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Weeds pose a significant challenge in agriculture by competing with crops for
essential resources, leading to reduced yields. To address this issue, researchers
have increasingly adopted advanced machine learning techniques. Recently,
Vision Transformers (ViT) have demonstrated remarkable success in various
computer vision tasks, making their application to weed classification, detection,
and segmentation more advantageous compared to traditional Convolutional
Neural Networks (CNNs) due to their self-attention mechanism. However, the
deployment of these models in agricultural robotics is hindered by resource
limitations. Key challenges include high training costs, the absence of inductive
biases, the extensive volume of data required for training, model size, and
runtime memory constraints. This study proposes a knowledge distillation-
based method for optimizing the ViT model. The approach aims to enhance the
ViTmodel architecturewhilemaintaining its performance for weed detection. To
facilitate the training of the compacted ViT student model and enable parameter
sharing and local receptive fields, knowledge was distilled from ResNet-
50, which serves as the teacher model. Experimental results demonstrate
significant enhancements and improvements in the student model, achieving
a mean Average Precision (mAP) of 83.47%. Additionally, the model exhibits
minimal computational expense, with only 5.7million parameters. The proposed
knowledge distillation framework successfully addresses the computational
constraints associated with ViT deployment in agricultural robotics while
preserving detection accuracy for weed detection applications.

KEYWORDS

deep learning, precision agriculture, vision transformer, weed detection, robotic weed
control

1 Introduction

As the global population grows rapidly, the demand for food is projected to increase
by 70% by 2050 (Caldera and Breyer, 2019). To achieve both high yield and top-
quality crop production, enhancing production capacity in the agricultural sector becomes
crucial. Researchers have been actively addressing various challenges within agriculture
to develop intelligent and precise machine learning solutions. Precision farming leverages
concepts from artificial intelligence (AI) and robotics to create targeted solutions that
can be applied at the level of individual plants, rather than entire fields. In the realm of
precision agriculture, automatic weeding plays a crucial role by identifying and targeting
individual weeds. Deep learning has garnered significant interest for its effectiveness in
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detecting, classifying, and segmenting weeds. Various
methodologies and approaches have demonstrated the efficacy
of convolutional neural network-based methods in addressing
vision-related tasks, such as object detection, object classification,
and object segmentation, etc. The recent advancements in neural
networks reveal that attention-based transformer modules can
serve as a complete replacement for convolutional operations.
Additionally, researchers have explored joint designs that combine
both attention-based transformers and convolutions, aiming
to foster symbiosis between these two complementary sets of
operations (Vaswani et al., 2017). Within the domain of deep
learning, Transformers have demonstrated significant achievements
in natural language processing. However, their application to
computer vision was previously limited. The emergence of Vision
Transformers (ViT) revolutionized this landscape by directly
employing the Transformer architecture on image patches,
resulting in exceptional performance for image classification
tasks (Dosovitskiy et al., 2021). Nevertheless, numerous research
papers addressing weed detection, classification, or segmentation
employ Convolutional Neural Network (CNN) architectures. Weed
detection in soybean crops has been explored using Convolutional
Neural Networks (CNNs) by dos Santos Ferreira et al. (2017).
Espejo-Garcia et al. (2020a) explored the potential of utilizing
transfer learning techniques for detecting two weed species. They
employed five pre-trained convolutional networks (Xception,
Inception-Resnet, VGNets, Mobilenet, and Densenet). Additionally,
they adopted a comprehensive real-time weed detection strategy
based on a cascade classifier trained with Haar-like features. Saleem
et al. introduced an innovative methodology grounded in deep
learning (DL) for weed detection in (Saleem et al., 2022). This
approach encompasses the utilization of diverse neural network
architectures, both single-stage and dual-stage, and examines the
impact of assorted image resizing methodologies. Ali et al. in
(El Alaoui et al., 2022), address the challenges of weed variation
and complex agricultural backgrounds by employing a data fusion
approach. Their work highlights the potential of CNNs (YoloV5)
for accurate weed identification and targeted weed control. To
emphasize the recent trends in deep learning, Hasan et al. conducted
an exhaustive review of the literature on weed detection and
classification methods within the context of deep learning (DL).
Despite considering only 70 articles, they rigorously evaluated each
one using consistent criteria. Additionally, the authors delineated
shared concepts for the application ofDL in agriculture (Hasan et al.,
2021). Although this architecture has been successful in overcoming
certain obstacles, CNNs continue to encounter numerous
difficulties, including substantial computational demands, the need
for global context understanding, inherent inductive biases, and
comprehensive feature representation, among others.

Nevertheless, a limited number of studies have employed
Vision Transformers to tackle this challenge. Same way Reenul
et al., have embraced the self-attention capabilities of Vision
Transformer (ViT) models for the classification of various plant
species, such as red beet, off-type beet with green leaves, parsley,
and spinach. Their empirical studies demonstrate that ViT models,
even when trained on a small dataset of labeled examples,
outperform conventional state-of-the-art CNN-based models like
EfficientNet and ResNet. The ViT models achieved an impressive
top accuracy of 99.8% (Reedha et al.). Similarly in (Jiang et al.,

2022), They conducted a comprehensive evaluation of three
distinct Transformer architectures Swin Transformer, SegFormer,
and Segmenter, specifically for the task of weed segmentation.Their
findings revealed that the SegFormer model attained a notable
Mean Accuracy (mAcc) of 75.18% and a Mean Intersection over
Union (mIoU) of 65.74%. A novel lightweight Vision Transformer
approach for weed mapping from high-resolution drone imagery,
achieving superior segmentation and enabling efficient herbicide
management through innovative transfer learning techniques has
been proposed by Castellano et al. (2023).

Resource limitations and training costs pose challenges for
deploying deep learning models for weed detection. This study
tackles these limitations by proposing a knowledge distillation
method to optimize the ViT model. The approach aims to reduce
training costs, data requirements, and model size while maintaining
weed detection performance.

In summary, the contributions of this paper can be
delineated as follows:

• Novel CNN-to-ViT Knowledge Distillation Framework: We
introduce a computationally efficient knowledge distillation
approach that enables effective transfer of inductive biases,
parameter sharing mechanisms, and local feature extraction
capabilities from a CNN-based teacher model (ResNet-50) to
a lightweight Vision Transformer student architecture, while
preserving the self-attention mechanisms for global feature
modeling in agricultural weed detection tasks.
• High-Performance Lightweight Model for Edge Deployment:
Our compact ViT-based student model achieves superior
weed detection accuracy (83.47% mAP) with minimal
computational overhead (5.7M parameters), making it readily
deployable on resource-constrained edge devices for real-time
precision farming applications while outperforming existing
state-of-the-art methods.
• Rigorous Real-World Validation: The proposed framework is
validated on an authentic agricultural dataset collected under
field conditions with manual annotations, demonstrating high
ecological validity and practical applicability for real-world
deployment scenarios in precision agriculture.

This paper is organized into four sections. It opens with an
introductionandareviewof relatedworks.Next, theproposedmethod
and materials are detailed. This is followed by a discussion of the
experimental results, highlighting key findings. The paper concludes
with a summary of the contributions and implications of the study.

2 Related work

2.1 Object detection

Object detection has emerged as a highly favored task in the
field of computer vision, owing to its wide-ranging applications that
addressnumerouspractical issues. It involves theprocessof identifying
and locating one or several objects within an image, determining
their categories, and pinpointing their positions. In recent years,
Transformers have demonstrated remarkable efficacy in executing
tasks related to object detection. In (Carion et al., 2020) introduced
DETR (Detection Transformer), an innovative approach for object
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detection. This method is distinctive in its ability to directly predict
collections of output elements, which include bounding boxes, class
labels, and confidence scores. Notably, it accomplishes this without
the necessity for distinct stages of region proposal and subsequent
refinement unlike CNN-based models. Michael et al. (Yang, 2025)
showcased that the DetTransNet model markedly improves object
detectionon theCOCOdataset, achieving this featwithout an increase
in parameter count. The model notably outperforms established
baselines, registering a 1.2% uplift in Average Precision. Baseline
models. In the context of transformer-based models, a critical factor
influencing their effectiveness lies in the pre-training phase. Previous
research, as highlighted by the study referenced (Dosovitskiy et al.,
2021), emphasizes the requirement for a large volume ofmeticulously
curated data during pre-training. DeiT (Touvron et al., 2021) employs
innovative training strategies that allow it to perform well even with
limited data. These policies contribute to its efficiency, making it a
viable option for scenarioswhere large-scale datasets are not available.

2.2 Weed detection

Machine learning (ML) has demonstrated significant
effectiveness in developing automatic weed detection and
classification systems. These models can be deployed across a wide
range of applications. In this part, we offer a concise overview of
research previously conducted in this context. Deep Learning (DL)
enables machines to autonomously identify the most distinctive
attributes of objects within unprocessed images. Compared to
conventional Machine Learning (ML) approaches, DL exhibits
greater resilience to diverse alterations in the input images, which
contributes to enhanced outcomes in Detection, classification
and segmentation tasks. Espejo-Garcia et al. (2020) developed
a crop/weed identification system combining fine-tuned deep
learning models with traditional classifiers, achieving high accuracy
and avoiding overfitting. Utilizing a diverse dataset from Greece,
the best model, a fine-tuned Densenet with SVM, reached a
99.29% F1 score, demonstrating robust performance across different
conditions. Rai et al. (2024) have developed the YOLO-Spot model,
a streamlined version of the YOLOv7-tiny framework, designed
for efficient weed identification within agricultural settings. The
model variant, YOLO-Spot_M, stands out for its enhanced precision
and lower energy requirements, rendering it an ideal candidate for
incorporationwith remote sensing technologies to facilitate accurate
weed control. Olsen et al. (2019). Have created DeepWeeds, the
first extensive, public image dataset for Australian weed species,
enabling the advancement of classification methods for automated
weed control.The dataset includes 17,509 images of eight significant
weeds, with deep learning models Inception-v3 and ResNet-50
achieving classification accuracies of 95.1% and 95.7% respectively,
and showcasing real-time inference capabilities. Convolutional
Neural Networks (CNNs) adeptly apply convolutional filters
to parse images, extracting pivotal features crucial for object
identification.This process is underpinned by the network’s inherent
mechanisms: local receptive fields, shared weights, and translational
equivariance, which collectively enhance the network’s visual
interpretative capabilities. The majority of studies concentrating
on the classification, identification, or segmentation of weeds

utilize CNNs-based models structures (Dian Bah et al., 2018;
Suh et al., 2018; Nkemelu et al., 2018) such as Inception-v3
(Szegedy et al., 2015), GoogLeNet (Kerkech et al., 2019), ResNet-
50, ResNet-101 (He et al., 2015), AlexNet (Krizhevsky et al., 2012),
VGG-16, VGG-19 (Simonyan and Zisserman, 2014).

The vision transformer (ViT) signifies a transformative advance
in employing attention models for computer vision tasks, owing
to the benefits provided by the attention paradigm, While their
application to address agricultural tasks is limited, only a few
studies have utilized ViTs for weed detection due to the scarcity
of data. The GNViT model in (P and I. M, 2024), utilizing a pre-
trained vision transformer (ViT) on the ImageNet dataset, aims
to detect and classify pests affecting groundnut crops. Rigorous
evaluation using IP102 dataset revealed GNViT’s superior accuracy
(99.52%) compared to state of the art models. These findings
highlight the potential of ViTs like GNViT in enhancing crop
security and reducing losses. Nevertheless, according to this study
(Rozendo et al., 2024), the PVT (Pyramid Vision Transformers)
models for weed classification, highlighting that an ensemble of
these methods can achieve up to 99.17% accuracy with minimal
training. The results underscore the potential of these models to
significantly enhance weed detection in agriculture. Liang et al.
(2021) use a ViT deep neural network for classifying soybean
and weed images, demonstrating superior classification and
generalization capabilities. The network, designed with specific
parameters, effectively utilizes self-attention mechanisms for image
semantic recognition.

2.2.1 Vision transformer
The Transformer architecture, introduced by Vaswani et al.

(2017), has become the benchmark model for all natural language
processing (NLP) tasks. Initially designed for machine translation,
it now serves as the reference standard across the field. ViTs have
become a significant asset in computer vision (Dosovitskiy et al.,
2021), utilizing self-attention mechanisms to analyze image data.
In contrast to traditional convolutional neural networks (CNNs),
ViTs excel at capturing global context, making them ideal for
complex tasks. Recent research has highlighted the effectiveness
of ViTs in diverse agricultural applications, including crop disease
detection, yield prediction, and precision farming, underscoring
their versatility and potential to advance agricultural technology.

The input goes through six stages of a vision transformer to
obtain the class id:

1. Image Patching:The input image is divided into a grid of fixed-
size (16 ∗ 16) patches. Each patch is treated as a token, similar
to words in natural language processing (NLP).

2. Linear Embedding: Each image patch is flattened into a 1D
vector and then linearly transformed into a lower-dimensional
embedding. This step converts the spatial information of the
patches into a format suitable for the transformer.

3. Positional Encoding: Since transformers do not inherently
understand the order of tokens, positional encodings are
added to the patch embeddings. These encodings provide
information about the position of each patch within the
original image.

4. Transformer Encoder: The sequence of patch embeddings,
now with positional encodings, is fed into a standard
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transformer encoder. The encoder consists of multiple layers
of self-attention and feed-forward neural networks. This stage
allows the model to capture complex relationships between
different patches.

5. Classification Token: A special classification token is
prepended to the sequence of patch embeddings. This token
aggregates information from all patches and is used for the
final classification task.

6. Output Layer: The output from the transformer encoder is
passed through a small multi-layer perceptron (MLP) head.
The classification token’s output is used to produce the final
prediction.

2.2.2 Knowledge distillation
Knowledge Distillation (KD) (Hinton et al., 2015) leverages

the teacher model’s output as soft labels to guide the student
model, resulting in significant enhancements for lightweight
models without additional inference costs. This technique has
been extensively investigated for Convolutional Neural Network
(CNN) models and has been effectively applied to various vision
tasks, including object detection, object classification and object
segmentation.

The objective is to minimize the Kullback-Leibler divergence
between the softmax outputs of the teacher and student models.
Let Zt represent the logits of the teacher model and Zs the logits
of the student model. We denote the temperature for distillation
by τ, the coefficient balancing the Kullback-Leibler divergence loss
(KL) and the cross-entropy loss (LCE) on ground truth labels y by
α, and the softmax function by σ (Wei et al., 2020). The distillation
objective is:

Ldistill = α ⋅KL(σ(Zt/τ) ,σ(Zs/τ)) + (1− α) ⋅ LCE(y,σ(Zs))

3 Methods and materials

This paper contributes to the application of machine vision
technologies for weed control in real agricultural environments.
During the deployment stage, both model performance and model
size are critical considerations. A prevalent issue is the trade-off
between accuracy and model size. Highly accurate deep learning
models typically possess a large number of parameters, rendering
their deployment expensive or even unfeasible. In this section, we
introduce a novel architecture designed to address this challenge.
We employ a knowledge distillation technique that incorporates an
attention mechanism, enabling us to reduce the model size while
preserving its accuracy. Furthermore, This leverages advantages
such as parameter sharing and local feature extraction from a large
pre-trained CNN-model (ResNet-50) as a teacher for our small and
straightforward ViT model. This approach enables more powerful,
lightweight, and cost-efficient model for weed detection.

3.1 Model overview

Our knowledge distillation framework transfers learning from
a ResNet50 teacher to a compact ViT student for efficient

weed detection. The teacher extracts hierarchical features through
convolutional layers, while the student processes 16× 16 image
patches via transformer blocks with multi-head attention. Using
a combined cross-entropy and distillation loss with temperature
control, the system maintains accuracy while reducing parameters
by 77.74% (to 5.7M). This integrates CNN’s local feature extraction
with ViT’s global attention, enhanced by patch augmentation for
robust field performance in precision agriculture.

The proposed knowledge distillation framework for weed
detection, illustrated in Figure 1, encompasses an advanced three-
phase methodology that systematically transfers knowledge from
a robust ResNet50 teacher network to an efficient ViT student
model. This approach addresses the critical challenge of deploying
computationally intensive deep learning models in resource
constrained agricultural environments while maintaining high
detection accuracy. The initial phase involves comprehensive
training of the ResNet50 teacher model (see Figure 2), which
processes input images through a hierarchical CNN architecture.
The model begins with a 7× seven convolutional layer followed
by batch normalization and ReLU activation, progressively down
sampling the spatial dimensions through four residual stages to
extract high level features. The final global average pooling layer
condenses these features into a 2048 dimensional representation,
leveraging 25.6M parameters to capture intricate visual patterns
in agricultural imagery. The second phase constitutes the core
innovation: systematic knowledge transfer from the teacher to
the student ViT model (see Figure 3), which adopts a lightweight
transformer based design. The student processes input images by
splitting them into 16× 16 patches, linearly embedding each into
384 dimensional vectors (totaling 196 patches plus a CLS token).
These embeddings are combined with positional information and
processed through 12 transformer blocks. The blocks employ
multi-head attention (6 heads) and feed forward networks (MLP
size 1536), with layer normalization and residual connections
ensuring stable training. Despite its streamlined architecture (5.7M
parameters), the ViT student effectively mimics the teacher’s
feature extraction capabilities through refined soft distillation.
The knowledge distillation process employs a carefully designed
loss function combining traditional cross entropy loss with a
distillation loss component, where the temperature parameter
fine tunes probability distribution softness. The student’s training
further benefits from patch based data augmentation, enhancing its
ability to generalize across spatial contexts. The final phase validates
the distilled student model, demonstrating successful integration
of CNN-derived hierarchical features with the ViT’s global self-
attention mechanisms. The student’s architecture culminating in
a layer-normalized CLS token classification proves particularly
adept at modeling long-range dependencies in weed detection tasks.
Experimental results confirm that the distilled ViT not only retains
the teacher’s accuracy but does so with 77.74% fewer parameters,
making it ideal for deployment on edge devices in precision farming.

3.2 Teacher model architecture

In our knowledge distillation process (He et al., 2015), we
employ a pre-trained ResNet-50 model (On our dataset) as the
teacher architecture. ResNet-50, consisting of 50 layers, utilizes a
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FIGURE 1
Proposed architecture framework.

residual learning approach to facilitate the learning of complex
features and mitigate the degradation problem. The final fully
connected layer is adapted to output two neurons, corresponding to
the weed and crop classes in our dataset.The architecture comprises
multiple Residual Blocks, each containing two convolutional layers
with a shortcut connection that enables direct information transfer
to subsequent layers. This design aids in retaining information
from earlier layers, thereby enhancing the model’s capacity to
learn superior representations. Furthermore, global average pooling
is applied before the fully connected layer to reduce the spatial
dimensions of the feature maps. This is followed by a detection
module composed of multiple feed-forward layers, tasked with
predicting bounding boxes and class labels for the two specified
target classes (See Figure 2).

Given the critical importance of small feature detection and
overfitting prevention in weed detection tasks, ResNet-50 was
chosen as the teacher network for its superior capabilities in
these areas. Intricate morphological learning to differentiate weeds
from crops across growth stages is made possible by its residual
connections, which also address vanishing gradients. Through
skip connections and multi-scale processing, the hierarchical
architecture captures high-level semantic representations as well
as fine-grained features (leaf textures, edge patterns). The residual
design is appropriate for small agricultural datasets with high
intra-class variability because it implicitly regularizes through
identity mapping and ensemble effects.When paired with ImageNet
pre-training, ResNet’s demonstrated ability to handle complex

backgrounds, variable lighting, and species similarities makes
it the best choice for knowledge transfer. The compact ViT
student is guided to attain high performance with computational
efficiency by the rich multi-level features of ResNet-50, which act
as comprehensive supervisory signals. 83.47% mAP was attained
during experimental validation, indicating practical viability for
agricultural applications with limited resources.

3.3 Student model architecture

We employ a tiny ViT as the backbone for our student model,
specifically designed to detect two classes: weed and crop. The tiny
ViT model, trained on our dataset, leverages its efficient feature
extraction capabilities. Our model architecture comprises three
heads and 12 layers, with approximately 5.7 million parameters
(See Figure 3). It operates with a training throughput of 54 frames
per second (FPS), a dimension of 192, and a resolution of 224 ×
224 pixels. To adapt tiny ViT for object detection, we integrate
a detection head consisting of a series of feed-forward layers
responsible for predicting bounding boxes and class labels for the
two target classes. The combined architecture is trained end-to-end,
optimizing both classification and localization tasks. Furthermore,
For bounding box classification, we employ cross-entropy loss
(Mao et al., 2023) alongside IoU loss (Zhou et al., 2019). The
Softmax function (Franke and Degen, 2023) is used in the output
layer to convert the network’s output into a probability distribution
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FIGURE 2
Teacher model architecture specifications.

over the predicted classes. Additionally, we have adopted KL-
divergence as the distillation loss function.

3.4 Advancements

To enhance the settings for advanced weed detection, we
propose incorporating a Prompts List that includes parameters
such as soil type, lighting conditions, and stem coordinates (Stem
X and Stem Y). This addition aims to augment the performance
of our student model by providing comprehensive contextual
information. The student model leverages these additional prompts
in conjunction with the guidance from the teacher model,
ResNet50, which has been trained on a combination of the
CottonWeedID15 and semi-Moroccan datasets. This integrated
methodology capitalizes on both the detailed environmental
prompts and the robust training of the teacher model, thereby will
facilitating more precise and reliable weed detection.

3.4.1 Data selection
To address the challenges presented by harsh environments,

we established a comprehensive set of standards and criteria for

FIGURE 3
Student model architectural design.

dataset selection, taking into account various field-specific factors.
These factors encompass the weed life cycle, scene background,
natural soil conditions, occlusion, morphological variations in
weeds, weed categories, weed coloration, geographical and seasonal
plant variations, and fluctuating lighting conditions as illustrated
in Figure 4. Following the application of a fusion technique
(El Alaoui et al., 2022), the CottonWeedID15 and semi-Moroccan
datasets were selected for this study as they comprehensively
embody these characteristics as demonstrated in Table 1.

Given the importance of these characteristics, our study achieves
superior weed detection precision on the selected dataset, thereby
demonstrating the robustness of our proposed approach.Thedataset
comprises approximately 6,323 images, including 5,187 RGB images
from the CottonWeedID15 dataset. These images were captured
in 2020 and 2021 using smartphones or handheld digital cameras
under natural field illumination and at various stages of weed
growth. Additionally, the semi-Moroccan dataset contributes 1,300
images, each a 512 × 512 color image captured under diverse field
conditions. The dataset encompasses more than twenty classes of
weeds, including one class of sesame crops considered as a negative
class. We removed 160 images from our dataset because their
characteristics did not meet our criteria, as shown in Table 1.
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FIGURE 4
Sample images from the weed dataset used in this study.

TABLE 1 Data selection criteria.

Norms Conditions

Weather conditions To create a dynamic dataset, most sample images need to be taken in a variety of weather conditions, including sunny, rainy, windy,
cloudy and snowy

Seasonal variation Vs. weed change The dataset comprises images collected throughout various times of the year, demonstrating the progressive morphological changes in
weeds

Lighting conditions To address the challenges posed by the demanding environment, we selected sample images captured under various lighting
conditions, including darkness, sunlight, and plant shadows

The weed life cycle The selected datasets should encompass various periods of seasonal weed growth

Scene background All images should represent a diverse array of scenes and backgrounds, including sand, clay, silt, peat, chalk, and loam

The dataset captures diverse weed species under real-world
conditions, illustrating variations in morphology, background, soil
texture, occlusion, and lighting. Selected from CottonWeedID15
and a Moroccan-contributed set, these samples reflect key criteria
such as weed life cycle, coloration, and seasonal or geographic
diversity ensuring a robust foundation formodel training in complex
agricultural environments.

3.5 Data-augmentation

Notably, One significant challenge in using transformers
for certain vision tasks, particularly object detection, is their
requirement for a larger dataset for training compared to
convolutionalmodels. Tomitigate this issue, we leverage several data
augmentation tactics such as Random Erasing (Wei et al., 2020),
(Touvron et al., 2021), Rand-Augment (Cubuk et al.) and Auto-
Augment (Dogus Cubuk et al., 2018). The experiments highlight

the advantages of these methods and validate their efficacy in
improving the student model’s performance, as measured by Mean
Average Precision, especially when employing Rand-Augment over
Auto-Augment.

4 Experiments

This section details a series of analytical experiments and the
corresponding results derived from the proposed methodology.
Initially, we discuss and analyze the outcomes obtained from the
pre-trained ResNet50 model (teacher model), which was trained
on the blend of the CottonWeedID15 and semi-Moroccan datasets
(Chen et al., 2022), (El Alaoui et al., 2022). Subsequently,We fine-
tune our simplified Vision Transformer (ViT) model (student
model) on our dataset, both with and without the guidance of the
teacher model, and assess its performance. The evaluation focuses
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FIGURE 5
mAP convergence curve for the teacher model in weed detection
tasks, computed across 100 epochs at IoU thresholds 0.5–0.95.

FIGURE 6
mAP convergence curve for the teacher model in weed detection
tasks, computed across 100 epochs at IoU threshold 0.5.

on three critical metrics: mean average precision, frames per second
(FPS), and model size.

The figures above demonstrate the performance of our teacher
model throughout the training phase on the complete dataset.
The teacher model, as illustrated in Figures 5, 6, achieved a mean
Average Precision (mAP) of 96.38% at an Intersection over Union
(IoU) threshold of 0.5. This indicates a high level of accuracy in
weed detection tasks (See Figure 7). The model’s precision, which
measures the proportion of true positive detections among all
positive detections, was 97.95% (See Figure 8). This high precision
reflects the model’s ability to minimize false positives. Additionally,
the recall rate, which measures the proportion of true positive
detections among all actual positives, was 93.25% (See Figures 8, 9),
indicating a strong ability to identify relevant objects. These results
were obtained over 100 training epochs, demonstrating the model’s
robustness and effectiveness in learning from the dataset.

The results presented below illustrate the performance of the
student model, which was evaluated over 100 epochs on our dataset
using several critical metrics. The model achieved a mean Average
Precision (mAP) of 83.47% at an Intersection over Union (IoU)

FIGURE 7
Performance evaluation of the teacher model on validation data.

FIGURE 8
Teacher model precision performance progression in weed detection
across 100 training epochs.

FIGURE 9
Teacher model recall performance progression in weed detection
across 100 training epochs.
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FIGURE 10
Student model mAP performance progression across 100 training
epochs, assessed at IoU threshold of 0.5.

FIGURE 11
Student model mAP performance convergence across 100 training
epochs evaluated at IoU thresholds 0.5–0.95.

threshold of 0.5 (See Figure 10) and a mean Average Precision
(mAP) of 54.80% at an Intersection over Union (IoU) threshold of
0.5 0.95 (See Figure 11). Additionally, it demonstrated a Precision of
87.21% (See Figure 12) and a Recall of 73.93% (See Figure 13).

These results, as demonstrated in Figure 14, show that the
student model, guided by the ResNet-50 mentor model, achieves
high accuracy in weed detection tasks. The elevated Precision value
indicates a low rate of false positives, while the substantial Recall
value reflects a strong ability to identify relevant objects within the
dataset. Collectively, these metrics highlight the effectiveness of the
mentor-student training approach in enhancing the performance of
the student model.

We conducted a comprehensive ablation study comparing
ResNet50, InceptionV3, and VGG19-based teacher networks on
our weed detection dataset to determine the optimal backbone

FIGURE 12
Student model precision performance progression in weed detection
across 100 training epochs.

FIGURE 13
Student model recall performance progression in weed detection
across 100 training epochs.

architecture. The ResNet50-based teacher achieved superior
performance with 96.38% mAP@0.5, 97.95% precision, and 93.25%
recall, outperforming VGG19-based teacher (94.12% mAP@0.5)
and InceptionV3-based teacher (93.5% mAP@0.5). The residual
connections in ResNet50 enable effective gradient flow and feature
discrimination crucial for distinguishing subtle morphological
differences between crops and weeds. Additionally, the ResNet50-
based teacher demonstrates optimal computational efficiency with
45 FPS and 25.6M parameters compared to VGG19-based teacher’s
38 FPS with 32.4M parameters and InceptionV3-based teacher’s
30 FPS with 28.5M parameters. Based on this comprehensive
evaluation, ResNet50-based architecture was selected as the teacher
backbone due to its superior accuracy, computational efficiency,
and effective knowledge transfer capabilities for weed detection
tasks. The detailed performance comparison is presented in Table 1,
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FIGURE 14
Performance evaluation of the student model on validation data.

demonstrating the ResNet50-based teacher’s consistent superiority
across all evaluation metrics.

Our experimental results demonstrate that student model
performance can be significantly enhanced through the integration
of our proposed approach with Grad-CAM methodology. This
combination facilitates more effective knowledge transfer from
the teacher model to the student model by leveraging visual
attention mechanisms that guide the distillation process. The
Grad-CAM integration provides interpretable feature maps that
enable the student model to better understand and replicate
the teacher’s decision-making patterns, resulting in more robust
feature representation learning, which subsequently improves weed
detection accuracy (See Figures 15, 16).

The experimental results, as shown in Table 2, underscore the
efficacy of the proposed method, which surpasses contemporary
state-of-the-art techniques. This approach reduces the number
of parameters by 77.74% compared to the teacher model, while
preserving robust performance in weed detection, as evidenced
by mAP and FPS metrics. The substantial parameter reduction
demonstrates the model’s computational efficiency without
compromising detection accuracy, making it particularly suitable
for resource-constrained agricultural environments. Furthermore,
the maintained performance metrics validate the effectiveness
of our knowledge distillation framework in transferring critical
feature representations from the complex teacher network to
the streamlined student architecture. These findings support the
adoption of vision transformers through knowledge distillation as
lightweight models, characterized by low training and deployment
costs on edge devices, thereby contributing to enhanced crop yields.

4.1 Implementation details

Our hyper-parameter settings and training strategy are as
follows: To train both the student and teacher model architectures,
the dataset was partitioned following a standard 80%-10%-10%
split protocol. The training set comprised 80% of the total dataset
(approximately 5,058 images), which was utilized to optimize

the model parameters. A validation set consisting of 10% of
the data was employed to monitor training progress, prevent
overfitting, and mitigate gradient-related issues such as exploding
or vanishing gradients. The remaining 10% of the dataset (633
images) was reserved as an independent test set to evaluate model
performance on previously unseen samples, ensuring an unbiased
assessment of the models’ generalization capabilities. For bounding
box classification, we utilize cross-entropy loss (Mao et al., 2023)
in conjunction with IoU loss (Zhou et al., 2019). The Softmax
function (Franke and Degen, 2023) is adopted as the output layer to
transform the network’s output into a probability distribution over
the predicted classes. Moreover, we have adopted KL-divergence as
the distillation loss function, facilitating the capture of soft targets
and enhancing the generalization capabilities of the student model.
By default, models are trained for 100 epochs, with the learning rate
reduced by a factor of 0.1 at the 40th epoch. We train our models
using the Adam optimizer (Kingma and Ba, 2015) with a base
learning rate of 2× 10−4, β1 = 0.9,β2 = 0.999, and a weight decay of
10−4. The learning rates for the linear projections, which are used
for predicting object query reference points and sampling offsets, are
scaled by a factor of 0.1. Runtime evaluations are conducted on an
NVIDIA Tesla V100 GPU.

5 Discussion

To underscore the merits of our research, we have conducted
comprehensive comparisons with existing state-of-the-art (SOTA)
weed detection techniques. Our approach exhibits superior
performance. Conventional methods typically depend on
either purely CNN-based architectures or more intricate and
computationally demanding Transformer models. For instance,
models such as ViT and Swin Transformer (Liu et al., 2021)
achieve comparable performance with CNN-based models on
various vision tasks like Image Classification, Object Detection, and
Semantic Segmentation on datasets such as ImageNet (Deng et al.,
2009), COCO (Lin et al., 2014), and ADE20K (Zhou et al., 2017),
respectively. While these models perform well on various tasks,
they still face challenges related to high computational costs
due to the self-attention mechanism, which scales quadratically
with the sequence length. This makes them resource-intensive
and challenging to train on standard hardware. These models
can be expensive and require large datasets to perform well.
Additionally, fine-tuning for specific tasks can be resource-intensive.
To produce an automatic weed detection/recognition, In (Zhang,
2023) they created a CNN-Transformer hybrid model effectively
captures both local and global features, making it a robust and
efficient solution for weed recognition, especially suitable for
edge device deployment. Despite this progress, challenges persist,
such as the diverse and numerous weed species complicating
model training and increasing computing resource demands.
Variations in shooting angles and lighting conditions also affect
model stability and accuracy (Ghofrani and Mahdian Toroghi,
2022). A novel knowledge distillation technique enhances the
small model’s accuracy by transferring knowledge from the large
model. Applied to the PlantVillage dataset, this method achieves
high accuracy of 97.58% close to the large Xception model’s
99.73%, improving the classification rate of the small model and
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FIGURE 15
Comparative confusion matrices of teacher and student models for automated weed detection tasks on the experimental dataset.

FIGURE 16
Confusion matrices comparing teacher and student model performance on weed detection tasks following Grad-CAM (Selvaraju et al., 2016) guided
knowledge distillation implementation on the experimental dataset.

TABLE 2 Summary of the obtained results.

Metrics/Backbone + FPN ResNet50 InceptionV3 VGG19 Student model

mAP@0.5 96.38% 93.5% 94.12% 83.47%

mAP@0.5:0.95 78.62% 75% 75.38% 52.56%

Precision 97.95% 92.40% 96.47% 87.21%

Recall 93.25% 90% 91.83% 73.93%

FPS(NVIDIA V100/A100) 45 30 38  54

Params 25.6M 28.5M 32.4M 5.7M

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1654074
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


El Alaoui and Mousannif 10.3389/frobt.2025.1654074

facilitating early intervention to protect agricultural productivity.
In (He et al., 2024), the EDS-YOLOv8 model enhances weed
detection by integrating Efficient ViT and RepViT architectures,
advanced attention mechanisms (SimAM, EMA, BiFormer), and
dynamic snake convolution, resulting in significant improvements
in precision, recall, and mAP metrics. This approach aligns with
recent advances in weed detection, where hybrid CNN-Transformer
architectures have demonstrated remarkable effectiveness. Studies
have shown that incorporating attentionmechanisms andmultiscale
feature extraction significantly improves detection accuracy
(Xiang et al., 2023), with EM-YOLOv4-Tiny achieving 94.54%mAP
for peanut weed detection (Zhang et al., 2022) and SWFormer
reaching 76.54% mAP for rapeseed applications (Jiang et al.,
2024). Similarly, ConvViT's integration of convolutional and
Transformer structures achieved 96.85% accuracy for apple disease
identification while maintaining computational efficiency (Li and
Li, 2022). The consistent success of attention-enhanced hybrid
architectures across different agricultural applications validates the
design choices implemented in EDS-YOLOv8. Consequently, The
experimental comparison with existing methods demonstrates that
our approach effectively addresses several key limitations prevalent
in prior studies. First, by employing a lightweight architecture
optimized through soft knowledge distillation, our model achieves
performance levels comparable to those of larger CNN-based
models while significantly reducing training costs. Notably, this
strategy obviates the need for extensive training datasets, making
the framework more scalable and resource-efficient. Second, the
streamlined architecture of our student model ensures seamless
deployment on edge devices, a critical requirement for real-time
weed detection in agricultural environments. This design not
only minimizes computational overhead but also enhances energy
efficiency, rendering our solution both practical and sustainable
for field applications. Third, the distillation process from a CNN-
based teacher model (ResNet-50) confers additional advantages,
including the incorporation of beneficial inductive biases and
local feature extraction capabilities, while preserving the global
receptive field enabled by the attention mechanism. This hybrid
learning paradigm allows our model to leverage the strengths of
both CNNs and Vision Transformers, resulting in more robust
feature representation. Empirical results underscore the efficacy
of our method, which surpasses several state-of-the-art (SOTA)
approaches across multiple metrics. Specifically, our model achieves
a mean average precision (mAP) of 83.47%, along with a precision
of 87.21% and recall of 73.93%. Furthermore, it attains an inference
speed of 54 FPS making it suitable for real-time applications—while
reducing the parameter count of the teacher model by 77.7%,
thereby optimizing both performance and computational efficiency.
These advancements highlight the potential of our framework to
bridge the gap between high accuracy and deployability in precision
agriculture, offering a viable solution for resource-constrained
environments.

6 Conclusion

In this paper, we have investigated weed detection by employing
knowledge distillation with an attention mechanism to optimize
Vision Transformer (ViT)-based models. Our objective was to

develop a lightweight model that can be trained with a relatively
small dataset and is cost-effective to deploy, facilitated by the
application of soft distillation. To achieve this, we leveraged
the capabilities of a pretrained Convolutional Neural Network
(CNN) as the teacher model, capitalizing on the benefits of
CNNs, such as parameter sharing, inductive biases, and local
feature extraction. This knowledge was then transferred to our
simplified Vision Transformer through a knowledge distillation
technique, augmented with an attention mechanism. This approach
significantly enhances the performance of the student model in
terms of mean Average Precision (mAP), the number of parameters,
and frames per second (FPS). Additionally, being inherently a
feature-based method, it can be seamlessly combined with logit-
based distillation techniques to further augment the student model’s
capabilities. Future research on more precise hyperparameter
tuning and data augmentation for our student model is likely to
yield significant improvements. Additionally, exploring advanced
methodologies such as Grad-CAM guided knowledge distillation
could further enhance student model performance by leveraging
attention-based feature transfer mechanisms. Furthermore,
adopting novel architectures as teacher models could provide
richer feature representations and improved knowledge transfer
capabilities, thereby benefiting the overall distillation process.
Ultimately, the development of efficient computer vision models for
weed detection substantially improves weed management practices,
fosters sustainable agriculture, and enhances both profitability and
environmental sustainability within precision farming.
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