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Simultaneous Localization and Mapping (SLAM) has emerged as one of the
foundational technologies enabling mobile robots to achieve autonomous
navigation, garnering significant attention in recent years. To address the
limitations inherent in traditional SLAM systems when operating within dynamic
environments, this paper proposes a new SLAM system named GNV2-
SLAM based on ORB-SLAMZ2, offering an innovative solution for the scenario
of cowshed inspection. This innovative system incorporates a lightweight
object detection network called GNV2 based on YOLOv8. Additionally, it
employs GhostNetv2 as backbone network. The CBAM attention mechanism
and SCDown downsampling module were introduced to reduce the model
complexity while ensuring detection accuracy. Experimental results indicate
that the GNV2 network achieves excellent model compression effects while
maintaining high performance: mAP@O.5 increased by 1.04%, reaching a
total of 95.19%; model parameters were decreased by 41.95%, computational
cost reduced by 36.71%, and the model size shrunk by 40.44%. Moreover,
the GNV2-SLAM system incorporates point and line feature extraction
techniques, effectively mitigate issues reduced feature point extraction caused
by excessive dynamic targets or blurred images. Testing on the TUM dataset
demonstrate that GNV2-SLAM significantly outperforms the traditional ORB-
SLAMZ2 system in terms of positioning accuracy and robustness within dynamic
environments. Specifically, there was a remarkable reduction of 96.13% in
root mean square error (RMSE) for absolute trajectory error (ATE), alongside
decreases of 88.36% and 86.19% for translation and rotation drift in relative
pose error (RPE), respectively. In terms of tracking evaluation, GNV2-SLAM
successfully completes the tracking processing of a single frame image within
30 ms, demonstrating expressive real-time performance and competitiveness.
Following the deployment of this system on inspection robots and subsequent
experimental trials conducted in the cowshed environment, the results indicate
that when the robot operates at speeds of 0.4 m/s and 0.6 m/s, the pose
trajectory output by GNV2-SLAM is more consistent with the robot's actual
movement trajectory. This study systematically validated the system'’s significant
advantages in target recognition and positioning accuracy through experimental
verification, thereby providing a new technical solution for the comprehensive
automation of cattle barn inspection tasks.

SLAM, YOLOVS8, GNV2-SLAM, cowshed inspection, computer vision
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1 Introduction

In autonomous navigation systems of mobile robots,
simultaneous localization and mapping (SLAM) concept is widely
acknowledged as a core technology that enables robots to achieve
accurate self-location and environmental mapping without prior
knowledge of the environment (Jia et al., 2022). Particularly, Visual
SLAM (VSLAM) method has received special attention due to its
low hardware cost and its ability to capture rich environmental
details (Islam R. et al., 2023). However, traditional VSLAM methods
are generally based on the premise of environment statics (Sun et al.,
2022), which faces many challenges in actual environments.
Especially in dynamic environments containing moving targets, the
problem of extracting erroneous feature information from dynamic
objects in turn triggers degradation of localization accuracy or
tracking interruptions (Wan Aasim et al., 2022). If there are
multiple moving targets or camera motion blur in the environment,
traditional VSLAM methods will reduce the number of extracted
features, leading to a decrease in system stability and robustness.
Taking the inspection environment of cattle sheds in animal
husbandry as an example, inspection robots are often disturbed
by the movement of cattle or workers when performing inspection
tasks. Meanwhile, the cowshed is a structural environment with
a large number of line features. In order to ensure the reliable
operation of the SLAM system in such complex scenarios, it is
necessary to design a SLAM system that can identify and eliminate
dynamic feature points in real-time, and combine with line features
in the environment to improve overall positioning accuracy and
robustness.

is

Deep Learning-based ~VSLAM

promising solution to address the challenges of dynamic

regarded as a
environments (Song et al., 2022). It can recognize predefined
dynamic target categories, and providing the system with their
semantic labels and coordinate information. By proposing
characteristics on dynamic targets, it improves the localization
accuracy in dynamic environments, which lays the foundation for
autonomous detection of inspection robots.

Red Green Blue-Depth (RGB-D) camera can accurately obtain
depth information through sensor measurements, while their color
images can be used for visual tasks such as target recognition and
image segmentation. Although the image segmentation technique
is effective in eliminating the interference of dynamic objects to
the SLAM system, its high computational overhead tends to affect
the real-time performance of the system (Liu and Miura, 2021).
Therefore, YOLO (You Only Look Once), as a single-stage efficient
object detection framework, has gradually become the preferred
solution in dynamic environment SLAM systems. The structurally
optimized YOLO model can provide localization accuracy close
to that of image segmentation methods while maintaining a high
detection speed, thus striking a good balance between accuracy
and real-time performance (Zhang et al., 2022). When there are
multiple moving objects on the image or when there is image
blurring, the number of extracted point and line features is reduced.
Whereas, in the absence of texture or motion blur, line features
show higher robustness to represent the structural features of the
environment and provide intuitive visual information (Zhao et al.,
2022). By integrating object detection techniques with point-
line fusion methods, the number of extractable point and line
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features can be ensured to be sufficient and well-distributed, thereby
enhancing the stability of the system.
The main work of this paper is as follows:

1. Based on the ORB-SLAM2 algorithm, the target detection
thread and dynamic region feature rejection module were
added, while line feature extraction and point-line feature
fusion were added to optimize the pose, and multi-thread
parallelism was used to ensure the real-time capability and
accuracy of the algorithm.

. A target detection dataset based on inspection environment
has been constructed for training target detection models.
A lightweight target detection model named GNV2 was
developed based on YOLOV8s, which was lightly processed
by combining GhostNetV2. The CBAM (Convolutional
Block Attention Module) attention mechanism and SCDown
downsampling module have been added.

. Integrated the GNV2 model into the improved SLAM
algorithm and evaluate it, and deploy the GNV2-SLAM to the
inspection robot for experiments.

The structured of this paper is organized as follows: Section II
reviews the relevant literature in this research field and summarizes
the current research progress. Section III elaborates the overall
architecture of the GNV2-SLAM system and the improvement
methodology. Section IV describes the experimental materials and
research methodology used in this research. Section V presents
the experimental results and evaluates the systems performance
based on the TUM dataset. Finally, Section VI concludes the major
findings of this research. Section VII discusses contributions of this
research work, and outlines potential directions for future research.

2 Related work

The feature point method is a widely utilized approach for visual
mileage computation method in VSLAM. This method primarily
focuses on extracting and matching key feature points across
consecutive image frames to estimate the camera’s motion trajectory
(Chen etal., 2018). To enhance the stability and robustness of SLAM
systems in dynamic environments, deep learning techniques have
been increasingly integrated in recent years to identify and eliminate
dynamic feature points. Numerous researches have been devoted to
integrating target detection and image segmentation methods from
deep learning into SLAM systems. These advancements provide
valuable a priori information for the recognition and eliminate
dynamic feature points, thereby improving the performance of the
system in complex scenarios (Favorskaya, 2023).

In order to achieve high-precision localization and map
construction, Bescos et al. (2018) proposed Dyna-SLAM, which
significantly improves the localization accuracy by identifying
and eliminating the keypoints in the dynamic region through
the Mask R-CNN (He et al., 2018) method. However, its real-
time performance is poor due to its dependence on deep
semantic segmentation. Yu et al. (2018) proposed DS-SLAM,
which combines semantic segmentation with motion consistency
detection to construct semantic maps and improve accuracy.
Although these methods improve the accuracy, they generally
suffer from insufficient real-time performance. Islam Q. U. et al.
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(2023) proposed YoloV8-SLAM, which employs the cutting-
edge target detection algorithm YoloV8 and enhanced multiview
geometry techniques to handle low, medium, and high-dynamic
environments, whereas a well-matched point selection algorithm
extracts high-speed motion information. Wu et al. (2022) proposed
the YOLO- SLAM algorithm to accelerate and generate the basic
semantic information of the SLAM system by Darknet19-YOLOvV3
lightweight target detection network, and utilize the depth difference
of random sample consistency to distinguish dynamic features.
These algorithms can ensure the real-time operation of the SLAM
system, but when there are multiple moving objects or image
blurring in the environment, it will reduce the number of extracted
feature points and cause the system to experience tracking failure.

Lietal. (2021) proposed RPL-SLAM by extracting point features
and line features. The depth information of the RGBD image is
further utilized to recover the 3D information of the point and
line features, which improves the accuracy of the camera trajectory
localization and solves the problem of not being able to find
enough reliable features in case of missing texture or motion
blur. Zhang, (2021) proposed PL-GM, which calculates the camera
position by utilizing the two kinds of features of the point and
line features, and constructs a 3D point element and line element
by taking into account the two-dimensional point elements and
line elements to constrain the error and enhance the positioning
accuracy calculated by the algorithm. Although these algorithms
improve the positioning accuracy of the system, these algorithms
are only applicable to static environments, and when a dynamic
target appears in the environment, it will lead to mis-correlation
of data, which will cause the system to crash. Yuan et al. (2023).
proposed PLDS-SLAM, a point and line fusion SLAM system for
dynamic environments, which combines the a priori dynamic region
detection, the geometrical and epipolar constraints to separate
static and dynamic targets, and the introduction of Bayesian-
based SLAM system with a point and line fusion. Wang et al.
(2018) proposed a SLAM method that combines point and line
features with real-time target detection to enhance the localization
accuracy and robustness of the system by enhancing the feature
extraction capability in an indoor environment and eliminating the
interference of dynamic targets.

Cowsheds, as a typical structured scene, contain a large number
of linear structures. However, the frequent appearance of dynamic
targets often interferes with traditional SLAM systems during the
feature extraction stage, leading to positioning errors. Additionally,
when there are too many dynamic targets or motion blur, the
number of effective feature points in the image decreases, negatively
impacting the system’s positioning accuracy and operational
reliability. To address these issues, this paper proposes a visual SLAM
method based on dynamic target removal and point-line feature
fusion, effectively enhancing the system’s accuracy and stability in
real-world inspection scenarios.

3 Methodology

In this section, the GNV2-SLAM system is presented in
detail. This system integrates a lightweight deep learning model
optimization strategy, enabling it to achieve efficient target
recognition and dynamic feature point elimination effectively.
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Furthermore, the SLAM system incorporates the point-line feature
fusion strategy, which establishes foundation for the accurate
localization and autonomous inspection of the mobile robot in
cowshed inspection environment.

3.1 Overview of the GNV2-SLAM system

The framework of the GNV2-SLAM system proposed in this
paper is shown in Figure 1. The system has been structurally
optimized and functionally extended based on ORB-SLAM2 (Mur-
Artal and Tardds, 2017). In addition to the original three threads:
tracking, local map building, and closed-loop detection, a new
target detection thread has been introduced to facilitate real-time
recognition of dynamic targets. Concurrently, a dynamic target
rejection module has been implemented to effectively remove
the interference feature points caused by moving objects and
improve the robustness of the system in dynamic environments.
Furthermore, the system also performs line feature extraction and
the optimizes of point-line feature fusion.

3.2 Overview of the GNV2 lightweight
target detection network

The GNV2 network is based on YOLOVSs. An efficient GNV2
target detection network is constructed through a lightweight
design and two structural optimizations, aiming to significantly
reduce the consumption of computational resources and maintain
high operational speed while ensuring detection accuracy. In
this study, YOLOv8s' original backbone network is substituted
with lightweight GhostNetV2 to reduce model parameters and
computation costs. To enhance the model performance further,
two important improvements have been made to its network
structure. First, the CBAM attention mechanism is introduced,
which guides the model to pay more attention to the key fields
related to the target by modeling the importance of the channel
dimension and the spatial dimension, thus effectively improving the
detection accuracy. Second, the SCDown downsampling module
is adopted to optimize the feature downsampling process, so that
the model achieves more efficient feature compression and delivery
while maintaining the key feature information, thus enhancing the
expressive capability of the overall network. The final structure of the
GNV2 network is shown in Figure 2, which combines high accuracy
and high efficiency and provides a good foundation for subsequent
deployment in SLAM systems.

3.2.1 GhostNetV2 neural network

GhostNetV2 (Tang et al, 2022) represents a lightweight
convolutional neural network improved on GhostNet (Han et al.,
2020), with the objective of improving feature expression capability
while simultaneously reducing computational complexity. The core
innovation lies in generating fundamental features using a limited
number of convolutions via the Ghost module, subsequently
producing additional redundant features through cost-effective
linear operations. This approach effectively replaces traditional
convolutional operations and significantly mitigates computational
costs. In terms of structural design, the downsampling module of
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GNV2-SLAM system framework.
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GNV2 network architecture.
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FIGURE 3
GhostNetV2 architecture schematic diagram.

GhostNetV2 adopts stepwise convolution and pooling operations ~ 3.2.3 SCDown downsampling module

to minimize reliance on high-complexity operators, thereby further SCDown is an advanced downsampling module that
enhancing network efficiency. To enhance the feature representation ~ simultaneously considers both spatial and channel dimensions.
capability of the intermediate layer, the network introduces the It is extensively utilized in lightweight neural networks and efficient
DFC (Dynamic Feature Consolidation) attention mechanism, which ~ computational models, with the objective of substantially decreasing
dynamically adjusts feature responses to enhance the expression ~ computational complexity and parameter size while preserving
of key features. Overall, GhostNetV2 effectively improves the  feature integrity. By downsampling both the spatial dimensions
balance between model accuracy and inference speed while and the number of channels of the input feature maps, this

maintaining a lightweight architecture. The basic module structure ~ module decreases both the feature map size and the number of
is shown in Figure 3. channels, thus effectively reducing the computational overhead

and memory usage. In terms of implementation, the SCDown
module usually combines convolutional operations, pooling layers
3.2.2 CBAM attention mechanism or other downsampling strategies to retain key information while
Woo et al. (2018) proposed CBAM, a lightweight attention  eliminating redundant features to improve the efficiency of feature
mechanism module designed to enhance the feature representation  processing. Its structural design provides an efficient feature
of convolutional neural networks. By sequentially integrating both  compression scheme for lightweight networks, which helps to
Channel Attention and Spatial Attention mechanisms, this module  realize fast inference and deployment in resource-constrained
directs the network to focus on key feature field more effectively, ~ environments. The structure of the SCDown module is shown
thus improving the performance of the model in various visual  in Figure 5.
tasks. Specifically, CBAM first applies the channel attention module
to the input feature map, extracts channel descriptive information
through global maximum pooling and average pooling operations. 3.3 Point and line feature fusion
It generates channel weight coefficients by combining these
descriptors with a multilayer perceptron and weights the feature map In this paper, a line feature extraction and matching module is
along the channel dimension. Subsequently, this weighted feature presented based on the ORB-SLAM2 framework. This enhancement
map is passed into the spatial attention module, which extracts  enables the system to simultaneously extract point features and line
the spatial information through the pooling operations along the  features, so as to improve the robustness and stability of the VSLAM
channel dimension and generates the spatial attention map by using algorithm in complex scenarios. This improvement effectively
convolution attention map. The feature map is weighted again in  enhances the system’s ability to perceive geometric information in
the spatial dimension. The final output feature map has stronger  structured environments by combining different types of feature
discriminative ability and can be used in the subsequent network  information. Line features are extracted based on the LSD (Line
structure to improve the overall performance. The structure of the ~ Segment Descriptor) algorithm (Grompone Von Gioi et al., 2012),
CBAM attention mechanism module is shown in Figure 4. which extracts geometrically structured line segment features from
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FIGURE 4

Cbam attention mechanism module structure.

images. To enhance the effectiveness of features and matching
accuracy, line features are filtered and optimized based on the length
of the line segments. Subsequently, LBD (Line Band Descriptor)
algorithm descriptors are used to characterize the filtered line
segments and match them with line features in other keyframes,
so as to construct a stable line feature association relationship. By
introducing the line feature information, the localization accuracy
of the system is improved.

3.3.1 Point feature reprojection error

The reprojection error is used to optimize the robot’s position.
The reprojection error for the line features is shown in Figure 6. Let
I, and I, denote two frames of images, the 3D spatial points P in
the images corresponding to the pixel points p; and p,, p,’ is the
reprojection point of p; on I,, and e is the error between p, and p, ".

The pixel coordinate of point p, on I, is x, K is the camera
parameter matrix, T',,, is the bitmap transformation from the world
coordinate system to the camera coordinate system between I, and
I,, and X, is the coordinate of point P under the projection of p,

Frontiers in Robotics and Al

to the world coordinate system. k is the kth image with a total of
i feature points. The reprojection error formula for feature points
is shown in Equation 1.

(1)

3.3.2 Line feature reprojection error

The line feature reprojection error is shown in Figure 7. The O,
and O, are the camera optical centers of the images, I, and I, are the
two frames, p,q; and p,q, are the corresponding line features of the
images, p, ‘q,” is the reprojected line segment of p,q; on I,, e, is the
error between p,” and p,.

Pliicker coordinates are commonly used to represent spatial
line features, and the spatial line segment PQ expressed in Pliicker
coordinates as shown in Equation 2.

PxQ
w (2)

wP-w,Q

06 frontiersin.org
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The the
camera coordinate system to the pixel coordinate system

formula for projecting a line segment in

is shown in Equation 3:

foo0 0
I.=| 0 5 0 |n.=Kn, (3)
“Jx xCx fxfy

The line segment in pixel coordinate system is denoted by I,
f. and f, represent the effective focal lengths along the x and y
directions, respectively; c, and c, represent the translation of the
origin of the coordinate system in the x and y directions, and the
reprojection error of the line segment is shown in Equation 4.
k _ k k
e, = d(IKTE, LY, )

cw-w,i

(4)

In the formula for calculating the reprojection error, the function
d represents the orthogonal distance function from a point to a line.

Assuming that the observation errors of the point and line
features are all Gaussian distributed cases, the combined error
function C based on the point and line features can be obtained. As
illustrated in Equation 5.

_ kT -1 k kT -1 _k
C‘;Pp(ep,i Zxk,,-ep,ﬁel,j Zlk,je,’j)
i

le}l is the covariance matrices of the line features, and Zx; is

(5)

the covariance matrices of the point features. Respectively, and the
Huber robustness cost function p is introduced to suppress the effect
of outliers.

4 Equipment and methods

During the experiments, we ran the training task of the
GNV2 deep learning model and the testing and evaluation work
of the SLAM algorithm on the same server, respectively. Table 1
provides a detailed listing of the experimental environments
used, including hardware configuration and software environment
parameters.

4.1 GNV2 model training

The YOLO image dataset utilized in this study comprises
images captured using an Intel D455 camera. The dataset was
collected from two large-scale dairy farms (Henan Ruiya Dairy
Co., Ltd. and Luoyang Shengsheng Dairy Co., Ltd.) and the
publicly available COCO dataset. We carefully selected a total of
1,246 images from these sources. These images were annotated
with “Person” and “Cow” labels using the Labellmg tool. To
improve the models generalization ability, data augmentation
methods such as translation, mirroring, cropping, adding
Gaussian noise, and adjusting brightness were used for offline
expansion, ultimately constructing an enhanced dataset containing
6,230 images.

During model training, we used the Mosaic data augmentation
method, which randomly selects four images and scales, rotates,
crops, and rearranges them to generate new images for the model
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TABLE 1 Experimental environment configuration.

Configuration Equipment Information
CPU Intel Core i7-12700
Hardware GPU NVIDIA GeForce RTX 2060
RAM 16 GB
System Ubuntu 18.04
Software
Python Python 3.9.19
Pytorch 1.12.1
Environment CUDA 11.3.1
CuDNN 8.2.4

TABLE 2 Hyperparameter configuration for GNV2 network training.

Hyperparameter = Value  Hyperparameter | Value
Epoch 200 Weight_decay 0.0005
Batch Size 16 Mosaic Augmentation 1.0
Initial Learning Rate 0.01 Classification Loss 0.5
Weight
Final Learning Rate 0.01 Objectness Loss Weight 1.0
Factor

to learn. This method improves the model’s adaptability in multi-
scale object detection through random combinations of multi-
scale objects, thereby enhancing the diversity of the dataset. This
proprietary dataset had strong generalizability and was suitable
for train and evaluate a wide range of network models. The
training and validation set were divided in a ratio of 8:2, while the
test set consisted of video streaming images obtained during the
actual operation of the GNV2-SLAM system. The hyperparameter
configurations utilized for the training of the GNV2 network
is shown in Table 2.

4.2 Performance evaluation of VSLAM
algorithms

4.2.1 TUM dataset

A publicly available TUM RGB-D dataset was used to evaluate
the proposed system. The dataset, published by the Technical
University of Munich, was acquired using a Kinect camera and
contains time-synchronized color images, depth images, and
camera positional truth (Ground Truth) from a high-precision
motion capture system (Motion Capture). The image resolution
is 640 x 480, which is suitable for evaluating the localization
accuracy and robustness of various RGB-D SLAM algorithms
in indoor environments (Singh et al., 2024). The TUM dataset
encompasses a diverse range of scenarios, including low-texture
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TABLE 3 Comparative experiments on lightweight variant networks.

10.3389/frobt.2025.1648309

Network model mAP@0.5/% Params GFLOPs Weight/M
YOLOVS8s (CSPLayer_2Conv) 94.15 11136374 28.6 225
YOLOv8s-VanillaNet 91.47 6892822 18.1 14.2
YOLOv8s-EfficientNet 91.17 6522578 17.3 134
YOLOV8s-GhostNetV2 (GNV2*) 94.07 6983726 18.5 144
TABLE 4 Attention comparison experiment.
Network model mAP@0.5/% Params GFLOPs Weight/M
GNV2* 94.07 6983726 18.5 14.4
GNV2"-CBAM 94.48 6494864 18.2 134
GNV2*EffectiveSE 94.26 6735070 18.5 14.3
GNV2*-MHSA 92.18 7249966 18.9 149
GNV2"-ECA 94.43 6472417 18.5 13.2

TABLE 5 Downsampling comparison experiments.

Network model mAP@0.5/% Params GFLOPs Weight/M
GNV2*-CBAM 94.47 6494864 182 13.4
GNV2*-CBAM-SCDown 95.19 6464998 18.1 13.4
GNV2*-CBAM-ADown 94.19 6451246 17.8 133
GNV2*-CBAM-RFCACony 94.68 7031774 18.6 145

environments, fast camera motion, illumination variations, and
so on. These characteristics provide a rich set of samples for
testing algorithms’ robustness and generalization capabilities.
In this study, the representative sequences were selected such
as fr3_sitting halfsphere, fr3_walking_rpy, fr3_walking_xyz,
among others. These sequences cover complex scenarios that
ranging from low-dynamic environments to high-dynamic

environments.

4.2.2 Assessment methods

In order to quantitatively evaluate the trajectory estimation
performance of the SLAM system, this study employed the
evaluation tool provided by the TUM dataset to compare the
camera trajectories outputted by our system against the true value
trajectories included in the dataset. Absolute Trajectory Error (ATE)
serves as one of the key metrics for evaluating the performance of
SLAM system performance, which is used to quantify the positional
deviation between the estimated trajectory of the system and the
true trajectory (Ground Truth). ATE measures the spatial global
consistency across entire trajectory while reflecting cumulative
error over extended periods, thus providing an effective method to
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TABLE 6 Comparison experiment of different algorithms of YOLO series.

Network model mAP@O0.5/% Weight/M
YOLOV5n 88.81 53
YOLOV5s 93.14 185
YOLOv8n 91.26 63
YOLOVS8s 94.15 22.5
YOLOV10n 89.65 5.8
YOLOV10s 92.9 165

GNV2 95.19 13.4

both algorithm robustness and localization accuracy. In addition
to ATE analysis, this paper also incorporated Relative Pose Error
(RPE) as a supplementary evaluation metrics. RPE focuses on the
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FIGURE 8
mAP@O.5 graph. (a) The mAP@O0.5 curves of different models in the lightweight network comparison experiment; (b) The mAP@O0.5 curves of different
models in the attention comparison; (c) The mAP@O.5 curves of different models in the downsampling comparison experiment; (d) The mAP@0.5
curves of different models in the algorithm comparison experiment.
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FIGURE 9
Comparison of the detection results of YOLOv8s and GNV2. The images in the first row (a—d) represent the detection results of YOLOv8s in four

images; the images in the second row (e—h) represent the detection results of GNV2 in the same four images as YOLOv8s.
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FIGURE 10
Different feature extraction results (a) shows the effect of extracting only ORB feature points and matching, some of the feature points were located on

the cow, which may affect the subsequent calculation of the SLAM system and cannot guarantee the accuracy of localization, and Figure (b) shows the
effect of matching after eliminating the feature points on the dynamic target. Figure (c) shows the effect of extracting LSD line features and matching.
Figure (d) shows the effect of removing the dynamic region as well as point-line fusion proposed in this paper.

TABLE 7 Absolute trajectory error results for different algorithms.

Sequences ORB-SLAM2 Dyna-SLAM GNV2-SLAM Improvement against
ORB-SLAM2
RMSE SD RMSE ‘ SD RMSE (%) SD (%)
fr3_s_hs 0.066 0.0355 0.0287 0.0142 0.0271 0.0133 58.94 62.54
fr3_w_hs 0.5082 0.2341 0.0271 0.0133 0.0273 0.0138 94.63 94.11
fr3_w_rpy 0.7604 0.3739 0.0442 0.0214 0.0446 0.0283 94.13 92.43
fr3_w_static 0.0596 0.0341 0.0102 0.0047 0.0099 0.0038 83.39 88.86
fr3_w_xyz 0.6819 0.34 0.0325 0.0175 0.0264 0.0142 96.13 95.82

TABLE 8 Relative trajectory translation error results for different algorithms.

Sequences ORB-SLAM2 Dyna-SLAM GNV2-SLAM Improvement against
ORB-SLAM2
RMSE SD RMSE SD RMSE ’ SD RMSE (%) SD (%)
fr3_s_hs 0.0358 0.0239 0.0243 0.0137 0.0158 0.0093 55.87 61.09
fr3_w_hs 0.1633 0.1301 0.0236 0.0124 0.0227 0.0116 86.1 91.08
fr3_w_rpy 0.1765 0.1357 0.0358 0.0203 0.0486 0.0314 72.46 76.86
fr3_w_static 0.0477 0.0411 0.0096 0.0047 0.0089 0.0049 81.34 88.08
fr3_w_xyz 0.1701 0.1154 0.0207 0.0106 0.0198 0.0099 88.36 91.42

relative transformation error between neighboring frames, and can ~ position estimation. By comparing the performance of different
effectively evaluate the local accuracy and trajectory smoothness of  algorithms in the ATE and RPE dimensions, each algorithm’s actual
the system in short time scales. This metric is especially suitable  performance in different scenarios can be more comprehensively
for analyzing the drift phenomenon caused by the instability of  revealed.
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TABLE 9 Relative trajectory rotation error results for different algorithms.

10.3389/frobt.2025.1648309

Sequences ORB-SLAM2 Dyna-SLAM GNV2-SLAM Improvement against
ORB-SLAM2

RMSE SD RMSE SD ‘ RMSE ‘ SD RMSE (%) SD (%)
fr3_s_hs 0.0161 0.0082 0.0155 0.0074 0.0131 0.0058 18.63 29.27
fr3_w_hs 0.0842 0.065 0.0157 0.0083 0.0153 0.0079 81.83 87.85
fr3_w_rpy 0.0867 0.066 0.0189 0.0107 0.0238 0.0149 72.55 77.42
fr3_w_static 0.0213 0.0174 0.0065 0.0027 0.0063 0.0029 70.42 83.33
fr3_w_xyz 0.0811 0.0539 0.0113 0.0057 0.0112 0.0056 86.19 89.61

The formula used to calculate the absolute trajectory error
between the estimated trajectory Q and the true trajectory P
is shown in Equation 6.

2

ATE= =Y [log (¢ P ©)
i=1

2

Where, 7 is the number of trajectory points on the trajectory.
The relative trajectory error is shown in Equation 7.

RPE= %Z flog(Q'Qiua) (P P11, m=n-a ()
ia

where, A is the time interval between two consecutive poses.

5 Experimental results

5.1 Results of the GNV2 experiment

In this study, significant emphasis has been placed on optimizing
the structural complexity of the GNV2 model to minimize the
computational resource consumption during the inference phase,
while maintaining both accuracy and real-time performance
in model detection. To comprehensively evaluate the model
performance, metrics were utilized as follows: the target detection
accuracy as measured by the average precision with an IoU
threshold of 0.5 (mAP@0.5), the number of model parameters
(Parameters), computational overhead measured by hundreds of
billions of floating-point operations per second (GFLOPs), and the
size of the model weights file are used to characterize the structural
complexity of the model. The last three metrics collectively reflect
the computational resource requirements of the model during
deployment.

5.1.1 Lightweight network comparison
experiment

Three mainstream obtained lightweight feature extraction
networks were replaced with the backbone network of the original
YOLOvVSs to obtain three lightweight variant networks. These
lightweight variant networks would be trained on the self-
constructed cowshed inspection environment dataset to generate
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the corresponding target detection models. The experimental results
for the different lightweight variant networks are shown in Table 3.
The experimental results indicated that replacing the original
backbone network of YOLOv8s with VanillaNet (Chen et al,
2023), EfficientNet (Tan and Le, 2020) and GhostNetV?2, leads to a
significant reduction in the number of parameters, computational
load, and the model size. Although there is a decrease in detection
accuracy, the extent of this reduction varies among different models.
Specifically, YOLOvS8s-VanillaNet exhibits a decline in detection
accuracy by 2.68%, resulting in an accuracy of 91.47%. Conversely,
YOLOv8s-EfficientNet experiences the most substantial decrease
in accuracy at 2.98% while achieving a remarkable reduction
in computational workload by 39.51%. In contrast, YOLOVS8s-
GhostNetV2 (GNV2*) mitigates model complexity while preserving
detection accuracy, it showed only a minor drop of 0.08% in
average detection accuracy along with notable reductions: 37.29%
fewer parameters, 35.31% decrease in computation load, and 36%
reduction in the model size. The comprehensive performance
advantages were so evident that GNV2*was selected as the
foundational network for further enhancements within this study.

5.1.2 Comparative experiments on attention
mechanisms

Three different attentional modules, such as EffectiveSE, MHSA
and ECA, were selected for comparison experiments with CBAM
channel attentional modules. The results of the comparison
experiments of the attention mechanisms are shown in Table 4.

The experimental data indicate that the introduction of the
MHSA attention mechanism not only increases the model’s
complexity but also reduces its accuracy. After increasing the
EffectiveSE attention mechanism, there was a slight enhancement
in average detection accuracy compared to the GNV2*model,
while the number of parameters and the model size were also
reduced. A comparative analysis between the ECA and CBAM
attention mechanism revealed minimal differences regarding their
respective advantages. Although the ECA attention mechanism
offers the advantage of a smaller model, the introduction of
the CBAM attention mechanism resulted in the highest average
detection accuracy, improving by 0.41% compared to the original
GNV2*model, while also achieving the lowest floating-point
computation. Therefore, the incorporation of the CBAM attention
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mechanism significantly enhances the performance of the
GNV2*model. Consequently, the introduction of CBAM attention
mechanism more effectively enhances the performance of the
GNV2* model.

5.1.3 Downsampling module comparison
experiments

Through the comparison experiments of different attention
mechanisms, the results showed that introducing the CBAM
attention mechanism into the GNV2*model significantly improves
its accuracy. On the basis of this finding, the superiority of the model
performance after the introduction of the SCDown downsampling
module was verified by comparing with the ADown and RECAConv
downsampling modules. The results from these downsampling
comparison experiments are shown in Table 5.

The experimental data indicate that the introduction of
the ADown downsampling operator decreases the floating-point
computations, the number of parameters and the model size
significantly compared with the initial model GNV2*-CBAM
model. However, this improvement is accompanied by a slight
decrease in the average accuracy of 0.28%. The introduction
of the RFCAConv downsampling operator enhances the model
complexity while increasing the detection accuracy. The model
accuracy improved the most when the SCDown operator was
combined with the original model, reaching 95.19%, while the
average model accuracy improved by 0.75%. In addition, the number
of parameters and floating-point calculations were also low, enabling
a better balance between efficiency and performance. This enables a
more favorable balance between efficiency and performance. Thus,
the final model obtained by fusing GNV2*lightweight network,
CBAM attention mechanism and SCDown downsampling was
designated as GNV2.

5.1.4 Algorithm comparison experiments

The GNV2 model was compared with different models of
YOLO series to highlight the performance advantages of the
algorithms proposed in this study. The data of average detection
accuracy and model size were used to compare the performance
difference of different algorithms on the self-constructed cowshed
inspection dataset. The results of comparison experiments of
different algorithms of YOLO series are shown in Table 6.

The experimental results indicate that GNV2 surpasses other
models within the YOLO series in terms of average detection
accuracy. It achieved an accuracy that was still 3.93% higher than
that of the highest-accuracy YOLOv8n, even though it does not
have the advantage of YOLOv5n, YOLOV8n, and YOLOv10n in
terms of model size. In comparison to its predecessor YOLOVSs,
the GNV2 model size was reduced by 40.44%, rendering it 3.1M
smaller than YOLOv10s while also improving its accuracy by
2.29%. In conclusion, GNV2 effectively balances high accuracy
with substantial model compression requirements while considering
both performance metrics and lightweight design. The mAP@0.5
performance curves of each model in different experiments
are shown in Figure 8.

The results presented in Figure 8 provide validation for the
effectiveness of the selected strategies at each stage. Furthermore,
a comparative analysis was conducted between the detection
accuracy of the GNV2 model and that of the YOLOVSs to evaluate
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its improvement. The detection results are shown in Figure 9,
demonstrating that the overall detection accuracy of GNV2
surpasses that of YOLOv8s network.

5.2 GNV2-SLAM experimental results

The GNV2 model was integrated into the GNV2-SLAM system
for performing the target recognition task. Subsequently, the overall
performance of GNV2-SLAM as well as the tracking elapsed time
were evaluated on the TUM dataset. Using the ORB-SLAM?2 as a
reference, the performance difference between GNV2-SLAM and
Dyna-SLAM were further compare. All algorithms were executed
independently for five times under identical conditions, and the final
results were averaged as the evaluation metrics.

5.2.1 Effectiveness of dynamic feature removal
and point and line feature fusion

In order to verify the effectiveness of the point and line feature
extraction algorithm, experiments were conducted on different
images in the cowshed inspection dataset. The images following
feature extraction and matching are shown in Figure 10.

5.2.2 TUM dataset for performance evaluation

The performance of the SLAM algorithm was evaluated by
selecting the root mean square error (RMSE) and standard deviation
(SD) in low-dynamic environments (fr3_s_hs) and high-dynamic
environments (fr3_w_hs, fr3_w_rpy, etc.). The results pertaining
to absolute trajectory error, comparison of relative positional error
translational drift, comparison of relative positional error rotational
drift for GNV2-SLAM algorithm, ORB-SLAM?2 algorithm, and
Dyna-SLAM algorithm are shown in the tables as Tables 7-9
respectively.

The that GNV2-SLAM
significantly outperforms ORB-SLAM2 in terms of absolute

experimental results indicate
trajectory error in high-dynamic environments, with RMSE
decreasing exceeding 83.39% and SD decreasing exceeding 88.86%.
Compared with Dyna-SLAM, GNV2-SLAM exhibited superior
localization accuracy in low-dynamic scenarios while showing
comparable performance in high-dynamic scenarios. In contrast,
the GNV2 network can effectively identify dynamic targets,
improving the robustness of the system in dynamic environments.
Regarding relative trajectory error, the relative position error
of GNV2-SLAM was lower than that of ORB-SLAM2 in low
dynamic scenarios. with slight improvements observed in accuracy.
Conversely, in high dynamic scenarios, the translation error RMSE
decreases by up to 88.36%, and the SD decreases by up to 91.42%.
The trend of rotation error was also consistent. In some sequences,
the overall performance of GNV2-SLAM was better than that of
Dyna-SLAM, and Figure 11 shows the comparison of the absolute
trajectory error (ATE) of ORB-SLAM2, Dyna-SLAM and GNV2-
SLAM in some sequences. The results indicate that the error
of GNV2-SLAM was significantly reduced and exhibits higher
localization accuracy.

5.2.3 Tracking time assessment

VSLAM systems needs to strike an optimal balance localization
accuracy and real-time performance. To evaluate the real-time
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FIGURE 11
Absolute trajectory error maps Image (a,d,g) represents the ATE maps of ORB-SLAM2, Dyna-SLAM, and GNV2-SLAM on fr3_w_hs sequences,
respectively; image (b,e,h) represents the ATE maps of the three algorithms on fr3_w_hs sequences; image (c,f,i) represents the ATE maps of the three
algorithms on fr3_w_xyz sequence.

TABLE 10 Time consumption of the tracking process.

Sequences ORB- Dyna-SLAM
SLAM2
fr3_s_hs 0.019 1.717 0.029
fr3_w_hs 0.02 1.827 0.023
fr3_w_rpy 0.02 1.779 0.027
fr3_w_static 0.018 1.765 0.024
fr3_w_xyz 0.021 1.764 0.028

performance of these algorithms, this study compares the average
tracking time of ORB-SLAM?2, Dyna-SLAM and GNV2-SLAM
using the TUM dataset. In this experiment, the average time for

Frontiers in Robotics and Al

each algorithm to process a single image frame were counted, and
measured the time consumption of the tracking process. The results
were in seconds, and are shown in Table 10.

The experimental data analysis revealed that although GNV2-
SLAM has a slight increase in time overhead compared to ORB-
SLAM2 after the introduction of the target detection threading
processes, the system can still successfully complete single frame
image tracking within approximately 29 ms, which provides
a significant advantage in real-time performance. Compared
with Dyna-SLAM, GNV2-SLAM demonstrates an approximate
reduction in processing time by about 90%, further highlighting its
substantial benefit in terms of real-time performance.

5.2.4 Assessment in real environments

In order to verify the effectiveness of the proposed algorithm,
it was deployed the algorithm to a cowshed inspection robot and
tested the localization accuracy of the GNV2-SLAM in a cowshed
inspection environment. The experiments used an NVIDIA Jetson
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FIGURE 12
Absolute trajectory error maps Images (a,b) represent the trajectory maps computed by ORB-SLAM2 at 0.4 m/s and 0.6 m/s velocity on the robot,
respectively. Image (c,d) represents the trajectory maps computed by GNV2-SLAM2 at 0.4 m/s and 0.6 m/s velocity on the robot, respectively.

Xavier NX as the robot’s upper computer with Ubuntu 18.04
operating system and configured with a Melodic version of the
ROS (Robot Operating System) system. The inspection robot moves
along a straight line at speeds of 0.4 m/s and 0.6 m/s while employing
the GNV2-SLAM system and the ORB-SLAM2 system, respectively.
The resulting trajectories from different vision SLAM systems
are shown in Figure 12.

From the experimental results, it could be seen that during
the robot’s movement along a straight line, the interference of
dynamic targets occurs, which leads to an obvious drift in the
trajectory of ORB-SLAM2. GNV2-SLAM utilizes the line features
in the cowshed environment to perform point and line fusion to
make the trajectory closer to the real trajectory while eliminating the
dynamic targets.
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6 Discussion

This paper proposes an improved GNV2-SLAM method based
on the ORB-SLAM approach. The method maintains high accuracy
while significantly enhancing the system’s real-time performance.
By refining the GNV2 model, the system’s robustness and accuracy
in object recognition are improved. GNV2-SLAM demonstrates
superior precision in high-dynamic environments, particularly
excelling in object recognition and localization accuracy, which
highlights its strong model compression capability and efficient
extraction of point and line features.

It is worth noting that in certain high-dynamic environments,
GNV2-SLAM still shows some gaps compared to Dyna-SLAM.
The main reason lies in Dyna-SLAM’s ability to leverage prior
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dynamic region information from each frame to achieve pixel-
level semantic segmentation, thus providing stronger dynamic
point filtering capabilities that effectively enhance the precision
of static environment mapping. The global optimization strategy
of GNV2-SLAM may lead to instability or misoptimization
in dynamic scenes due to frequent interference from dynamic
objects. However, comparing the Relative Pose Error (RPE)
results shows that GNV2-SLAM, through point-line feature fusion,
significantly reduces computational errors, effectively optimizing
the pose estimation process and improving the system’s accuracy
and stability.

However, due to budget constraints, the research has primarily
focused on the algorithms effectiveness, and hardware experiments
still require improvement. Future work will focus on the adaptation
of the algorithm to complex hardware platforms, aiming to
achieve automated monitoring of livestock activity, spatial
distribution, and facility safety. Additionally, multiple metrics
will be used to comprehensively assess the adaptability and
application potential of GNV2-SLAM in dynamic agricultural
environments.

7 Conclusion

This paper presents a vision-based SLAM method, GNV2-
SLAM, which integrates dynamic object removal and point-line
feature fusion for livestock barn inspection. Building on ORB-
SLAM2, the method introduces a target detection thread and a
dynamic point removal module. By adopting a lightweight design
for the target detection model, the overall computational complexity
is reduced. Additionally, the CNAM attention mechanism and
SCDown downsampling structure are incorporated to further
optimize performance without increasing model complexity. This
model is integrated into the SLAM system, and point and line
features are fused to improve pose estimation.

Experimental results show that, compared to YOLOVSs, the
GNV2 network model achieves a 1.04% improvement in average
detection accuracy, with a 41.96% reduction in the number of
parameters, a 36.71% decrease in computational load, and a
40.44% reduction in model size. After integrating GNV2-SLAM
into the visual SLAM system, performance evaluation on the
TUM dataset demonstrates that GNV2-SLAM outperforms ORB-
SLAM?2 in high-dynamic scenes, achieving a reduction of over
83.39% in RMSE and 88.86% in SD for absolute trajectory error.
For relative trajectory error, the translation error RMSE shows a
maximum reduction of 88.36%, with SD reduced by 91.42%, and
the rotation error follows a similar trend to the translation error.
In the tracking evaluation, GNV2-SLAM processes each frame
of the image within 30 ms, highlighting its excellent real-time
performance and competitive advantage. Real-world evaluation
results show that the trajectory generated by the proposed algorithm
more accurately reflects the robot’s motion path in the actual
environment.

Given the challenges posed by strong ground reflections
and frequent target occlusions in livestock barn environments,
future research will consider introducing a multimodal perception
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mechanism. By integrating thermal imaging, LiDAR, and visual
data, the fusion of multimodal data and a deep learning-optimized
multi-input network structure can enhance the system’s robustness
and adaptability, improving target recognition and localization
accuracy, and overcoming the limitations of GNV2-SLAM in
occlusion and reflection scenarios. Furthermore, considering the
dynamic nature of livestock, future work will focus on further
optimizing dynamic object modeling and segmentation strategies
to enhance map consistency and localization accuracy under
conditions of frequent animal movement.
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