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Manipulator teleoperation can liberate humans from hazardous tasks. Signal
noise caused by environmental disturbances and the devices' inherent
characteristics may limit the teleoperation performance. This paper proposes
an approach for inertial measurement unit (IMU) state estimation based on
particle swarm optimization (PSO) and modulated long short-term memory
(ML-LSTM) neural networks to mitigate the impact of IMU cumulative error on
the robot teleoperation performance. A motion mapping model for the human
arm and a seven-degree-of-freedom (7-DOF) robotic arm are first established
based on global configuration parameters and a hybrid mapping method. This
model is used to describe the impact of IMU cumulative error on the robot
teleoperation performance. Subsequently, the IMU pose state estimation model
is constructed using PSO and ML-LSTM neural networks. The initial data of
multiple IMUs and handling handles are used for training the estimation model.
Finally, comparative experiments are conducted to verify the performance of the
proposed state estimation model. The results demonstrate that the PSO-ML-
LSTM algorithm can effectively eliminate the impact of IMU cumulative errors
on robot teleoperation.

KEYWORDS

state estimation, manipulator teleoperation, particle swarm optimization—modulated
long short-term memory, master—slave mapping, cumulative errors

1 Introduction

There are many environments and situations where robots are expected to replace or
assist humans at the sites (Darvish et al., 2023; Liu et al.,, 2025). However, due to the
limitations of AI techniques, fully autonomous solutions are still far from being able to
generate natural and appropriate operational behaviors. Consequently, robot teleoperation
is considered a reasonable solution for tasks in extreme environments, which can relieve
human operators from potential hazards (LiS. et al., 2024). Various efforts have been
made to deploy human senses, actions, and presence in remote locations. During the
teleoperation, the robot is required to imitate human actions to perform highly dexterous
tasks under limited information exchange. The priority of the robotic teleoperation system
is to measure the kinematic and dynamic information of the human and transfer it to the
robot’s movements for teleoperation. One of the key challenges lies in establishing precise
motion mapping between the human operator and the robot.
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To provide references for robotic motion, scholars have
explored different technologies to measure human motion,
including wearable inertial measurement unit (IMU)-based motion
estimation (Penco et al, 2019; Skulj et al, 2021), vision-based
motion capture (Tsitos and Dagioglou, 2022), exoskeleton-based
motion measurement (Cheng et al., 2024), and EMG- and EEG-
based motion intention estimation (Chen et al., 2023; Li H. et al.,
2024). The performance of the vision-based capture approach is
impacted by the occlusion and low portability of the setup, while
the EMG- and EEG-based approaches have high requirements for
the detection environment and equipment (Wang et al., 2023). In
contrast, the IMU-based approach can estimate human motion
without occlusion-related problems, which is more suitable for use
in the field and other unstructured scenarios. However, gyroscopic
drift of IMU tends to cause cumulative errors, which will gradually
accumulate and amplify over time.

Scholars have attempted to improve IMU state estimation
accuracy by deploying Kalman filtering and machine learning
methods (Luo et al,, 2025). Zhang et al. (2022) proposed a quadrotor
state estimation method based on deep neural networks and a multi-
sensor data fusion model. The IMU’ kinematic characteristics,
the robot’s dynamic properties, and uncertainty representations are
learned by training a cascaded network on real-world quadrotor
flight data, the information of which is fused into a two-stage
extended Kalman filter (EKF) framework for better estimation.
Hosseinyalamdary (2018) proposed a combination of deep learning
and Kalman filters for modeling to eliminate the system state
estimation errors caused by IMU errors. Han et al. (2019) proposed
a deep VIO algorithm that combines vision and IMU and uses
a self-supervised end-to-end strategy to estimate system state.
Kim et al. (2021) used one-dimensional convolutional neural
networks to predict the desired velocity from the raw acceleration
data to improve the accuracy of individual IMU state estimations.
Luo et al. (2024) proposed a Kalman filtering and modulated long
short-term memory (ML-LSTM)-based approach to estimate the
state of the vehicle system. Xu et al. (2022) proposed a full-state
estimation algorithm based on the error-state extended Kalman
filter (ESEKF) framework, which can enable simultaneous state
estimation and external calibration (POS-IMU and IMU-IMU),
handheld platforms, quadrotor unmanned aerial vehicles (UAVs),
and ground vehicles.

Furthermore, due to the structural differences between the
human body and the robot, teleoperation control of robots requires
consideration of the motion mapping between the human body
and the robot. It can be categorized into motion mapping for the
upper limbs, lower limbs, and the whole body. Upper-limb motion
mapping typically involves mapping the Cartesian space movements
of human limbs to the corresponding values of the robot’s limbs
and then considering the robots constraints to solve the inverse
kinematics problem by minimizing a cost function. A common
approach is to establish motion mapping between the human wrist
and the robot’s end-effector, which is known as configuration space
retargeting (Wang et al., 2021). Zhao et al. (2023) proposed that the
lower-priority elbow motion should be considered in the mapping
process, which is important for delicate operations in constrained
spaces. In reference to the above study, an IMU state estimation
approach based on particle swarm optimization (PSO) and an
ML-LSTM network is proposed to estimate the IMU error for
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robot teleoperation, while the human wrist and elbow motions are
measured and imitated.

This study focuses on the human-robot posture mapping
problem caused by multi-IMU drift errors in a remote sensing
system. Unlike normal IMU drift issues, this problem requires
establishing the spatial relationships among multiple IMUs on the
human arm through kinematic modeling, leveraging their invariant
spatial constraints to correct drift errors. The key contribution
lies in proposing a lightweight, PSO-ML-LSTM-based online IMU
calibration model that accounts for computational and temporal
costs in data training. By fitting the model using early-stage IMU
data (where drift is minimal), it enables real-time correction of
subsequent drift-affected data. This method is used to establish
the state and observation models for the teleoperation motion
mapping, thereby enabling online calibration of the IMUs. The
remainder of this study is structured as follows. Section II establishes
the teleoperation mapping model and describes the background
of the problem. Section IIT introduces the working principles
of the algorithm. Section IV verifies the performance of the
algorithm through comparative experiments. Section V summarizes
the innovative methods proposed in this paper.

2 Robot teleoperation model and
problem description

2.1 Robot teleoperation system

The robot teleoperation system is based on two IMUs and an
operating handle. The operating handle provides the position and
orientation of the human hand, while the two IMUs, worn on the
upper arm and forearm of the human body, are used to detect
the motion state of the human arm. The data from the IMUs and
operating handle are transmitted via Bluetooth to the STM32 for
data acquisition and processing. Subsequently, the data are sent
through a Wi-Fi module to the rk3588 processor for robot inverse
kinematics and arm angle calculations, generating the trajectory of
a seven-degree-of-freedom (7-DOF) robot. The system composition
and data transmission process are illustrated in Figure 1.

2.2 Robot model

This paper adopts incremental position mapping and absolute
attitude mapping. The kinematic model of the robot and the human
body is established before determining the human-robot motion
mapping. The 7-DOF robot structure is shown in Figure 2 and the
robot DH parameters are provided in Table 1.

The robot kinematics model can be obtained by:

4%} 12 13 Py
1 T Tz P OR OP
2Tr(91’62’03’04’65’96’07): g :[7 7
31 3 33 P, 0 1
0 0 0 1
1)

Here, 0P = [pm, Prys pm] is the robot end-effector position.
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STM32

FIGURE 1
Robot teleoperation system.

FIGURE 2
Robot configuration.

TABLE 1 Seven-DOF robot DH parameters.

2 -90° 0 0 6,,
3 90° 0 d.s 6,5
4 -90° 0 0 6,4
5 90° 0 ds 6.5
6 -90° 0 0 6,
7 90° a6 0 6,;

To solve the problem of multiple solutions in the inverse
solution of a redundant DOF manipulator, a unique solution can be
obtained by introducing the global configuration parameter GCk.
According to Faria et al. (2018), the spatial orientation of robotic
arms is directly affected by GCk of the shoulder, elbow, and wrist.

To address the global and local self-motion manifolds, two
supplementary parameters are incorporated into the redundant
robot inverse kinematics calculation, namely, global configuration
(GC) and arm angle y. The global configuration is used to specify
the branch of the inverse kinematics solutions for the global
configuration manifold. The arm angle y indicates the elbow
position in the redundancy circle, as shown in Figure 3. The global
configuration parameter GC; is divided into three variables that
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FIGURE 3
Representation of the arm angle y as the angle between the robot arm

plane and the reference plane.

represent the sign of the joint angle coordinates for the shoulder
joint (GC,), the elbow joint (GC,), and the wrist joint (GCy). GC;
is given as follows:

1,if6; > 0

Yk € {2,4,6). (2)

Ck =
~1,if, < 0.

In this paper, when the operator employs the right arm for
teleoperation, the values are set as GC2 =1, GC4 = 1, and GC6 = —1;
conversely, when the left arm is utilized for teleoperation, the values
are assigned as GC2 = -1, GC4 = -1, and GC6 = 1. Subsequently, a
unique inverse solution can be derived based on the pose T, , the
arm angle y, and the global configuration parameter GCk. Since 6_4
is not affected by the arm angle y, other angles can be obtained using
the following formulas.

0, = atan2(GC,[ay, sin ¥+ by, cos ¥+ ¢y, ],

GG, [ag, sin g+ by, cos y+¢5]),
6, = GC, arccos (ay, sin Y+ by, cos Y+ ¢, )

0; = atan2(GC,[—ag; sin ¥ — bgs cos ¥ — ¢,
GG, [-ag, siny—bg, cos y—cg]),

05 = atan2(GCg|a,,p3 sin Y+ b,,55 COS Y+ €, 03],

GCg (a3 sin Y+ b,,15 08 Y+ ¢,15])
s = GCy arccos (a,,33 sin Y+ b, 35 COS ¥+ C,153),

0, = atan2(GCq[a,,3, Sin ¥+ b, 5 COS Y+ €3, ],

GCy [~ay31 SIn Y= b,3; cos Y =3 ]).

3)

2.3 Virtual human arm model

To construct a virtual human arm model, the coordinate system
on the human arm is established as shown in Figure 1. Coordinate
systems {1} and {2} are on the human shoulder joint, while
coordinate system {3} is on the human elbow joint, and coordinate
system {4} is established on the wrist. The DH parameterof virtual
huma arm is shown in Table 2.
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TABLE 2 Human arm DH parameters.

1 0 0 0 0,
2 90° 0 0 6,
3 0 a, 0 0,5
4 90° ays 0 B4

Here, a;,, is the length of the upper arm and a,,; is the length
of the lower arm. According to the homogeneous transformation
formula, the elbow position can be derived as follows:

Ap2Ch2Ch1

0p _

3Py = | anacnasn |- (4)
Ap,25h,2

The wrist position is

Ch1 (“h,3 Chozt “h,zch,z)
0 _
P, = Sh,l(ah,3ch,23 + “h,zch,z) . (5)

Ap3Sn23 + An2Sh2

2.4 Master—slave motion relationship
mapping

This paper employs a hybrid mapping approach, where position
is mapped incrementally while orientation uses absolute mapping.
The robot model and virtual human arm model are utilized to map
the posture of both the human arm and wrist.

The positions of human wrist and robot can be obtained
according to Equations 1, 5. The positions of the human wrist
and robot end-effector are mapped incrementally. Assuming that
the initial calibration position is P,, =P,, and P, = ngO,
the positions in relation to the master and slave ends can be
expressed as follows:

Ph,tl = Ph,t’o + APh,tl’
P, =P, +AP,,, (6)

AP,, =KAP,, .

Here, K is the mapping scale. The attitude of the human wrist
and the robot end-effector are mapped absolutely:

AR, =AR,, . 7)

In order to ensure that the robot arm can adjust the attitude of
the intermediate joint according to the requirements of the operator
to achieve obstacle avoidance, the intermediate joint adopts absolute
attitude mapping:

Th,t1 = [Ph,tl»ARh,tl]>
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T, =|KAP,, AR, |. (8)

According to Equations 6-8, the relationship mapping can be
established. For ease of calculation, the arm angle v in this paper is
defined as the angle between the arm and reference planes, where
the arm plane is considered parallel to the axis X; and X, of the
IMU on the upper and lower arms. To figure out the arm plane, the
Euler angles of the two IMUs are converted into direction vectors.
By defining the IMU Euler angles as [, ,,y,] and [a,,,,7,], the
normal vector S of the arm plane can be obtained by the cross
product of X; and X,.

1 * <y cy, *cp,
S=X;xXy= sy, %y | X | sy, *xcph, |- 9)
spy sp,

Defining the reference plane as being perpendicular to the
horizontal plane, the arm angle y can be obtained by dotting the
normal vector S with the horizontal normal vector H.

v =arcos(S- H). (10)

The inverse kinematics can be obtained by substituting
Equation 10 into Equation 2.

2.5 Problem description

When there is magnetic field interference in the operating
environment, the magnetometer cannot be used to calibrate the
IMU online, and the IMU cumulative error [e, (%), e, ()] will appear.
In this case, the normal vector of the arm plane is §’ (¢, (), e,(£)), and
the arm angle error is

v/ (1) = arcos(S'(t) - H). (11)

To observe the drift problem, an IMU with magnetometer
malfunction is bound with a high-precision IMU with
magnetometer. A random arm motion is conducted to observe
the drift of the low-cost IMU, while the high-precision IMU is
regarded as a reference standard. The Figure 4 shows the IMU
yaw angle without (blue line) and with the magnetometer after
20 min of various random motions. The final cumulative error
is approximately 70°. It is worth noting that to perform online
calibration of the IMU on the arm, accurate data are required
as a reference point. Since the handle has its own vision-based
calibration function, this paper assumes that the position data of the
handle are accurate.

3 PSO-ML-LSTM-based IMU state
estimation

In the case of magnetic field disturbance, the IMU cannot
be self-calibrated by a magnetometer, and the cumulative error
caused by drift will occur in the IMU. Therefore, it is necessary to
estimate the IMU state online. This section introduces the PSO-ML-
LSTM-based IMU state estimation approach. The whole process
is shown in Figure 5.
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FIGURE 4

IMU cumulative error after 20 min.
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FIGURE 5
Process of PSO-ML-LSTM-based IMU state estimation.
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FIGURE 6
Structure of ML-LSTM.

hye

3.1 Feature selection based on random
forest

Considering the computation and time costs for online training,
random forest-based feature selection is conducted to exclude
unimportant feature data. Random forest-based feature selection
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combines the powerful representation capabilities of neural networks
with the stabilityand nonlinear processing capabilities of random forest
models. During the generation of each decision tree, the data subset
and feature subset are randomly selected to enhance the robustness of
the model and reduce overfitting. The input data for feature selection
include the position and attitude of the operating handle, the attitude of
IMUs, and the angular velocity and acceleration of IMUs. The feature
selection results indicate that the position of the operating handle and
the pitch and roll angle of IMUs have a significant impact on the
IMUS yaw angle estimation.

3.2 Kalman filtering for data processing

In this paper, Kalman filtering is used to reduce IMU data bias
and noise. To achieve this, the angular velocity measured by the
gyroscope is used to predict the attitude and simultaneously model

the slow change of zero offset:
X :Axk71 +Buk+Wk. (12)

Here, A is the state transition matrix, u,, is the angular velocity
measured by the gyroscope, and w, is data noise. The process is
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FIGURE 7
Process of PSO

started with the initiating states x, and P,. The prediction state £
and error covariance P are calculated as follows:

% = A% +Buy,

P =AP_ A"+ Q (13)
The Kalman gain K, and state are updated according to
W p—— -1
K, =P H'(HP,H"+R) ",
=%+ K(Z, - HE),
P, =P, ~ K,HP,. (14)

Here, Q is the process noise covariance matrix, and R is the
measurement noise covariance matrix.

3.3 PSO—ML-LSTM-based IMU state
estimation

The ML-LSTM neural network introduces the modulation gate
into traditional LSTM to evaluate the importance of historical
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information at different times. It can improve the traditional
memory mode and take the memory summation average value
of each data segment as the standard memory, thus improving
the model’s ability to recognize key information and the model’s
ability to interpret. The structure of the ML-LSTM neural network
is shown in Figure 6.

The forget gate of ML-LSTM is used to determine what
information can pass through the memory unit and generate an f;
according to the output value i1;_; at the last moment and the current
input value x;.

fe= (W [y ] +by). (15)

Here, W/ is the weight, by is the offset, and ¢ is the activation
function sigmoid. To generate updated information, the values of
i, and the new candidate C, will be calculated and added to the
memory unit as a candidate value generated by the current layer.

i = o(W;- [y, + b)),

Ck = tanh (WC . [hk_l,xk] + bC) (16)
The memory cells are updated by
G = fi- Gy +ix G (17)
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FIGURE 8
Performance of LM-BP-based IMU estimation.
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FIGURE 9

The modulation gate sums the memory information and
calculates the mean E.

m !
_ Ck,m

(18)

C=E
k ~ "m

Here, m is the number of data segments. The model output h; can
be obtained as follows:

hk = U(Wa . [hk_l,xk] + bo) - tanh (Ck) (19)

Then, the PSO algorithm is run offline using previous data
to optimize the neuron number #,, and learning rate I, of ML-
LSTM. The initial position and speed of the particles are first
randomly generated. The fitness evaluation of each particle solution
is conducted. The historical best position (pf d) and the global best
position (pfg ) for each particle are then recorded. The speed and

position of each particle according to p!, and p; , are updated to
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calculate the neuron number and learning rate according to the

following equation.
1 _ T
Vi wvd+c1r1(pd d)+c2r2(pgd xgd>,
t+1 t+1
X —xd+vd. (20)
Here, v*! and x!%" can be represented by v;, and v,,,, and [, and

n,,- The above process will be repeated until the number of iterations
is reached or an optimal solution is found. The PSO flow chart
is shown in Figure 7.

3.4 Evaluation index

To evaluate the performance of the IMU state estimation model,
three evaluation indexes are used, including the root mean square

frontiersin.org
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FIGURE 10
Performance of PSO-LSTM-based IMU estimation.
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FIGURE 11
Performance of PSO-ML-LSTM-based IMU estimation.
TABLE 3 Performance comparison.
Method RMSE ’ MAE ’ MBE ’ R? ’ Average cumulative error
LM-BP 10.2096 7.1981 -5.157 0.7878 3.2°
KM-RBF-GPR 10.2264 10.5973 —-5.7296 0.7871 3.2°
PSO-LSTM 9.8345 6.9113 —3.8944 0.8032 3.1°
PSO-ML-LSTM 7.2721 5.2758 -1.6680 0.8924 2.8°
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Performance of PSO-ML-LSTM without random forest feature selection.
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FIGURE 13

The performance of PSO-ML-LSTM without KF.

error (RMSE), mean absolute error (MAE), mean bias error (MBE), 4 Ex pe riment and discussion
and R-squared R?.

In this paper, the IMU estimation model is implemented online
using LibTorch, which is integrated into the rk3588 processor. The
1 - dataset is split into training and validation sets with a ratio of 2:8.
MAEQ.h) = E; 1) =il @V The random forest is first used for feature selection. and the particle
swarm optimization is used to optimize the number of neurons and
RMSE(X, h) = E Zl (h(x;) - y,)% (22)  the learning rate of the ML-LSTM model before online estimation
" to reduce data requirement for model training and prediction. The

MBE = 1 Z (-7 (23) search bounds for the number of neurons are set to [50, 200],
n&g v while the learning rate is bounded within [le-5, le-1]. The PSO

" hyperparameters are configured as follows: population size = 10,

2_q1_ Zi:l (h(x;) -y f) (24) maximum iterations = 20, decay factor = 0.5, contraction-expansion
Z:’zl (h(%;)-y,)° coefficient = 1.0, and random seed = 42. The Adam optimizer is
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FIGURE 14
Seven-DOF manipulator.

used for network training, where the training batch size is 64 and
the number of iterations is 1,000. To confirm the validity of the
proposed method, we compared it with other models, including
Gaussian process regression (GPR) based on the radial basis kernel
function (Ouyang et al., 2023), BP neural network based on the
Levenberg-Marquardt algorithm (Hua et al., 2023), and neural
network based on PSO-LSTM (Xiao et al, 2024). In order to
observe the performance of the estimation models, the IMU data
of 30 min without and with magnetometer calibration are compared
with the IMU data estimated by the model mentioned above.

4.1 Levenberg—Marquardt-BP-based IMU
estimation

The Levenberg-Marquardt-BP neural network can accelerate
the training process and is suitable for complex nonlinear regression
problems. The goal of this algorithm is to adjust the network weight
by minimizing the error function. The algorithm implementation
process is as follows: 1) the gradient of the loss function is calculated.
2) The weights are updated according to the Levenberg—Marquardt
algorithm. 3) Iterations are repeated until convergence or the
maximum number of iterations is reached. The model calculation
results are given below, where the forecast results are colored
yellow, the drift data are colored blue, and the correct data are
colored green. The performance of LM-BP-based IMU estimation
is shown in Figure 8.

4.2 K-means-RBF-GPR-based IMU
estimation

Gaussian process regression is a powerful non-parametric
Bayesian regression method. It uses kernel functions to capture
complex relationships of data by mapping the input space to a high-
dimensional feature space. The cluster center of K-means (KM) is
selected as the input feature point. The similarity between these
feature points is calculated using the RBF kernel function. The model
parameters are optimized by maximizing the posterior probability
or minimizing the negative log-likelihood. The performance of KM-
RBF-GPR-based IMU estimation is shown in Figure 9.
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4.3 PSO-ML-LSTM-based IMU estimation

Two experiments are conducted, including the PSO-LSTM- and
the PSO-ML-LSTM-based IMU estimations. The performances of
both models are shown in Figures 10, 11.

The results of the experiments are shown in Table 3. Although
KM-RBF-GPR slightly outperforms LM-BP in terms of RMSE and
MAE, it exhibits a larger bias (MBE) and relatively lower goodness of
fit. The performance of PSO-LSTM is superior to that of KM-RBF-
GPR, particularly showing an improvement in the goodness of fit
(R?), but it still cannot surpass that of PSO-ML-LSTM. The RMSE
of PSO-ML-LSTM is 8.3116, which is 1.9 units lower than that of
LM-BP and 1.5 units lower than the RMSE of PSO-LSTM. The
MAE and R? of PSO-ML-LSTM are 6.1617 and 0.8594, indicating
that PSO-ML-LSTM has no significant systematic bias and fits
the data well. The average cumulative error of PSO-ML-LSTM is
approximately 2.8°, which is significantly better than that of the other
three models.

4.4 Ablation study

The ablation studies are conducted to evaluate the effects of
the Kalman filter and random-forest feature selection. The results
are shown in the Figures 12, 13. Compared with the result shown
in figure, the results shown in Figure 8 indicate that the use of
random-forest feature selection and Kalman filter can achieve a
better performance of RMSE, MAE, MBE and R%.

4.5 Robot remote control experiment

A manipulator teleoperation experiment was conducted. By
comparing the arm angles of the manipulator before and after
IMU error compensation, the effectiveness of the proposed method
was verified. The manipulator used was the 7-DOF manipulator
described in the previous section, whose structure is shown in
Figure 14. Figure 15 shows the arm angle conditions after 20 min,
including 1) the manipulator’s arm angle without compensation
(green curve), 2) the arm angle of the human operator (yellow
curve), and 3) the manipulator’s arm angle using the proposed
method (red curve). Without IMU error correction, the deviation
between the manipulator’s arm angle and the operator’s arm angle is
approximately 30°, and the deviation exhibits a nonlinear variation.
After applying the proposed approach, the arm angle deviation is
significantly reduced. The maximum deviation decreased from 30°
to 10°, and the variation trends followed similar patterns.

Figure 16 shows the robot end-effector position, including 1) the
actual end-effector position without compensation (green curve),
2) the operator wrist position (blue curve), and 3) the predicted
position of the end-effector using the proposed approach (purple
curve). Without IMU error correction, the position deviation
between the end-effector position and the operator’s wrist is
approximately 0.25m, and the angle of the end-effector differs
significantly from that of the operator’s wrist. After applying the
proposed approach, the position deviation is reduced to 0.13 m, and
the end-effector’s angle closely matches the operator’s wrist.
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Robot arm angle under remote control.
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Conclusion

This paper proposes a PSO-based modulated LSTM for online
estimation of the IMU state in robot teleoperation. Experimental
results show that the proposed method can effectively estimate the
true attitude of the IMU, thus reducing the cumulative error of the
IMU and the absolute error in teleoperation. However, the proposed
method still has some limitations. For example, there is room for
improvement in the RMSE and cumulative error.
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