheless, the system maintained alignment with the mooring 
line during these partial inspections, even under suboptimal 
visibility and current conditions.

For Sway1 control strategy demonstration in the 2025 
sea trial (Elseth and Øvstaas, 2025), the drone was tested from 
several angles to evaluate operability under different perspectives of 
the mooring line. The sideways tracking of an angled mooring line 
provided the most stable performance due to consistent distance 
to the mooring line. However, front- and back-facing tracking 
introduced challenges related to the catenary shape of the rope. 
From this angle, more aggressive gains for surge and heave were 
needed, as the mooring line was constantly moving toward or away 
from the drone.

For Sway2 control strategy showed particular promise in 
simulation and the 2024 sea trial (Arntzen, 2024). However, 
future development could focus on enhancing the controller by 
incorporating the drone’s heading to ensure more robust and 
consistent 360-degree coverage of the mooring line in complex and 
dynamic underwater environments.

The implementation of a fallback state when sight of the mooring 
line was lost reduced downtime, and allowed the drone to re-orient 

itself toward the mooring line and continue the inspection. This 
proved useful in situations with rougher environmental conditions.

Despite successful trials, several limitations were observed. The 
control system relies entirely on visual feedback and does not 
incorporate inertial or velocity data in its control loop. This makes it 
more sensitive to disturbances and susceptible to drift over time. The 
system would likely benefit from a SLAM-based setup, which could 
enable loop closure if the drone revisits previously observed points 
along the mooring line. However, due to limited onboard computing 
resources and battery capacity, integration of such a solution proved 
challenging. An alternative approach could be to enhance the sensor 
suite with a Doppler Velocity Log (DVL) or sonar. However, these 
sensors are generally expensive and would increase the overall cost 
of the system.

Another limitation lies in the fixed gain structure. Although 
real-time tuning is possible through the GUI, it requires human 
intervention, limiting the overall LoA. To increase the LoA, an 
adaptive gain scheduling approach could be introduced, where gains 
are dynamically adjusted based on input data such as depth, drone 
orientation, or the confidence level in object detection.

Although the proposed proportional, vision-based controller 
proved effective in both simulation and partial sea trials, it does 
not explicitly account for the highly coupled nonlinear dynamics of 
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TABLE 8  Estimated cost comparison–traditional vs. proposed inspection approach.

Cost component Traditional inspection (ROV-based)∗ Proposed framework (low-cost drone + edge AI)∗∗

Infrastructure Mother vessel €10,000–€30,000 per day Possible docking station €100,000 per whole life cycle

Hardware ROV €5,000 per day rental Low-cost drone €24,000 (Blueye X3)

Crew (ROV + vessel) 4–6 personnel (€4,000–€6,000 per day) 1 personnel for the whole fleet of drones (€1,000 per day)

Other inspection equipment Depends on the type of inspection €1,000-€10,000 Maintenance cost €1,000

Total estimated cost per inspection €200,000 €20,000

Other costs, not included in the estimates

Inspection frequency 1–2 times per year 10 times with the same budget

Mobility and flexibility Limited by mobilisation needs and weather conditions High, easy deployment, less dependent on surface weather

Data post-processing Offline, often manual review by human Autonomous change detection

Downtime Impact High due to scheduling delays Low, rapid redeployment possible

∗ based on Ford et al. (2020), 2020 costs.
∗∗ approximate estimates based on typical operational conditions and available market data as of 2025. There might be unseen costs. The comparison is intended to highlight relative differences 
in scale rather than serve as an exact financial projection.

the drone, nor for model uncertainties, input constraints, and time-
varying ocean currents. In practice, currents can introduce drift and 
lateral forces on the drone, while the thruster constraints and vehicle 
dynamics exhibit nonlinear behavior under varying loads. Without 
an explicit dynamic model or disturbance observer, the controller 
treats these effects as unstructured disturbances, relying solely on 
reactive visual feedback. As a result, the system’s performance may 
degrade in stronger or rapidly changing current conditions, and 
actuator saturations or control limits may be reached unexpectedly. 

8.4 Cost-efficiency of low-cost 
drone-based inspection

The proposed inspection framework leverages a compact, 
commercially available underwater drone integrated with low-cost 
onboard computing and vision hardware. This setup significantly 
reduces operational expenses compared to traditional ROV-based 
inspections (Ford et al., 2020), which require high-end equipment, 
support vessels, and specialised personnel, and are often constrained 
by weather and logistics.

The proposed system, including the drone platform (e.g., Blueye 
X3), Raspberry Pi-based edge AI processing, and vision models, 
costs under €24,000 and can be operated by a single technician 
from a Remote Operation Centre (ROC). Such a configuration 
is particularly advantageous for recurring inspections in offshore 
aquaculture or renewable energy contexts, where it enables frequent, 
flexible, and cost-effective monitoring.

Table 8 provides a comparative overview of the key cost 
elements. Traditional inspection methods may incur per-inspection 
costs of up to €200,000 due to vessel rental, crew, and equipment, 
and are typically performed once or twice per year. In contrast, the 
proposed solution allows for inspections on-demand at a fraction of 

the cost (approx. €20,000 per inspection), with additional benefits in 
mobility, data availability, and reduced downtime.

8.5 Real-time processing performance on 
edge hardware

The inference pipeline, including object detection with 
YOLOv5s and basic image enhancement, was executed onboard 
a Raspberry Pi during test missions. CPU usage was monitored 
continuously, with observed utilisation remaining below 100% 
during the detection and tracking processes. The drone performed 
its control actions and feedback loops without delays, freezes, or 
reboots, indicating that the real-time computational demands were 
well within the system’s capabilities. This confirms that the proposed 
vision-based inspection framework is suitable for edge deployment 
on resource-constrained hardware, a key requirement for scalable, 
autonomous underwater inspection. 

8.6 Manual intervention during shackle 
identification

Upon detecting a shackle, the system enters a hold state where 
operator input is needed. A GUI window, as illustrated in Figure 7, 
allows the user to confirm whether the drone should initiate its 
ascent or continue the inspection while descending.

This approach would enable the drone to use its perception of the 
environment or site-specific knowledge for autonomous decision-
making upon detecting a shackle or other structural component on 
the mooring line. For example, if the drone determines—based on 
acoustic data—that it is near the seabed and simultaneously detects 
a shackle, it could autonomously decide to perform a CVI of the 
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shackle before initiating its ascent along a different angle of the 
mooring line, without requiring human intervention. Ascending 
with a different heading to the mooring line would also ensure 
an exhaustive inspection and provide a more comprehensive visual 
dataset, which is likely to improve the accuracy and robustness of 3D 
reconstruction by capturing the structure from multiple angles. 

8.7 3D reconstruction and mapping

The post-processing comparison shows that ORB-SLAM3 is 
able to track local image features and generate a sparse 3D map 
in real time. However, the resulting point cloud in RViz2 becomes 
significantly noisier. This is likely due to repeated false detections 
caused by marine snow, which accumulates in OctoMap and 
introduces large clusters of outliers.

Another challenge lies in the structure of the mooring line 
itself. Its repetitive structure and narrow viewing angle from the 
drone makes loop closure difficult, causing drift to accumulate over 
time. One of the fundamentals in SLAM is recognising previously 
visited areas for drift correction, this limits its mapping accuracy 
in this case.

On the other hand, Meshroom performs global optimisation 
offline. It uses a scale-invariant feature transform (SIFT) for feature 
detection, resulting in denser reconstructions and lower drift. This 
may make it better suited for a detailed post processing analysis. 
However this method is not applicable for real-time operations due 
to the limited computational power onboard the drone. 

9 Conclusion and future work

This study demonstrated a cost-effective and autonomous 
solution for mooring line inspection using the Blueye X3 drone. A 
modular ROS 2 based architecture was implemented, combining 
real-time image processing, a YOLOv5-based object detection 
module, and a simple controller for mooring line following. The 
image processing pipeline, including Guided Filtering, CLAHE, 
Morphological Transformation, and Canny Edge Detection, 
handled challenges such as marine snow and varying illumination. 
The extracted visual features were used to guide the drone’s motion 
across four degrees of freedom (surge, sway, heave, and yaw) through 
a proportional controller.

The system was validated through simulation, video replay 
testing, and sea trials, demonstrating that cost-effective, off-the-shelf 
observation-class underwater drones can reliably perform mooring 
line monitoring and inspection when equipped with suitable visual 
perception and control strategies. Furthermore, the acquired visual 
data were successfully used for 3D reconstruction of the mooring 
line via tools like ORB-SLAM3 and Meshroom, supporting the 
potential for future change detection and defect identification.

This study contributes: 

• A modular and scalable system architecture compatible with 
low-cost underwater platforms.
• The first demonstration of autonomous inspection using a 

cost-effective Blueye X3 in real sea conditions.
• A validated pathway to embed AI-based perception and 

control within resource-constrained robotic platforms.

While current limitations include the need for parameter tuning 
and the absence of inertial feedback, this work provides a strong 
foundation for affordable and scalable autonomous underwater 
inspection, with clear pathways for enhancement through sensor 
fusion and adaptive control. 

9.1 Proposed future work

There are several promising directions for extending the current 
system. First, the fixed-gain proportional controller used in this 
work could be replaced by a more advanced control strategy, 
such as a full PID controller or a model leveraging adaptive gain 
scheduling. These approaches may reduce oscillations and improve 
responsiveness, particularly during extended inspection missions.

To improve robustness and situational awareness, the integration 
of additional sensors should be explored. For example, a Doppler 
Velocity Log (DVL) could help reduce positional drift and improve 
the reliability of visual path-following, as DVLs are unaffected by 
marine snow or fluctuations in lighting. However, the inclusion 
of such sensors introduces economic and payload constraints. 
For instance, the Water Linked DVL for the Blueye X3 is priced 
at $7,890 (WaterLinked, 2024)—which may limit its applicability in 
cost-sensitive deployments.

Another key area of development is the implementation 
of fully autonomous decision logic for shackle detection and 
corresponding maneuvers. Automating this process would eliminate 
the need for operator input, thus raising the LoA and mission
continuity.

Moreover, research into real-time VSLAM techniques on 
constrained platforms could significantly expand the system’s 
capabilities. Simplified or event-based loop closure methods 
should be explored to enable ORB-SLAM3 or equivalent systems 
to run efficiently on limited onboard hardware, such as the 
embedded processors on the Blueye X3 (Arntzen, 2024). This 
may include testing whether place recognition can be achieved 
through mission-specific keyframes or distinct visual features such
as shackles.

Future work will expand the simulation experiments to 
include varied environmental and failure scenarios and report 
quantitative metrics for selected control and mapping approaches, 
including detection precision/recall, runtime, localisation accuracy, 
map completeness, and mission success rate. These results 
will enable sensitivity analyses and statistical evaluation of
system robustness.

Bioinspired control and optimisation methods have shown 
promise in managing actuator faults and navigating in uncertain 
conditions (Tutsoy et al., 2024). These techniques could be 
adapted for underwater drone inspection systems to enable more 
resilient and efficient motion planning in the presence of vehicle 
nonlinear dynamics, mooring line dynamics and unknown external 
disturbances.

Finally, future work will focus on a systematic benchmarking 
of various onboard processing units against the demanding 
requirements of real-time VSLAM tasks within the underwater 
domain. This is important to optimise the trade-offs between image 
processing fidelity, energy consumption, and mission endurance. 
Recent advancements in embedded processing, e.g., NVIDIA

Frontiers in Robotics and AI 27 frontiersin.org

https://doi.org/10.3389/frobt.2025.1655242
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nguyen et al. 10.3389/frobt.2025.1655242

Jetson series (NVIDIA, 2023), which offer capabilities for real-
time inference and embedded AI acceleration while maintaining 
manageable power envelopes, show a promise for accelerating the 
practical integration of advanced visual perception directly onboard 
the underwater drone.
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