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Falls are a major risk factor among the elderly, often resulting in injuries that
compromise independence and quality of life. Conventional walking aids lack
active stabilization capabilities and are therefore limited in effectively preventing
balance-related accidents. This paper presents the design and control of a smart
robotic assistant aimed at reducing fall risk in elderly users by providing real-time
balance support. The proposed system uses a wearable inertial measurement
unit to detect postural imbalances in the sagittal (front-back) and frontal
(side-to-side) planes. When instability is detected, the robotic arm generates
compensatory forces or torques through linear or rotational actuators to help
the user regain a stable posture. Using a cascaded control architecture, the outer
loop is designed to maintain the user’'s upright posture, while the inner loop
ensures fast and accurate actuator performance. To enable effective and reliable
control in the real system, actuator dynamics are characterized through an
optimization-based system identification approach, resulting in transfer function
models with over 98% accuracy. Based on these models, PID controllers are
optimally tuned using an optimization algorithm to ensure fast and accurate
corrective action. The system effectively returns the user to a stable position
within 2.3 + 0.3 s for linear actuation (with a response time of 120 + 10 ms) and
2.2 + 0.2 s for rotary actuation (with a response time of 140 + 15 ms), providing
safe posture return during imbalance events. To further enhance safety, an
automatic braking mechanism immobilizes the walking aid during corrective
maneuvers. Experimental validation demonstrates the system'’s effectiveness in
detecting and correcting postural imbalances in both the sagittal and frontal
planes under dynamic conditions. These results highlight the potential for
enhancing mobility, safety, and therapeutic support for older adults, contributing
to the advancement of assistive fall-prevention technologies.

fall prevention, robotic assistant, balance stabilization, particle swarm optimization
algorithm, cascade control

1 Introduction

Advances in medical technology and improvements in living standards have led to
a significant increase in life expectancy, contributing to the rapid acceleration of global
population aging. According to the World Health Organization, the number of individuals
aged 60 years and older is projected to more than double by 2050, reaching approximately 2.1
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billion worldwide 2024). This
demographic shift is driving a substantial rise in the demand for

healthcare and social services; however, the availability of specialized

(World Health Organization,

personnel, long-term care facilities, and medical infrastructure
remains insufficient to meet the growing needs of the elderly
population (Jones and Dolsten, 2024). In addition to the challenges
associated with healthcare provision, age-related physiological
changes further exacerbate the vulnerability of older adults.

Sarcopenia, characterized by the progressive loss of muscle
mass and strength, alongside joint degeneration, severely impairs
mobility. Furthermore, declines in vestibular and neurological
function diminish balance control, increasing the risk of falls
(Agrawal et al., 2020; Johnson et al., 2020). Age-related declines
in physical function also significantly elevate the risk of falls among
older adults. With advancing age, muscle strength diminishes,
joint flexibility decreases, and balance control weakens, collectively
increasing vulnerability to falls even during routine daily activities
(Xing et al, 2023). Approximately one-third of individuals
aged 65years and older experience at least one fall each year
(World Health Organization, 2008; Cuevas-Trisan, 2019). This
prevalence highlights the pervasive nature of falls as a major
public health concern in aging societies. Falls among older adults
often result in severe injuries such as fractures, traumatic brain
injuries, and prolonged immobility, leading to a substantial loss
of independence and a marked decline in overall quality of life
(Centers for Disease Control and Prevention, 2024). Beyond the
immediate physical consequences, falls frequently instill a fear of
falling again, causing older individuals to avoid social activities and
limit their mobility, which in turn accelerates physical deterioration
and psychological distress (Xing et al., 2023; Tabacchi et al., 2025).
Moreover, serious falls are associated with increased mortality rates
and impose significant financial burdens on both individuals and
healthcare systems (Li Y. et al., 2023).

To mitigate the devastating impact of falls, various assistive
devices such as canes and walking aids have been developed. They
are particularly valued for their ability to enhance balance, provide
greater walking stability, and reduce the load on the user’s lower
extremities (Miyasike-daSilva et al., 2013; Sehgal et al., 2021). By
offering mechanical support during ambulation, walking assistive
devices play a critical role in helping older adults maintain their
mobility, autonomy, and social engagement, ultimately contributing
to fall prevention and improved quality of life. Walking aids
are widely utilized mobility aids due to their simple mechanical
structure, ease of operation, and ability to provide physical
support during ambulation (Sutera et al., 2025). By distributing
a portion of the user’s body weight and offering a stable frame
for support, these devices assist individuals in maintaining upright
posture and enhancing walking stability (Bateni and Maki, 2005).
However, despite their widespread use and basic effectiveness,
conventional walking aids have inherent limitations. While they
passively support balance, they lack the ability to actively monitor
a user’s stability or intervene to prevent falls (Nickerson et al.,
2023). Therefore, they offer only limited protection against sudden
losses of balance or unanticipated environmental disturbances.
Particularly in dynamic or complex environments, where real-time
adjustments are critical, passive walking aids can fail to provide
adequate safety. In response to these shortcomings, there has been
a growing interest in the development of active assistant walking
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aids, also known as smart robotic walking aids (Shin et al., 2016;
Zhao et al., 20205 Sierra M. et al., 2024). Some of these advanced
devices are equipped with sensors such as inertial measurement
units (IMUs), capable of detecting real-time changes in the user’s
posture and stability (Zhao et al., 2020; Sierra M. et al., 2024;
Ferrari et al, 2024). By integrating active control mechanisms,
these walking aids can effectively respond to balance disturbances,
stabilize the user, and thereby significantly reduce the risk of
falls. In addition, commercial smart walkers have recently become
available. For example, the Camino Walker, developed by Camino
Robotics, provides Al-powered gait monitoring, obstacle detection,
and motorized drive assistance to support elderly users during
daily tasks. Although these systems emphasize gait monitoring and
assistive braking, they lack the ability to apply corrective forces
to counteract balance deviations (Camino Robotics, 2025). As the
aging population increases, there is a growing need for smart,
adaptive mobility aids that not only provide passive support but also
actively reduce fall risk.

In recent years, there has been growing interest in enhancing
traditional walking aids with sensor-based technologies to improve
fall detection and user safety. Several systems have been developed
that utilize IMUs to monitor posture or detect falls after they
occur (Sierra M. et al., 2024; Mao et al., 2017; Huang and Garcia,
2023). In addition, robotic systems combining IMUs and force
sensors have been proposed to enable real-time balance monitoring
and assistive feedback (Zhao et al.,, 2020; Sierra M. et al., 2019;
LiL. et al, 2023). To effectively control such systems, various
strategies have been introduced. For instance, deep neural networks
have been used to analyze lower-limb gait patterns and predict user
intent, enabling robotic walkers to adjust their target position and
velocity accordingly (Zhao et al., 2020). Itadera et al. implemented
Model Predictive Control (MPC) in a robotic walker to proactively
estimate user assistance requirements and generate optimized
supportive forces in real time (Itadera et al., 2019). Although
such approaches have demonstrated promising results in detecting
user instability and generating corrective responses via robotic
arms, their real-world applicability remains limited due to issues
such as large physical size, high computational requirements, and
elevated cost. Mori et al. (2024) attempted to reduce system
complexity and cost by estimating user posture using a compact
camera and implementing PID control via a single-board computer.
However, the performance of the PID controller was constrained
by manually tuned gains, which limited its applicability and
overall effectiveness. In response to these limitations, this study
proposes the development of a compact smart robotic assistant
that improves gait stability through real-time correction of postural
imbalance using optimally tuned PID controllers. The proposed
system addresses key limitations of previous works by integrating
automatic controller tuning, compact hardware, and rapid corrective
actions suitable for practical use.

In this work, we present a novel smart walking aid that integrates
IMU-based posture monitoring, a dual-actuator robotic arm, and an
automatic braking system to provide real-time balance assistance for
elderly users. Unlike conventional passive walking aids, our system
actively detects postural deviations and applies targeted corrective
forces through optimized actuator control, with brakes ensuring
platform stability during intervention. The key innovation lies in
the integration of optimization-based system identification using
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FIGURE 1

designed components.

Mechanical design and final implementation of the smart robotic walking aid for supporting user balance. (a) CAD model illustrating the integration of
linear and rotary actuators for pitch and roll compensation. (b) Assembled prototype of the walking aid, demonstrating the practical realization of the

b

Particle Swarm Optimization (PSO) to accurately model actuator
dynamics and automatically tune PID controllers, enabling precise
balance correction with cost-effective hardware. This comprehensive
approach bridges the gap between simulation and real-world
deployment, offering a practical solution for enhancing mobility
safety and independence in aging populations.

2 Materials and methods
2.1 Mechanical design

The robotic arm, integrated into a conventional walking
aid, is designed to compensate for user imbalance through
controlled mechanical displacement. The CAD design presented in
Figure la and, Figure 1b illustrates the assembled system. The robot
features three Degrees of Freedom (DoFs): two translational (along
the X and Z-axes) and one rotational (about the Z-axis). The Z-
axis translation is solely used for height adjustment, while the X-axis
translation and Z-axis rotation are responsible for user interaction.
User imbalance is characterized by pitch (rotation around the X-
axis) and roll (rotation around the Y-axis). The mechanical design
prioritizes rapid dynamic response, high force output, and compact
integration to ensure suitability for mobile assistive applications.

2.2 Balance stabilization in sagittal plane

The customized linear actuator is responsible for compensating
for pitch-direction imbalances by generating translational motion
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along the X-axis. A handlebar is attached to the shaft, which
is shown in Figure 2a. It is driven by a brushed DC motor with an
integrated high-torque gear-head to ensure sufficient force output.
To achieve the required actuation speed, an additional custom-
designed 1:1.5 ratio gear-head is added downstream of the motor.
This combination enhances the overall drive speed without a
significant reduction in torque. The rotary motion of the motor
is transmitted to a high-pitch lead screw, which converts it to
linear motion. A square steel shaft connected to the lead-screw
nut blocks rotation and minimizes backlash. For accurate position
sensing, a multi-turn potentiometer (3590P-2-203L, Bourns) is
mounted adjacent to the lead screw and mechanically coupled
via a 5:1 auxiliary reduction gear. This gearing allows the 10-turn
potentiometer to measure the full 40-turn range of the actuator. The
sensor provides accurate feedback for closed-loop control.

2.3 Balance stabilization in frontal plane

The rotary actuator provides roll stabilization by compensating
for lateral imbalances through controlled rotation around the Z-axis
and it is driven by a brushed DC motor. Due to space constraints, the
motor is mounted below the worm gear, and the motion is diverted
by using a 1:1 deflection gear. This allows the motor to remain
integrated within the walking aid.

The rotary motion is transmitted to a worm gear that is coupled
to a slewing bearing, which is located in the base of the platform. The
worm gear has a high reduction ratio, which allows it to transmit
high torque for the counteracting movement. An advantage of this
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FIGURE 2

Rotational actuator designed for roll compensations.

Linear and rotational actuators for compensating pitch and roll direction imbalances. (a) Linear actuator designed for pitch compensation. (b)

1- Worm Gear
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3- Deflection Gear -
< Actuation Direction

worm gear is its self-locking behavior, which prevents back-driving,
which is critical for stability during simple walking aid movements.

For the position feedback, a potentiometer is mounted coaxially
on the rotation axis of the worm gear. This configuration allows
accurate tracking of the rotation of the handlebar, which is necessary
for the closed loop control of the rotational actuator. The design
is shown in Figure 2b.

2.4 Electrical design

A dual micro-controller architecture is implemented based
on the ESP32 NodeMCU and the Seeed ESP32C3. The ESP32
NodeMCU is responsible for processing the sensor data and
controlling the motors, while the Seeed ESP32C3 manages the
communication with the external balance measuring unit. Power is
supplied from a 12 V rechargeable battery and regulated to different
voltage levels using a buck converter to meet the requirements of
the various components. Sensors include multi-turn potentiometers
for position feedback, current sensors for motor monitoring, limit
switches for safety and user interface buttons. All components,
including micro-controllers, power regulation circuitry and sensor
connections, are integrated onto a custom-designed two-layer PCB.
The electrical setup is illustrated in Figure 3b.

2.5 Balance measurement

The user’s balance is monitored by a chest-mounted (the
placement of the IMU is shown in Figure 3a) an IMU that integrates
a gyroscope, accelerometer, and magnetometer.

The IMU (BNOO086, Bosch) provides a resolution of 14 bits
for orientation measurements and this precision corresponds to
approximately 0.022° per least significant bit over a 360° range.
It exceeds the required resolution of +1° ensuring accurate
tracking of angular movements. The IMU uses an on-chip sensor
fusion algorithm that combines data from the accelerometer,
gyroscope, and magnetometer to compensate for drift in orientation
measurements. Sensor noise and gyroscopic drift are minimized
using a Kalman-based fusion approach implemented through SH-
2 firmware. Before operation, an initial calibration procedure
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is performed. During this procedure, the user maintains a
stable, upright posture while the system averages 100 consecutive
measurements to define a neutral reference orientation.

The IMU continuously transmits orientation data to the walking
aids control unit via ESP-NOW, a low-latency communication
protocol based on Wi-Fi. The communication is done by a
Seeed ESP32C3, where the whole setup of the measurement
unit is shown in Figure 3b. This wireless setup allows real-
time monitoring of pitch and roll angles without restricting the
user’s mobility.

To ensure accurate measurements, the IMU goes through an
initial calibration procedure prior to operation. During calibration,
the user is asked to maintain a stable, upright position while the
system records 100 measurements. The values are then averaged to
calculate a sensor bias, which is used to detect future deviations from
the neutral standing position.

The compensation thresholds are preset at +8° for pitch
and roll. If the measured orientation exceeds these limits, the
system interprets this as a potential fall scenario and activates the
stabilization response. The braking system is immediately engaged to
immobilize the walking aid and the appropriate actuator is triggered
to generate a counteracting force.

2.6 Braking system

The robotic assistant includes an electromechanical braking
system. A compact linear actuator with a stroke of d = 10 mm (of
which only 5 mm are required for full engagement) is used to apply
mechanical force to the brake block. The setup is shown in Figure 4.
When activated, the actuator pushes the brake block directly against
the rear wheel, where the wheel is fully blocked. The actuator has an
actuation time of 0.8 s and provides a holding force of 50 N, ensuring
a quick braking response.

The braking system plays a critical role in the overall
functionality of the robotic assistant, as it provides a stable
base during corrective actions. Without this immobilization, any
compensatory force generated by the actuators could not be
transferred effectively. Therefore, the brake is automatically triggered
immediately after an imbalance exceeds the defined threshold. The
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Visualization of the balance measurement system. (a) Placement of the IMU unit on the user’s chest. (b) Electrical system architecture of the smart
walking aid. The balance measurement unit, consisting of a IMU, ESP32C3, and battery, communicates wirelessly via ESP-NOW with the main walking
aid unit. The walking aid includes linear and rotary actuators, a braking system, motor drivers, and a micro-controller powered by a 12 V battery.
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2 - Linear Actuator
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released
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FIGURE 4

b

Setup of the braking system in the robotic assistant, illustrating the integration of the linear actuator for brake activation. The distance d is the actuator

stroke. (a) Braking System. (b) Brake functionality.

brake is released automatically after 5s if no further imbalance
is detected.

3 Control system design
3.1 Cascade control architecture

A structured control architecture is developed to achieve real-
time balance correction and ensure the safe and stable operation
of the proposed robotic walking aid. As illustrated in Figure 5,
the system utilizes a robotic arm to correct user imbalance when
deviations from stable posture are detected via the IMU sensor. The
control architecture adopts a two-layer cascade control scheme to
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effectively manage both the actuators and the user support system.
The inner control loop focuses on the low-level control of the robotic
arm’s actuators, which consist of a linear motor and a rotational
motor. These actuators are modeled as a transfer function, denoted
by G,(s), representing the relationship between voltage input and
velocity output. Based on this model, PID controllers are designed to
perform reference position tracking for each actuator. To ensure safe
operation and avoid performance degradation, voltage saturation
and anti-windup mechanisms are integrated to prevent integral
accumulation when the actuators are saturated. The outer control
loop is responsible for determining the appropriate corrective action
based on the user’s posture, as measured by the IMU. In this layer, the
user is treated as a plant, denoted by G,(s), and the control objective
is to maintain the user’s posture within a defined stable upright
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FIGURE 5

Cascade control loop of the balance stabilization system, illustrating the outer loop for user posture correction and the inner loop for precise

actuator control.

position range, represented by R(s). A proportional controller is
employed in the outer loop because the posture deviation typically
returns to equilibrium with fewer steady-state errors, and there
is large variability in user dynamics. Integral gain was omitted as
steady-state errors are minimal, and derivative gain was avoided
to reduce sensitivity to high-frequency noise and unmodeled
dynamics, which could induce unnecessary instability. This two-
layer approach decouples actuator-level dynamics from user-level
correction, allowing for both fine-grained control precision and
robust response to balance disturbances.

3.2 System identification

To implement precise control, it is essential to accurately
model the dynamic behavior of the DC motor. An accurate model
plays a crucial role in representing the response characteristics
of the system and allows more reliable control system design,
performance evaluation, and stability analysis. In this study, the
DC motor is modeled using a second-order transfer function
because of its simplicity and its ability to capture the dominant
dynamics of the system. Although higher-order models can provide
improved accuracy, they often introduce unnecessary complexity
and increase the risk of overfitting, particularly when experimental

data are limited. Therefore, a general DC motor model is adopted,

hl
2+aysta;’

coefficients X = [a;,a,,b,]" are identified based on experimental

represented by the following transfer function: where the
input-output data using an optimization-based approach. The model
identification problem is formulated as an optimization problem in
which the aim is to find the optimal transfer function that minimizes
the error between the measured output (y) and the simulated output
() generated by the candidate model:

J®):=

minimize
a;,a,,b;

2()’,'_}7{)2

subject to gj(?c) <0, j=1,...,m,

where #n denotes the number of sampled data and m denotes the
number of inequality constraints imposed in the optimization
problems. To solve this optimization problem, the particle
swarm optimization (PSO) algorithm is employed because of

Frontiers in Robotics and Al

06

its effectiveness in handling complex objective functions and
approaching the global optimum.

3.3 Particle swarm optimization algorithm

The PSO algorithm is a meta-heuristic optimization method
inspired by the collective behavior of bird flocks and fish schools as
they search for optimal positions within their groups. Each particle
in the swarm represents a candidate solution and updates its position
based on both its own experience and the experience of neighboring
particles. The PSO algorithm employs an updating formula that
models the social interactions among particles. Each particle
updates its velocity and position according to the following rule:

) ek (Foa= ).

ok+l k
Vi xgbest

_ Sk
=GVt Clr]f,i (prest,i

y(i‘{+l — Xff + VkH,

i

where i denotes the index of the particle, and k represents the
iteration step. The vector T/'f.‘ is the velocity of particle i at iteration

k, and % is its position. The vector ¥
i pbest,i

position found by particle i up to the current iteration k, while
~k

xgbest
the iteration k. The parameters ¢;, ¢;, and ¢, are hyper-parameters

represents the best
denotes the best position found by the entire swarm up to

that determine the influence of inertia, the particle’s personal best
position, and the global best position identified by the swarm,
respectively. The random variables r}f’i and rlz‘)i are uniformly
distributed in the range [0,1], introducing stochastic effects into
the update process. When the design variables of an optimization
problem are defined as the position vectors of individual particles,
the PSO updating rule enables these variables to be iteratively
updated toward better solutions. Through this mechanism, the PSO
algorithm can efficiently guide the optimization process toward the
global optimum.

In this study, the actuator model is identified using the PSO
algorithm. The optimization problem for model identification is
formulated as described in Equation 1, where the design variables
to be estimated are {a;,a,,b,}. These design variables are assigned
as the position vectors of the particles in the PSO algorithm.
According to the PSO updating rule, each particle iteratively adjusts
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its position vector to minimize the objective function, defined as
VXL, (v;—7,)% which is the discrepancy between the measured
output and the output simulated by the candidate model. To enhance
the exploration capability and prevent premature convergence to
local minima, the distributed particle swarm optimization (DPSO)
algorithm with a cyclic network topology (Kim et al., 2022) is
employed. The detailed procedure for model identification using the
DPSO algorithm is described as follows:

1. Initialization: The following initial parameters are set: the
number of particles used for exploration Np; the number of
neighbors with which each particle exchanges information
N; the hyperparameters for updating the design variables
{co»€15¢,); the maximum number of iterations, maxiter; and
the search range for each design variable, defined by the
inequality constraints p ., <p,<pp .., for €=1,2,....N,,
where peRM and N,=3 for the model identification
problem (1). These boundaries can be expressed as a set of
inequality functions g;(p) < 0 (€., & = Ppyin, —P;; < 0forp; =
[p;1>Pi2-P;5]")- The initial position and velocity vectors of each
particle i are randomly generated within the predefined search
space as follows:

=0 _z - -
Pi = Pmin +R0,i (pmax _Pmin)’

20
vi

=0,
where R,; € R¥Ni¢ is a diagonal matrix whose elements are
uniformly distributed in the range [0,1], and 0 € RM¢ denotes the

Zero vector.

2. Evaluation of the fitness value: Each particle’s position vector
D, is used to determine the corresponding design parameters
(ie., [Py Py p3] " = [ag,a5,b,17), which define the coefficients
of the transfer function. Using the transfer function and the
given input data, the simulated system output } is obtained.
The fitness value of each particle is then evaluated based on the
objective function. To handle boundary constraints, the fitness
value is recalculated as:

2. gmax(f’i)
) {fv@»

Zmax (P): = max[g,(3).8,(B),...8,(P)], and  f,(B):=

arctan {J(p,)} - ’EI If the particle position vector p, violates any of the

if gmax @1) 2 0’

otherwise,

where

predefined constraints (i.e., it lies outside the search boundaries),
then at least one constraint function becomes non-negative,
resulting in g (p,) = 0. In this case, the particle is assigned a
positive fitness value, indicating that it resides in the infeasible
region. In contrast, if the particle remains within the feasible region,
all constraint functions yield strictly negative values, and the fitness
value is calculated using the transformed function f,(p,), which
always yields a negative value. Through this mechanism, the feasible
and infeasible regions are distinctly separated into the negative
and positive domains of the fitness value space, respectively. As
a result, the optimization algorithm—designed to minimize the
fitness value—naturally guides the particles toward the feasible
search region.

3. Evaluation of optimal positions: The individual best position
of each particle and the social best position ﬁfbest ,—defined as
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the best position among neighbors of the j-th particle (ranging
from j— % toj+ %, where N, denotes the neighborhood size
of the distributed cyclic neighborhood topology)—are both
determined based on fitness values during the k-th iteration.
These best positions are determined using the following
mathematical expressions:

>k . 2
ar min L(p),
Ppbest. gﬁe{ﬁ;"lmzl,Z,.N,k} ?)
>k . 2
Ppew —arg_  min  L(p),
pE{pm|m=1—7,...,z+7'}
k. _ 2k . S .
where pi:=pi | o4 N1 fori<1lorN,+1 <itoimplement cyclic
indexing.

4. Update of position and velocity vectors: The velocity and
position vectors of each particle are updated according to the
DPSO update rules as follows:

skl _ ok 2k _ 37k 2k _pk
Vi TGvita r]f,i (ppbest,i pi ) + C27}2<,l- (psbest,i pi ) >
2k+1 _ 2k | skt
pi =PtV

where rllc and r’z‘ ; are random scalar values distributed uniformly in

[0,1].

5. Termination criterion: If the termination criterion is satisfied
(e.g., k = maxiter), the optimal solution p* is obtained, which
is defined as:

min L(p).

P —arg
Pelphli=1.2,...N,; k=1,2,....maxiter}

Otherwise, return to Step 2.

Based on the procedure described above, the model
identification is carried out using the DPSO algorithm. The
parameter values used in the DPSO algorithm are summarized
as follows: N, =200; N, =20; {c,c;,c,} =1{0.7298,1.4962,1.4962};
maxiter = 1000; p_. =[-1000,-1000,-1000]" € R*; and B =
[1000,1000,1000]" € R?. To identify the actual actuator models,
experimental input-output data are collected from the real system.
Specifically, the blue dotted lines in Figure 6 represent the setpoint
voltage input, while the black solid lines depict the measured velocity
output obtained from the actuator sensors. As a result of the model
identification, the identified transfer functions for the linear actuator
and rotary actuator are respectively derived as.

o) = 332.0120
Linear = 2 4 12.43165 + 43.1780
2651.4155
G(S)Rotary:

2 +16.2155s + 64.9365

To validate the fidelity of the identified models, the simulated
outputs generated from these transfer functions are compared
against the measured data under the same input conditions. The
orange dash-dotted lines in Figures 6a,b represent the simulated
outputs for the linear and rotary actuators, respectively. To
quantitatively assess the accuracy of the model identification, the
coefficient of determination is calculated (Devore, 2013). This
statistical metric indicates how well the simulated outputs replicate
the actual system behavior. The computed values for the linear and
rotational models are 98.70% and 99.19%, respectively. These high
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filter and simulated responses is (a) 2.17 mm/s for the linear actuator and (b) 8.798 deg/s for the rotary actuator.

values confirm that the identified models accurately capture the
dynamic response of the actuators and are sufficiently precise for
subsequent controller design and stability analysis. The fidelity of
these models ensures that the resulting control system can perform
reliably under real-time operating conditions.

3.4 PID controller tuning using the DPSO
algorithm

In this (PID)
controller-based feedback strategy is employed to improve the

study, a proportional-integral-derivative
tracking performance of the robotic arm actuator. Given the critical
role of accurate tracking in maintaining user postural stability,
the PID gain values are optimally tuned using a metaheuristic
optimization approach. The tuning process is guided by a
performance-based objective function that considers three key
metrics: overshoot (OS), settling time (T,), and the integral of
time-weighted absolute error (ITAE). Overshoot and settling time
are included to ensure minimal deviation and fast convergence,
while the ITAE term penalizes long-lasting steady-state errors. The
objective function is formulated as follows: J = OS + T, + Igtle(t)l dt,
where e(?) is the tracking error and T is the total evaluation time.
The objective value is computed by simulating the closed-loop step
response of the actuator model under a candidate PID gain set
p,— [KP,Ki,Kd]T, where each gain set corresponds to a position
vector of a particle in the DPSO algorithm. To ensure feasible
solutions that guarantee system stability and control performance,
several constraints are imposed during the optimization: i p; <
D; < Prmay to bound the design parameter ranges, ii max(9R(};)) <
0, where A; denotes a pole of the closed-loop system to ensure
closed-loop stability, and iii OS < 10% to limit the overshoot. A key
challenge in such constrained optimization problems is maintaining
the balance between exploration and exploitation while strictly
enforcing feasibility. To address this, a fitness evaluation method is
designed to improve convergence efficiency by classifying solutions
into three regions based on feasibility: infeasible due to boundary
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or stability violation, infeasible due to overshoot violation, and fully
feasible. The fitness value £(p;) of each particle is then computed
using the following formulation:

. T, .
arctan {gmax (P:)} + E if 8max (Pz) >0,
L(p,): = 4 arctan {h (p,)} if g, (P;) <0 and h(p;) >0,
arctan {J(p,)} - g otherwise,

where g (p;) is the maximum violation among boundary and
stability constraints, h(p,) is the overshoot constraint violation
(0S-10), and J(p;) is the original objective function value for
feasible solutions. This fitness calculation mechanism ensures that
infeasible solutions due to boundary and stability violations yield
values in the range (g,n), overshoot-only infeasible solutions fall
in (O,g), and fully feasible solutions result in values in (—g,O).
Such a mapping effectively guides the optimization algorithm
toward feasible regions while allowing subtle penalization of
different types of violations. The tuning process proceeds as
described in Section 3.3, where the DPSO algorithm searches the
gain space using this fitness function to yield optimal PID controllers
that meet all design objectives and constraints. The number of
design variables in the optimization problem is three, corresponding
to the proportional (Kp)’ integral (K;), and derivative (K;) gains
of the PID controller. The parameter search space for tuning is
defined as p_, =1[0,0,0]" ¢ R?® and Prnax = [1000,1000,1000] " €
R3. Other optimization parameters—such as Np, N, ¢p>€156,, and
maxiter—are configured identically to those used in the actuator
model identification process. As a result of the optimization, the
optimal PID gain sets for the linear and rotary actuator models are
obtained as follows:

[Kp,Ki,Kd]Linear =0.7529, 0, 0.1882],

(K, K, K] [0.1714, 0, 0.0368].

Rotary -

For both controllers, the derivative filter time constant is set to
0.01 to reduce high-frequency noise amplification.
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3.5 PID controller fine tuning

The performance of the smart robotic walking aid relies on
the tuning of its control system to ensure fast and stable balance
correction. The controller design follows a cascaded structure, where
the inner loop handles fast actuator dynamics, and the outer loop
maintains overall balance stability.

3.5.1 Inner loop

To optimize the system’s response, the control parameters were
fine-tuned to prioritize fast stabilization. The proportional (P) gain
from the simulation already provided the desired balance between
responsiveness and stability, both in the simulated and real-world
environments.

In the simulation, the integral (I) component was set close to
zero because the simulated environment did not exhibit steady-
state errors. The lack of friction in the virtual model allowed for
precise control without the need for integral correction. During real-
world tests, friction in the 3D-printed gear mechanism introduced
a permanent steady-state error. To compensate for this effect, an I
component was added to the controller in the system.

The derivative (D) values required a small adjustment when
transitioning from simulation to real-world application. This change
was primarily due to unmodeled dynamic effects such as mechanical
friction, vibration, and sensor noise that were not present in the
idealized simulation model. The following PID parameters were
implemented in the system to ensure optimal balance control:

(K, K, Ky _=107529, 0.396, 0.265],

Line:

[Kp,Ki,Kd]Rmryz [0.1736, 0.1121, 0.0508]

3.5.2 QOuter loop

The outer loop control is designed as a proportional-only
controller. Due to the setpoint range in which the human remains
in a stable state, the steady-state error has a negligible effect. The
plant, represented by the user, shows significant variability. To keep
the system simple and avoid unnecessary instability, the derivative
term has been removed. The tuning process involves testing different
values on the assembled walking aid.

3.6 Operational algorithm

The system begins with initialization and calibration. Next, it
enters a phase of continuous monitoring, during which IMU data
is collected in real time. When the system detects an imbalance by
identifying that the user’s pitch or roll angle exceeds the defined
limits, it immediately activates the brakes to stabilize the walker.
The system then activates the linear or rotary actuator to apply a
counteracting force or torque to correct the imbalance. The control
loop continues until balance is restored. Once a stable posture
has been reestablished and maintained for 5 s, the system releases
the brakes and resumes continuous monitoring. The Algorithm is
visualized in the Figure 7.
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FIGURE 7
The operational algorithm of the robotic assistant walking aid for

balance support.

4 Experimental validation

A series of controlled experiments were conducted in a
laboratory environment to validate the effectiveness of the proposed
smart robotic assistant for balance assistance. The setup included
a fully assembled robotic walking aid equipped with linear and
rotary actuators, as well as a braking system. The wearable IMU
was mounted on the user’s chest to provide continuous orientation
feedback in the sagittal (pitch) and frontal (roll) planes. The sensor
data were transmitted to the main micro-controller of the walking
aid wirelessly. During testing, the postural deviations induced by the
user were used to trigger the stabilization system.

The first author conducted controlled experiments in which
imbalances were induced by leaning forward and to the side,
exceeding the predefined thresholds of +8° in pitch and roll. Each
test run comprised three phases: 1 initiating the imbalance, 2
automatically detecting the deviation via IMU data, and 3 executing
corrective actions with the actuator and braking mechanism. To
objectively assess the system’s performance prior to user studies,
an initial feasibility check was conducted by the first author, a
healthy adult male. The experimental trials were designed to evaluate
the system’s response to balance disturbances in four directions:
forward, backward, and sideward. Each condition was tested six
times, for a total of 24 test runs. Before each trial, the system
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was reset, and the participant returned to a standardized neutral
standing posture to ensure consistency. The participant simulated
each imbalance direction intentionally and in a controlled manner.
This preliminary evaluation was intended to verify the technical
feasibility of the system and to inform future user studies involving
amore diverse participant group. The system recorded the following
during each trial: IMU orientation, actuator positions, control
input signals, and brake engagement status. System performance
was evaluated using the signals and metrics, including response
time, settling time, overshoot, balance recovery time, and brake
activation time.

5 Results

5.1 Stability and robustness of the
corrective actuation

To assess the stability and reliability of the actuation system, a
series of varying setpoints were applied to the linear and rotational
actuators. The system’s responses in terms of position tracking
were then observed and evaluated. These tests simulated abrupt
directional changes, challenging the controller’s ability to reject
disturbances and maintain convergence to the target state.

Figures 8a,b illustrate the system behavior for the rotational and
linear actuators. In both cases, the actual position closely follows
the commanded setpoint. The system remained stable throughout
the tests and recovered quickly from transients, demonstrating its
robustness against input variation and mechanical backlash. The
defined set point ranges shown in Figures 8a,b are much greater than
the actual usage range of the smart walking aid. Therefore, the device
operates at maximum velocity when the desired set point changes
significantly.

5.2 Actuator performance

The performance of both the linear and rotary actuators was
evaluated with respect to response speed, positional accuracy, and
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stability. These parameters are critical for ensuring compensation
during one imbalance. For these tests, the brakes are fully engaged
to focus only on actuator performance.

5.2.1 Linear actuator

The linear actuator responsible for tilt compensation was tested
while an imbalance was detected. The user leaned back and the
actuator response was recorded. The actuator responded quickly,
with a settling time of less than 1.4 s for the person to stabilize.
The velocity measured in this test was 22.2 mm/s. The built-in
high pitch lead screw, combined with a high gear ratio, allowed
for rapid conversion of motor torque into linear motion while
maintaining accuracy. The system is aggressively tuned to prioritize
rapid stabilization, resulting in a slight overshoot during corrective
actions. This adjustment ensures that the system will return the
user to a stable position as quickly as possible. The result is
shown in the Figure 9. The overshoot observed during the corrective
action is considered acceptable because the primary goal of the
system is to stop the fall immediately, not to achieve a perfectly
balanced position. In addition, the overshoot does not create an
imbalance in the other direction because the user is already tilting
backwards.

5.2.2 Rotary actuator

The rotary actuator, which is responsible for compensating for
imbalances in the roll direction, was evaluated under various lateral
disturbance scenarios. The actuator’s task is to rotate the handlebar
assembly about the Z-axis to counteract unwanted tilting by the user.
To validate its performance a fall to the right was simulated and the
actuator’s response was recorded. The actuator features a brushed
DC motor coupled to the worm gear that provides both torque
amplification and a self-locking effect, ensuring mechanical stability
even when the motor is not powered. The response time to the
required position was 1.8 s and the measured speed was 66.6 °/s. The
result is displayed in the Figure 10. The overshoot observed during
the rotary actuator’s corrective action is also considered acceptable
because the primary goal of the system is to quickly counteract the
lateral imbalance rather than to achieve an accurate balance control.
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Experimental results of the linear actuator response during tilt compensation following the detection of user imbalance. (a) Comparison between the
setpoint and the actual actuator position. (b) Corresponding position tracking error input and plant input applied to the actuator.
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Experimental results of the rotary actuator response during tilt compensation following the detection of user imbalance. (a) Comparison between the
setpoint and the actual actuator position. (b) Corresponding position tracking error and control input applied to the actuator.

5.3 Balance recovery evaluation 5.3.2 Roll disturbances
For the roll recovery tests, the user was instructed to shift the
To evaluate the real-time stabilization capabilities of the  weight laterally to one side, exceeding the +8.0° roll threshold.
system, controlled tests were performed to simulate balance  The system responded by activating the rotary actuator, which
disturbances. Two primary types of disturbances were presented: ~ rotated the handlebar assembly around the Z-axis to apply a
pitch disturbances, representing forward or backward leaning, and  counteracting torque.

roll disturbances, simulating side falls. As with the pitch response, the braking system was immediately
activated to prevent the walking aid from moving during the
5.3.1 Pitch disturbances correction. The activation time of the brakes equals 0.7 s. The rotary

In pitch disturbance scenarios, the user leaned forward to exceed ~ actuator completed its stabilizing motion in approximately 2.2 s
the predefined pitch threshold of +8°. This was detected by the  (with a response time of 140 ms), ensuring that lateral deviation
chest-mounted IMU. The system responded by activating the linear ~ was quickly compensated. The self-locking characteristic of the
actuator, which generated a corrective force along the X-axis to  worm gear maintained the corrected position without any additional
restore the user’s upright posture. power from the motor. The results can be seen in the Figure 11b.

At the same time, the electromechanical brake was activated to
lock the wheels of the walking aid. The brake activation occurred ) )
within approximately 5s and then automatically released if no 6 Discussion
further unbalance was detected. The linear actuator reached its
target position in less than 2.3 s (with a response time of 120 ms), This work presents a robotic assistive walking device that
returning the user to a stable position. The measured results are  integrates a compact IMU sensor and cascade control system into a
illustrated in Figure 11a. walker-sized platform, enabling real-time imbalance detection and
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Experimental results of the actuator responses during tilt compensation after detecting user imbalance. (a) Linear actuator response to a forward
imbalance, displaying the pitch angle and braking behavior. (b) Rotary actuator response to a lateral imbalance, showing the roll angle and brake

activation.

correction. The system aims to reduce the risk of falls in older adults
while maintaining the size and ease of use of a conventional walker -
making it practical for everyday use without the physical or cognitive
strain often associated with high-end robotic devices.

A study on sensor-based walkers (Zhao et al., 2020) shows that
the developed walker works well to protect users from external
disturbances by using mechanical designs and advanced sensors
such as IMU, LIDAR, and infrared cameras. This system shows
success in assisting gait, assisting posture recovery from sitting or
falling, and activating braking mechanisms to prevent further injury.
However, such a system tends to be bulky, expensive, and reactive -
intervening after a fall has begun rather than preventing it through
early balance correction. These limitations hinder their widespread
use, especially among the elderly who require simple and lightweight
solutions.

In contrast, the proposed system offers a compact and familiar
mechanical configuration similar to standard walkers, promoting
ease of use for elderly users. The unique advantage of the
proposed walker over existing models on the market is its
combination of compactness and stabilization through the use of
counteracting forces. While most commercially available walkers
are either bulky to handle counteracting forces (Li L. et al., 2023)
or remain slim but lack active balance assistance capabilities
(Zhao et al,, 2020; Sierra M. et al, 2019), this design achieves
both. The IMU sensor is lightweight and easy to wear, and
provides continuous balance monitoring without the need for
complex calibration. This system also integrates optimization-based
system identification and control. The Particle Swarm Optimization
algorithm uses experimental data to identify the robot arm’s actuator
models and optimally tune the PID gains. As a result, the actuators
apply compensating forces quickly and accurately, achieving safe
reference tracking with no vibration even under input saturation.
These results take into account the low-cost hardware used,
highlighting the system’s potential for low-cost deployment. The self-
locking worm gear and automatic brake enhance the system’ ability
to stabilize the user during corrective actions. These features enable
the base to remain stationary while the robotic arm assists the user
in regaining their balance. However, the use of a chest-mounted
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IMU sensor introduces variability due to differences in user height
and posture, resulting in inconsistent tilt angle measurements.
Consequently, identical physical postures may produce different
sensor outputs for different users, which could trigger premature
or delayed corrective responses. Additionally, the braking system
is currently only implemented on the back wheels. In forward
fall scenarios, where most of the user’s weight shifts forwards, the
lack of front-wheel braking reduces the system’s ability to fully
immobilize the walker. The reliance on 3D-printed components
introduces play and insufficient stiffness under dynamic loads,
which may compromise control accuracy and durability in real-
world use. By incorporating real-time sensing, optimized control,
and automated braking into a compact and intuitive device, the
proposed system provides a proactive approach to fall prevention
while maintaining user comfort and independence. Future research
should focus on implementing machine learning algorithms that
could significantly improve the accuracy of sensor detection,
allowing for more reliable fall prediction. A more advanced braking
system, ideally including braking on all wheels rather than just the
back wheels, would improve stability, particularly in forward fall
scenarios. Conducting user studies with elderly individuals would
provide valuable insights into the effectiveness of the device in
real-world settings. In addition, replacing 3D-printed components
with more robust and durable materials could reduce backlash
and improve the structural integrity of the system, increasing both
stability and longevity. These improvements could make the system a
practical, affordable, and intelligent mobility aid. This paper presents
the design and experimental validation of a robotic assistant for
real-time fall prevention for elderly users. The system combines
sensor-based position monitoring, a cascade control architecture,
and electromechanical braking to detect and correct pitch and roll
imbalances. Experimental results confirmed the systen’s ability to
respond quickly to instability scenarios.

Future work will focus on improving sensor adaptability
by addressing variations in IMU placement due to differences
in user height. To achieve more stable and consistent position
measurements, machine learning techniques will be used to
compensate for different user heights and provide more accurate
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measurements. The braking system will be improved to provide
a stronger response during forward falls. In addition, prototype
components will be replaced with manufactured parts to reduce
mechanical backlash and improve overall system stability. Future
developments include the integration of adaptive thresholds and
extended testing with target user groups in real-world environments
to evaluate missed improvements.
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