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Development and control of a 
robotic assistant walking aid for 
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Falls are a major risk factor among the elderly, often resulting in injuries that 
compromise independence and quality of life. Conventional walking aids lack 
active stabilization capabilities and are therefore limited in effectively preventing 
balance-related accidents. This paper presents the design and control of a smart 
robotic assistant aimed at reducing fall risk in elderly users by providing real-time 
balance support. The proposed system uses a wearable inertial measurement 
unit to detect postural imbalances in the sagittal (front-back) and frontal 
(side-to-side) planes. When instability is detected, the robotic arm generates 
compensatory forces or torques through linear or rotational actuators to help 
the user regain a stable posture. Using a cascaded control architecture, the outer 
loop is designed to maintain the user’s upright posture, while the inner loop 
ensures fast and accurate actuator performance. To enable effective and reliable 
control in the real system, actuator dynamics are characterized through an 
optimization-based system identification approach, resulting in transfer function 
models with over 98% accuracy. Based on these models, PID controllers are 
optimally tuned using an optimization algorithm to ensure fast and accurate 
corrective action. The system effectively returns the user to a stable position 
within 2.3 ± 0.3 s for linear actuation (with a response time of 120 ± 10 ms) and 
2.2 ± 0.2 s for rotary actuation (with a response time of 140 ± 15 ms), providing 
safe posture return during imbalance events. To further enhance safety, an 
automatic braking mechanism immobilizes the walking aid during corrective 
maneuvers. Experimental validation demonstrates the system’s effectiveness in 
detecting and correcting postural imbalances in both the sagittal and frontal 
planes under dynamic conditions. These results highlight the potential for 
enhancing mobility, safety, and therapeutic support for older adults, contributing 
to the advancement of assistive fall-prevention technologies.
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 1 Introduction

Advances in medical technology and improvements in living standards have led to 
a significant increase in life expectancy, contributing to the rapid acceleration of global 
population aging. According to the World Health Organization, the number of individuals 
aged 60 years and older is projected to more than double by 2050, reaching approximately 2.1
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billion worldwide (World Health Organization, 2024). This 
demographic shift is driving a substantial rise in the demand for 
healthcare and social services; however, the availability of specialized 
personnel, long-term care facilities, and medical infrastructure 
remains insufficient to meet the growing needs of the elderly 
population (Jones and Dolsten, 2024). In addition to the challenges 
associated with healthcare provision, age-related physiological 
changes further exacerbate the vulnerability of older adults.

Sarcopenia, characterized by the progressive loss of muscle 
mass and strength, alongside joint degeneration, severely impairs 
mobility. Furthermore, declines in vestibular and neurological 
function diminish balance control, increasing the risk of falls 
(Agrawal et al., 2020; Johnson et al., 2020). Age-related declines 
in physical function also significantly elevate the risk of falls among 
older adults. With advancing age, muscle strength diminishes, 
joint flexibility decreases, and balance control weakens, collectively 
increasing vulnerability to falls even during routine daily activities 
(Xing et al., 2023). Approximately one-third of individuals 
aged 65 years and older experience at least one fall each year 
(World Health Organization, 2008; Cuevas-Trisan, 2019). This 
prevalence highlights the pervasive nature of falls as a major 
public health concern in aging societies. Falls among older adults 
often result in severe injuries such as fractures, traumatic brain 
injuries, and prolonged immobility, leading to a substantial loss 
of independence and a marked decline in overall quality of life 
(Centers for Disease Control and Prevention, 2024). Beyond the 
immediate physical consequences, falls frequently instill a fear of 
falling again, causing older individuals to avoid social activities and 
limit their mobility, which in turn accelerates physical deterioration 
and psychological distress (Xing et al., 2023; Tabacchi et al., 2025). 
Moreover, serious falls are associated with increased mortality rates 
and impose significant financial burdens on both individuals and 
healthcare systems (Li Y. et al., 2023).

To mitigate the devastating impact of falls, various assistive 
devices such as canes and walking aids have been developed. They 
are particularly valued for their ability to enhance balance, provide 
greater walking stability, and reduce the load on the user’s lower 
extremities (Miyasike-daSilva et al., 2013; Sehgal et al., 2021). By 
offering mechanical support during ambulation, walking assistive 
devices play a critical role in helping older adults maintain their 
mobility, autonomy, and social engagement, ultimately contributing 
to fall prevention and improved quality of life. Walking aids 
are widely utilized mobility aids due to their simple mechanical 
structure, ease of operation, and ability to provide physical 
support during ambulation (Sutera et al., 2025). By distributing 
a portion of the user’s body weight and offering a stable frame 
for support, these devices assist individuals in maintaining upright 
posture and enhancing walking stability (Bateni and Maki, 2005). 
However, despite their widespread use and basic effectiveness, 
conventional walking aids have inherent limitations. While they 
passively support balance, they lack the ability to actively monitor 
a user’s stability or intervene to prevent falls (Nickerson et al., 
2023). Therefore, they offer only limited protection against sudden 
losses of balance or unanticipated environmental disturbances. 
Particularly in dynamic or complex environments, where real-time 
adjustments are critical, passive walking aids can fail to provide 
adequate safety. In response to these shortcomings, there has been 
a growing interest in the development of active assistant walking 

aids, also known as smart robotic walking aids (Shin et al., 2016; 
Zhao et al., 2020; Sierra M. et al., 2024). Some of these advanced 
devices are equipped with sensors such as inertial measurement 
units (IMUs), capable of detecting real-time changes in the user’s 
posture and stability (Zhao et al., 2020; Sierra M. et al., 2024; 
Ferrari et al., 2024). By integrating active control mechanisms, 
these walking aids can effectively respond to balance disturbances, 
stabilize the user, and thereby significantly reduce the risk of 
falls. In addition, commercial smart walkers have recently become 
available. For example, the Camino Walker, developed by Camino 
Robotics, provides AI-powered gait monitoring, obstacle detection, 
and motorized drive assistance to support elderly users during 
daily tasks. Although these systems emphasize gait monitoring and 
assistive braking, they lack the ability to apply corrective forces 
to counteract balance deviations (Camino Robotics, 2025). As the 
aging population increases, there is a growing need for smart, 
adaptive mobility aids that not only provide passive support but also 
actively reduce fall risk.

In recent years, there has been growing interest in enhancing 
traditional walking aids with sensor-based technologies to improve 
fall detection and user safety. Several systems have been developed 
that utilize IMUs to monitor posture or detect falls after they 
occur (Sierra M. et al., 2024; Mao et al., 2017; Huang and Garcia, 
2023). In addition, robotic systems combining IMUs and force 
sensors have been proposed to enable real-time balance monitoring 
and assistive feedback (Zhao et al., 2020; Sierra M. et al., 2019; 
Li L. et al., 2023). To effectively control such systems, various 
strategies have been introduced. For instance, deep neural networks 
have been used to analyze lower-limb gait patterns and predict user 
intent, enabling robotic walkers to adjust their target position and 
velocity accordingly (Zhao et al., 2020). Itadera et al. implemented 
Model Predictive Control (MPC) in a robotic walker to proactively 
estimate user assistance requirements and generate optimized 
supportive forces in real time (Itadera et al., 2019). Although 
such approaches have demonstrated promising results in detecting 
user instability and generating corrective responses via robotic 
arms, their real-world applicability remains limited due to issues 
such as large physical size, high computational requirements, and 
elevated cost. Mori et al. (2024) attempted to reduce system 
complexity and cost by estimating user posture using a compact 
camera and implementing PID control via a single-board computer. 
However, the performance of the PID controller was constrained 
by manually tuned gains, which limited its applicability and 
overall effectiveness. In response to these limitations, this study 
proposes the development of a compact smart robotic assistant 
that improves gait stability through real-time correction of postural 
imbalance using optimally tuned PID controllers. The proposed 
system addresses key limitations of previous works by integrating 
automatic controller tuning, compact hardware, and rapid corrective 
actions suitable for practical use.

In this work, we present a novel smart walking aid that integrates 
IMU-based posture monitoring, a dual-actuator robotic arm, and an 
automatic braking system to provide real-time balance assistance for 
elderly users. Unlike conventional passive walking aids, our system 
actively detects postural deviations and applies targeted corrective 
forces through optimized actuator control, with brakes ensuring 
platform stability during intervention. The key innovation lies in 
the integration of optimization-based system identification using 
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FIGURE 1
Mechanical design and final implementation of the smart robotic walking aid for supporting user balance. (a) CAD model illustrating the integration of 
linear and rotary actuators for pitch and roll compensation. (b) Assembled prototype of the walking aid, demonstrating the practical realization of the 
designed components.

Particle Swarm Optimization (PSO) to accurately model actuator 
dynamics and automatically tune PID controllers, enabling precise 
balance correction with cost-effective hardware. This comprehensive 
approach bridges the gap between simulation and real-world 
deployment, offering a practical solution for enhancing mobility 
safety and independence in aging populations. 

2 Materials and methods

2.1 Mechanical design

The robotic arm, integrated into a conventional walking 
aid, is designed to compensate for user imbalance through 
controlled mechanical displacement. The CAD design presented in 
Figure 1a and, Figure 1b illustrates the assembled system. The robot 
features three Degrees of Freedom (DoFs): two translational (along 
the X and Z-axes) and one rotational (about the Z-axis). The Z-
axis translation is solely used for height adjustment, while the X-axis 
translation and Z-axis rotation are responsible for user interaction. 
User imbalance is characterized by pitch (rotation around the X-
axis) and roll (rotation around the Y-axis). The mechanical design 
prioritizes rapid dynamic response, high force output, and compact 
integration to ensure suitability for mobile assistive applications.

2.2 Balance stabilization in sagittal plane

The customized linear actuator is responsible for compensating 
for pitch-direction imbalances by generating translational motion 

along the X-axis. A handlebar is attached to the shaft, which 
is shown in Figure 2a. It is driven by a brushed DC motor with an 
integrated high-torque gear-head to ensure sufficient force output. 
To achieve the required actuation speed, an additional custom-
designed 1:1.5 ratio gear-head is added downstream of the motor. 
This combination enhances the overall drive speed without a 
significant reduction in torque. The rotary motion of the motor 
is transmitted to a high-pitch lead screw, which converts it to 
linear motion. A square steel shaft connected to the lead-screw 
nut blocks rotation and minimizes backlash. For accurate position 
sensing, a multi-turn potentiometer (3590P-2-203L, Bourns) is 
mounted adjacent to the lead screw and mechanically coupled 
via a 5:1 auxiliary reduction gear. This gearing allows the 10-turn 
potentiometer to measure the full 40-turn range of the actuator. The 
sensor provides accurate feedback for closed-loop control.

2.3 Balance stabilization in frontal plane

The rotary actuator provides roll stabilization by compensating 
for lateral imbalances through controlled rotation around the Z-axis 
and it is driven by a brushed DC motor. Due to space constraints, the 
motor is mounted below the worm gear, and the motion is diverted 
by using a 1:1 deflection gear. This allows the motor to remain 
integrated within the walking aid.

The rotary motion is transmitted to a worm gear that is coupled 
to a slewing bearing, which is located in the base of the platform. The 
worm gear has a high reduction ratio, which allows it to transmit 
high torque for the counteracting movement. An advantage of this 
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FIGURE 2
Linear and rotational actuators for compensating pitch and roll direction imbalances. (a) Linear actuator designed for pitch compensation. (b)
Rotational actuator designed for roll compensations.

worm gear is its self-locking behavior, which prevents back-driving, 
which is critical for stability during simple walking aid movements.

For the position feedback, a potentiometer is mounted coaxially 
on the rotation axis of the worm gear. This configuration allows 
accurate tracking of the rotation of the handlebar, which is necessary 
for the closed loop control of the rotational actuator. The design 
is shown in Figure 2b. 

2.4 Electrical design

A dual micro-controller architecture is implemented based 
on the ESP32 NodeMCU and the Seeed ESP32C3. The ESP32 
NodeMCU is responsible for processing the sensor data and 
controlling the motors, while the Seeed ESP32C3 manages the 
communication with the external balance measuring unit. Power is 
supplied from a 12 V rechargeable battery and regulated to different 
voltage levels using a buck converter to meet the requirements of 
the various components. Sensors include multi-turn potentiometers 
for position feedback, current sensors for motor monitoring, limit 
switches for safety and user interface buttons. All components, 
including micro-controllers, power regulation circuitry and sensor 
connections, are integrated onto a custom-designed two-layer PCB. 
The electrical setup is illustrated in Figure 3b.

2.5 Balance measurement

The user’s balance is monitored by a chest-mounted (the 
placement of the IMU is shown in Figure 3a) an IMU that integrates 
a gyroscope, accelerometer, and magnetometer.

The IMU (BNO086, Bosch) provides a resolution of 14 bits 
for orientation measurements and this precision corresponds to 
approximately 0.022° per least significant bit over a 360° range. 
It exceeds the required resolution of ±1°, ensuring accurate 
tracking of angular movements. The IMU uses an on-chip sensor 
fusion algorithm that combines data from the accelerometer, 
gyroscope, and magnetometer to compensate for drift in orientation 
measurements. Sensor noise and gyroscopic drift are minimized 
using a Kalman-based fusion approach implemented through SH-
2 firmware. Before operation, an initial calibration procedure 

is performed. During this procedure, the user maintains a 
stable, upright posture while the system averages 100 consecutive 
measurements to define a neutral reference orientation.

The IMU continuously transmits orientation data to the walking 
aid’s control unit via ESP-NOW, a low-latency communication 
protocol based on Wi-Fi. The communication is done by a 
Seeed ESP32C3, where the whole setup of the measurement 
unit is shown in Figure 3b. This wireless setup allows real-
time monitoring of pitch and roll angles without restricting the 
user’s mobility.

To ensure accurate measurements, the IMU goes through an 
initial calibration procedure prior to operation. During calibration, 
the user is asked to maintain a stable, upright position while the 
system records 100 measurements. The values are then averaged to 
calculate a sensor bias, which is used to detect future deviations from 
the neutral standing position.

The compensation thresholds are preset at ±8° for pitch 
and roll. If the measured orientation exceeds these limits, the 
system interprets this as a potential fall scenario and activates the 
stabilization response. The braking system is immediately engaged to 
immobilize the walking aid and the appropriate actuator is triggered 
to generate a counteracting force. 

2.6 Braking system

The robotic assistant includes an electromechanical braking 
system. A compact linear actuator with a stroke of d = 10 mm (of 
which only 5 mm are required for full engagement) is used to apply 
mechanical force to the brake block. The setup is shown in Figure 4. 
When activated, the actuator pushes the brake block directly against 
the rear wheel, where the wheel is fully blocked. The actuator has an 
actuation time of 0.8 s and provides a holding force of 50 N, ensuring 
a quick braking response.

The braking system plays a critical role in the overall 
functionality of the robotic assistant, as it provides a stable 
base during corrective actions. Without this immobilization, any 
compensatory force generated by the actuators could not be 
transferred effectively. Therefore, the brake is automatically triggered 
immediately after an imbalance exceeds the defined threshold. The 
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FIGURE 3
Visualization of the balance measurement system. (a) Placement of the IMU unit on the user’s chest. (b) Electrical system architecture of the smart 
walking aid. The balance measurement unit, consisting of a IMU, ESP32C3, and battery, communicates wirelessly via ESP-NOW with the main walking 
aid unit. The walking aid includes linear and rotary actuators, a braking system, motor drivers, and a micro-controller powered by a 12 V battery.

FIGURE 4
Setup of the braking system in the robotic assistant, illustrating the integration of the linear actuator for brake activation. The distance d is the actuator 
stroke. (a) Braking System. (b) Brake functionality.

brake is released automatically after 5 s if no further imbalance 
is detected. 

3 Control system design

3.1 Cascade control architecture

A structured control architecture is developed to achieve real-
time balance correction and ensure the safe and stable operation 
of the proposed robotic walking aid. As illustrated in Figure 5, 
the system utilizes a robotic arm to correct user imbalance when 
deviations from stable posture are detected via the IMU sensor. The 
control architecture adopts a two-layer cascade control scheme to 

effectively manage both the actuators and the user support system. 
The inner control loop focuses on the low-level control of the robotic 
arm’s actuators, which consist of a linear motor and a rotational 
motor. These actuators are modeled as a transfer function, denoted 
by G1(s), representing the relationship between voltage input and 
velocity output. Based on this model, PID controllers are designed to 
perform reference position tracking for each actuator. To ensure safe 
operation and avoid performance degradation, voltage saturation 
and anti-windup mechanisms are integrated to prevent integral 
accumulation when the actuators are saturated. The outer control 
loop is responsible for determining the appropriate corrective action 
based on the user’s posture, as measured by the IMU. In this layer, the 
user is treated as a plant, denoted by G2(s), and the control objective 
is to maintain the user’s posture within a defined stable upright 
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FIGURE 5
Cascade control loop of the balance stabilization system, illustrating the outer loop for user posture correction and the inner loop for precise 
actuator control.

position range, represented by R(s). A proportional controller is 
employed in the outer loop because the posture deviation typically 
returns to equilibrium with fewer steady-state errors, and there 
is large variability in user dynamics. Integral gain was omitted as 
steady-state errors are minimal, and derivative gain was avoided 
to reduce sensitivity to high-frequency noise and unmodeled 
dynamics, which could induce unnecessary instability. This two-
layer approach decouples actuator-level dynamics from user-level 
correction, allowing for both fine-grained control precision and 
robust response to balance disturbances.

3.2 System identification

To implement precise control, it is essential to accurately 
model the dynamic behavior of the DC motor. An accurate model 
plays a crucial role in representing the response characteristics 
of the system and allows more reliable control system design, 
performance evaluation, and stability analysis. In this study, the 
DC motor is modeled using a second-order transfer function 
because of its simplicity and its ability to capture the dominant 
dynamics of the system. Although higher-order models can provide 
improved accuracy, they often introduce unnecessary complexity 
and increase the risk of overfitting, particularly when experimental 
data are limited. Therefore, a general DC motor model is adopted, 
represented by the following transfer function: b1

s2+a2s+a1
, where the 

coefficients x⃗ = [a1,a2,b1]⊤ are identified based on experimental 
input-output data using an optimization-based approach. The model 
identification problem is formulated as an optimization problem in 
which the aim is to find the optimal transfer function that minimizes 
the error between the measured output (y) and the simulated output 
(ŷ) generated by the candidate model:

minimize
a1,a2,b1

J (x⃗) : = √
n

∑
i=1
(yi − ŷi)

2

subject to gj (x⃗) < 0, j = 1,…,m,

(1)

where n denotes the number of sampled data and m denotes the 
number of inequality constraints imposed in the optimization 
problems. To solve this optimization problem, the particle 
swarm optimization (PSO) algorithm is employed because of 

its effectiveness in handling complex objective functions and 
approaching the global optimum. 

3.3 Particle swarm optimization algorithm

The PSO algorithm is a meta-heuristic optimization method 
inspired by the collective behavior of bird flocks and fish schools as 
they search for optimal positions within their groups. Each particle 
in the swarm represents a candidate solution and updates its position 
based on both its own experience and the experience of neighboring 
particles. The PSO algorithm employs an updating formula that 
models the social interactions among particles. Each particle 
updates its velocity and position according to the following rule:

v⃗k+1
i = c0vk

i + c1rk
1,i (x⃗

k
pbest,i − xk

i ) + c2rk
2,i (x⃗

k
gbest − xk

i ) ,

x⃗k+1
i = xk

i + vk+1
i ,

where i denotes the index of the particle, and k represents the 
iteration step. The vector v⃗k

i  is the velocity of particle i at iteration 
k, and x⃗k

i  is its position. The vector x⃗k
pbest,i represents the best 

position found by particle i up to the current iteration k, while 
x⃗k

gbest denotes the best position found by the entire swarm up to 
the iteration k. The parameters c0, c1, and c2 are hyper-parameters 
that determine the influence of inertia, the particle’s personal best 
position, and the global best position identified by the swarm, 
respectively. The random variables rk

1,i and rk
2,i are uniformly 

distributed in the range [0,1], introducing stochastic effects into 
the update process. When the design variables of an optimization 
problem are defined as the position vectors of individual particles, 
the PSO updating rule enables these variables to be iteratively 
updated toward better solutions. Through this mechanism, the PSO 
algorithm can efficiently guide the optimization process toward the 
global optimum.

In this study, the actuator model is identified using the PSO 
algorithm. The optimization problem for model identification is 
formulated as described in Equation 1, where the design variables 
to be estimated are {a1,a2,b1}. These design variables are assigned 
as the position vectors of the particles in the PSO algorithm. 
According to the PSO updating rule, each particle iteratively adjusts 
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its position vector to minimize the objective function, defined as 
√∑n

i=1(yi − ŷi)2, which is the discrepancy between the measured 
output and the output simulated by the candidate model. To enhance 
the exploration capability and prevent premature convergence to 
local minima, the distributed particle swarm optimization (DPSO) 
algorithm with a cyclic network topology (Kim et al., 2022) is 
employed. The detailed procedure for model identification using the 
DPSO algorithm is described as follows: 

1. Initialization: The following initial parameters are set: the 
number of particles used for exploration Np; the number of 
neighbors with which each particle exchanges information 
Ns; the hyperparameters for updating the design variables 
{c0,c1,c2}; the maximum number of iterations, maxiter; and 
the search range for each design variable, defined by the 
inequality constraints pmin,ℓ ≤ pℓ ≤ pmax,ℓ for ℓ = 1,2,…,Nd, 
where p⃗ ∈ ℝNd  and Nd = 3 for the model identification 
problem (1). These boundaries can be expressed as a set of 
inequality functions gj(p⃗) < 0 (e.g., g1 = pmin,1 − pi,1 < 0 for p⃗i =
[pi,1,pi,2,pi,3]

⊤). The initial position and velocity vectors of each 
particle i are randomly generated within the predefined search 
space as follows:

p⃗0
i = p⃗min +R0,i (p⃗max − p⃗min) ,

v⃗0
i = 0⃗,

where R0,i ∈ ℝNd×Nd  is a diagonal matrix whose elements are 
uniformly distributed in the range [0,1], and 0⃗ ∈ ℝNd  denotes the 
zero vector. 

2. Evaluation of the fitness value: Each particle’s position vector 
p⃗i is used to determine the corresponding design parameters 
(i.e., [p1,p2,p3]

⊤→ [a1,a2,b1]⊤), which define the coefficients 
of the transfer function. Using the transfer function and the 
given input data, the simulated system output ⃗ŷ is obtained. 
The fitness value of each particle is then evaluated based on the 
objective function. To handle boundary constraints, the fitness 
value is recalculated as:

L(p⃗i) : = {
gmax (p⃗i) if gmax (p⃗i) ≥ 0,
fv (p⃗i) otherwise,

where gmax(p⃗i): = max [g1(p⃗i),g2(p⃗i),…,gm(p⃗i)], and fv(p⃗i): =
arctan {J(p⃗i)} −

π
2

. If the particle position vector p⃗i violates any of the 
predefined constraints (i.e., it lies outside the search boundaries), 
then at least one constraint function becomes non-negative, 
resulting in gmax(p⃗i) ≥ 0. In this case, the particle is assigned a 
positive fitness value, indicating that it resides in the infeasible 
region. In contrast, if the particle remains within the feasible region, 
all constraint functions yield strictly negative values, and the fitness 
value is calculated using the transformed function fv(p⃗i), which 
always yields a negative value. Through this mechanism, the feasible 
and infeasible regions are distinctly separated into the negative 
and positive domains of the fitness value space, respectively. As 
a result, the optimization algorithm—designed to minimize the 
fitness value—naturally guides the particles toward the feasible 
search region. 

3. Evaluation of optimal positions: The individual best position 
of each particle and the social best position p⃗k

sbest,i—defined as 

the best position among neighbors of the j-th particle (ranging 
from j− Ns

2
 to j+ Ns

2
, where Ns denotes the neighborhood size 

of the distributed cyclic neighborhood topology)—are both 
determined based on fitness values during the k-th iteration. 
These best positions are determined using the following 
mathematical expressions:

p⃗k
pbest,i← arg min

p⃗∈{p⃗m
i |m=1,2,…,k}

L(p⃗) ,

p⃗k
sbest,i← arg min

p⃗∈{p⃗k
m|m=i−

Ns
2
,…,i+ Ns

2
}
L(p⃗) ,

where p⃗k
i : = p⃗k
(i−1 mod Np)+1

 for i < 1 or Np + 1 ≤ i to implement cyclic 
indexing. 

4. Update of position and velocity vectors: The velocity and 
position vectors of each particle are updated according to the 
DPSO update rules as follows:

v⃗k+1
i = c0v⃗k

i + c1rk
1,i (p⃗

k
pbest,i − p⃗k

i ) + c2rk
2,i (p⃗

k
sbest,i − p⃗k

i ) ,

p⃗k+1
i = p⃗k

i + v⃗k+1
i ,

where rk
1,i and rk

2,i are random scalar values distributed uniformly in 
[0,1]. 

5. Termination criterion: If the termination criterion is satisfied 
(e.g., k =maxiter), the optimal solution p⃗∗ is obtained, which 
is defined as:

p⃗∗← arg min
p⃗∈{p⃗k

i |i=1,2,…,Np; k=1,2,…,maxiter}
L(p⃗) .

Otherwise, return to Step 2.
Based on the procedure described above, the model 

identification is carried out using the DPSO algorithm. The 
parameter values used in the DPSO algorithm are summarized 
as follows: Np = 200; Ns = 20; {c0,c1,c2} = {0.7298,1.4962,1.4962}; 
maxiter = 1000; p⃗min = [−1000,−1000,−1000]⊤ ∈ ℝ3; and p⃗max =
[1000,1000,1000]⊤ ∈ ℝ3. To identify the actual actuator models, 
experimental input-output data are collected from the real system. 
Specifically, the blue dotted lines in Figure 6 represent the setpoint 
voltage input, while the black solid lines depict the measured velocity 
output obtained from the actuator sensors. As a result of the model 
identification, the identified transfer functions for the linear actuator 
and rotary actuator are respectively derived as.

G(s)Linear =
332.0120

s2 + 12.4316s+ 43.1780
,

G(s)Rotary =
2651.4155

s2 + 16.2155s+ 64.9365
.

To validate the fidelity of the identified models, the simulated 
outputs generated from these transfer functions are compared 
against the measured data under the same input conditions. The 
orange dash-dotted lines in Figures 6a,b represent the simulated 
outputs for the linear and rotary actuators, respectively. To 
quantitatively assess the accuracy of the model identification, the 
coefficient of determination is calculated (Devore, 2013). This 
statistical metric indicates how well the simulated outputs replicate 
the actual system behavior. The computed values for the linear and 
rotational models are 98.70% and 99.19%, respectively. These high 
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FIGURE 6
Validation of actuator models through comparison of measured and simulated velocity responses. The RMSE between the measured with a low pass 
filter and simulated responses is (a) 2.17 mm/s for the linear actuator and (b) 8.798 deg/s for the rotary actuator.

values confirm that the identified models accurately capture the 
dynamic response of the actuators and are sufficiently precise for 
subsequent controller design and stability analysis. The fidelity of 
these models ensures that the resulting control system can perform 
reliably under real-time operating conditions. 

3.4 PID controller tuning using the DPSO 
algorithm

In this study, a proportional-integral-derivative (PID) 
controller-based feedback strategy is employed to improve the 
tracking performance of the robotic arm actuator. Given the critical 
role of accurate tracking in maintaining user postural stability, 
the PID gain values are optimally tuned using a metaheuristic 
optimization approach. The tuning process is guided by a 
performance-based objective function that considers three key 
metrics: overshoot (OS), settling time (Ts), and the integral of 
time-weighted absolute error (ITAE). Overshoot and settling time 
are included to ensure minimal deviation and fast convergence, 
while the ITAE term penalizes long-lasting steady-state errors. The 
objective function is formulated as follows: J = OS+Ts +∫

T
0 t|e(t)| dt, 

where e(t) is the tracking error and T is the total evaluation time. 
The objective value is computed by simulating the closed-loop step 
response of the actuator model under a candidate PID gain set 
p⃗i→ [Kp,Ki,Kd]⊤, where each gain set corresponds to a position 
vector of a particle in the DPSO algorithm. To ensure feasible 
solutions that guarantee system stability and control performance, 
several constraints are imposed during the optimization: i p⃗min ≤
p⃗i ≤ p⃗max to bound the design parameter ranges, ii max (R(λi)) <
0, where λi denotes a pole of the closed-loop system to ensure 
closed-loop stability, and iii OS ≤ 10% to limit the overshoot. A key 
challenge in such constrained optimization problems is maintaining 
the balance between exploration and exploitation while strictly 
enforcing feasibility. To address this, a fitness evaluation method is 
designed to improve convergence efficiency by classifying solutions 
into three regions based on feasibility: infeasible due to boundary 

or stability violation, infeasible due to overshoot violation, and fully 
feasible. The fitness value L(p⃗i) of each particle is then computed 
using the following formulation:

L(p⃗i) : =
{{{{
{{{{
{

arctan{gmax (p⃗i)} +
π
2

if gmax (p⃗i) ≥ 0,

arctan{h(p⃗i)} if gmax (p⃗i) < 0 and h(p⃗i) ≥ 0,

arctan{J(p⃗i)} −
π
2

otherwise,

where gmax(p⃗i) is the maximum violation among boundary and 
stability constraints, h(p⃗i) is the overshoot constraint violation 
(OS− 10), and J(p⃗i) is the original objective function value for 
feasible solutions. This fitness calculation mechanism ensures that 
infeasible solutions due to boundary and stability violations yield 
values in the range ( π

2
,π), overshoot-only infeasible solutions fall 

in (0, π
2
), and fully feasible solutions result in values in (− π

2
,0). 

Such a mapping effectively guides the optimization algorithm 
toward feasible regions while allowing subtle penalization of 
different types of violations. The tuning process proceeds as 
described in Section 3.3, where the DPSO algorithm searches the 
gain space using this fitness function to yield optimal PID controllers 
that meet all design objectives and constraints. The number of 
design variables in the optimization problem is three, corresponding 
to the proportional (Kp), integral (Ki), and derivative (Kd) gains 
of the PID controller. The parameter search space for tuning is 
defined as p⃗min = [0,0,0]

⊤ ∈ ℝ3 and p⃗max = [1000,1000,1000]⊤ ∈
ℝ3. Other optimization parameters—such as Np, Ns, c0,c1,c2, and 
maxiter—are configured identically to those used in the actuator 
model identification process. As a result of the optimization, the 
optimal PID gain sets for the linear and rotary actuator models are 
obtained as follows:

[Kp,Ki,Kd]Linear
= [0.7529, 0, 0.1882] ,

[Kp,Ki,Kd]Rotary
= [0.1714, 0, 0.0368] .

For both controllers, the derivative filter time constant is set to 
0.01 to reduce high-frequency noise amplification. 
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3.5 PID controller fine tuning

The performance of the smart robotic walking aid relies on 
the tuning of its control system to ensure fast and stable balance 
correction. The controller design follows a cascaded structure, where 
the inner loop handles fast actuator dynamics, and the outer loop 
maintains overall balance stability. 

3.5.1 Inner loop
To optimize the system’s response, the control parameters were 

fine-tuned to prioritize fast stabilization. The proportional (P) gain 
from the simulation already provided the desired balance between 
responsiveness and stability, both in the simulated and real-world 
environments.

In the simulation, the integral (I) component was set close to 
zero because the simulated environment did not exhibit steady-
state errors. The lack of friction in the virtual model allowed for 
precise control without the need for integral correction. During real-
world tests, friction in the 3D-printed gear mechanism introduced 
a permanent steady-state error. To compensate for this effect, an I 
component was added to the controller in the system.

The derivative (D) values required a small adjustment when 
transitioning from simulation to real-world application. This change 
was primarily due to unmodeled dynamic effects such as mechanical 
friction, vibration, and sensor noise that were not present in the 
idealized simulation model. The following PID parameters were 
implemented in the system to ensure optimal balance control:

[Kp,Ki,Kd]Linear
= [0.7529, 0.396, 0.265] ,

[Kp,Ki,Kd]Rotary
= [0.1736, 0.1121, 0.0508]

 

3.5.2 Outer loop
The outer loop control is designed as a proportional-only 

controller. Due to the setpoint range in which the human remains 
in a stable state, the steady-state error has a negligible effect. The 
plant, represented by the user, shows significant variability. To keep 
the system simple and avoid unnecessary instability, the derivative 
term has been removed. The tuning process involves testing different 
values on the assembled walking aid. 

3.6 Operational algorithm

The system begins with initialization and calibration. Next, it 
enters a phase of continuous monitoring, during which IMU data 
is collected in real time. When the system detects an imbalance by 
identifying that the user’s pitch or roll angle exceeds the defined 
limits, it immediately activates the brakes to stabilize the walker. 
The system then activates the linear or rotary actuator to apply a 
counteracting force or torque to correct the imbalance. The control 
loop continues until balance is restored. Once a stable posture 
has been reestablished and maintained for 5 s, the system releases 
the brakes and resumes continuous monitoring. The Algorithm is 
visualized in the Figure 7.

FIGURE 7
The operational algorithm of the robotic assistant walking aid for 
balance support.

4 Experimental validation

A series of controlled experiments were conducted in a 
laboratory environment to validate the effectiveness of the proposed 
smart robotic assistant for balance assistance. The setup included 
a fully assembled robotic walking aid equipped with linear and 
rotary actuators, as well as a braking system. The wearable IMU 
was mounted on the user’s chest to provide continuous orientation 
feedback in the sagittal (pitch) and frontal (roll) planes. The sensor 
data were transmitted to the main micro-controller of the walking 
aid wirelessly. During testing, the postural deviations induced by the 
user were used to trigger the stabilization system.

The first author conducted controlled experiments in which 
imbalances were induced by leaning forward and to the side, 
exceeding the predefined thresholds of ±8° in pitch and roll. Each 
test run comprised three phases: 1 initiating the imbalance, 2 
automatically detecting the deviation via IMU data, and 3 executing 
corrective actions with the actuator and braking mechanism. To 
objectively assess the system’s performance prior to user studies, 
an initial feasibility check was conducted by the first author, a 
healthy adult male. The experimental trials were designed to evaluate 
the system’s response to balance disturbances in four directions: 
forward, backward, and sideward. Each condition was tested six 
times, for a total of 24 test runs. Before each trial, the system 
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FIGURE 8
Linear and rotary actuator performance with dynamic voltage commands. Robust position tracking is maintained across multiple transitions. (a) Linear 
Actuator. (b) Rotary Actuator.

was reset, and the participant returned to a standardized neutral 
standing posture to ensure consistency. The participant simulated 
each imbalance direction intentionally and in a controlled manner. 
This preliminary evaluation was intended to verify the technical 
feasibility of the system and to inform future user studies involving 
a more diverse participant group. The system recorded the following 
during each trial: IMU orientation, actuator positions, control 
input signals, and brake engagement status. System performance 
was evaluated using the signals and metrics, including response 
time, settling time, overshoot, balance recovery time, and brake 
activation time. 

5 Results

5.1 Stability and robustness of the 
corrective actuation

To assess the stability and reliability of the actuation system, a 
series of varying setpoints were applied to the linear and rotational 
actuators. The system’s responses in terms of position tracking 
were then observed and evaluated. These tests simulated abrupt 
directional changes, challenging the controller’s ability to reject 
disturbances and maintain convergence to the target state.

Figures 8a,b illustrate the system behavior for the rotational and 
linear actuators. In both cases, the actual position closely follows 
the commanded setpoint. The system remained stable throughout 
the tests and recovered quickly from transients, demonstrating its 
robustness against input variation and mechanical backlash. The 
defined set point ranges shown in Figures 8a,b are much greater than 
the actual usage range of the smart walking aid. Therefore, the device 
operates at maximum velocity when the desired set point changes 
significantly.

5.2 Actuator performance

The performance of both the linear and rotary actuators was 
evaluated with respect to response speed, positional accuracy, and 

stability. These parameters are critical for ensuring compensation 
during one imbalance. For these tests, the brakes are fully engaged 
to focus only on actuator performance. 

5.2.1 Linear actuator
The linear actuator responsible for tilt compensation was tested 

while an imbalance was detected. The user leaned back and the 
actuator response was recorded. The actuator responded quickly, 
with a settling time of less than 1.4 s for the person to stabilize. 
The velocity measured in this test was 22.2 mm/s. The built-in 
high pitch lead screw, combined with a high gear ratio, allowed 
for rapid conversion of motor torque into linear motion while 
maintaining accuracy. The system is aggressively tuned to prioritize 
rapid stabilization, resulting in a slight overshoot during corrective 
actions. This adjustment ensures that the system will return the 
user to a stable position as quickly as possible. The result is 
shown in the Figure 9. The overshoot observed during the corrective 
action is considered acceptable because the primary goal of the 
system is to stop the fall immediately, not to achieve a perfectly 
balanced position. In addition, the overshoot does not create an 
imbalance in the other direction because the user is already tilting 
backwards.

5.2.2 Rotary actuator
The rotary actuator, which is responsible for compensating for 

imbalances in the roll direction, was evaluated under various lateral 
disturbance scenarios. The actuator’s task is to rotate the handlebar 
assembly about the Z-axis to counteract unwanted tilting by the user. 
To validate its performance a fall to the right was simulated and the 
actuator’s response was recorded. The actuator features a brushed 
DC motor coupled to the worm gear that provides both torque 
amplification and a self-locking effect, ensuring mechanical stability 
even when the motor is not powered. The response time to the 
required position was 1.8 s and the measured speed was 66.6 °/s. The 
result is displayed in the Figure 10. The overshoot observed during 
the rotary actuator’s corrective action is also considered acceptable 
because the primary goal of the system is to quickly counteract the 
lateral imbalance rather than to achieve an accurate balance control.
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FIGURE 9
Experimental results of the linear actuator response during tilt compensation following the detection of user imbalance. (a) Comparison between the 
setpoint and the actual actuator position. (b) Corresponding position tracking error input and plant input applied to the actuator.

FIGURE 10
Experimental results of the rotary actuator response during tilt compensation following the detection of user imbalance. (a) Comparison between the 
setpoint and the actual actuator position. (b) Corresponding position tracking error and control input applied to the actuator.

5.3 Balance recovery evaluation

To evaluate the real-time stabilization capabilities of the 
system, controlled tests were performed to simulate balance 
disturbances. Two primary types of disturbances were presented: 
pitch disturbances, representing forward or backward leaning, and 
roll disturbances, simulating side falls. 

5.3.1 Pitch disturbances
In pitch disturbance scenarios, the user leaned forward to exceed 

the predefined pitch threshold of ±8°. This was detected by the 
chest-mounted IMU. The system responded by activating the linear 
actuator, which generated a corrective force along the X-axis to 
restore the user’s upright posture.

At the same time, the electromechanical brake was activated to 
lock the wheels of the walking aid. The brake activation occurred 
within approximately 5 s and then automatically released if no 
further unbalance was detected. The linear actuator reached its 
target position in less than 2.3 s (with a response time of 120 ms), 
returning the user to a stable position. The measured results are 
illustrated in Figure 11a.

5.3.2 Roll disturbances
For the roll recovery tests, the user was instructed to shift the 

weight laterally to one side, exceeding the ±8.0° roll threshold. 
The system responded by activating the rotary actuator, which 
rotated the handlebar assembly around the Z-axis to apply a 
counteracting torque.

As with the pitch response, the braking system was immediately 
activated to prevent the walking aid from moving during the 
correction. The activation time of the brakes equals 0.7 s. The rotary 
actuator completed its stabilizing motion in approximately 2.2 s 
(with a response time of 140 ms), ensuring that lateral deviation 
was quickly compensated. The self-locking characteristic of the 
worm gear maintained the corrected position without any additional 
power from the motor. The results can be seen in the Figure 11b. 

6 Discussion

This work presents a robotic assistive walking device that 
integrates a compact IMU sensor and cascade control system into a 
walker-sized platform, enabling real-time imbalance detection and 
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FIGURE 11
Experimental results of the actuator responses during tilt compensation after detecting user imbalance. (a) Linear actuator response to a forward 
imbalance, displaying the pitch angle and braking behavior. (b) Rotary actuator response to a lateral imbalance, showing the roll angle and brake 
activation.

correction. The system aims to reduce the risk of falls in older adults 
while maintaining the size and ease of use of a conventional walker - 
making it practical for everyday use without the physical or cognitive 
strain often associated with high-end robotic devices.

A study on sensor-based walkers (Zhao et al., 2020) shows that 
the developed walker works well to protect users from external 
disturbances by using mechanical designs and advanced sensors 
such as IMU, LIDAR, and infrared cameras. This system shows 
success in assisting gait, assisting posture recovery from sitting or 
falling, and activating braking mechanisms to prevent further injury. 
However, such a system tends to be bulky, expensive, and reactive - 
intervening after a fall has begun rather than preventing it through 
early balance correction. These limitations hinder their widespread 
use, especially among the elderly who require simple and lightweight 
solutions.

In contrast, the proposed system offers a compact and familiar 
mechanical configuration similar to standard walkers, promoting 
ease of use for elderly users. The unique advantage of the 
proposed walker over existing models on the market is its 
combination of compactness and stabilization through the use of 
counteracting forces. While most commercially available walkers 
are either bulky to handle counteracting forces (Li L. et al., 2023) 
or remain slim but lack active balance assistance capabilities 
(Zhao et al., 2020; Sierra M. et al., 2019), this design achieves 
both. The IMU sensor is lightweight and easy to wear, and 
provides continuous balance monitoring without the need for 
complex calibration. This system also integrates optimization-based 
system identification and control. The Particle Swarm Optimization 
algorithm uses experimental data to identify the robot arm’s actuator 
models and optimally tune the PID gains. As a result, the actuators 
apply compensating forces quickly and accurately, achieving safe 
reference tracking with no vibration even under input saturation. 
These results take into account the low-cost hardware used, 
highlighting the system’s potential for low-cost deployment. The self-
locking worm gear and automatic brake enhance the system’s ability 
to stabilize the user during corrective actions. These features enable 
the base to remain stationary while the robotic arm assists the user 
in regaining their balance. However, the use of a chest-mounted 

IMU sensor introduces variability due to differences in user height 
and posture, resulting in inconsistent tilt angle measurements. 
Consequently, identical physical postures may produce different 
sensor outputs for different users, which could trigger premature 
or delayed corrective responses. Additionally, the braking system 
is currently only implemented on the back wheels. In forward 
fall scenarios, where most of the user’s weight shifts forwards, the 
lack of front-wheel braking reduces the system’s ability to fully 
immobilize the walker. The reliance on 3D-printed components 
introduces play and insufficient stiffness under dynamic loads, 
which may compromise control accuracy and durability in real-
world use. By incorporating real-time sensing, optimized control, 
and automated braking into a compact and intuitive device, the 
proposed system provides a proactive approach to fall prevention 
while maintaining user comfort and independence. Future research 
should focus on implementing machine learning algorithms that 
could significantly improve the accuracy of sensor detection, 
allowing for more reliable fall prediction. A more advanced braking 
system, ideally including braking on all wheels rather than just the 
back wheels, would improve stability, particularly in forward fall 
scenarios. Conducting user studies with elderly individuals would 
provide valuable insights into the effectiveness of the device in 
real-world settings. In addition, replacing 3D-printed components 
with more robust and durable materials could reduce backlash 
and improve the structural integrity of the system, increasing both 
stability and longevity. These improvements could make the system a 
practical, affordable, and intelligent mobility aid. This paper presents 
the design and experimental validation of a robotic assistant for 
real-time fall prevention for elderly users. The system combines 
sensor-based position monitoring, a cascade control architecture, 
and electromechanical braking to detect and correct pitch and roll 
imbalances. Experimental results confirmed the system’s ability to 
respond quickly to instability scenarios.

Future work will focus on improving sensor adaptability 
by addressing variations in IMU placement due to differences 
in user height. To achieve more stable and consistent position 
measurements, machine learning techniques will be used to 
compensate for different user heights and provide more accurate
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measurements. The braking system will be improved to provide 
a stronger response during forward falls. In addition, prototype 
components will be replaced with manufactured parts to reduce 
mechanical backlash and improve overall system stability. Future 
developments include the integration of adaptive thresholds and 
extended testing with target user groups in real-world environments 
to evaluate missed improvements.
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