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As aquaculture expands to meet global food demand, it remains dependent
on manual, costly, infrequent, and high-risk operations due to reliance on
high-end Remotely Operated Vehicles (ROVs). Scalable and autonomous
systems are needed to enable safer and more efficient practices. This paper
proposes a cost-effective autonomous inspection framework for the monitoring
of mooring systems, a critical component ensuring structural integrity and
regulatory compliance for both the aquaculture and floating offshore wind
(FOW) sectors. The core contribution of this paper is a modular and scalable
vision-based inspection pipeline built on the open-source Robot Operating
System 2 (ROS 2) and implemented on a low-cost Blueye X3 underwater drone.
The system integrates real-time image enhancement, YOLOv5-based object
detection, and 4-DOF visual servoing for autonomous tracking of mooring lines.
Additionally, the pipeline supports 3D reconstruction of the observed structure
using tools such as ORB-SLAM3 and Meshroom, enabling future capabilities in
change detection and defect identification. Validation results from simulation,
dock and sea trials showed that the underwater drone can effective inspect
of mooring system critical components with real-time processing on edge
hardware. A cost estimation for the proposed approach showed a substantial
reduction as compared with traditional ROV-based inspections. By increasing
the Level of Autonomy (LoA) of off-the-shelf drones, this work provides (1)
safer operations by replacing crew-dependent and costly operations that require
a ROV and a mothership, (2) scalable monitoring and (3) regulatory-ready
documentation. This offers a practical, cross-industry solution for sustainable
offshore infrastructure management.

autonomous underwater, drones, cost effective, aquaculture, maintenance and
inspection, computer vision, path following
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1 Introduction

Marine-based industries such as aquaculture and floating
offshore renewable energy (ORE) are undergoing rapid expansion
and modernisation to meet rising global demands for food and
clean energy (United Nations, 2023; International Energy Agency,
2024; Tiwari et al., 2012). The industry relies on mooring systems to
maintain position, using anchored lines and connectors that must
withstand harsh marine conditions. Figure 1 shows an example of
catenary mooring system schematic including different segments
and connection components (i.e., fairlead, shackle and anchor).
These mooring lines degrade over time, e.g., fatigue, overload,
corrosion, material degradation or mechanical damage (Kvitrud,
2014; Qiao, 2022; Bureau of Safety and Environmental Enforcement
(BSEE) and ABS Consulting, 2015; ISO, 2019; Det Norske Veritas,
2015), so regular inspections are critical to ensure structural
integrity (Det Norske Veritas, 2022). In practice, however, mooring
inspections are infrequent-often only at scheduled intervals (annual
or multi-year) — due to the high cost and complexity of current
methods. This gap in coverage can allow failures to go unnoticed;
indeed, there have been cases where a mooring line break remained
undetected until the next periodic inspection (Bureau of Safety and
Environmental Enforcement (BSEE) and ABS Consulting, 2015;
Ford et al., 2020; Rahman et al, 2018). The consequences of
an undetected mooring line failure can be severe, ranging from
expensive downtime, economic loss of assets to even accidents,
environmental catastrophes (Carpenter, 2015; United Nations, 2024;
Labra et al., 2023; Yu et al., 2023). This highlights the need for more
continuous and efficient monitoring.

Traditional mooring system inspection techniques are costly,
labour-intensive, and not easily scalable (Subasinghe et al., 2009;
Ford et al., 2020; Tait et al., 2023). Traditionally, divers or work-class
ROVs (Remotely Operated Vehicles) are deployed to visually check
mooring lines and hardware. Diver-based inspections, apart from
exposing humans to risks, become exponentially more expensive
and impractical in deep water environments (Bureau of Safety
and Environmental Enforcement (BSEE) and ABS Consulting,
2015). ROV inspections improve safety by keeping divers out of
danger, but they still require large support vessels and specialized
operators, leading to high operational costs (Ford et al., 2020;
Fun Sang Cepeda et al., 2023). These resource demands make it
impractical to inspect a large number of mooring lines frequently
or on demand. As a result, operators often limit inspections to

Abbreviations: AHE, Adaptive Histogram Equalization; AUV, Autonomous
Underwater Vehicle; BRIE, FBinary Robust Independent Elementary
Features; BlueROV2, Blue Robotics Remotely Operated Vehicle 2; CLAHE,
Contrast Limited Adaptive Histogram Equalization; COTS, Commercial Off-
the-Shelf; CVIClose, Visual Inspections; DOF, Degree-of-Freedom; FOW,
Floating Offshore Wind; GPS, Global Positioning System; GUI, Graphical
User Interface; GVI, General Visual Inspections; IMU, Inertial Measurement
Unit; LoA, Level of Autonomy; ORB-SLAM, Oriented FAST and Rotated
BRIEF Simultaneous Localization and Mapping; ORE, Offshore Renewable
Energy; PRISMA, Preferred Reporting Items for Systematic Reviews and
Meta-Analyses; RGB, Red, Green, Blue; ROI, Region of Interest; ROS
2, Robot Operating System 2; ROV, Remotely Operated Vehicle; SDK,
Software Developer Kit; SLAM, Simultaneous Localization and Mapping;
UAV, Unmanned Aerial Vehicle; UUV, Unmanned Underwater Vehicle;
VSLAM, Visual Simultaneous Localization and Mapping; YOLO, You Only
Look Once (Computer Vision).
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FIGURE 1

A simplified schematic of an offshore mooring system, with key
components including line segments and connection components
based on DNV-OS-E301 (Det Norske Veritas, 2024).

infrequent surveys, which compromises scalability-the ability to
cover many assets or to increase inspection frequency is constrained
by manpower and budget. While the petroleum industry can
tolerate high costs due to greater financial margins, aquaculture
and renewable energy industries demand significantly leaner,
cost-effective inspection solutions (DNV, 2024). This economic
constraint highlights the need for scalable and affordable approaches
to mooring inspections for the expanding number of installations
(and hence the number of mooring lines) in these sectors.

Recent advances in marine robotics offer a pathway toward
cost-effective and scalable inspection solutions. In particular,
classified by the
International Marine Contractors Association (IMCA, 2024), are

observation-class underwater drones, as
emerging as a promising tool for mooring line inspection. These
vehicles are low-cost, portable, and easier to deploy compared to
traditional work-class ROVs (Akram et al., 2022; Blueye Robotics,
2024). They can be launched from small vessels or platforms
and operated by a minimal crew (Blueye Robotics, 2025), or
can be a permanent residence in the sea (Skaugset et al., 2025),
drastically reducing the logistics and expense per deployment.
Modern observation-class ROVs can be equipped with monocular
cameras, optional sonars, lights, a depth sensor, and Inertial
Measurement Unit (IMU), enabling examinations of subsea
structures. Researchers and early adopters report that such drones
provide a viable solution, allowing more frequent and less costly
underwater surveys without sacrificing coverage (Blueye Robotics,
2025). These smaller ROV have the potential to increase inspection
frequency while lowering costs, thereby improving the integrity
management of mooring systems. Furthermore, with advancements
in automation, these drones can be augmented with software for
autonomous navigation and anomaly detection (Akram et al.,
2022). This means that instead of a human manually piloting every
inspection (which can be tiring and skill-intensive), the drone
itself could follow a mooring line, gather footage/data, and flag
potential issues, all with minimal human input. Such autonomy is
key to enable scalability, as it would enable consistent inspections
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across many mooring lines and facilities without a proportional
increase in labour.

Enabling autonomous mooring inspections with observation-
class drones requires reliable perception and localisation methods.
Recent techniques like camera-sonar fusion (Ludvigsen and
Cardaillac, 2023) effectively combined visual detail and range
detection but face challenges adapting to continuously changing
mooring line angles (Hurtos et al., 2017). Acoustic communication
was also suggested for underwater positioning (Garin et al., 2024).
While Visual Simultaneous Localisation and Mapping (VSLAM)
is promising (Zhang et al, 2022), real-time applications remain
constrained by limited onboard processing of low-cost drones.
IMU-based strategies (Santos et al., 2024) initially developed for
floating offshore wind (FOW) platform’s structure could similarly
benefit mooring inspections.

Today, manual review of lengthy video footage makes mooring
inspection labour-intensive and subjective. VSLAM can offer
autonomous, efficient inspection by enabling 3D reconstruction
for automated defect detection (e.g., missing parts, marine growth,
wear). Advances in monocular-inertial VSLAM from aerial robotics
confirm feasibility in dynamic conditions (Alzugaray et al., 2017).
Underwater applications using camera-sonar fusion (Hurtds et al.,
2017) could face complexity and cost issues, making monocular
VSLAM a more practical choice for mooring inspections.

Despite recent advancements, fully autonomous mooring line
inspections using observation-class ROVs have yet to be realized
in practice. Challenging underwater conditions, such as strong
currents, dynamic obstacles, and low visibility (Guo et al., 2022),
complicate the task of maintaining a drone’s proximity to mooring
lines. Although regulatory standards like DNV-RU-OU-0300 (Det
Norske Veritas, 2022) mandate General Visual Inspections (GVI)
and Close Visual Inspections (CVI) to ensure structural integrity,
inspections typically remain infrequent and Risk-Based Inspection
(RBI) due to high operational costs.

A main research gap remains in enabling robust and efficient
autonomous monitoring of mooring lines using observation-class
underwater drones equipped with a minimum sensor package,
including camera, IMU, and depth sensor. There is also limited
research on how to leverage video data from such low-cost platforms
to enable 3D reconstruction to support the defect detection over
time. The research questions are then “How can mooring lines be
effectively monitored and inspected using cost-effective, off-the-shelf
observation-class underwater drones, and how can the acquired visual
data be used to perform 3D reconstruction for supporting the change
detection and defect identification?”.

The objective of this research is to develop a framework for
autonomous mooring line inspection and monitoring, based on
increasing the autonomy of affordable, off-the-shelf underwater
drones equipped with basic visual and inertial sensors. This study
focuses on the use of a commercially available low-cost underwater
drone and leverages computer vision and object detection to enable
autonomous navigation and inspection. VSLAM is used for 3D
reconstruction of mooring lines to support change and defect
detection. The framework is validated through simulation and sea-
trial tests. The findings aim to serve as a foundation for developing
standardised, scalable, and cost-effective solutions for mooring line
inspection in both offshore aquaculture and ORE applications. The
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research builds upon and extends recent student work presented in
Arntzen (2024) and Elseth and @vstaas (2025).

This paper contributes with a modular and scalable approach
that allows for an increased Level of Autonomy (LoA) while
maintaining cost-effectiveness for inspection of mooring lines. By
utilizing open-source tools such as Robot Operating System 2 (ROS
2) and commercial off-the-shelf (COTS) hardware, the inspection
system is designed to be replicable, adaptable, and accessible,
particularly for operators in emerging markets or smaller-scale
operations. Moreover, this unified inspection approach is applicable
to both aquaculture and offshore renewable energy systems,
addressing the common challenge of mooring line inspection in
these industries.

The remainder of this paper is structured as follows. In section 2,
related work is thoroughly reviewed to identify gaps in current low-
cost inspection technologies for underwater applications. Section 3
presents the environment and regulatory challenges associated
with mooring line inspections. The proposed system architecture
and its implementations are detailed in Section 4, including
autonomy levels, sensor integration, simulation setup, and hardware
platform. Sections 5, 6 outline the perception and control strategies,
respectively. The experimental results from dock and sea trials are
presented in Section 7, followed by discussions and conclusions in
Sections 8, 9, respectively.

2 Literature review and research gap

This section provides an overview of relevant studies in
underwater robotics, with a particular focus on technologies
enabling low-cost autonomous inspection. The reviewed literature
focuses on several key areas, i.e. (1) the use of Autonomous
Underwater Vehicle (AUV), (2) ROS integration, (3) simulation
frameworks using Gazebo, (4) VSLAM, (5) cost-efficient solution,
(6) path-following strategies for applications such as mooring system
inspections and related use cases, and (7) the target inspected object
of mooring line (M) or others (O).

To ensure a systematic and transparent literature selection,
the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) framework was applied (Haddaway et al., 2022).
As shown in Figure 2, an initial pool of 2,500 articles was identified
through searches in Web of Science, Semantic Scholar, and Scopus.
After screening for duplicates and applying relevance criteria based
on the seven (7) areas mentioned above, 22 studies were selected
for detailed analysis. Further information on the search strategy is
available in Elseth and @Qvstaas (2025).

The selected literature is summarised in Table I where a
checkmark indicates that a study explicitly addresses a given feature,
and its relevance to mooring line inspection (the last column). A
review of the matrix (Table 1) reveals that mooring line inspection
remains underexplored, with most studies focusing on general
underwater autonomy. Similarly, cost-effective solutions still need
further research. Simulation using Gazebo and ROS are the next
areas having room for more exploration. A horizon analysis of
the matrix reveals that the studies from Manzanilla et al. (2019);
Vithalani et al. (2020); Tipsuwan and Hoonsuwan (2015) align with
several technical aspects of this paper in terms of cost-effective,
autonomy, and path planning to follow a target object. However,
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FIGURE 2

Study selection process using the PRISMA model (Haddaway et al., 2022, licensed under CC BY).

they did not address mooring line inspection directly. Among few
studies that did, only Maurelli et al. (2016) explicitly considered
cost-effective solutions; however, it lacks integration of VSLAM and
does not explore automatic defect detection using visual data from
inspection campaigns.

2.1 Research inspiration and foundations

With the expansion of floating offshore infrastructure across the
aquaculture and renewable energy sectors, the need for scalable and
cost-effective underwater inspection solutions of mooring lines is
becoming increasingly important. To enable routine inspections in
scalable deployments, there is a need towards low-cost underwater
autonomy through vision-based navigation and lightweight sensing.
Nevertheless, the wide range of previous work within underwater
robotics, VSLAM, low-cost autonomy, and inspection technologies
need to be reviewed.

The feasibility of real-time underwater navigation using
affordable platforms has already been demonstrated using
monocular cameras and inertial sensors, for instance using a
BlueROV2 from Blue Robotics equipped with basic onboard sensors
(Blue Robotics, 2023). Even though these implementations did
not include advanced depth estimation or full ROS integration,
they showed the potential of vision-based control in low-cost
systems and motivated further exploration into practical, deployable
solutions (Manzanilla et al., 2019).

More advanced navigation and inspection capabilities have
been achieved using high-resolution sensors such as sonar and
multibeam imaging. These systems have enabled robust chain-
following and localization in AUVs, albeit with potentially
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cost implications due to sonar sensors (Maurelli et al, 2016).
While these results demonstrate the upper limits of inspection
autonomy, their hardware requirements could limit adoption
in cost-sensitive applications. Inspired by this, this paper aims
to achieve similar levels of autonomy using only affordable
visual sensors.

Valuable insights have also emerged from adjacent fields. In
aerial robotics, hybrid approaches that combine deep learning and
classical image processing have been explored, where convolutional
neural networks (CNNs) and Canny edge detection were used to
follow linear structures such as pipelines (da Silva et al., 2022). This
combination of robustness and computational efficiency informed
the architecture of the proposed system, which fuses You Only Look
Once v5 (YOLOV5)-based object detection with Canny edge-based
rope fitting.

As vision-based autonomy evolved, the importance of real-time
localization and mapping became more evident. Monocular VSLAM
systems such as Oriented FAST and Rotated BRIEF Simultaneous
Localization and Mapping 2 (ORB-SLAM2) have been implemented
in ROS environments to support real-time navigation and mapping
(Vithalani et al., 2020). While this method was first designed for
land-based robots, it has also been adapted for underwater use. Here,
OctoMap is often used to create probabilistic occupancy grids when
more advanced Simultaneous Localization and Mapping (SLAM)
systems are not feasible (Arntzen, 2024). These tools enable low-
cost spatial awareness within ROS-based systems, facilitating visual
navigation in dynamic environments.

Simulation environments have played a crucial role in system
development. The Gazebo simulator has been used for underwater
drones, offering realistic force modelling and dynamic behaviour for
control system development and validation (Manhaes et al., 2016).
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TABLE 1 Relevant studies relating to cost-effective underwater drones.

10.3389/frobt.2025.1655242

References Keyword AUV | ROS GAZEBO VSLAM Low-cost Path Application
(M/O)*

Vargas et al. (2021) BluROV/VSLAM v X X v X X O
Guth etal. (2013) Hippo VSLAM v v X v X X 0
Zhang et al. (2022) Underwater SLAM X X X v X X (6]
Shkurti et al. (2011) State estimation v X X v X X (@)
Manhies et al. (2016) Gazebo ROV v v v X X X (6]
Vithalani et al. (2020) Navigation SLAM X v 4 v v v (6]
Manzanilla et al. (2019) ROV VSLAM nav v v v v v X (@]
Zhao et al. (2022) Mooring ROV v X v X X X M
Tipsuwan and Pipeline Inspection v v v v X X @)
Hoonsuwan, (2015)

Xiang et al. (2010) PI Multiple AUV’s v X X X X v [¢]
Zeng et al. (2015) Long Range PI v X X X X v ¢
Maurelli et al. (2016) Chain following v v X X v v M
Li et al. (2020) VSLAM semantics X X X v X X (6]
Yang et al. (2022) Mooring X X X X X X M
Willners et al. (2021) Low-cost review v X X X v X [¢]
Allibert et al. (2019) Girona-500 PI v X X X X v ¢}
Da Silva et al. (2022) Aerial drone X v v X v v (@)
Santos et al. (2024) Dynamic path planning v X X X X v ¢}
Garin et al. (2024) Tetherless positioning v X X X v v O
Bremnes et al. (2024) Risk modelling and path v X X X X 4 O

planning

Akram et al. (2025) Net pen inspection X X X v v X (@]
Grotli et al. (2016) Autonomous job analysis v X X X X X M

"M: Mooring system/O: other application.

While not focused on inspection tasks, such environments have been
instrumental for prototyping visual guidance and autonomy logic
before deployment in real-world conditions.

Recent advancements have also pointed toward future directions
for autonomous inspection. For example, IMU-enhanced path
planning has been applied to floating offshore platforms to
improve navigation accuracy during inspection tasks (Santos et al.,
2024). Similarly, acoustic-based localisation techniques have been
proposed to enable tetherless operation when GPS fixes are
unavailable (Garin et al., 2024). Approaches that incorporate risk-
aware path planning have also been developed to support safer
and more adaptive inspection strategies in uncertain offshore
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conditions (Bremnes et al., 2024). This state-of-the-art will help
to increase the robustness of the underwater drones while
increasing the LoA.

Altogether, these advancements point toward a convergence
of cost efficiency and autonomy in underwater inspection. By
building on developments in robotics, image processing, VSLAM,
and simulation, this work aims to close the gap between expensive
high-end systems and practical low-cost alternatives. The system
presented here leverages commercially available hardware and open-
source software to enable vision-based autonomous inspection
of mooring lines, offering a scalable solution for both offshore
renewable energy and aquaculture applications.
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TABLE 2 Classification of UUVs.

Class Description

Class I Pure observation level
Class II, A Observation level with load options
Class II, B Observation level with mild investigation and intervention ability
Class ITI, A | Working level with weight around 1,000 kg and payload capability
of 200 kg
Class III, B | Working level with weight around 3,000 kg and payload capability
above 200 kg
ClassIV,A | Towed underwater drone for cable laying
ClassIV, B | For more accurate cable laying
Class V Prototype or project-specific underwater drone
Class VI, A | AUV with weight less than 100 kg
Class VI, B | AUV weighing above 100 kg

2.2 Current cost-effective design

In the aquaculture and ORE industry, the use of ROVs has
shown a significant potential to reduce operational and maintenance
(O&M) costs (Tait et al., 2023; Capocci et al., 2017) as well as
providing high quality data (Khalid et al., 2022). Some typical
applications of ROVs are inspection and maintenance of subsea
and aquaculture infrastructure, environmental monitoring and
deep sea mapping. Reflecting their diverse use cases, IMCA
classifies unmanned underwater vehicles (UUVs) which are
summarised in Table 2 for reference.

In this paper, class I UUVs are of particular interest due to the
availability of low-cost sensors such as a monocular camera, IMU,
and depth sensors. Currently, Blueye Robotics is well established
in the low-cost segment with drones such as the Blueye Pioneer
and Blueye X3 (Blueye Robotics, 2024). At the time of writing this
paper, the Blueye Pioneer has a lower price point ($5,554) compared
to its successor, the Blueye X3, which is priced at $23,588. All
Blueye Robotics drones are portable, user friendly, and come with
open-source software. Although they are not autonomous out of
the box, Blueye Robotics drones offer potential for implementing
solutions that increase the LoA thanks to readily available Software
Developer Kit (SDK).

Other cost-effective approaches to both underwater and aerial
autonomy have been explored in recent studies. For instance, a
COTS ROV is converted into an AUV in Willners et al. (2021).
In this study the main focus was a BIuROV2 (Blue Robotics,
2023), where the hardware and software challenges involved
in transitioning from manual to autonomous operations were
highlighted. Further, the potential of low-cost systems for broader
adoption in underwater robotics is discussed.

Similarly, a vision-based method for autonomous pipeline
aerial vehicle (UAV) is

inspection using a unmanned
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proposed in da Silva et al. (2022). The paper utilised a standard
PX4 flight controller integrated with ROS and simulated using
Gazebo. A CNN was deployed to provide an initial estimate of
the pipeline’s location, which was then improved using image
processing techniques such as Canny Edge Detection for a more
precise localization and path following of the pipeline.

2.3 Research gap in literature

While recent advancements in underwater robotics have
demonstrated the potential of vision-based navigation and
inspection, several key research gaps remain—particularly when it
comes to creating cost-effective and scalable systems suited for real-
world deployment. This paper addresses these gaps by exploring
the integration of classical and deep learning-based perception,
vision-only control strategies, and modular autonomy within a ROS
2-based architecture.

A major gap lies in the application of image processing
techniques tailored to underwater environments. Few studies
have examined how classical filtering approaches can suppress
visual noise, such as marine snow, while retaining structural
detail critical for reliable path following. Although such
methods are computationally lightweight and compatible with
resource-constrained hardware, their ability to generalize across
lighting conditions and operational depths remains largely
unexplored.

In parallel, deep learning models such as YOLO have shown
success in terrestrial and aerial robotics, but their use for detecting
structural elements like shackles or chain connections in subsea
inspections is still in its infancy. The lack of annotated underwater
datasets and the computational limitations of small-form-factor
drones further hinder widespread adoption.

Another key area of limited research is the feasibility of vision-
only control for underwater drones. Most documented systems rely
on expensive navigation sensors such as Doppler Velocity Logs
(DVLs) or multibeam sonar to ensure positioning and stability.
While more affordable DVLs, like those offered by WaterLinked
(2024), present promising alternatives, their integration in
low-cost autonomous inspection systems remains largely
untested.

Simultaneously, there is a clear lack of robust SLAM-based
solutions for mooring line inspection. While SLAM techniques
are well-established for general navigation, their application
to underwater scenarios involving repetitive structures and
depth-dependent lighting is rare. As shown in Table 1, only
a handful of studies tackle these challenges. Moreover, SLAM
frameworks such as ORB-SLAM3 are not yet fully adapted to
ROS 2 environments, and available wrappers often lack critical
features like real-time 3D point extraction (Haebeom Jung, 2023).
Deploying such pipelines on platforms like the Blueye X3 is
particularly difficult due to limited onboard computation and
energy constraints.

Simulation is another underdeveloped aspect. Although Gazebo
Garden provides next-generation capabilities for virtual testing, its
integration with ROS 2 remains immature. For underwater systems,
where real-world testing is costly, robust simulation environments
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are essential for validating control and perception pipelines before
deployment.

Finally, while ROS 2 has become a widely adopted robotics
middleware, the implementation of fully integrated, low-cost,
ROS 2-based pipelines for underwater inspection is still rare.
Community-developed tools such as yolov5_ros (Ar-Ray, 2024)
and ROS 2-compatible ORB-SLAM3 wrappers
Jung, 2023) offer a technical foundation, but there is limited

(Haebeom

evidence of these components being brought together into
coherent systems for autonomous operation in real marine
environments.

In summary, this paper responds to these gaps by proposing
a vision-based, modular inspection system that relies solely on
affordable sensors and operates without external positioning. It
contributes to the field through the development of robust image
processing pipelines, integration of deep learning-based detection,
and validation of visual-only control through both simulation and
sea trials.

3 Regulatory and environmental
challenges

3.1 Mooring systems

Mooring systems are critical for maintaining the position of
floating offshore structures such as wind turbines, fish farms, and
FPSOs. Depending on site conditions, these systems may be taut,
catenary, or tension-leg configurations (Rui et al., 2024; Wang,
2022a; b), each with specific challenges for autonomous inspection,
especially across varying environments like midwater and seabed
zones. Failures due to fatigue, overload, corrosion, material
degradation or mechanical damage are well documented (Kvitrud,
2014; Qiao, 2022; Bureau of Safety and Environmental Enforcement
(BSEE) and ABS Consulting, 2015; ISO, 2019; Det Norske Veritas,
2015) and can lead to severe operational and environmental
consequences (Carpenter, 2015). This underlines the importance of
regular and reliable inspection. A more detailed account of mooring
system properties, configurations, and failure modes is available
in the corresponding master’s theses (Arntzen, 2024; Elseth and
Qvstaas, 2025).

3.2 Rules and regulations

To ensure the station-keeping and operability of moored
floating structures, several rules are defined by Det Norske
Veritas (DNV). DNV-RU-OU-0300 defines in-service inspection
regimes for FOW (Det Norske Veritas, 2021). Specifically, this
standard sets requirements for annual interim surveys and
a complete survey. The complete survey must be conducted
different
dependent on the site-specific fatigue design life factor. Some

within a 5year interval and has requirements
relevant requirements include being a GVI of all mooring
lines with comparison of video data from previous inspection
campaigns, and a CVI of one mooring line from each mooring

line cluster.
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3.3 Properties of autonomous mooring line
inspection using drones

Autonomous underwater inspection of mooring systems
requires specific functional properties and system capabilities due
to the geometric, environmental, and operational characteristics
of the task. This section outlines the key requirements that
inform the design of a vision-based, low-cost inspection
drone system.

3.3.1 Mooring characteristics

Mooring lines extend from the fairlead at the floating structure
to an anchor on the seabed, covering a trajectory that may shift from
near-vertical to horizontal. In addition, a mooring line experiences
dynamics due to platform motion, hydrodynamic forces, and line
elasticity. The inspection system must be capable of following this
continuous span—often tens to hundreds of metres in length—while
maintaining a stable trajectory and viewing angle. This requires
a navigation strategy that supports line-following over varying
orientations and depths.

3.3.2 Underwater visibility

For camera vision in underwater robotics, one of the dominant
challenges is the presence of marine snow, especially in deeper
waters where no sunlight is present. Marine snow is a somewhat
loosely defined term, but can be summarised as the presence of
particles of different dimensions and transparency. The particles
mainly consist of organic matter from zooplankton remains, fecal
materials, and suspended sediments (Guo et al., 2022). Marine snow
tends to move towards the seabed, but can also move in other
directions depending on currents and the relative movement of
the drone. Another factor is the brightness emitted from the light
onboard the drone. Analogous to driving a car in the darkness with
headlights in snow or rain, increased lighting causes the particles to
appear more prominent.

Various methods are available for removing marine snow,
with filtering techniques like median blur and deep neural
networks being the most common (Jiang et al., 2020). However,
neural networks demand substantial computational resources,
making them unsuitable for low-cost drones with limited onboard
processing capabilities. Cardaillac and Ludvigsen (2022) introduced
an image enhancement technique that successfully removed the
majority of marine snow present in the frame. This approach was
promising as it allowed for real-time processing of video data before
applying camera vision techniques.

Another challenge is the variable illumination conditions
encountered at different depths. Near the surface, sunlight creates
strong gradients and overexposed regions in the upper part of
the image, while at higher depths, the scene is predominantly
illuminated by the onboard LED, resulting in uneven lighting.
These variations complicate consistent feature extraction and object
detection across the inspection path.

3.3.3 3D reconstruction of mooring lines for
change and defect detection

While change detection (Adam et al, 2022), comparing
historical and current inspection data, can support automated
identification of structural degradation or anomalies (e.g., wear,
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TABLE 3 LoA in maritime robotics.

Level Description

0 - Manual Operation No autonomy; full human control

1 - Assistance Supports tasks; constant supervision required

2 - Partial Autonomy Some autonomys; still needs operator input

3 - Conditional Autonomy Autonomous in known settings; human fallback

4 - High Autonomy Fully autonomous in specific missions

5 - Full Autonomy Self-sufficiency across all situations

damage, or missing components), today common practices still rely
heavily on manual video review. Al-based methods have shown
promise in reducing manual effort and improving accuracy, but
their application in the inspection and maintenance of floating
underwater structures remains limited, with only a few studies,
exemplified by marine growth detection (Palla, 2024) or changes in
risk profiles (Bremnes et al., 2024).

A first step for change detection is the ability to reconstruct the
mooring line in 3D over time. However, this task is complicated
by the inherent difficulties of the underwater environment, such
as large data volumes, the dynamic nature of mooring lines,
poor visibility, sensor noise, biofouling as well as the scarcity
of well-labeled datasets. Unlike applications such as coral reef
monitoring, which benefit from static, texture-rich scenes, mooring
line inspection must contend with moving targets and feature-poor
backgrounds. This paper addresses these challenges by focusing
on 3D reconstruction using low-cost visual sensors, laying the
foundation for future automated change and defect detection in
complex underwater settings.

4 Proposed system architecture and
implementation

4.1 Increased autonomy levels in COTS
underwater drones

Defining autonomous control systems and distinguishing
between an automatic and autonomous control system is not an
easy task. In this paper, autonomy of a control system is defined as
its ability to perceive an environment through sensors, process the
information, and make context-appropriate decisions, and then act
upon those decisions, all while adapting to familiar and unfamiliar
conditions without human intervention. Autonomy is commonly
characterised by levels. Currently, there is no internationally
renowned taxonomy for the LoA applied to maritime robotics. In
this paper, an adapted taxonomy from One Sea Ecosystem (2022)
was used and summarised in Table 3.

COTS low-cost ROVs such as the Blueye X3 and BlueROV2
operate at Level 0 - Manual Operation, as outlined in Table 3.
One could also argue that they operate at Level 1- Assistance
given their built-in capabilities of maintaining heading and depth
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without human intervention. However, the drones can also be
interpreted as ROVs, and several control and perception systems
must be implemented before approaching a higher LoA. The
developments presented in this paper aim to increase the LoA
to Level 3 - Conditional Autonomy, wherein the drone can
operate autonomously in a defined set of conditions, but may
opt to human control if uncertain conditions are met. Although
existing infrastructure has been demonstrated to support residential
UUV autonomy (NTNU, 2025), achieving full autonomy for low-
cost drones will necessitate further enhancements to enable reliable
operation across a wider range of environmental conditions without
human supervision.

Applying autonomy in maritime robotics is a tedious process.
The primary challenge is the lack of GPS. In contrast to aerial
applications of drones, GNSS sensor data is not available. Solutions
do exist; for example, baseline (BL) acoustic positioning systems
provide accurate positioning. However, such systems are not
considered low-cost and are therefore not suited for cost-sensitive
applications.

The scope of this paper is limited to vision-based autonomy
without reliance on external positioning systems. First of all, unlike
in aerial drone applications, underwater navigation lacks reliable
GPS. Secondly, while accurate alternatives such as baseline acoustic
positioning systems, they are not cost-effective and therefore fall
outside the low-cost focus of this study. Similarly, sonar, with the
capacity to fuse with cameras, is excluded in this paper due to
additional payload and complexity it introduces. One may argue
that acoustic and sonar technology could increase even further the
Level of Autonomy (LoA), their integration is beyond the scope of
this paper.

4.2 Hardware platform

Two promising low-cost COTS drones have been considered in
this paper. The most affordable among them is the BlueROV2 from
Blue Robotics (2023), known for its open-source electronics and
movement in six degrees-of-freedom (6-DOF). Lopez-Barajas et al.
(2024) demonstrated the BlueROV2’s capability for aquaculture
inspections, using deep learning and YOLO object detection to
detect holes in fish cage nets. However, Blueye Robotics X3 ROV
(Blueye Robotics, 2024) was chosen for this study due to its
availability at the authors’ institution. In addition, an agreement with
the manufacturer provides necessary support. A comparison of key
parameters for both platforms is presented in Table 4.

The Blueye X3 is equipped with four available thrusters, allowing
for translational movement in surge, sway and heave, as well as
rotational movement in yaw. The Blueye X3 has a tether, allowing
real-time video transmission to the remote control console and
serving as a fail-safe in the event of thruster failure or battery
depletion. Although the tether can be removed, it remained kept
attached during trials for safety reasons. The drone will be subject
to tetherless inspection at a later stage, once a sufficient LoA
is achieved.

An additional advantage of the Blueye X3 is the availability of
a Python SDK, which provides easy access to telemetry data and
sending of thruster commands to the drone. The Blueye X3 also
features three guest ports that support peripheral equipment such
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TABLE 4 Comparison of BlueROV2 and blueye X3 specifications.

Specification

Dimensions (L x W x
H)

’ BlueROV2

457 x 338 x 254 mm

Blueye X3

485 x 257 x 354 mm

Weight in Air 11-12 kg (with ballast 8.6 kg (with saltwater
and battery) ballast)

Depth Rating 300 m 305 m

Forward Speed 1.5 m/s (3 knots) 1.5 m/s (3 knots)

Thrusters 6 (4 vectored, 2 vertical) 4 x 350 W

Battery Runtime 2-4h Upto5h

Camera Resolution

1080p, 110° FOV, £90°
tilt

1080p, 115° vertical
FOV, +30° tilt

Lighting

2 or4 x 1,500 lumens,
135°beam

3,300 lumens, 5,000 K,
CRI 90

4,600 USD

23,588 USD

Estimated price

as acoustic sensors, cameras and grippers. Although guest ports are
not utilised in this paper, they represent a desirable property that
could support further advances of autonomy.

4.3 Overview of the system architecture

The architecture of the system is designed around a modular
perception-control loop, as illustrated in Figure 3. The system
starts with the camera input from the ROV, which acts as the
primary sensor for visual data collection. This data is sent to a
pre-processing node, where classical computer vision techniques
such as Guided Filtering, Contrast Limited Adaptive Histogram
Equalization (CLAHE), and morphological operations are applied
to improve image quality and noise filtering, including marine snow.

Further, the visual stream is divided into two parallel processing
pipelines. One pipeline leads to an Object detection node (in
Figure 3) driven by YOLOV5, which is trained to identify and mark
shackles found on the mooring line. The other pipeline proceeds to
a mooring line detection module (lower right corner of Figure 3),
which extracts geometric features of the mooring line.

The outputs from both pipelines are fused in a unified
perception node. This module generates a message containing
both the visual tracking state of the mooring line and detection
flags from the object detection model. This message is published
as a YoloCannyChainPose and passed to the decision-
making node, which interprets the incoming visual data to
determine actions.

Finally, the Control node (in Figure 3) translates these decisions
into actuator commands in surge, sway, heave, and yaw which are
then transmitted to the Blueye X3. The actuator commands are sent
through the DesiredVelocity topic to the thrust allocation
system onboard the drone.
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It is noted that the
be performed offline on

VSLAM node in Figure3 will

recorded videos. This will be

presented later in subsection 5.3.

4.3.1 Calibration

Sensor calibration is important to ensure accurate operation
of drone’s positioning. Camera calibration is necessary to correct
for lens distortion and skewness, while IMU calibration enables
estimation of key noise parameters such as white noise and random
walk. The camera and IMU calibration parameters are listed in
Tables 5, 6.

The camera was calibrated both in air and underwater using the
ROS 2 camera calibration package. The calibration was performed
with a 6x8 checkerboard pattern at 30 frames per second
(fps), using a native ROS 2 command. The resulting parameters
are listed in Table5, and the calibration images are shown
in Figure 4.

The IMU calibration was performed using the kalibr toolbox,
where the Blueye X3’s onboard MEMS-based IMU was calibrated
using AprilTags and a recorded ROS bag. The final noise model
parameters are listed in Table 6.

4.3.2 Drone sensors

The COTS Blueye X3 is equipped with internal sensors that
publish data to specific ROS 2 topics, which can subsequently
be subscribed to by other system components. These topics store
data such as thruster forces, pose, orientation, and video from the
onboard camera. Pose and orientation are gathered from an IMU
sensor. The IMU gathers data from a gyroscope, an accelerometer,
and a magnetometer. The IMU data indicates the relative pose
and orientation in comparison to an earlier reference frame or
initial state.

Depth and orientation data are handled by the BLuEye_Pose
node, which publishes a pose message on the/BlueyePose topic.
This message contains roll, pitch, and yaw data in addition to depth.
Inertial motion data is provided by the IMU_to0_ros2 node, which
streams accelerometer, gyroscope, and magnetometer data to ROS
topics such as/blueye/imu.

Moreover, to monitor the force set points from the drone in
the 4-DOF, the B1uEye_Force node reads thrust information
in the surge, sway, and heave directions, and publishes it
to/BlueyeForces. For visual feedback, the Video_to_ros2
node publishes the camera stream to the topic/camera. This video
stream is used both for visual inspection and as input to the mooring
line detection pipeline.

Together, these nodes form the interface layer of the control
system, and the relationship between the sensor nodes and the rest
of the system is illustrated in Figure 3.

4.3.3 ROS 2 integration

The software architecture is implemented using ROS2
(Macenski et al, 2022), which provides a modular node-
based middleware for real-time message passing, node lifecycle
management and topic-level Quality of Service (QoS) tuning.
Perception nodes (image pre-processing, YOLOV5 detector,
ORB-SLAM3 wrapper) publish visual state messages that are
consumed by the guidance and control nodes (Figure 3).
For simulation, the ROS2/GZ Bridge is used to forward
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FIGURE 3

Proposed system architecture for Blueye X3 (Arntzen, 2024).

TABLE 5 Camera calibration parameters in air and

underwater (Arntzen, 2024).

TABLE 6 IMU noise model parameters (Arntzen, 2024).

] Parameter Value Units
Parameter Air Underwater
Gyroscope “white noise” 1.698e-04 ra:l‘
Camera Type Pinhole Pinhole v
Accelerometer “white noise” 2.0e-03 %
f. 987.628 1,203.945 o
Gyroscope “random walk” 1.939¢-05 ;ad
1, 998.105 1,202.857 ¢ VH
Accelerometer “random walk” 3.0e-03 S‘mﬁ
I 955.953 977.854 T
IMU sampling rate 1.0e3 Hz
¢ 529.845 537.217
k, -0.216 -0.167
ks 0.0483 0.0396 simulated sensor topics from Gazebo to ROS2 (Figure 5).
Full ic/m finitions and launch files are provi in
o 0.000816 0.002709 ull topic/message definitions and launc .es are p OVIded.
Arntzen (2024); Elseth and @vstaas (2025) and in the accompanying
P, 0.000444 0.004614 implementation repository.
ks 0.0 0.0
4.4 Simulation platform
Image Width 1920 1920
Image Height 1,080 1,080 Virtual commissioning via simulation platforms enables early
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FIGURE 4
Camera calibration performed in air (left) and underwater conditions (right) (Arntzen, 2024).
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FIGURE 5

Simulated system architecture used for testing and validation (Arntzen, 2024).

during real-life deployment. However, careful considerations must ~ (AURLab, 2025), has been used in this work due to its capability
be made to ensure that the results from the simulated environment  to render a 3D environment with hydrodynamic and thruster
are replicable in a real-life scenario. forces. Observing Table 1, Gazebo Garden is not used in

A simulator from the Applied Underwater Robotics Laboratory ~ a previous work. In this paper, we will use the simulator
(AUR-Lab) (AUR-Lab, 2024), which is built on Gazebo Garden  framework developed by the AUR-Lab.
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Gazebo Garden is a 3D dynamic simulator that works with ROS
and a physics engine to develop and test robotic applications in
a simulated environment. Gazebo is built on the physics engine
Dynamic Animation and Robotics Toolkit (DART) which provides
algorithms for the dynamics and kinematics of a robot’s movements
in an environment. Gazebo Garden is the latest version of Gazebo
which was released in 2022 (Gazebo, 2022).

Moreover Gazebo uses a modular architecture, and with its ROS
integration, messages can automatically be converted between ROS
and Gazebo. An explanation of how this is implemented in this
project is discussed later in this section.

4.4.1 Installation and system setup

To support development and testing of the autonomous
inspection framework, a simulation environment was established
using Ubuntu 22.04.5, ROS 2 Humble, and Gazebo Garden. Because
Gazebo Garden is not yet fully supported on Windows platforms,
a dual-boot configuration was required to ensure compatibility
and performance. The system includes three principal components:
Gazebo Garden for simulating the underwater environment, the
ros_gz bridge for interfacing ROS 2 with the simulation,
and a ROS 2 workspace containing all custom perception and
control nodes.

4.4.2 Simulated system architecture

Figure 5 provides an overview of simulated system architecture
used for testing and validation. Within the Gazebo simulator,
a virtual model of the Blueye operates in a 3D world that
includes hydrodynamics, thruster modelling, and a mooring chain.
Simulated sensor data, such as video from the onboard camera and
inertial measurements from the IMU, are published through Gazebo
and bridged into ROS 2. This data is used by the perception pipeline,
which includes both object detection and mooring line tracking
algorithms. The output of these nodes is fused into a pose estimate
for the mooring line, which is published to the topic/ChainPos.

Parallel to this, a joystick node provides manual control
inputs via the/joy topic. These inputs are parsed and merged
with autonomous control outputs in the/blueye_joystick_
parser node to form a desired velocity set-point. This set-
point is then published to/blueye/desired_velocity
and processed by the thrust allocation module. The resulting
the
and sent back to Gazebo using the following command:
/model/blueye/joint/thruster_joint_{1..4}/cmd
_thrust.

Throughout this process, the ros_gz_bridge maintains
synchronization between the simulated world and the ROS 2 system.

commands are distributed across simulated thrusters

Visualization of the drone’s estimated motion and environment is
handled through RViz2 (a visualisation tool for ROS 2), making
effective testing of both perception and control in the loop possible.

4.4.3 Image processing in simulation

The Gazebo simulator generates synthesis video data through
a virtual camera, which is streamed in real time to the ROS 2-
based control system (Figure 5). Figure 6 illustrates a sample frame
from the Gazebo environment alongside the corresponding image
processing output. In this example, the detected mooring line
is overlaid in green, and the estimated mid-point is marked in
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blue. Relevant features (centre coordinates, orientation angle, line
width, and frame brightness) are extracted and published to the
controller for further processing. Image processing will be presented
in the next Section 2.

5 Perception system

This section iteratively introduces the theory and corresponding
implementation for the perception system which has been developed
to increase the LoA of the Blueye X3.

5.1 Image processing

To enable mooring line detection using the Blueye X3’
camera, several image processing techniques were implemented,
selected for their real-time performance and adaptability through
parameter tuning.

5.1.1 Theory

Colour Space Conversion converts the pixels found in the video
frames from the Blueye camera from Red, Green, Blue (RGB) to a
YCbCr format. In this space, the image is represented by a luminance
component (Y) and two chrominance components (Cb and Cr),
which encode colour differences. Each of the three RGB values
is represented with an intensity value in the range 0-255. Marine
snow appears as white and gray spots in the frame. This visual
characteristic suggests that most of the relevant image information
for marine snow is encapsulated in the luminance component Y
of the YCbCr colour space (Cardaillac and Ludvigsen, 2022). To
retain image features relevant to marine snow while reducing data
dimensionality, the RGB colour space is converted to YCbCr. The
RGB image can be represented as a vector, given by

R(x,y)
G(x.y)
B(x,y)

Ipgg (%) = (1)

The RGB image (Equation 1) can then be converted to YCbCr colour
space, given by

0.299 0.587 0.114
Iy cper (%) = | —0.168736  —0.331264 0.5
0.5 -0.41688 —-0.081312
R(x,y) 0
G(x,y) |+ 128 2)
B(x,y) 128

For the subsequent steps in the image processing pipeline, only the
luminance component, e.g., Equation 2, of each video frame is used.

Guided Filtering is applied to smooth out the image and reduce
the noise from marine snow. First, given a guidance image, its
intensity value I(i,j) of each pixel (i,j) is found. For each pixel,
neighborhood pixels are selected with a window radius r containing
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Canny Edge Detection -

Visualization of the image processing pipeline in simulation. Left: Simulated environment. Right: Overlay with ROl (Region of Interest, red box) and
fitted line representing the mooring line (green) (Elseth and @vstaas, 2025).

w pixels. The mean, correlation and variance of each pixel I and its
neighborhood are calculated as

- 1 .
I(x,y) = @l Z I1(i,)), (3)
(if)ew(x,y)
Icorr (x,y) = m Z I(i:j)za (4)
(ij)ew(xy)
Ivar = Icorr - Tz’ (5)

where I is the pixel intensity value at coordinates (i,); I(x,y) is the
local average intensity within window w(x, y) of radius r, serving as
a baseline for smoothing; I, (x,y) is the local correlation; I, is
the variance, i.e., high variance indicates edges, while low variance
corresponds to smooth regions. Secondly, the three constants a, b

and q are calculated as

_ Ivar (6)
a= I, +e¢
I
=1 @
g=axI+b, (8)

where ¢ is a regularization term which balances between edge
preserving and smoothing. The mean values of a and b are calculated
with the same equations used for finding I. Finally, the filtered output
of the image q is calculated. The coefficient a controls the trade-off
between smoothing and edge preservation (with a = 1 at edges and
a =0 in homogeneous regions); b adjusts the local intensity offset
to maintain the neighborhood mean; and the output g combines
these terms in a linear model to produce the final edge-preserving
smoothed image. More details can be found in He et al. (2013).
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Contrast Limited Adaptive Histogram Equalization (CLAHE)
is applied to improve the contrast in the image. In this method,
the pixel intensities in an image frame are visually represented in a
histogram. CLAHE works by enhancing the contrast using Adaptive
Histogram Equalization (AHE) (OpenCV, 2024b). In simpler terms,
AHE stretches the histogram in order to improve the contrast
of the image.

In this method, the image is divided into subsections called
“tiles”. Each tile size is 8x8 as standard but is subject to tuning
based on the desired output. For each tile in the image, AHE is
applied to enhance the contrast. A major drawback with AHE is
that it will introduce added noise to the image. To counter this,
contrast limiting is applied to each tile. Contrast limiting ensures
that the contrast of each individual tile does not surpass a set contrast
limit. If a pixel is found to be above the set contrast level it is
clipped and distributed evenly to other tiles within the image. The
entire algorithm is described as follows, starting with histogram
equalization at its core. Given a grayscale image with L possible
intensity levels, the normalised histogram is defined as

n.

py="2,

n

0<i<L, )
where 7; is the number of pixels with intensity i, and » is the
total number of pixels in the image. In this paper, L is set to 255,
corresponding to the maximum intensity value of a pixel in an
8-bit image.

The cumulative distribution function (CDF) of the histogram
is given by

T() =) ps(j). (10)
j=0
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and is used to map each intensity level i to a new level i’ according to

i'=|T@G)-(L-1)]. (11)

The pixel values in the image are then updated using the
transformation

Jeq6) =T (f(x.p)) - (L-1)], (12)

where f. -~ denotes the histogram-equalized version of the
input image.

In the case of CLAHE, the image is first divided into non-
overlapping tiles. A histogram is calculated for each tile, and the
values are clipped at a predefined threshold, according to

Hclipped (l) = min (H(l) > Tclip) > (13)

where T, is the clip limit. The clipped excess E is then redistributed

lip
uniformly across all histogram bins, according to

. . E
Hredistributed (1) = Hclipped (l) + Z . (14)

The local cumulative distribution function T} (i) for each tile k is
computed as

T () = ) py ().

(15)
=0
The remapped intensity is then given by
i = 1 Te()- (L-1)]. (16)

Finally, bilinear interpolation is applied between adjacent tiles
to avoid discontinuities, and the enhanced image is obtained as
Jerane(y)-

After obtaining the contrast-enhanced image, a Morphological
Transformation is applied to improve the quality of the image
used for mooring line detection. Morphological operations are
particularly useful for refining shapes in images, especially in noisy
or low-contrast underwater scenes. In this case, erosion is used to
clean up the image by removing small, irrelevant noise and isolating
more prominent features. Erosion works by scanning the image with
a small structuring element (also called a kernel), which can be
shaped as a rectangle, ellipse, or cross. When the kernel passes over
the image, each pixel is set to zero (i.e., background) if any of its
neighbouring pixels within the kernel area are also zero. This results
in sharper edges around foreground objects and suppresses small,
isolated noise, which might otherwise interfere with line detection.

Mathematically, let f:E — R be the luminance component
and b:B — R be the structuring function. The erosion operation
is defined as

(fob) () = inflf(x+7) - b ()], a7
where, inf denotes the infimum (greatest lower bound). This
operation computes the minimum value of the image f in the
neighborhood defined by B, adjusted by the structuring function b.

Canny Edge Detection (OpenCV, 2024a) is the last part of the
pipeline, but equally important, to support a binary representation
of structural edges with optimal noise immunity. A prerequisite
to applying edge detection is reducing the amount of noise found
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Input: Y color space image
Output: Edge detected image
foreach pixel (i, j) in the gradient G image do
Determine gradient directions, G and Gy, at (i, j);
Calculate G(i, j) according to Eq. 18;
Compare G/(4, j) with neighboring pixels along the gradient direction;
if G(i,7) > G(i — 1,7) and G(3,j) > G(i + 1, j) then
| Keep pixel;
end
else
| Suppress pixel (set value to 0);
end
end

Algorithm 1. Non-maximum suppression.

in the image, and Canny Edge Detection does this by applying a
Gaussian filter. Following, a Sobel kernel is applied horizontally and
vertically to attain images with the first derivatives in horizontal G,
and vertical G, directions. These two images are used to calculate the
edge gradient G and direction 0, given by

G=1G:+G} (18)
G)’
g = tan™' — (19)

X

where G,0; are the edge strength and orientation at each pixel,
respectively; and G,,G, are the horizontal and vertical gradients,
respectively, calculated from Sobel kernels.

Subsequently, a non-maximum suppression is applied with a
scan of the image in order to remove any pixels with no contribution
to an edge. This is an iterative process where each pixel is checked
with its neighbouring pixels in the vertical or horizontal plane. If the
current pixel forms a local maximum compared to its neighbouring
pixels, it is considered as an edge. Otherwise the pixel is suppressed
and given a zero value. This scanning process is done horizontally,
vertically and diagonally and is summarized in Algorithm 1.

5.1.2 Implementation

The proposed pipeline in this paper integrates multiple
computer vision techniques as presented in Section 5.1.1) into
a process, described in Algorithm 2. It is designed to balance
performance and practicality, taking into account the computational
limitations of the Blueye X3’s onboard hardware and the target frame
rate of 30 FPS at 1080p resolution. By using OpenCV’s Python
interface, the pipeline achieves both efficient real-time processing
and development flexibility.

5.2 Object detection

A key part of a drone’s autonomy is its capability to detect
different structural components on a mooring line. Detecting
structural components is crucial for several reasons, with the major
advantage being allowing for less use of manual human labor to
detect structural changes on the mooring line. Another advantage,
particularly relevant to this work, is the drone’s ability to switch
from GVI to a CVI when approaching components on the mooring
line that require detailed examination. Lastly, object detection can
be used to determine the depth at which the AUV should initiate
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Input: /camera video stream
Output: Chain position (x, y), angle (rad), frame brightness, estimated width
foreach Frame do
Convert incoming frame to Y'CbC'r color space, Eq. 2;
Extract Y (luminance) channel and compute mean brightness;
Apply CLAHE to Y, Egs. 9-16;
Apply guided filter to Y, Egs. 3-8;
Erode image using elliptical kernel;
Perform morphological closing, Eq. 17;
Apply Canny Edge Detection, Eqgs. 18-19;
if white pixels exist within Region of Interest (ROI) then
Fit a line to the white pixels;
Calculate line angle in degrees;
Adjust angle to range [0, 90];
Determine line midpoint and center-relative coordinates;
Compute average width based on white pixel count in each row;
// Publish computed values
Publish CannyChainPos: (z,y),angle 0, width w;
Publish line angle to topic;
Overlay text info (angle, coords, width) on image;
end
end

Algorithm 2. Image processing pipeline.

its ascent by detecting different components typically found when
approaching the seabed.

5.2.1 Theory

To detect different components, YOLOV5s, a lighter variant
of YOLOV5 (Ultralytics, 2025), is used due to favorable properties
such as real-time capability and high accuracy. In short terms,
YOLOvV5s works by using a pre-trained model, trained on real image
data of mooring lines. This technique is called supervised learning,
where the model is trained on a set of annotated data and then uses
a defined set of algorithms to detect and classify components found
in the image.

A major challenge with this method is the lack of
sufficiently large annotated data. To address this, an annotation
tool from (Roboflow, 2025) has been used. This allows for combined
use of artificial intelligence (AI) and manual labeling to create
annotated data which can be used with a broad range of object
detection models.

YOLOV5s exhibits lower latency than its successors, making it a
favorable choice for achieving full autonomy, where all computations
have to be completed locally on the AUV. It is a convolutional
neural network (CNN)-based object detector. The model works
by processing each frame through an input layer which is then
sent to a backbone network that extracts three hierarchical feature
maps—P3, P4, and P5—corresponding to fine, intermediate, and
coarse spatial resolutions. Each of these feature maps consist of
different dimensions in the range of 20x20 to 80x80 pixels,
depending on the input size. These feature maps are able to detect
small, medium and large objects within the frame. After obtaining
these feature maps, a confidence prediction and bounding box
regression is executed to acquire a multi-dimensional array named
BBoxes. This array contains essential information for each detected
object such as object class, class confidence, normalised coordinates
and dimensions. This process as a whole is referred to as an
inference process (Liu et al., 2022).

YOLOV5s predicts bounding boxes relative to grid cells in a

s,; normalised

'y
offsets for the box center within the cell, respectively; and s,,,s;:

feature map. For each cell, it predicts four values: s,,

normalised log-space scale values for width and height, respectively.
These values must be transformed into actual positions of the
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bounding box in the input image space, given by

g, =20(s,)-05+r,, (20)

8= 20(5},)—0.5+r},, 21)
where g, g in Equations 20, 21 are the final absolute center position
of the bounding box; o is the sigmoid function, ensuring outputs are
in(0,1), s, s, are the raw outputs from the neural network, explained
above; and r,,, 7, are the top-left corner coordinate of the current grid

cell. The width and height of the bounding box are given by

& =pu(20(sy))%, (22)

gw :pw(zg(sw))z’ (23)

where g,,g,, in Equations 22, 23 are the final width and height of the
bounding box; s, s, are the raw predicted size offsets (learned by the
network), as explained above; p;,p,, are the anchor box dimensions
(prior estimates for the box size in that grid cell).

To quantify the predictions of the model compared to
ground truth values, a cost function is defined to include three
components: classification, objectness, and localisation (Ultralytics,
2025), according to:

Loss = A, Ly + AzLobj + 3L (24)

is the
Classes Loss (or Binary Cross-Entropy loss) measuring the error

where Loss in Equation 24 is the cost function value; L
for the classification task; L, is the Objectness Loss (another
Binary Cross-Entropy loss) penalising incorrect presence/absence
predictions; Ly, is the Location Loss (bounding-box) measuring the
error in localizing the object within the grid cell; and A; represents
weights which can be subject to tuning. In this work, default
hyperparameter values (Ultralytics, 2025) are used.

5.2.2 Implementation

Object detection in the perception system is handled by a
lightweight YOLOV5 model integrated into a ROS 2 wrapper node
developed by Ar-Ray (2024). The model was trained to detect
shackles which are fixed structures that in the case of mooring
lines are used as a connection point between rope and chain. When
a shackle is detected with confidence above a set threshold, the
system flags this event and notifies the operator. The operator then
makes a decision whether to initiate an autonomous ascent or
continue descending. In this way, YOLOV5s is now used in a more
targeted role for event detection rather than continuous tracking.
This approach represents a human-in-the-loop strategy, and lays the
foundation for higher LoA later.

On the left side of Figure 7, the graphical user interface (GUI)
feedback during a successful shackle detection is shown. The
perception system confirms a detection and prompts the operator to
decide on the further mission. On the right side, the corresponding
visual output from the trained YOLOv5s model is presented,
highlighting the identified shackle.
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Left: System GUI with HIL prompt. Right: YOLOvV5s bounding box around shackle.

5.3 Mapping and localization

5.3.1 Theory

ORB-SLAM3 (Oriented FAST and Rotated BRIEF-SLAM3) is
proposed as part of the 3D reconstruction of the mooring line
structure (Arntzen, 2024). ORB-SLAM3 is an indirect feature-based
SLAM framework suitable for real-time operation in challenging
environments. Unlike direct methods, which are sensitive to
lighting variability, ORB-SLAM3 uses Oriented FAST and Rotated
BRIEF (ORB) OpenCV Team (2024) feature detection for robust
pose estimation. However, it is important to note that ORB-SLAM3
has only been utilised for post-processing in this system, rather than
for real-time operation.

The ORB algorithm is an open-source library built on the
Features from Accelerated Segment Test (FAST) (OpenCV Team,
2018b) and BRIEF (OpenCV Team, 2018a). The FAST algorithm is
a machine learning based approach that iterates through pixels in
the image to determine if the pixel is a distinguishable feature in the
image by examining the following criteria. Such a feature is typically
a corner or an edge found in the image and is stored as a keypoint.

d, I <1, -t (darker)
Sp_m =45, Ip —t< Ipﬂx < Ip +t (similar) (25)
b, I,+t<I, . (brighter)

This is complemented with the BRIEF algorithm which iterates
through the keypoints found from the FAST algorithm. BRIEF
defines a binary vector 7 based on the pixel intensity value
corresponding to each keypoint that serves as numerical fingerprint
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which describes the area around each keypoint.

1 px)<py)
0 p(x)=pQy)

7(p;x,y) = (26)

The ORB algorithm provides valuable information that can be
used for loop closure by comparing each new frame in the video
with previous keypoints found Loop closure is used to identify
previously visited locations on a global map, and can reduce drift
in system. A major challenge reported in Arntzen (2024) work
is the repetitive structure of the mooring line. A mooring line
is a homogeneous structure with few distinct features. Another
challenge is the presence of marine snow. As shown in Figure 8, the
system can to a certain extent successfully recognises features within
the two frames, but struggles with some parts of the frames and also
recognises particles as distinct features, which is not desired.

5.3.2 Implementation

Figure 9 illustrates how the ORB-SLAM3 is integrated into
the system by Arntzen (2024). Input from a recorded video is
published on the/camera topic by the/video_publisher_
node, acting as the image source for the/ORB_SLAM3_R0S2
node. This node performs feature extraction and tracking, and
publishes both the estimated map points and pose information.

The tracked 3D landmarks are published on the/map_points
topic, while the robot’s estimated pose is shared via the/tf tree.
To construct a map of the environment, the/map_points are
forwarded to the/octomap_server, which builds an occupancy
grid. The resulting map is then visualised through standard
OctoMap topics.
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FIGURE 8
Feature matching from the sea trial in Arntzen (2024).
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FIGURE 9
ORB-SLAM3 RQT graph (Arntzen, 2024).
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6 Control system

The control system allows the drone to navigate along a mooring
line using visual information extracted from the onboard camera.
The control system is structured into three levels: (1) Planning and
replanning, (2) Guidance, and (3) Control execution.

6.1 Planning and replanning

To ensure robustness, a fail-safe routine stops surge motion if
no line is detected in a captured frame for 20 s. During this time, the
drone slowly rotates in yaw in the direction the line was last seen to
reacquire it.

Example 1: If the last recorded horizontal (x) coordinate of the
fitted line is positive, indicating that the mooring line was last seen
far right of the image, the yaw value is set slightly positive inducing a
panning motion towards the most plausible position of the mooring
line. The opposite logic would apply if the mooring line was last seen
to the left of the image.

6.2 Guidance

The guidance system is structured into three stages: (1)
Vertical Inspection, (2) Vertical-to-Horizontal Transition, and (3)
Horizontal Inspection, as illustrated in Figure 10. Image processing
provides real-time estimates of mooring line features. The object
detection algorithm, trained on chain, rope, and wire mooring
lines, can identify and process any combination of these types.
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Once a mooring line is detected in the video frame, the system
extracts three key features (see Section 5.1): (1) the line’s width (in
pixels), (2) the line’s midpoint position, and (3) the inclination angle.
These measurements serve as a guidance for the drone to follow
the mooring line, with the objective of maintaining a consistent
distance from the line and keeping it centred in the camera view.
This guidance is described by.

e Surge guidance is based on the perceived width of the mooring
line, which acts as a proxy for distance.

Sway and Yaw guidance is based on the midpoint horizon
position of the mooring line in the captured frame. This guides
the drone to right if the midpoint of the mooring line in
the capture frame is on the right of the captured frame and
vice versa.

Heave guidance follows the inclination angle of the line such
that it descends faster for a vertical incline angle and slower for
a less vertical angle.

6.3 Control execution level

The control system ensures the drone follows the guidance
system by regulating its motion in four degrees of freedom
(DOF): surge, sway, heave, and yaw. Three control modes are
defined based on the mooring line geometry: Vertical Inspection,
Vertical-to-Horizontal Transition, and Horizontal Inspection, as
illustrated in Figure 10.
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FIGURE 10

Control strategy flow chart (adopted from Arntzen (2024)). In the right hand side, the spiral pattern is shown.

6.3.1 Vertical inspection

In this mode, the drone descends along a near-vertical mooring
line. The control laws are defined as follows.

Surge regulates the distance to the mooring line, based on its
width w in the image, according to a proportional controller:

w .
vertical ksurge . <1 - W_d > ’ ifw < W
Surge: Fiir™ = W, . (27)
_ksurge' (W), ifw> wy
where k. is the proportional gain to drive the width error to zero,

ensuring the drone maintains the desired standoff distance; w is the

observed line width in the captured frame; and w;; is the target width.
Sway: two strategies are available. The first strategy (Swayl)

regulates the drone on one side of the mooring line, given by

Swayl: Frertical — g X

sway

sway ~“norm’ (28)

where k

sway 18 the proportional gain to keep the mooring line in

the middle of the captured frame; x, € [-1,1] is the normalised

norm
horizontal offset of the line midpoint in the captured frame. The
second strategy (Sway2) regulates the drone in a “spiral” pattern
by alternating the sway controlled force between two compass

points or by using a timer. This control methodology creates an
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alternating semi-helical pattern down the vertical section of the

d t>> (29)

timer

mooring line, given by

Sway2: Fvertical

sway ()= |stay2| -sign <sin<
where [Fg,,| is a tunable constant force amplitude, typical

between 10%-40% of max sway thrust; and Ty, is a timer or a

imer
switching period to change the direction of the sway controlled
force. In the sea trial (Section7.3; Arntzen (2024)), T,

60s. The control law in Equation 29 will create a “yo-yo” sway

imer —

motion, combined with constant descent, produces a spiral scan
around the line.

For the yaw controller law, the goal is to keep the mooring line
midpoint in the middle of the captured frame.

This is given by
. tical _
Yaw: Myl ™ = kyay  Xnorm> (30)
where ki, is the proportional gain to keep the mooring line in the

middle of the captured frame.
The heave controller law adjusts the descent rate based on the
inclination angle 6, according to

Heave: FK::\CI:I = Kpeave * d - cos 0], (31)
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where k... is @ constant to scale the heave control force; d € {-1,1}
is a user input for vertical direction (1 for descent and —1 for ascent),
and 0 is the inclination angle of the mooring line (6 = 0°for a vertical
line and 6 = 90° for a horizontal line).

6.3.2 Vertical to horizontal

When the line becomes more horizontal (determined by depth
or inclination threshold), the drone switches to a transition control
mode. The objective is to align the drone horizontally with the
mooring line. The controller law is detailed as below.

The surge controller law is the same as in Vertical mode
(Equation 27). The sway control force is kept to a constant value,
moving the drone lengthwise along the mooring line, given by

Sway: F;‘;:;“‘O“ = constant. (32)
The yaw controller is the same as in Vertical mode (Equation 30).
The control force in heave is set to 0 such that it does not collide with

the seafloor, given by.

. ptransition _
Heave: F, | """ = 0.

(33)

6.3.3 Horizontal inspection

As the observed mooring line angle passes a threshold for
transition mode, the controller is switched to the last part, i.e., the
horizontal section. The goal is to wandering around the mooring line
lying on the seabed. The control strategy in surge and sway is same
as the transition “Vertical to Horizontal” mode.

The yaw controller goal is to wander around the mooring line

1),

| is a tunable constant moment amplitude, with

lying on the seabed, according to

Yaw: M;;’V'Viz"“ =My, | - sign <sin< (34)

timer

where |M,

yaw

similar tuning strategy as in Equation 29; and T; is a timer,

imer
same as in Equation 29. The heave is regulated such that the mooring

line is in the bottom quarter of the camera frame, given by

Heave:F?orlzon =
eave

kheave : (ynorm _ydesired) ’ (35)

where y_ . €[~1,1] is the normalised vertical offset of the line
midpoint in the captured frame; and y,,; .4 is the desired vertical
offset of the midpoint in the captured frame and is set to bottom
quarter of the frame.

An illustration of the inspection path along the mooring line is
shown in the right hand side of Figure 10 where the Sway2 strategy
is visualised.

The resulting control vector is given by

F

sway

M

yaw

F

= [Fsurge Fheave ]T: (36)

The control vector (Equation 36) is normalised and then sent to the
drone using the Blueye SDK. Each axis includes a tunable gain that
can be adjusted in real time via the GUI. The thrust allocation and
thruster control will be done inside the drone’s software and will not
be presented here.

Frontiers in Robotics and Al

19

10.3389/frobt.2025.1655242

6.4 Implementation

The control strategy is implemented using ROS 2 due to its
built-in support for real-time communication (Macenski et al.,
2022). The ROS 2 node chain_controller contains most of
the control logic. This node subscribes to visual measurements of
the mooring line, which are published after image processing, and
computes continuous commands in surge, sway, heave, and yaw.
These commands are sent as DesiredVelocity messages to
the/desired_velocity topic, which interfaces with the drone’s
internal thrust allocation system.

7 Simulation and experimental results

This section presents the simulation and experimental results,
along with corresponding analysis of the proposed vision-
based inspection framework for mooring lines using a low-cost
underwater drone. The results are structured to demonstrate
the performance of individual system components, ie., image
processing, control, object detection, and mapping. Simulation
trials were conducted to validate the full inspection strategy,
including vertical descent, transition, and horizontal inspection,
and to verify the effectiveness of the spiral path generated by the
control system. These simulations complement the dock and sea
trials. Key observations and limitations are discussed alongside the
results, providing insights into the robustness, effectiveness, and
future improvement areas of the system. An overview of the key
parameters and outcomes from the simulations and experiments
is provided in Table 7. Full quantitative results, detailed parameter
settings, other scenario runs and raw datasets are provided in the
master’s theses by Arntzen (2024); Elseth and @vstaas (2025).

7.1 Testing of image processing techniques

The image processing pipeline was evaluated using recorded
video data from previous inspection campaigns (Arntzen, 2024;
Elseth and @vstaas, 2025) to assess its robustness under varying
lighting conditions and the presence of marine snow. Figure 11
illustrates the processing results. Subfigures A-D demonstrate the
effective removal of marine snow through the successive filtering
stages, while subfigures E-H show consistent detection of the
mooring line across diverse lighting scenarios. The following video
shows the successful detection of mooring line under a marine snow
condition Image Processing Results.

7.2 Dock trials

Dock trials at Trondheim Biological Station (TBS) were carried
out to test the drone’s capability to autonomously follow a mooring
line. A mooring line was constructed by sinking a synthetic rope
with a mass at the end. The water depth outside the dock is roughly
10 m allowing for testing in a controlled and calm weather condition.

These dock trials focused on guidance system including mooring
line detection and control execution levels. Gain and filtration
parameters were iteratively tuned to optimise the drone’s ability to
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TABLE 7 Summary of simulation and experimental results.

10.3389/frobt.2025.1655242

Environment/
Conditions

Objective

Key
metrics/observation

Outcome

Simulation of full inspection

Ideal. Depth: 0 — seabed

Validate vertical descent,
transition, and spiral
horizontal inspection path

Spiral trajectory generation;
Vertical-to-horizontal
transition; No coverage gaps

Semi-helical path ensures full
360° coverage; no missed
sections

Dock trials (Guidance only)

Calm water, synthetic rope.
Depth: 0 —» 10 m

Mooring line following

Depth tracking error +0.2 m;
Thruster surge/sway/yaw
within expected bounds;
Automatic ascent at 4 m

Reliable mooring-line
following; successful
autonomous descent and
ascent while keeping line
centered

Sea trial Swayl (31 Mar 2025)

Open sea, surface currents up
to 0.25 m/s, marine snow.
Depth: 10 - 68 m

Mooring line following with
Swayl strategy; real-world
condition

Surge thrust oscillations
0%-75% max; Sway
commands <25 % max;
Manual CVI segment at
400-450 s

Completed autonomous
inspection 10-68 m; manual
CVI captured shackle video for
YOLOVS5 training

Sea trial spiral (Spring 2024)

Open sea, changing light
conditions. Depth: 5 — 80 m

Mooring line following with
Sway?2 strategy; real-world

Downward heave + alternating
sway; Continuous yaw

Spiral pattern executed as
planned; reconstructed camera

condition adjustments trajectory; and validated
mapping feasibility
Dock trials (Shackle detection) Calm water, metal shackle at Object detection YOLOVS5 detection at 3.5 m; Successful shackle detection to
rope end. Depth: 0 — 3.5 m Detection flag triggered prompt the return, supporting
reverse command completed autonomous
inspection
Post-processing (ORB-SLAM3 Video from sea trials (Spring Mooring line 3D Tracked ORB features 3D reconstructions

and Meshroom)

2024). Depth: 5 — 80 m

reconstruction for change

highlight line structure;

detection

Meshroom yields coherent 3D
mesh; RViz2 and ORB-SLAM3
visualizations consistent

track the mooring line. The path following algorithm was also tested
from several angles of the mooring line to ensure robustness and
stability under varying conditions. The angle of the mooring line in
the camera frame is dependent on the relative heading of the drone
with respect to the mooring line. The relative heading will affect how
the drone’s control system operates.

Following, a simple algorithm for automatic ascending
when reaching the bottom of the rope was implemented and
evaluated. Figure 12 shows the drone’s depth over time with a desired
depth of 4 m. The desired depth is set ahead of the dive, and indicates
the depth the drone initiates its ascent while still autonomously
following the mooring line. This Figure shows that the drone can
descending and ascending autonomously while controlling the surge
force to keep a distance to the mooring line and controlling sway and
yaw to keep the mooring line in the middle of the captured frame.

7.3 Sea trial

A sea trial was conducted on the 31st of March 2025. The
purpose of this sea trial is to show the Swayl control strategy in
which one side of the mooring line was inspected. The weather
during this sea trial was challenging. Surface currents reached
approximately 0.25 m/s, exceeding the thrust capacity of the drone,
especially when exposed to beam currents, where the effective cross-
sectional area is greatest. To bypass this, the autonomous inspection
was initiated at a depth of 10 m, where current speeds were lower. In
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addition to strong currents, poor underwater visibility due to marine
snow posed another major challenge.

The autonomous inspection of the mooring line was completed
successfully from 10 to 68 m depth (Figure 13). At the latter depth,
the drone was operated manually to conduct a CVI to capture video
data of the structural integrity of the shackle. Gathering video of the
shackle was deemed important as the data can be used for further
training and improvement of the accuracy and robustness of the
YOLOVS5 object detection model. The manual CVI can be observed
as the missing data found around 400-450 s in Figure 13.

The nominal commanded thrust in surge exhibited significant
oscillations and had an output range of 0%-75% of the thruster’s
maximum output. The sway commands are confined within 25%
of the maximum thruster output. During this trial, the thruster
commands in heave were rather high due to an almost vertical
mooring line. A full video of this sea trial is shown here: Sea Trial.

A sea trial was conducted in spring 2024 (Arntzen, 2024),
to demonstrate the Sway2 control strategy with inspection spiral
pattern. The results, shown in Figure 14 show the estimated camera
trajectory and the resulting point cloud reconstruction of the
observed environment. The trajectory reveals that the drone performed
a downward heave motion while executing a spiral inspection
pattern—alternating sway from side to side and continuously adjusting
its yaw to keep the mooring line centred in the camera frame. This
coordinated movement enabled comprehensive visual coverage of the
mooring line under real-world conditions.
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E depth 14m

FIGURE 11
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F depth 60m

H processed
image depth 60m

(A) Luminance component; (B) Output after guided filter and morphological operations; (C) Result of Canny Edge Detection; (D) Final image with line
detected within ROI; (E) Frame captured near the sea surface with strong sunlight at the top of the image, and its corresponding final result (G); (F)
Frame captured near the seabed illuminated only by onboard LED with strong light at the bottom, and its corresponding final process image (H).

7.4 Dock trials with shackle detection

To verify the YOLOV5 object detection model in a real
environment, the Blueye X3 was tested at the TBS dock with a similar
setup as in Section 7.2. For the testing, a rope with a metal shackle
attached to its end was lowered into the water column solely for
the purpose of testing if the object detection model was capable of
detecting a shackle underwater.

After training the YOLOv5 model on images of shackles, the
detection pipeline was integrated into the onboard perception node
as described in Section 5.2. The shackle used in this testing was not
part of the dataset used to train the object detection model. During
the test, the live camera feed was processed through the YOLOvV5
object detection model which successfully detected the shackle at
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around 3.5 m depth. The detection triggered a flag in the system
logic, which was then published to the / reverse_command topic.
The operator was then prompted to decide on the drone’s further
mission. In the case of this trial, the drone was prompted to
continue inspection while ascending to the surface (Figure 15). This
resulted in a successful autonomous inspection along the entire
makeshift mooring line. A full video of this test is shown here:
Object Detection Model.

7.5 Simulation results
The proposed control strategy was validated through simulation

to demonstrate the drone’s ability to perform full-length mooring
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Depth profile (A) and thruster commands (B—E) for initial dock testing (Elseth and @vstaas, 2025).
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FIGURE 14
Point cloud and camera motion reconstructed from

inspection video (Arntzen, 2024).

line inspection—from vertical descent, through the vertical-to-
horizontal transition, to horizontal exploration. The Sway2 strategy
was applied to generate a semi-helical path around the mooring line
during vertical inspection, ensuring comprehensive visual coverage.

Figure 16 shows the simulated drone trajectory during
inspection. The side view provides an overview of the full flight
path along the mooring line, including the transition to horizontal
motion near the seabed. The chosen descent speed is tuned to ensure
no sections of the mooring line are skipped during the inspection.
The top view illustrates the alternating sway pattern that produces
the spiral motion, highlighting the changing circumference angle
around the mooring line. Further details of the simulation setup and
parameters can be found in Arntzen (2024).

7.6 Post processing

To explore mapping from the inspection footage, both ORB-
SLAM3 and Meshroom were tested on video data from the sea
trial conducted by Arntzen (2024). The first row of Figure 17
illustrates the ORB-SLAM3 viewer (left), tracked features, and the
resulting 3D reconstruction from Meshroom (right). The tracked
ORB features clearly highlight the structure of the mooring line.
The second row of Figure 17 compares map outputs in RViz2 (left),
ORB-SLAM3 viewer (middle), and Meshroom (right). These
illustrate how the different tools visualise spatial information from
the same video source.
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8 Discussion

8.1 Summary of simulation and
experimental results

In this subsection, the most important findings from both
simulations and field experiments are summarised into a single,
easy-to-read table. Table 7 summarizes each trial's operating
environment, depth range, key performance metrics, and overall
outcome. This table provides a clear and side-by-side comparison
of how the proposed vision-based inspection framework performs
under ideal conditions, controlled dock tests, and challenging open-
sea deployments.

8.2 Robustness of image processing

The image processing techniques developed in this paper
showed an enhancement of the drone’s ability to autonomously
inspect the mooring line. The image processing algorithm
successfully detected the mooring line while removing noise
(marine snow) and handling different illumination conditions.

A key challenge highlighted in Arntzen (2024) was the need for
manual adjustment of filtering parameters depending on depth, due
to varying lighting conditions. Near the surface, sunlight contributed
to the illumination, while deeper depths relied solely on artificial
lighting from the onboard LED. This made consistent filtering and
detection difficult across a full mooring line inspection.

In the thesis of Elseth and @vstaas (2025), the image processing
pipeline (as described in Algorithm 2) was used at all depths without
any parameter tuning. This adaptive pipeline, based on CLAHE and
Canny Edge Detection, maintained reliable mooring line detection
at both 19.3 m and 64.7 m depths (Elseth and Qvstaas, 2025). This
marks a key improvement, as it eliminates the need for manual filter
calibration between depth zones.

The parameter settings proved effective under the sea trial
conditions at TBS; however, further tuning may be required when
deploying the system in different environments with new visual
challenges. While this robustness is promising, further investigation
is needed to evaluate the limits of the pipeline under more extreme
conditions—such as heavy marine snow or nighttime inspections.
Future work could also explore dynamically tuned parameters or
the inclusion of depth-aware filtering logic to further increase
performance.

8.3 Path following algorithm and control
system

The path following algorithm developed in this paper
demonstrates that a simple, camera-based control strategy can
support autonomous mooring line inspection using a low-cost
drone. The results from both TBS dock trial and the sea trials
confirmed that the proportional control strategy was sufficient to
maintain alignment with the mooring line across 4-DOFE.

The simulation validates the full inspection concept to check
whether the framework works before the sea trials with uncontrolled

factors. The simulations demonstrated that the drone could
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Time [s]

Simulated drone trajectory during full-length mooring line inspection. Side view (left) illustrates the descent and transition to horizontal inspection; and

top view (right) shows the spiral pattern around the mooring line.

successfully follow the entire mooring line, transitioning from
vertical to horizontal inspection while maintaining coverage
along the full length. The spiral path generated by the Sway2
strategy was clearly visible in the simulated trajectory and ensured
circumferential coverage of the mooring line during descent.
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However, the simulation were conducted in idea conditions where
no environmental effect was accounted for.

In contrast, the sea trials were constrained by time and weather
conditions, which prevented a full-length mooring line inspection.
The sea trials primarily demonstrated the system’s ability to descend
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ORB-SLAMS3 viewer

ORB features tracked

FIGURE 17
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3D Reconstruction using ORB-SLAM3, tracked features and Meshroom photogrammetry (top) together with map visualization in RViz2, ORB-SLAM3

viewer, and Meshroom (Arntzen, 2024)

towards the shackle and ascend back to the surface, rather than
executing a complete vertical-to-horizontal inspection sequence.
Nonetheless, the system maintained alignment with the mooring
line during these partial inspections, even under suboptimal
visibility and current conditions.

For Swayl control strategy demonstration in the 2025
sea trial (Elseth and @vstaas, 2025), the drone was tested from
several angles to evaluate operability under different perspectives of
the mooring line. The sideways tracking of an angled mooring line
provided the most stable performance due to consistent distance
to the mooring line. However, front- and back-facing tracking
introduced challenges related to the catenary shape of the rope.
From this angle, more aggressive gains for surge and heave were
needed, as the mooring line was constantly moving toward or away
from the drone.

For Sway2 control strategy showed particular promise in
simulation and the 2024 sea trial (Arntzen, 2024). However,
future development could focus on enhancing the controller by
incorporating the drones heading to ensure more robust and
consistent 360-degree coverage of the mooring line in complex and
dynamic underwater environments.

The implementation of a fallback state when sight of the mooring
line was lost reduced downtime, and allowed the drone to re-orient
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itself toward the mooring line and continue the inspection. This
proved useful in situations with rougher environmental conditions.

Despite successful trials, several limitations were observed. The
control system relies entirely on visual feedback and does not
incorporate inertial or velocity data in its control loop. This makes it
more sensitive to disturbances and susceptible to drift over time. The
system would likely benefit from a SLAM-based setup, which could
enable loop closure if the drone revisits previously observed points
along the mooring line. However, due to limited onboard computing
resources and battery capacity, integration of such a solution proved
challenging. An alternative approach could be to enhance the sensor
suite with a Doppler Velocity Log (DVL) or sonar. However, these
sensors are generally expensive and would increase the overall cost
of the system.

Another limitation lies in the fixed gain structure. Although
real-time tuning is possible through the GUI, it requires human
intervention, limiting the overall LoA. To increase the LoA, an
adaptive gain scheduling approach could be introduced, where gains
are dynamically adjusted based on input data such as depth, drone
orientation, or the confidence level in object detection.

Although the proposed proportional, vision-based controller
proved effective in both simulation and partial sea trials, it does
not explicitly account for the highly coupled nonlinear dynamics of

frontiersin.org


https://doi.org/10.3389/frobt.2025.1655242
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Nguyen et al.

10.3389/frobt.2025.1655242

TABLE 8 Estimated cost comparison—traditional vs. proposed inspection approach.

Cost component

Traditional inspection (ROV-based)*

Proposed framework (low-cost drone + edge Al)**

Infrastructure Mother vessel €10,000-€30,000 per day Possible docking station €100,000 per whole life cycle
Hardware ROV €5,000 per day rental Low-cost drone €24,000 (Blueye X3)
Crew (ROV + vessel) 4-6 personnel (€4,000-€6,000 per day) 1 personnel for the whole fleet of drones (€1,000 per day)

Other inspection equipment

Depends on the type of inspection €1,000-€10,000

Maintenance cost €1,000

€200,000

Total estimated cost per inspection

€20,000

Other costs, not included in the estimates

Inspection frequency 1-2 times per year

10 times with the same budget

Mobility and flexibility

Limited by mobilisation needs and weather conditions

High, easy deployment, less dependent on surface weather

Data post-processing Offline, often manual review by human

Autonomous change detection

Downtime Impact High due to scheduling delays

Low, rapid redeployment possible

* based on Ford et al. (2020), 2020 costs.

** approximate estimates based on typical operational conditions and available market data as of 2025. There might be unseen costs. The comparison is intended to highlight relative differences

in scale rather than serve as an exact financial projection.

the drone, nor for model uncertainties, input constraints, and time-
varying ocean currents. In practice, currents can introduce drift and
lateral forces on the drone, while the thruster constraints and vehicle
dynamics exhibit nonlinear behavior under varying loads. Without
an explicit dynamic model or disturbance observer, the controller
treats these effects as unstructured disturbances, relying solely on
reactive visual feedback. As a result, the system’s performance may
degrade in stronger or rapidly changing current conditions, and
actuator saturations or control limits may be reached unexpectedly.

8.4 Cost-efficiency of low-cost
drone-based inspection

The proposed inspection framework leverages a compact,
commercially available underwater drone integrated with low-cost
onboard computing and vision hardware. This setup significantly
reduces operational expenses compared to traditional ROV-based
inspections (Ford et al., 2020), which require high-end equipment,
support vessels, and specialised personnel, and are often constrained
by weather and logistics.

The proposed system, including the drone platform (e.g., Blueye
X3), Raspberry Pi-based edge AI processing, and vision models,
costs under €24,000 and can be operated by a single technician
from a Remote Operation Centre (ROC). Such a configuration
is particularly advantageous for recurring inspections in offshore
aquaculture or renewable energy contexts, where it enables frequent,
flexible, and cost-effective monitoring.

Table 8 provides a comparative overview of the key cost
elements. Traditional inspection methods may incur per-inspection
costs of up to €200,000 due to vessel rental, crew, and equipment,
and are typically performed once or twice per year. In contrast, the
proposed solution allows for inspections on-demand at a fraction of
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the cost (approx. €20,000 per inspection), with additional benefits in
mobility, data availability, and reduced downtime.

8.5 Real-time processing performance on
edge hardware

The inference pipeline, including object detection with
YOLOvV5s and basic image enhancement, was executed onboard
a Raspberry Pi during test missions. CPU usage was monitored
continuously, with observed utilisation remaining below 100%
during the detection and tracking processes. The drone performed
its control actions and feedback loops without delays, freezes, or
reboots, indicating that the real-time computational demands were
well within the system’s capabilities. This confirms that the proposed
vision-based inspection framework is suitable for edge deployment
on resource-constrained hardware, a key requirement for scalable,
autonomous underwater inspection.

8.6 Manual intervention during shackle
identification

Upon detecting a shackle, the system enters a hold state where
operator input is needed. A GUI window, as illustrated in Figure 7,
allows the user to confirm whether the drone should initiate its
ascent or continue the inspection while descending.

This approach would enable the drone to use its perception of the
environment or site-specific knowledge for autonomous decision-
making upon detecting a shackle or other structural component on
the mooring line. For example, if the drone determines—based on
acoustic data—that it is near the seabed and simultaneously detects
a shackle, it could autonomously decide to perform a CVI of the
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shackle before initiating its ascent along a different angle of the
mooring line, without requiring human intervention. Ascending
with a different heading to the mooring line would also ensure
an exhaustive inspection and provide a more comprehensive visual
dataset, which is likely to improve the accuracy and robustness of 3D
reconstruction by capturing the structure from multiple angles.

8.7 3D reconstruction and mapping

The post-processing comparison shows that ORB-SLAM3 is
able to track local image features and generate a sparse 3D map
in real time. However, the resulting point cloud in RViz2 becomes
significantly noisier. This is likely due to repeated false detections
caused by marine snow, which accumulates in OctoMap and
introduces large clusters of outliers.

Another challenge lies in the structure of the mooring line
itself. Its repetitive structure and narrow viewing angle from the
drone makes loop closure difficult, causing drift to accumulate over
time. One of the fundamentals in SLAM is recognising previously
visited areas for drift correction, this limits its mapping accuracy
in this case.

On the other hand, Meshroom performs global optimisation
offline. It uses a scale-invariant feature transform (SIFT) for feature
detection, resulting in denser reconstructions and lower drift. This
may make it better suited for a detailed post processing analysis.
However this method is not applicable for real-time operations due
to the limited computational power onboard the drone.

9 Conclusion and future work

This study demonstrated a cost-effective and autonomous
solution for mooring line inspection using the Blueye X3 drone. A
modular ROS 2 based architecture was implemented, combining
real-time image processing, a YOLOv5-based object detection
module, and a simple controller for mooring line following. The
image processing pipeline, including Guided Filtering, CLAHE,
Morphological Transformation, and Canny Edge Detection,
handled challenges such as marine snow and varying illumination.
The extracted visual features were used to guide the drone’s motion
across four degrees of freedom (surge, sway, heave, and yaw) through
a proportional controller.

The system was validated through simulation, video replay
testing, and sea trials, demonstrating that cost-effective, off-the-shelf
observation-class underwater drones can reliably perform mooring
line monitoring and inspection when equipped with suitable visual
perception and control strategies. Furthermore, the acquired visual
data were successfully used for 3D reconstruction of the mooring
line via tools like ORB-SLAM3 and Meshroom, supporting the
potential for future change detection and defect identification.

This study contributes:

e A modular and scalable system architecture compatible with
low-cost underwater platforms.

e The first demonstration of autonomous inspection using a
cost-effective Blueye X3 in real sea conditions.

e A validated pathway to embed Al-based perception and
control within resource-constrained robotic platforms.
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While current limitations include the need for parameter tuning
and the absence of inertial feedback, this work provides a strong
foundation for affordable and scalable autonomous underwater
inspection, with clear pathways for enhancement through sensor
fusion and adaptive control.

9.1 Proposed future work

There are several promising directions for extending the current
system. First, the fixed-gain proportional controller used in this
work could be replaced by a more advanced control strategy,
such as a full PID controller or a model leveraging adaptive gain
scheduling. These approaches may reduce oscillations and improve
responsiveness, particularly during extended inspection missions.

To improve robustness and situational awareness, the integration
of additional sensors should be explored. For example, a Doppler
Velocity Log (DVL) could help reduce positional drift and improve
the reliability of visual path-following, as DVLs are unaffected by
marine snow or fluctuations in lighting. However, the inclusion
of such sensors introduces economic and payload constraints.
For instance, the Water Linked DVL for the Blueye X3 is priced
at $7,890 (WaterLinked, 2024)—which may limit its applicability in
cost-sensitive deployments.

Another key area of development is the implementation
of fully autonomous decision logic for shackle detection and
corresponding maneuvers. Automating this process would eliminate
the need for operator input, thus raising the LoA and mission
continuity.

Moreover, research into real-time VSLAM techniques on
constrained platforms could significantly expand the system’s
capabilities. Simplified or event-based loop closure methods
should be explored to enable ORB-SLAM3 or equivalent systems
to run efficiently on limited onboard hardware, such as the
embedded processors on the Blueye X3 (Arntzen, 2024). This
may include testing whether place recognition can be achieved
through mission-specific keyframes or distinct visual features such
as shackles.

Future work will expand the simulation experiments to
include varied environmental and failure scenarios and report
quantitative metrics for selected control and mapping approaches,
including detection precision/recall, runtime, localisation accuracy,
map completeness, and mission success rate. These results
will enable sensitivity analyses and statistical evaluation of
system robustness.

Bioinspired control and optimisation methods have shown
promise in managing actuator faults and navigating in uncertain
conditions (Tutsoy et al, 2024). These techniques could be
adapted for underwater drone inspection systems to enable more
resilient and efficient motion planning in the presence of vehicle
nonlinear dynamics, mooring line dynamics and unknown external
disturbances.

Finally, future work will focus on a systematic benchmarking
of various onboard processing units against the demanding
requirements of real-time VSLAM tasks within the underwater
domain. This is important to optimise the trade-offs between image
processing fidelity, energy consumption, and mission endurance.
Recent advancements in embedded processing, e.g., NVIDIA
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Jetson series (NVIDIA, 2023), which offer capabilities for real-
time inference and embedded AI acceleration while maintaining
manageable power envelopes, show a promise for accelerating the
practical integration of advanced visual perception directly onboard
the underwater drone.
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