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Simultaneous Localization and Mapping (SLAM) has emerged as one of the 
foundational technologies enabling mobile robots to achieve autonomous 
navigation, garnering significant attention in recent years. To address the 
limitations inherent in traditional SLAM systems when operating within dynamic 
environments, this paper proposes a new SLAM system named GNV2-
SLAM based on ORB-SLAM2, offering an innovative solution for the scenario 
of cowshed inspection. This innovative system incorporates a lightweight 
object detection network called GNV2 based on YOLOv8. Additionally, it 
employs GhostNetv2 as backbone network. The CBAM attention mechanism 
and SCDown downsampling module were introduced to reduce the model 
complexity while ensuring detection accuracy. Experimental results indicate 
that the GNV2 network achieves excellent model compression effects while 
maintaining high performance: mAP@0.5 increased by 1.04%, reaching a 
total of 95.19%; model parameters were decreased by 41.95%, computational 
cost reduced by 36.71%, and the model size shrunk by 40.44%. Moreover, 
the GNV2-SLAM system incorporates point and line feature extraction 
techniques, effectively mitigate issues reduced feature point extraction caused 
by excessive dynamic targets or blurred images. Testing on the TUM dataset 
demonstrate that GNV2-SLAM significantly outperforms the traditional ORB-
SLAM2 system in terms of positioning accuracy and robustness within dynamic 
environments. Specifically, there was a remarkable reduction of 96.13% in 
root mean square error (RMSE) for absolute trajectory error (ATE), alongside 
decreases of 88.36% and 86.19% for translation and rotation drift in relative 
pose error (RPE), respectively. In terms of tracking evaluation, GNV2-SLAM 
successfully completes the tracking processing of a single frame image within 
30 ms, demonstrating expressive real-time performance and competitiveness. 
Following the deployment of this system on inspection robots and subsequent 
experimental trials conducted in the cowshed environment, the results indicate 
that when the robot operates at speeds of 0.4 m/s and 0.6 m/s, the pose 
trajectory output by GNV2-SLAM is more consistent with the robot's actual 
movement trajectory. This study systematically validated the system's significant 
advantages in target recognition and positioning accuracy through experimental 
verification, thereby providing a new technical solution for the comprehensive 
automation of cattle barn inspection tasks.
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1 Introduction

In autonomous navigation systems of mobile robots, 
simultaneous localization and mapping (SLAM) concept is widely 
acknowledged as a core technology that enables robots to achieve 
accurate self-location and environmental mapping without prior 
knowledge of the environment (Jia et al., 2022). Particularly, Visual 
SLAM (VSLAM) method has received special attention due to its 
low hardware cost and its ability to capture rich environmental 
details (Islam R. et al., 2023). However, traditional VSLAM methods 
are generally based on the premise of environment statics (Sun et al., 
2022), which faces many challenges in actual environments. 
Especially in dynamic environments containing moving targets, the 
problem of extracting erroneous feature information from dynamic 
objects in turn triggers degradation of localization accuracy or 
tracking interruptions (Wan Aasim et al., 2022). If there are 
multiple moving targets or camera motion blur in the environment, 
traditional VSLAM methods will reduce the number of extracted 
features, leading to a decrease in system stability and robustness. 
Taking the inspection environment of cattle sheds in animal 
husbandry as an example, inspection robots are often disturbed 
by the movement of cattle or workers when performing inspection 
tasks. Meanwhile, the cowshed is a structural environment with 
a large number of line features. In order to ensure the reliable 
operation of the SLAM system in such complex scenarios, it is 
necessary to design a SLAM system that can identify and eliminate 
dynamic feature points in real-time, and combine with line features 
in the environment to improve overall positioning accuracy and 
robustness.

Deep Learning-based VSLAM is regarded as a 
promising solution to address the challenges of dynamic 
environments (Song et al., 2022). It can recognize predefined 
dynamic target categories, and providing the system with their 
semantic labels and coordinate information. By proposing 
characteristics on dynamic targets, it improves the localization 
accuracy in dynamic environments, which lays the foundation for 
autonomous detection of inspection robots.

Red Green Blue-Depth (RGB-D) camera can accurately obtain 
depth information through sensor measurements, while their color 
images can be used for visual tasks such as target recognition and 
image segmentation. Although the image segmentation technique 
is effective in eliminating the interference of dynamic objects to 
the SLAM system, its high computational overhead tends to affect 
the real-time performance of the system (Liu and Miura, 2021). 
Therefore, YOLO (You Only Look Once), as a single-stage efficient 
object detection framework, has gradually become the preferred 
solution in dynamic environment SLAM systems. The structurally 
optimized YOLO model can provide localization accuracy close 
to that of image segmentation methods while maintaining a high 
detection speed, thus striking a good balance between accuracy 
and real-time performance (Zhang et al., 2022). When there are 
multiple moving objects on the image or when there is image 
blurring, the number of extracted point and line features is reduced. 
Whereas, in the absence of texture or motion blur, line features 
show higher robustness to represent the structural features of the 
environment and provide intuitive visual information (Zhao et al., 
2022). By integrating object detection techniques with point-
line fusion methods, the number of extractable point and line 

features can be ensured to be sufficient and well-distributed, thereby 
enhancing the stability of the system.

The main work of this paper is as follows: 

1. Based on the ORB-SLAM2 algorithm, the target detection 
thread and dynamic region feature rejection module were 
added, while line feature extraction and point-line feature 
fusion were added to optimize the pose, and multi-thread 
parallelism was used to ensure the real-time capability and 
accuracy of the algorithm.

2. A target detection dataset based on inspection environment 
has been constructed for training target detection models. 
A lightweight target detection model named GNV2 was 
developed based on YOLOv8s, which was lightly processed 
by combining GhostNetV2. The CBAM (Convolutional 
Block Attention Module) attention mechanism and SCDown 
downsampling module have been added.

3. Integrated the GNV2 model into the improved SLAM 
algorithm and evaluate it, and deploy the GNV2-SLAM to the 
inspection robot for experiments.

The structured of this paper is organized as follows: Section II 
reviews the relevant literature in this research field and summarizes 
the current research progress. Section III elaborates the overall 
architecture of the GNV2-SLAM system and the improvement 
methodology. Section IV describes the experimental materials and 
research methodology used in this research. Section V presents 
the experimental results and evaluates the system’s performance 
based on the TUM dataset. Finally, Section VI concludes the major 
findings of this research. Section VII discusses contributions of this 
research work, and outlines potential directions for future research. 

2 Related work

The feature point method is a widely utilized approach for visual 
mileage computation method in VSLAM. This method primarily 
focuses on extracting and matching key feature points across 
consecutive image frames to estimate the camera’s motion trajectory 
(Chen et al., 2018). To enhance the stability and robustness of SLAM 
systems in dynamic environments, deep learning techniques have 
been increasingly integrated in recent years to identify and eliminate 
dynamic feature points. Numerous researches have been devoted to 
integrating target detection and image segmentation methods from 
deep learning into SLAM systems. These advancements provide 
valuable a priori information for the recognition and eliminate 
dynamic feature points, thereby improving the performance of the 
system in complex scenarios (Favorskaya, 2023).

In order to achieve high-precision localization and map 
construction, Bescos et al. (2018) proposed Dyna-SLAM, which 
significantly improves the localization accuracy by identifying 
and eliminating the keypoints in the dynamic region through 
the Mask R-CNN (He et al., 2018) method. However, its real-
time performance is poor due to its dependence on deep 
semantic segmentation. Yu et al. (2018) proposed DS-SLAM, 
which combines semantic segmentation with motion consistency 
detection to construct semantic maps and improve accuracy. 
Although these methods improve the accuracy, they generally 
suffer from insufficient real-time performance. Islam Q. U. et al. 
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(2023) proposed YoloV8-SLAM, which employs the cutting-
edge target detection algorithm YoloV8 and enhanced multiview 
geometry techniques to handle low, medium, and high-dynamic 
environments, whereas a well-matched point selection algorithm 
extracts high-speed motion information. Wu et al. (2022) proposed 
the YOLO- SLAM algorithm to accelerate and generate the basic 
semantic information of the SLAM system by Darknet19-YOLOv3 
lightweight target detection network, and utilize the depth difference 
of random sample consistency to distinguish dynamic features. 
These algorithms can ensure the real-time operation of the SLAM 
system, but when there are multiple moving objects or image 
blurring in the environment, it will reduce the number of extracted 
feature points and cause the system to experience tracking failure.

Li et al. (2021) proposed RPL-SLAM by extracting point features 
and line features. The depth information of the RGBD image is 
further utilized to recover the 3D information of the point and 
line features, which improves the accuracy of the camera trajectory 
localization and solves the problem of not being able to find 
enough reliable features in case of missing texture or motion 
blur. Zhang, (2021) proposed PL-GM, which calculates the camera 
position by utilizing the two kinds of features of the point and 
line features, and constructs a 3D point element and line element 
by taking into account the two-dimensional point elements and 
line elements to constrain the error and enhance the positioning 
accuracy calculated by the algorithm. Although these algorithms 
improve the positioning accuracy of the system, these algorithms 
are only applicable to static environments, and when a dynamic 
target appears in the environment, it will lead to mis-correlation 
of data, which will cause the system to crash. Yuan et al. (2023). 
proposed PLDS-SLAM, a point and line fusion SLAM system for 
dynamic environments, which combines the a priori dynamic region 
detection, the geometrical and epipolar constraints to separate 
static and dynamic targets, and the introduction of Bayesian-
based SLAM system with a point and line fusion. Wang et al. 
(2018) proposed a SLAM method that combines point and line 
features with real-time target detection to enhance the localization 
accuracy and robustness of the system by enhancing the feature 
extraction capability in an indoor environment and eliminating the 
interference of dynamic targets.

Cowsheds, as a typical structured scene, contain a large number 
of linear structures. However, the frequent appearance of dynamic 
targets often interferes with traditional SLAM systems during the 
feature extraction stage, leading to positioning errors. Additionally, 
when there are too many dynamic targets or motion blur, the 
number of effective feature points in the image decreases, negatively 
impacting the system’s positioning accuracy and operational 
reliability. To address these issues, this paper proposes a visual SLAM 
method based on dynamic target removal and point-line feature 
fusion, effectively enhancing the system’s accuracy and stability in 
real-world inspection scenarios. 

3 Methodology

In this section, the GNV2-SLAM system is presented in 
detail. This system integrates a lightweight deep learning model 
optimization strategy, enabling it to achieve efficient target 
recognition and dynamic feature point elimination effectively. 

Furthermore, the SLAM system incorporates the point-line feature 
fusion strategy, which establishes foundation for the accurate 
localization and autonomous inspection of the mobile robot in 
cowshed inspection environment. 

3.1 Overview of the GNV2-SLAM system

The framework of the GNV2-SLAM system proposed in this 
paper is shown in Figure 1. The system has been structurally 
optimized and functionally extended based on ORB-SLAM2 (Mur-
Artal and Tardós, 2017). In addition to the original three threads: 
tracking, local map building, and closed-loop detection, a new 
target detection thread has been introduced to facilitate real-time 
recognition of dynamic targets. Concurrently, a dynamic target 
rejection module has been implemented to effectively remove 
the interference feature points caused by moving objects and 
improve the robustness of the system in dynamic environments. 
Furthermore, the system also performs line feature extraction and 
the optimizes of point-line feature fusion.

3.2 Overview of the GNV2 lightweight 
target detection network

The GNV2 network is based on YOLOv8s. An efficient GNV2 
target detection network is constructed through a lightweight 
design and two structural optimizations, aiming to significantly 
reduce the consumption of computational resources and maintain 
high operational speed while ensuring detection accuracy. In 
this study, YOLOv8s′ original backbone network is substituted 
with lightweight GhostNetV2 to reduce model parameters and 
computation costs. To enhance the model performance further, 
two important improvements have been made to its network 
structure. First, the CBAM attention mechanism is introduced, 
which guides the model to pay more attention to the key fields 
related to the target by modeling the importance of the channel 
dimension and the spatial dimension, thus effectively improving the 
detection accuracy. Second, the SCDown downsampling module 
is adopted to optimize the feature downsampling process, so that 
the model achieves more efficient feature compression and delivery 
while maintaining the key feature information, thus enhancing the 
expressive capability of the overall network. The final structure of the 
GNV2 network is shown in Figure 2, which combines high accuracy 
and high efficiency and provides a good foundation for subsequent 
deployment in SLAM systems.

3.2.1 GhostNetV2 neural network
GhostNetV2 (Tang et al., 2022) represents a lightweight 

convolutional neural network improved on GhostNet (Han et al., 
2020), with the objective of improving feature expression capability 
while simultaneously reducing computational complexity. The core 
innovation lies in generating fundamental features using a limited 
number of convolutions via the Ghost module, subsequently 
producing additional redundant features through cost-effective 
linear operations. This approach effectively replaces traditional 
convolutional operations and significantly mitigates computational 
costs. In terms of structural design, the downsampling module of 
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FIGURE 1
GNV2-SLAM system framework.

FIGURE 2
GNV2 network architecture.
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FIGURE 3
GhostNetV2 architecture schematic diagram.

GhostNetV2 adopts stepwise convolution and pooling operations 
to minimize reliance on high-complexity operators, thereby further 
enhancing network efficiency. To enhance the feature representation 
capability of the intermediate layer, the network introduces the 
DFC (Dynamic Feature Consolidation) attention mechanism, which 
dynamically adjusts feature responses to enhance the expression 
of key features. Overall, GhostNetV2 effectively improves the 
balance between model accuracy and inference speed while 
maintaining a lightweight architecture. The basic module structure 
is shown in Figure 3.

3.2.2 CBAM attention mechanism
Woo et al. (2018) proposed CBAM, a lightweight attention 

mechanism module designed to enhance the feature representation 
of convolutional neural networks. By sequentially integrating both 
Channel Attention and Spatial Attention mechanisms, this module 
directs the network to focus on key feature field more effectively, 
thus improving the performance of the model in various visual 
tasks. Specifically, CBAM first applies the channel attention module 
to the input feature map, extracts channel descriptive information 
through global maximum pooling and average pooling operations. 
It generates channel weight coefficients by combining these 
descriptors with a multilayer perceptron and weights the feature map 
along the channel dimension. Subsequently, this weighted feature 
map is passed into the spatial attention module, which extracts 
the spatial information through the pooling operations along the 
channel dimension and generates the spatial attention map by using 
convolution attention map. The feature map is weighted again in 
the spatial dimension. The final output feature map has stronger 
discriminative ability and can be used in the subsequent network 
structure to improve the overall performance. The structure of the 
CBAM attention mechanism module is shown in Figure 4.

3.2.3 SCDown downsampling module
SCDown is an advanced downsampling module that 

simultaneously considers both spatial and channel dimensions. 
It is extensively utilized in lightweight neural networks and efficient 
computational models, with the objective of substantially decreasing 
computational complexity and parameter size while preserving 
feature integrity. By downsampling both the spatial dimensions 
and the number of channels of the input feature maps, this 
module decreases both the feature map size and the number of 
channels, thus effectively reducing the computational overhead 
and memory usage. In terms of implementation, the SCDown 
module usually combines convolutional operations, pooling layers 
or other downsampling strategies to retain key information while 
eliminating redundant features to improve the efficiency of feature 
processing. Its structural design provides an efficient feature 
compression scheme for lightweight networks, which helps to 
realize fast inference and deployment in resource-constrained 
environments. The structure of the SCDown module is shown
in Figure 5.

3.3 Point and line feature fusion

In this paper, a line feature extraction and matching module is 
presented based on the ORB-SLAM2 framework. This enhancement 
enables the system to simultaneously extract point features and line 
features, so as to improve the robustness and stability of the VSLAM 
algorithm in complex scenarios. This improvement effectively 
enhances the system’s ability to perceive geometric information in 
structured environments by combining different types of feature 
information. Line features are extracted based on the LSD (Line 
Segment Descriptor) algorithm (Grompone Von Gioi et al., 2012), 
which extracts geometrically structured line segment features from 
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FIGURE 4
Cbam attention mechanism module structure.

images. To enhance the effectiveness of features and matching 
accuracy, line features are filtered and optimized based on the length 
of the line segments. Subsequently, LBD (Line Band Descriptor) 
algorithm descriptors are used to characterize the filtered line 
segments and match them with line features in other keyframes, 
so as to construct a stable line feature association relationship. By 
introducing the line feature information, the localization accuracy 
of the system is improved. 

3.3.1 Point feature reprojection error
The reprojection error is used to optimize the robot’s position. 

The reprojection error for the line features is shown in Figure 6. Let 
I1 and I2 denote two frames of images, the 3D spatial points P in 
the images corresponding to the pixel points p1 and p2, p2’ is the 
reprojection point of p1 on I2, and e is the error between p2 and p2´.

The pixel coordinate of point p2 on I2 is x, K is the camera 
parameter matrix, Tcw is the bitmap transformation from the world 
coordinate system to the camera coordinate system between I1 and 
I2, and Xw is the coordinate of point P under the projection of p1 

to the world coordinate system. k is the kth image with a total of 
i feature points. The reprojection error formula for feature points 
is shown in Equation 1.

ek
p,i = xk

i − I(KTk
cwXk

w,i) (1)
 

3.3.2 Line feature reprojection error
The line feature reprojection error is shown in Figure 7. The O1

and O2 are the camera optical centers of the images, I1 and I2 are the 
two frames, p1q1 and p2q2 are the corresponding line features of the 
images, p2´q2’ is the reprojected line segment of p1q1 on I2, ep is the 
error between p2’ and p2.

Plücker coordinates are commonly used to represent spatial 
line features, and the spatial line segment PQ expressed in Plücker 
coordinates as shown in Equation 2.

Lw = [

[

P×Q

w1P−w2Q
]

]
= [

[

n

v
]

]
(2)
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FIGURE 5
SCDown downsampling module architecture.

FIGURE 6
Reprojection error of point features.

FIGURE 7
Reprojection error for line features.
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The formula for projecting a line segment in the 
camera coordinate system to the pixel coordinate system 
is shown in Equation 3:

lc =
[[[[

[

fx 0 0

0 fy 0

− fxcx fxcx fx fy

]]]]

]

nc = Knc (3)

The line segment in pixel coordinate system is denoted by lc, 
fx and fy represent the effective focal lengths along the x and y 
directions, respectively; cx and cy represent the translation of the 
origin of the coordinate system in the x and y directions, and the 
reprojection error of the line segment is shown in Equation 4.

ek
l,j = d(lkj ,KTk

cwLk
w,i) (4)

In the formula for calculating the reprojection error, the function 
d represents the orthogonal distance function from a point to a line.

Assuming that the observation errors of the point and line 
features are all Gaussian distributed cases, the combined error 
function C based on the point and line features can be obtained. As 
illustrated in Equation 5.

C =∑
k,i

ρp(e
k
p,i

T∑x−1k,i e
k
p,i + ek

l,j
T∑ l−1k,j e

k
l,j) (5)

∑ l−1k,j  is the covariance matrices of the line features, and ∑x−1k,i  is 
the covariance matrices of the point features. Respectively, and the 
Huber robustness cost function ρ is introduced to suppress the effect 
of outliers. 

4 Equipment and methods

During the experiments, we ran the training task of the 
GNV2 deep learning model and the testing and evaluation work 
of the SLAM algorithm on the same server, respectively. Table 1 
provides a detailed listing of the experimental environments 
used, including hardware configuration and software environment
parameters.

4.1 GNV2 model training

The YOLO image dataset utilized in this study comprises 
images captured using an Intel D455 camera. The dataset was 
collected from two large-scale dairy farms (Henan Ruiya Dairy 
Co., Ltd. and Luoyang Shengsheng Dairy Co., Ltd.) and the 
publicly available COCO dataset. We carefully selected a total of 
1,246 images from these sources. These images were annotated 
with “Person” and “Cow” labels using the LabelImg tool. To 
improve the model’s generalization ability, data augmentation 
methods such as translation, mirroring, cropping, adding 
Gaussian noise, and adjusting brightness were used for offline 
expansion, ultimately constructing an enhanced dataset containing
6,230 images.

During model training, we used the Mosaic data augmentation 
method, which randomly selects four images and scales, rotates, 
crops, and rearranges them to generate new images for the model 

TABLE 1  Experimental environment configuration.

Configuration Equipment Information

Hardware

CPU Intel Core i7-12700

GPU NVIDIA GeForce RTX 2060

RAM 16 GB

Software
System Ubuntu 18.04

Python Python 3.9.19

Environment

Pytorch 1.12.1

CUDA 11.3.1

CuDNN 8.2.4

TABLE 2  Hyperparameter configuration for GNV2 network training.

Hyperparameter Value Hyperparameter Value

Epoch 200 Weight_decay 0.0005

Batch Size 16 Mosaic Augmentation 1.0

Initial Learning Rate 0.01 Classification Loss 
Weight

0.5

Final Learning Rate 
Factor

0.01 Objectness Loss Weight 1.0

to learn. This method improves the model’s adaptability in multi-
scale object detection through random combinations of multi-
scale objects, thereby enhancing the diversity of the dataset. This 
proprietary dataset had strong generalizability and was suitable 
for train and evaluate a wide range of network models. The 
training and validation set were divided in a ratio of 8:2, while the 
test set consisted of video streaming images obtained during the 
actual operation of the GNV2-SLAM system. The hyperparameter 
configurations utilized for the training of the GNV2 network 
is shown in Table 2.

4.2 Performance evaluation of VSLAM 
algorithms

4.2.1 TUM dataset
A publicly available TUM RGB-D dataset was used to evaluate 

the proposed system. The dataset, published by the Technical 
University of Munich, was acquired using a Kinect camera and 
contains time-synchronized color images, depth images, and 
camera positional truth (Ground Truth) from a high-precision 
motion capture system (Motion Capture). The image resolution 
is 640 × 480, which is suitable for evaluating the localization 
accuracy and robustness of various RGB-D SLAM algorithms 
in indoor environments (Singh et al., 2024). The TUM dataset 
encompasses a diverse range of scenarios, including low-texture 
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TABLE 3  Comparative experiments on lightweight variant networks.

Network model mAP@0.5/% Params GFLOPs Weight/M

YOLOv8s (CSPLayer_2Conv) 94.15 11136374 28.6 22.5

YOLOv8s-VanillaNet 91.47 6892822 18.1 14.2

YOLOv8s-EfficientNet 91.17 6522578 17.3 13.4

YOLOv8s-GhostNetV2 (GNV2∗) 94.07 6983726 18.5 14.4

TABLE 4  Attention comparison experiment.

Network model mAP@0.5/% Params GFLOPs Weight/M

GNV2∗ 94.07 6983726 18.5 14.4

GNV2∗-CBAM 94.48 6494864 18.2 13.4

GNV2∗-EffectiveSE 94.26 6735070 18.5 14.3

GNV2∗-MHSA 92.18 7249966 18.9 14.9

GNV2∗-ECA 94.43 6472417 18.5 13.2

TABLE 5  Downsampling comparison experiments.

Network model mAP@0.5/% Params GFLOPs Weight/M

GNV2∗-CBAM 94.47 6494864 18.2 13.4

GNV2∗-CBAM-SCDown 95.19 6464998 18.1 13.4

GNV2∗-CBAM-ADown 94.19 6451246 17.8 13.3

GNV2∗-CBAM-RFCAConv 94.68 7031774 18.6 14.5

environments, fast camera motion, illumination variations, and 
so on. These characteristics provide a rich set of samples for 
testing algorithms’ robustness and generalization capabilities. 
In this study, the representative sequences were selected such 
as fr3_sitting_halfsphere, fr3_walking_rpy, fr3_walking_xyz, 
among others. These sequences cover complex scenarios that 
ranging from low-dynamic environments to high-dynamic
environments.

4.2.2 Assessment methods
In order to quantitatively evaluate the trajectory estimation 

performance of the SLAM system, this study employed the 
evaluation tool provided by the TUM dataset to compare the 
camera trajectories outputted by our system against the true value 
trajectories included in the dataset. Absolute Trajectory Error (ATE) 
serves as one of the key metrics for evaluating the performance of 
SLAM system performance, which is used to quantify the positional 
deviation between the estimated trajectory of the system and the 
true trajectory (Ground Truth). ATE measures the spatial global 
consistency across entire trajectory while reflecting cumulative 
error over extended periods, thus providing an effective method to 

TABLE 6  Comparison experiment of different algorithms of YOLO series.

Network model mAP@0.5/% Weight/M 

YOLOv5n 88.81 5.3

YOLOv5s 93.14 18.5

YOLOv8n 91.26 6.3

YOLOv8s 94.15 22.5

YOLOv10n 89.65 5.8

YOLOv10s 92.9 16.5

GNV2 95.19 13.4

both algorithm robustness and localization accuracy. In addition 
to ATE analysis, this paper also incorporated Relative Pose Error 
(RPE) as a supplementary evaluation metrics. RPE focuses on the 
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FIGURE 8
mAP@0.5 graph. (a) The mAP@0.5 curves of different models in the lightweight network comparison experiment; (b) The mAP@0.5 curves of different 
models in the attention comparison; (c) The mAP@0.5 curves of different models in the downsampling comparison experiment; (d) The mAP@0.5 
curves of different models in the algorithm comparison experiment.

FIGURE 9
Comparison of the detection results of YOLOv8s and GNV2. The images in the first row (a–d) represent the detection results of YOLOv8s in four 
images; the images in the second row (e–h) represent the detection results of GNV2 in the same four images as YOLOv8s.
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FIGURE 10
Different feature extraction results (a) shows the effect of extracting only ORB feature points and matching, some of the feature points were located on 
the cow, which may affect the subsequent calculation of the SLAM system and cannot guarantee the accuracy of localization, and Figure (b) shows the 
effect of matching after eliminating the feature points on the dynamic target. Figure (c) shows the effect of extracting LSD line features and matching. 
Figure (d) shows the effect of removing the dynamic region as well as point-line fusion proposed in this paper.

TABLE 7  Absolute trajectory error results for different algorithms.

Sequences ORB-SLAM2 Dyna-SLAM GNV2-SLAM Improvement against 
ORB-SLAM2

RMSE SD RMSE SD RMSE SD RMSE (%) SD (%)

fr3_s_hs 0.066 0.0355 0.0287 0.0142 0.0271 0.0133 58.94 62.54

fr3_w_hs 0.5082 0.2341 0.0271 0.0133 0.0273 0.0138 94.63 94.11

fr3_w_rpy 0.7604 0.3739 0.0442 0.0214 0.0446 0.0283 94.13 92.43

fr3_w_static 0.0596 0.0341 0.0102 0.0047 0.0099 0.0038 83.39 88.86

fr3_w_xyz 0.6819 0.34 0.0325 0.0175 0.0264 0.0142 96.13 95.82

TABLE 8  Relative trajectory translation error results for different algorithms.

Sequences ORB-SLAM2 Dyna-SLAM GNV2-SLAM Improvement against 
ORB-SLAM2

RMSE SD RMSE SD RMSE SD RMSE (%) SD (%)

fr3_s_hs 0.0358 0.0239 0.0243 0.0137 0.0158 0.0093 55.87 61.09

fr3_w_hs 0.1633 0.1301 0.0236 0.0124 0.0227 0.0116 86.1 91.08

fr3_w_rpy 0.1765 0.1357 0.0358 0.0203 0.0486 0.0314 72.46 76.86

fr3_w_static 0.0477 0.0411 0.0096 0.0047 0.0089 0.0049 81.34 88.08

fr3_w_xyz 0.1701 0.1154 0.0207 0.0106 0.0198 0.0099 88.36 91.42

relative transformation error between neighboring frames, and can 
effectively evaluate the local accuracy and trajectory smoothness of 
the system in short time scales. This metric is especially suitable 
for analyzing the drift phenomenon caused by the instability of 

position estimation. By comparing the performance of different 
algorithms in the ATE and RPE dimensions, each algorithm’s actual 
performance in different scenarios can be more comprehensively
revealed.
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TABLE 9  Relative trajectory rotation error results for different algorithms.

Sequences ORB-SLAM2 Dyna-SLAM GNV2-SLAM Improvement against 
ORB-SLAM2

RMSE SD RMSE SD RMSE SD RMSE (%) SD (%)

fr3_s_hs 0.0161 0.0082 0.0155 0.0074 0.0131 0.0058 18.63 29.27

fr3_w_hs 0.0842 0.065 0.0157 0.0083 0.0153 0.0079 81.83 87.85

fr3_w_rpy 0.0867 0.066 0.0189 0.0107 0.0238 0.0149 72.55 77.42

fr3_w_static 0.0213 0.0174 0.0065 0.0027 0.0063 0.0029 70.42 83.33

fr3_w_xyz 0.0811 0.0539 0.0113 0.0057 0.0112 0.0056 86.19 89.61

The formula used to calculate the absolute trajectory error 
between the estimated trajectory Q and the true trajectory P
is shown in Equation 6.

ATE = √ 1
n

n

∑
i=1
‖log(Q−1i Pi)

∨‖
2

2
(6)

Where, n is the number of trajectory points on the trajectory.
The relative trajectory error is shown in Equation 7.

RPE = √ 1
m

m

∑
i=1
‖log(Q−1i Qi+Δ)

−1(P−1i Pi+Δ)‖||22, m = n−Δ (7)

where, Δ is the time interval between two consecutive poses. 

5 Experimental results

5.1 Results of the GNV2 experiment

In this study, significant emphasis has been placed on optimizing 
the structural complexity of the GNV2 model to minimize the 
computational resource consumption during the inference phase, 
while maintaining both accuracy and real-time performance 
in model detection. To comprehensively evaluate the model 
performance, metrics were utilized as follows: the target detection 
accuracy as measured by the average precision with an IoU 
threshold of 0.5 (mAP@0.5), the number of model parameters 
(Parameters), computational overhead measured by hundreds of 
billions of floating-point operations per second (GFLOPs), and the 
size of the model weights file are used to characterize the structural 
complexity of the model. The last three metrics collectively reflect 
the computational resource requirements of the model during 
deployment. 

5.1.1 Lightweight network comparison 
experiment

Three mainstream obtained lightweight feature extraction 
networks were replaced with the backbone network of the original 
YOLOv8s to obtain three lightweight variant networks. These 
lightweight variant networks would be trained on the self-
constructed cowshed inspection environment dataset to generate 

the corresponding target detection models. The experimental results 
for the different lightweight variant networks are shown in Table 3.

The experimental results indicated that replacing the original 
backbone network of YOLOv8s with VanillaNet (Chen et al., 
2023), EfficientNet (Tan and Le, 2020) and GhostNetV2, leads to a 
significant reduction in the number of parameters, computational 
load, and the model size. Although there is a decrease in detection 
accuracy, the extent of this reduction varies among different models. 
Specifically, YOLOv8s-VanillaNet exhibits a decline in detection 
accuracy by 2.68%, resulting in an accuracy of 91.47%. Conversely, 
YOLOv8s-EfficientNet experiences the most substantial decrease 
in accuracy at 2.98% while achieving a remarkable reduction 
in computational workload by 39.51%. In contrast, YOLOv8s-
GhostNetV2 (GNV2∗) mitigates model complexity while preserving 
detection accuracy, it showed only a minor drop of 0.08% in 
average detection accuracy along with notable reductions: 37.29% 
fewer parameters, 35.31% decrease in computation load, and 36% 
reduction in the model size. The comprehensive performance 
advantages were so evident that GNV2∗was selected as the 
foundational network for further enhancements within this study. 

5.1.2 Comparative experiments on attention 
mechanisms

Three different attentional modules, such as EffectiveSE, MHSA 
and ECA, were selected for comparison experiments with CBAM 
channel attentional modules. The results of the comparison 
experiments of the attention mechanisms are shown in Table 4.

The experimental data indicate that the introduction of the 
MHSA attention mechanism not only increases the model’s 
complexity but also reduces its accuracy. After increasing the 
EffectiveSE attention mechanism, there was a slight enhancement 
in average detection accuracy compared to the GNV2∗model, 
while the number of parameters and the model size were also 
reduced. A comparative analysis between the ECA and CBAM 
attention mechanism revealed minimal differences regarding their 
respective advantages. Although the ECA attention mechanism 
offers the advantage of a smaller model, the introduction of 
the CBAM attention mechanism resulted in the highest average 
detection accuracy, improving by 0.41% compared to the original 
GNV2∗model, while also achieving the lowest floating-point 
computation. Therefore, the incorporation of the CBAM attention 
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mechanism significantly enhances the performance of the 
GNV2∗model. Consequently, the introduction of CBAM attention 
mechanism more effectively enhances the performance of the 
GNV2∗ model. 

5.1.3 Downsampling module comparison 
experiments

Through the comparison experiments of different attention 
mechanisms, the results showed that introducing the CBAM 
attention mechanism into the GNV2∗model significantly improves 
its accuracy. On the basis of this finding, the superiority of the model 
performance after the introduction of the SCDown downsampling 
module was verified by comparing with the ADown and RFCAConv 
downsampling modules. The results from these downsampling 
comparison experiments are shown in Table 5.

The experimental data indicate that the introduction of 
the ADown downsampling operator decreases the floating-point 
computations, the number of parameters and the model size 
significantly compared with the initial model GNV2∗-CBAM 
model. However, this improvement is accompanied by a slight 
decrease in the average accuracy of 0.28%. The introduction 
of the RFCAConv downsampling operator enhances the model 
complexity while increasing the detection accuracy. The model 
accuracy improved the most when the SCDown operator was 
combined with the original model, reaching 95.19%, while the 
average model accuracy improved by 0.75%. In addition, the number 
of parameters and floating-point calculations were also low, enabling 
a better balance between efficiency and performance. This enables a 
more favorable balance between efficiency and performance. Thus, 
the final model obtained by fusing GNV2∗lightweight network, 
CBAM attention mechanism and SCDown downsampling was 
designated as GNV2. 

5.1.4 Algorithm comparison experiments
The GNV2 model was compared with different models of 

YOLO series to highlight the performance advantages of the 
algorithms proposed in this study. The data of average detection 
accuracy and model size were used to compare the performance 
difference of different algorithms on the self-constructed cowshed 
inspection dataset. The results of comparison experiments of 
different algorithms of YOLO series are shown in Table 6.

The experimental results indicate that GNV2 surpasses other 
models within the YOLO series in terms of average detection 
accuracy. It achieved an accuracy that was still 3.93% higher than 
that of the highest-accuracy YOLOv8n, even though it does not 
have the advantage of YOLOv5n, YOLOv8n, and YOLOv10n in 
terms of model size. In comparison to its predecessor YOLOv8s, 
the GNV2 model size was reduced by 40.44%, rendering it 3.1M 
smaller than YOLOv10s while also improving its accuracy by 
2.29%. In conclusion, GNV2 effectively balances high accuracy 
with substantial model compression requirements while considering 
both performance metrics and lightweight design. The mAP@0.5 
performance curves of each model in different experiments 
are shown in Figure 8.

The results presented in Figure 8 provide validation for the 
effectiveness of the selected strategies at each stage. Furthermore, 
a comparative analysis was conducted between the detection 
accuracy of the GNV2 model and that of the YOLOv8s to evaluate 

its improvement. The detection results are shown in Figure 9, 
demonstrating that the overall detection accuracy of GNV2 
surpasses that of YOLOv8s network. 

5.2 GNV2-SLAM experimental results

The GNV2 model was integrated into the GNV2-SLAM system 
for performing the target recognition task. Subsequently, the overall 
performance of GNV2-SLAM as well as the tracking elapsed time 
were evaluated on the TUM dataset. Using the ORB-SLAM2 as a 
reference, the performance difference between GNV2-SLAM and 
Dyna-SLAM were further compare. All algorithms were executed 
independently for five times under identical conditions, and the final 
results were averaged as the evaluation metrics. 

5.2.1 Effectiveness of dynamic feature removal 
and point and line feature fusion

In order to verify the effectiveness of the point and line feature 
extraction algorithm, experiments were conducted on different 
images in the cowshed inspection dataset. The images following 
feature extraction and matching are shown in Figure 10. 

5.2.2 TUM dataset for performance evaluation
The performance of the SLAM algorithm was evaluated by 

selecting the root mean square error (RMSE) and standard deviation 
(SD) in low-dynamic environments (fr3_s_hs) and high-dynamic 
environments (fr3_w_hs, fr3_w_rpy, etc.). The results pertaining 
to absolute trajectory error, comparison of relative positional error 
translational drift, comparison of relative positional error rotational 
drift for GNV2-SLAM algorithm, ORB-SLAM2 algorithm, and 
Dyna-SLAM algorithm are shown in the tables as Tables 7-9 
respectively.

The experimental results indicate that GNV2-SLAM 
significantly outperforms ORB-SLAM2 in terms of absolute 
trajectory error in high-dynamic environments, with RMSE 
decreasing exceeding 83.39% and SD decreasing exceeding 88.86%. 
Compared with Dyna-SLAM, GNV2-SLAM exhibited superior 
localization accuracy in low-dynamic scenarios while showing 
comparable performance in high-dynamic scenarios. In contrast, 
the GNV2 network can effectively identify dynamic targets, 
improving the robustness of the system in dynamic environments. 
Regarding relative trajectory error, the relative position error 
of GNV2-SLAM was lower than that of ORB-SLAM2 in low 
dynamic scenarios. with slight improvements observed in accuracy. 
Conversely, in high dynamic scenarios, the translation error RMSE 
decreases by up to 88.36%, and the SD decreases by up to 91.42%. 
The trend of rotation error was also consistent. In some sequences, 
the overall performance of GNV2-SLAM was better than that of 
Dyna-SLAM, and Figure 11 shows the comparison of the absolute 
trajectory error (ATE) of ORB-SLAM2, Dyna-SLAM and GNV2-
SLAM in some sequences. The results indicate that the error 
of GNV2-SLAM was significantly reduced and exhibits higher 
localization accuracy. 

5.2.3 Tracking time assessment
VSLAM systems needs to strike an optimal balance localization 

accuracy and real-time performance. To evaluate the real-time 
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FIGURE 11
Absolute trajectory error maps Image (a,d,g) represents the ATE maps of ORB-SLAM2, Dyna-SLAM, and GNV2-SLAM on fr3_w_hs sequences, 
respectively; image (b,e,h) represents the ATE maps of the three algorithms on fr3_w_hs sequences; image (c,f,i) represents the ATE maps of the three 
algorithms on fr3_w_xyz sequence.

TABLE 10  Time consumption of the tracking process.

Sequences ORB-
SLAM2

Dyna-SLAM GNV2-
SLAM

fr3_s_hs 0.019 1.717 0.029

fr3_w_hs 0.02 1.827 0.023

fr3_w_rpy 0.02 1.779 0.027

fr3_w_static 0.018 1.765 0.024

fr3_w_xyz 0.021 1.764 0.028

performance of these algorithms, this study compares the average 
tracking time of ORB-SLAM2, Dyna-SLAM and GNV2-SLAM 
using the TUM dataset. In this experiment, the average time for 

each algorithm to process a single image frame were counted, and 
measured the time consumption of the tracking process. The results 
were in seconds, and are shown in Table 10.

The experimental data analysis revealed that although GNV2-
SLAM has a slight increase in time overhead compared to ORB-
SLAM2 after the introduction of the target detection threading 
processes, the system can still successfully complete single frame 
image tracking within approximately 29 ms, which provides 
a significant advantage in real-time performance. Compared 
with Dyna-SLAM, GNV2-SLAM demonstrates an approximate 
reduction in processing time by about 90%, further highlighting its 
substantial benefit in terms of real-time performance. 

5.2.4 Assessment in real environments
In order to verify the effectiveness of the proposed algorithm, 

it was deployed the algorithm to a cowshed inspection robot and 
tested the localization accuracy of the GNV2-SLAM in a cowshed 
inspection environment. The experiments used an NVIDIA Jetson 
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FIGURE 12
Absolute trajectory error maps Images (a,b) represent the trajectory maps computed by ORB-SLAM2 at 0.4 m/s and 0.6 m/s velocity on the robot, 
respectively. Image (c,d) represents the trajectory maps computed by GNV2-SLAM2 at 0.4 m/s and 0.6 m/s velocity on the robot, respectively.

Xavier NX as the robot’s upper computer with Ubuntu 18.04 
operating system and configured with a Melodic version of the 
ROS (Robot Operating System) system. The inspection robot moves 
along a straight line at speeds of 0.4 m/s and 0.6 m/s while employing 
the GNV2-SLAM system and the ORB-SLAM2 system, respectively. 
The resulting trajectories from different vision SLAM systems 
are shown in Figure 12.

From the experimental results, it could be seen that during 
the robot’s movement along a straight line, the interference of 
dynamic targets occurs, which leads to an obvious drift in the 
trajectory of ORB-SLAM2. GNV2-SLAM utilizes the line features 
in the cowshed environment to perform point and line fusion to 
make the trajectory closer to the real trajectory while eliminating the
dynamic targets.

6 Discussion

This paper proposes an improved GNV2-SLAM method based 
on the ORB-SLAM approach. The method maintains high accuracy 
while significantly enhancing the system’s real-time performance. 
By refining the GNV2 model, the system’s robustness and accuracy 
in object recognition are improved. GNV2-SLAM demonstrates 
superior precision in high-dynamic environments, particularly 
excelling in object recognition and localization accuracy, which 
highlights its strong model compression capability and efficient 
extraction of point and line features.

It is worth noting that in certain high-dynamic environments, 
GNV2-SLAM still shows some gaps compared to Dyna-SLAM. 
The main reason lies in Dyna-SLAM’s ability to leverage prior 
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dynamic region information from each frame to achieve pixel-
level semantic segmentation, thus providing stronger dynamic 
point filtering capabilities that effectively enhance the precision 
of static environment mapping. The global optimization strategy 
of GNV2-SLAM may lead to instability or misoptimization 
in dynamic scenes due to frequent interference from dynamic 
objects. However, comparing the Relative Pose Error (RPE) 
results shows that GNV2-SLAM, through point-line feature fusion, 
significantly reduces computational errors, effectively optimizing 
the pose estimation process and improving the system’s accuracy
and stability.

However, due to budget constraints, the research has primarily 
focused on the algorithm’s effectiveness, and hardware experiments 
still require improvement. Future work will focus on the adaptation 
of the algorithm to complex hardware platforms, aiming to 
achieve automated monitoring of livestock activity, spatial 
distribution, and facility safety. Additionally, multiple metrics 
will be used to comprehensively assess the adaptability and 
application potential of GNV2-SLAM in dynamic agricultural
environments. 

7 Conclusion

This paper presents a vision-based SLAM method, GNV2-
SLAM, which integrates dynamic object removal and point-line 
feature fusion for livestock barn inspection. Building on ORB-
SLAM2, the method introduces a target detection thread and a 
dynamic point removal module. By adopting a lightweight design 
for the target detection model, the overall computational complexity 
is reduced. Additionally, the CNAM attention mechanism and 
SCDown downsampling structure are incorporated to further 
optimize performance without increasing model complexity. This 
model is integrated into the SLAM system, and point and line 
features are fused to improve pose estimation.

Experimental results show that, compared to YOLOv8s, the 
GNV2 network model achieves a 1.04% improvement in average 
detection accuracy, with a 41.96% reduction in the number of 
parameters, a 36.71% decrease in computational load, and a 
40.44% reduction in model size. After integrating GNV2-SLAM 
into the visual SLAM system, performance evaluation on the 
TUM dataset demonstrates that GNV2-SLAM outperforms ORB-
SLAM2 in high-dynamic scenes, achieving a reduction of over 
83.39% in RMSE and 88.86% in SD for absolute trajectory error. 
For relative trajectory error, the translation error RMSE shows a 
maximum reduction of 88.36%, with SD reduced by 91.42%, and 
the rotation error follows a similar trend to the translation error. 
In the tracking evaluation, GNV2-SLAM processes each frame 
of the image within 30 ms, highlighting its excellent real-time 
performance and competitive advantage. Real-world evaluation 
results show that the trajectory generated by the proposed algorithm 
more accurately reflects the robot’s motion path in the actual
environment.

Given the challenges posed by strong ground reflections 
and frequent target occlusions in livestock barn environments, 
future research will consider introducing a multimodal perception 

mechanism. By integrating thermal imaging, LiDAR, and visual 
data, the fusion of multimodal data and a deep learning-optimized 
multi-input network structure can enhance the system’s robustness 
and adaptability, improving target recognition and localization 
accuracy, and overcoming the limitations of GNV2-SLAM in 
occlusion and reflection scenarios. Furthermore, considering the 
dynamic nature of livestock, future work will focus on further 
optimizing dynamic object modeling and segmentation strategies 
to enhance map consistency and localization accuracy under 
conditions of frequent animal movement.
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