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Slip estimation model for 
traversability-based motion 
planning of cargo rover on 
extraterrestrial surface

Taisei Nishishita* and  Genya Ishigami

Graduate School of Integrated Design Engineering, Faculty of Science and Technology, Keio 
University, Yokohama, Japan

As part of the robotics technologies required for In-situ resource utilization 
(ISRU), the development of cargo rovers for transporting resources is needed. 
However, these cargo rovers have unique technical challenges that differ 
from conventional exploration rovers, including the need to traverse rough 
terrains with their varying mass due to transporting payloads. Moreover, research 
addressing these challenges has been limited, and the relevant technologies 
have not been fully established. To address these challenges, this paper proposes 
a parametric model for estimating wheel slippage. The model is formulated 
as a function of four input parameters: slope angle, rover heading angle, 
payload mass, and wheel angular velocity, and is applicable to resource-
transporting rovers with varying mass. Additionally, the use of a parametric 
model reduces computational load, which offers advantages for onboard 
implementation. The proposed estimation model was quantitatively evaluated 
by comparing datasets obtained from multi-body dynamics analysis. This paper 
also introduces a new traversability assessment model which incorporates the 
proposed slip estimation model. We demonstrated the proposed model by 
integrating it into a sampling based motion planning. The simulation result 
of the motion planning show that the planner with our model can generate 
safer motions and enables the rover to reach the target regardless of the
cargo payload.
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 1 Introduction

In recent years, there has been active discussion regarding long-term 
exploration activities of planets and moons. The Artemis program, for example, 
aims to establish technologies for sustainable human presence in space, with 
the Moon as a base for future Mars missions. A key component of Artemis 
is In-Situ Resource Utilization (ISRU), which seeks to use local resources for 
producing water, fuel, and construction materials (Smith et al., 2020; Sanders and 
Kleinhenz, 2024; Werkheiser et al., 2024). Achieving ISRU will require advanced 
robotics, particularly rovers capable of transporting resources to designated locations. 
Additionally, future operations may involve multiple rovers, and there is an increasing 
expectation for rovers to move autonomously while considering traversability. However, 
implementing resource-transporting rovers presents several technical challenges not
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encountered with conventional exploration rovers. First, there are 
differences in the environmental conditions in which rovers are 
operated. One of the most critical risks in rover operations is the 
vehicle getting stuck in sand, which is extremely difficult to recover 
from via remote control, and in some cases, this could directly 
lead to mission failure. Conventional exploration rovers have been 
operated conservatively, avoiding areas prone to slipping, due to the 
unique circumstances of space missions, such as being one-time 
missions and the fact that human repairs are not feasible. However, 
when considering applications for resource transportation, the roads 
in excavation areas are unpaved, and repeated rover movements 
and excavation activities can alter the terrain, impeding the rover 
mobility. Autonomous systems capable of safely operating in such 
harsh environments have not yet been demonstrated in space, 
making this a highly challenging technical task. Next, transporting 
resources means that the rover’s weight varies dynamically. The mass 
properties are closely linked to the rover dynamics, making the rover 
traversability significantly varies.

Experiments have been conducted to investigate the 
traversability of rovers, revealing that slip characteristics are 
influenced by a wide range of factors (Ishigami et al., 2007; 
Chhaniyara et al., 2012; Sutoh et al., 2010). Based on the result, 
numerous non-parametric models have been proposed for 
estimating slip characteristics (Sevastopoulos and Konstantopoulos, 
2022). Non-parametric models have the advantage of being able to 
flexibly represent complex real-world phenomena. Gonzalez et al. 
(2018) proposed a machine learning algorithm to estimate slip 
characteristics using proprioceptive sensors such as RTK-GPS 
and IMUs, without relying on environmental information such as 
terrain slope. A major advantage of this method, which solely uses 
proprioceptive sensors, is that it does not require computationally 
expensive processes like Visual Odometry and is not affected by 
environmental conditions such as optical conditions. Another end-
to-end approach involves a neural network model that estimates 
slip ratio from three parameters: translational speed, slope angle, 
and heading angle (Sakayori and Ishigami, 2021). This model is 
designed to output both the slip ratio and energy consumption 
simultaneously. One key feature of neural network models is 
their ability to integrate various types of information into a 
single architecture for estimation. However, as the phenomena 
become more complex and the dimensionality of the model 
increases, a large amount of training data is required. This raises 
concerns, especially in the context of planetary exploration, about 
whether sufficient datasets can be prepared. Furthermore, the low 
interpretability of black-box models can lead to issues such as 
overfitting. Consequently, ensuring that these models do not exhibit 
unexpected behavior requires exhaustive validation across a wide 
range of scenarios, which makes their application to real missions 
challenging.

The main contributions of this paper are as follows:

• A new parametric slip estimation model that incorporates 
parameters such as mass variation and wheel velocity.

• A new traversability assessment model that integrates the above 
slip estimation model.

In this paper, we propose a new slip estimation model using 
parametric representation. The model is not only interpretable, 

but is formulated based on terramechanics theory to minimize 
deviation from the actual environment. The impact of rover mass 
on slip characteristics is also considered, and incorporates this 
factor into the model. As a result, the model is expected to be 
used for applications where mass variations are anticipated, such 
as construction and resource transport rovers on the lunar surface. 
Moreover, by formulating the model in a parametric manner, 
the computational load is reduced compared to non-parametric 
machine learning-based methods. This advantage facilitates 
implementation on space-grade CPUs with limited computational 
resources. Additionally, we propose a new traversability assessment 
model that uses the developed slip model. This model incorporates 
uncertainties, such as model errors, into its parameters. We further 
demonstrate the motion planning that explicitly considers the slip 
risk using the proposed model.

The outline of this paper is as follows. In Section 2, we propose a 
parametric slip estimation model. Multi-body dynamics simulations 
were conducted to identify the key factors influencing slip, and 
the identified factors were then incorporated into the proposed 
model. Section 3 introduces the traversability assessment model 
incorporating the proposed parametric models. Section 4 presents 
the results of simulation verification that the proposed risk metrics 
can be used to move to the target point while minimizing the risk of 
wheel slip. 

2 Slip estimation model

2.1 Slip metrics definition

First, the concept for evaluating slippage is explained. When a 
rover traverses on loose soil, the wheels of a rover can slip, resulting 
in a difference between the desired and actual velocity vectors 
(Wong, 1978). Slip in the longitudinal direction can be quantified 
by the slip ratio s, as shown in Equation 1:

s = 1−
vx

vref
, (1)

where vx is the linear velocity in the longitudinal direction. The 
vref is the desired velocity vector and is expressed as vref = rω using 
the wheel radius r and the angular velocity of the wheel ω. When 
the wheel does not slip and the desired translational velocity is 
generated, s = 0, and when the wheel is stuck and the velocity is zero, 
s = 1. There are various definitions of lateral slip, but in this study, we 
use the slip angle as defined in Equation 2.

β = tan−1(
vy

vx
), (2)

where vy is the linear velocity in the lateral direction. The slip angle 
is an index that expresses the degree of lateral velocity relative to 
longitudinal velocity in terms of an angle. 

2.2 Parametric slip model

Slippage is closely related to various environmental and rover 
system conditions. When estimating slip ratios and slip angles, 
one approach would be to consider as many of these factors as 
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FIGURE 1
Multi-body dynamics simulation with project chrono.

possible and build nonparametric models using techniques such as 
machine learning. However, while onboard sensors such as LiDAR 
can measure the terrain geometry, it can hardly directly identify soil 
properties such as cohesion and friction. Therefore, in this study, 
we extract parameters that are relatively easy to measure and have 
a significant impact on slip metrics, and approximate them using a 
parametric model for computational simplicity. One advantage of 
the parametric model is that it reduces computational load.

Investigating the relationship between various parameters and 
slip characteristics through experiments is not practical due to the 
enormous number of test cases required and accurately reproducing 
space conditions on Earth is difficult. Therefore, simulating low-
gravity conditions and analyzing rover behavior is also a valuable 
approach for space applications. In fact, studies have analyzed the 
slip characteristics of NASA’s VIPER using a multi-body dynamics 
simulator (Hu et al., 2025). In this study, the open-source software 
Project Chrono was used to create datasets (Tasora et al., 2016; 
Mazhar et al., 2013). Considering the trade-off between computation 
time and model accuracy, the Soil Contact Model (SCM) was 
adopted (Krenn and Hirzinger, 2009). SCM represents the wheel as 
a polygonal mesh and performs contact detection with the ground 
for each grid, calculating the pressure acting on the wheel based 
on the Bekker-Wong theory (Bekker, 1969). This calculation is 
very simple, light on computational load, because assuming ideal 
contact conditions. SCM provides results that are reasonably close 
to actual phenomena, but the soil on actual planetary surfaces may 
consist of mixed soils with different properties and may include 
coarse materials such as gravel and rocks. As another approach, 
Discrete Element Method (DEM) simulations provide results that 
are more accurate than SCM, but it is still known to deviate from 
real-world behavior. In addition, DEM requires long computation 
times, making it unsuitable for applications such as generating large 
datasets, as in this study. Figure 1 shows a simulation of a 4-wheeled 
rover in the Project Chrono environment. The area where the wheels 
are in contact with the soil and pressure is generated is visualized in 
different colors.

The parameter conditions for obtaining the dataset are shown 
in Table 1. The definitions of slope angle γ and heading angle ψ
are illustrated in Figure 2. Slope angle, heading angle, total mass, 
and wheel angular velocity were selected as the parameters with 

TABLE 1  SCM simulation conditions.

Parameter Range

Slope angle γ [degrees] −15, −10, −5, 0, 5, 10

Heading angle ψ [degrees] 0, 15, 30, 45, 60, 75, 90

Linear velocity vx [m/s] 0.05, 0.10, 0.15, 0.20

Total mass m [kg] 20, 40, 60, 80, 100

FIGURE 2
Definition of the slope angle γ, heading angle ψ and reference velocity 
vref.

particularly large effects on slippage, and data were collected for a 
total of 840 cases. The simulation was performed with parameter 
conditions within the range where the analysis was stable. For 
example, when the slope angle exceeds 25° or the translational 
velocity reaches 0.5 m/s, inertial and other dynamic effects become 
significant, causing the assumptions of the quasi-static motion 
model to break down and reducing the model’s reproducibility. 
However, such extreme parameter regions are not included in 
the applicable range of the slip risk metric introduced later in 
this study, because in practice, operation under these conditions 
would be excluded already at the motion planning stage. Therefore, 
these extreme conditions do not need to be explicitly considered 
for the purposes of this study. Constructing a dataset to evaluate 
the robustness of the proposed model is impractical because it 
would require handling a large number of parameters and an 
enormous number of analysis cases. Instead, it is more reasonable 
to assess robustness through experimental validation, which we 
consider as future work, while focusing here on the model’s 
nominal fitting ability. In addition, developing online parameter 
adaptation strategies for slip estimation, given the large parameter 
space, is a substantial challenge beyond the scope of this study 
and is also identified as future work. The slip ratio and slip 
angle are calculated based on measurements from each wheel and 
subsequently aggregated into representative values for the rover as a 
whole. The mass range was determined by assuming that the rover 
itself weighs 20 kg and that the payload can be up to 80 kg. In the 
case of a lunar rover application, the vehicle’s mass and payload are 
expected to be larger. However, the proposed slip estimation model 
described later is parametric, allowing it to be formulated in the 
same manner. Although the behavior should change depending on 
soil conditions, these parameters are not directly used to estimate 
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FIGURE 3
Multi-body dynamics simulation results: (a) slip ratio vs. linear velocity, (b) slip angle vs. linear velocity.

the slip ratio, but rather other parameters are adjusted to simulate 
differences in characteristics depending on soil conditions.

Figure 3 shows the relationship between the slip characteristics and 
the three parameters of heading angle, slope angle and linear velocity 
command. Here, the mass is fixed at 60 kg. Regardless of the other 
parameters, the slip ratio tends to increase as the slope angle increases. 
The slip ratio increases as the heading angle approaches zero, while the 
slip angle tends to decrease. The slip ratio and slip angle also tended to 
change more sensitively with the slope angle as the translational speed 
increased. In addition, while linear velocity had a large effect on the 
slippage when the velocity is small, the slippage do not change much 
when the velocity increases to a certain degree. 

Figure 4 shows the results of the verification of how the slip 
characteristics change depending on the three parameters of heading 
angle, slope angle, and mass, with linear velocity fixed at 0.2 m/s. The 
same relationship between the slope angle, heading angle, and slip 
characteristics can be seen in the figures. As the mass decreases, the 

slip ratio becomes more sensitive to the slope angle. A similar trend 
was observed in the relationship between slip angle and mass.

Based on the trends of various parameters and slip 
characteristics obtained from the dataset, the results of formulating 
the slip ratio s and slip angle β as a parametric model are as follows.

s(γ,ψ,ω,km) = a1 tan (a2γ) ⋅ cos (ψ) ⋅ tanh(a3ω) ⋅ e−a4km + a5, (3)

β(γ,ψ,ω,km) = b1 tan (b2γ) ⋅ sin (ψ) ⋅ tanh(b3ω) ⋅ e−b4km + b5, (4)

where a1…a5 and b1…b5 are hyperparameters, which is tuned 
according to environmental conditions and rover configurations. km
is the ratio of the total mass to the reference mass m0. The slip ratio 
and slip angle have the same equations except where the effect of the 
heading angle is expressed. The influence of each parameter on slip 
characteristics is formulated individually, and the overall model is 
expressed as a product of these terms. For example, when the slope 
angle γ = 0, the rover is assumed to be traveling on flat terrain, and 
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FIGURE 4
Multi-body dynamics simulation results: (a) slip ratio vs. total mass, (b) slip angle vs. total mass.

the first term on the right-hand side becomes zero. The proposed 
slip estimation model is constructed using a dataset generated by 
a multibody dynamics simulator that incorporates uncertainties 
such as rover system noises and environmental disturbances. As a 
result, the proposed model is formulated with explicit consideration 
of these uncertainties. In other words, rather than isolating and 
addressing each source of uncertainty individually, the proposed 
approach adopts a data-driven strategy to verify that the model 
functions robustly under the presence of various uncertainties. The 
following subsection qualitatively discusses the meaning of each 
term in the proposed slip estimation model. 

2.3 Discussion on slip model

The parametric model of slip ratio and slip angle proposed in 
this study is discussed from a terramechanics perspective. Let μs be 

the coefficient of static friction, the conditions for the rover to slip 
against the ground are given by Equation 5

μs > tan (γ) . (5)

In other words, whether the rover slips or not is determined by 
the tangent of the slope angle. While the slip behavior on soft soil 
is not strictly deterministic, we simplify the model by assuming that 
the slip ratio and the slip angle, which indicate how prone the rover 
is to slipping, are proportional to tan γ, as shown in the first factors 
of the first product terms in Equations 3, 4, respectively.

The direction of the drawbar pull that the rover is subjected to 
due to gravity is determined by the heading angle ψ. For example, 
when ψ = 0, the rover is facing upslope, and the slip ratio is the 
highest at this time. Since the drawbar pull force acting on the 
rover is proportional to cos (ψ), the slip ratio is also modeled to be 
proportional to cos (ψ), as shown in the second factor of the first 
product term in Equation 3.
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FIGURE 5
Wheel-soil contact model.

TABLE 2  Hyperparameter optimization results.

Values of i 1 2 3 4 5

ai 0.3988 3.6476 1.4396 1.5659 −0.0335

bi 0.4255 −3.3654 1.3634 1.1243 −0.0065

The normal and shear stresses beneath a wheel on the loose 
soil can be modeled as shown in Figure 5. In Equations 3, 4, the 
effect of angular velocity is formulated using hyperbolic tangents. 
If the angular velocity is sufficiently low, the rover behavior follows 
the terramechanics theory under static conditions. Equation 6 
represents the shear stress τ (Janosi and Hanamoto, 1961).

τi = (c+ p (θ) tan(φ))[1− e−ji/ki] (i = x,y) , (6)

where c represents the cohesion stress, φ is the internal friction angle, 
jx and jy is the total soil deformation. p(θ) is the normal stress. kx
and ky is the shear deformation modules. jx and jy are the total soil 
deformations and are expressed as follows (Wong and Reece, 1967; 
Yoshida and Ishigami, 2004):

jx (θ) = r[θ f − θ− (1− s)(sin(θ f) − sin (θ))] , (7)

jy (θ) = r (1− s)(θ f − θ) ⋅ tan (β) , (8)

where θ f  is the entry angle. As the angular velocity increases, 
the wheels move more soil, which can leads to an increase in 
j. Additionally, from Equations 8, 9, it is clear that as the slip 
ratio s increases, jx also increases. Therefore, the simulation results, 
which show that the slip ratio s increases with angular velocity, are 
consistent with this. Furthermore, jy increases as the slip angle β
increases, indicating that as angular velocity increases, the slip angle 
β also increases. These characteristics are incorporated into the third 
factors in the first product terms of Equations 3, 4, respectively.

The fourth factors in the first product terms of Equations 3, 4 
corresponds to the mass-dependent term. As the mass increases, the 
slip ratio becomes less sensitive to the slope angle, and a similar trend 
is observed for the slip angle. This is likely because the increased 
mass causes the wheels to sink into the ground, increasing the 
contact area between the wheel’s surface and the soil, which in turn 
increases the shear stress. 

2.4 Hyperparameters optimization

In the previous section, the relationship between various 
parameters and slippage was investigated through multi-body 
dynamics simulations, and a new parametric models of slip ratio 
and slip angle were proposed. Here, we discuss the results of 
hyperparameter tuning to investigate how well the proposed model 
can simulate the simulation results. By solving the following 
optimization problem, the hyperparameters of the slip ratio model, 
a ≔ [a1,…,a5] are adjusted.

a∗ = arg min
a
∑

γ
∑
ψ
∑
ω
∑
km

[sSCM (γ,ψ,ω,km) − s(γ,ψ,ω,km)]
2. (9)

The hyperparameters of the slip angle model b≔ [b1,…,b5] are 
obtained by solving the following equation.

b∗ = arg min
b
∑

γ
∑
ψ
∑
ω
∑
km

[βSCM (γ,ψ,ω,km) − β(γ,ψ,ω,km)]
2. (10)

The functions sSCM and βSCM correspond to values contained in 
the simulation dataset. The values of the hyperparameters obtained 
from Equations 9, 10 are shown in Table 2. For the optimization 
algorithm, we used Sequential Quadratic Programming (SQP). The 
error between the parametric model and the simulation data was 
evaluated using the Root Mean Squared Error (RMSE). As a result, 
the RMSE for the slip ratio was 0.0293, and the RMSE for the slip 
angle was 0.0279 radians. Figure 6 shows the results of comparing 
parametric slip models and simulations with fixed mass parameters. 
The primary purpose of calculating RMSE here is to provide reference 
values when setting the modeling errors in the traversability assessment 
model, rather than to evaluate the model’s goodness of fit. On the 
other hand, a previous study examining the relationship between 
slip ratio, slip angle, and wheel-generated drawbar pull reported 
that, despite estimation errors, the resulting drawbar pull remains 
small and does not exhibit large variations Ishigami et al. (2007). 
The dashed lines represent the simulation results, while the solid 
lines indicate the parametric model. It was confirmed that the 
proposed model is expressive enough to effectively reproduce the 
simulation results. Figure 7 is a graph comparing the slip model 
and simulation results with constant linear velocity. Similar to the 
previous results, it can be seen that the proposed model shows similar 
characteristics to the multi-body dynamics simulation. 

3 Traversability assessment model

In this section, we construct a traversability assessment model 
that serves as a guideline for rover motion planning by utilizing 
the proposed parametric model of slip characteristics. By referring 
to this assessment model during motion planning, the rover is 
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FIGURE 6
Model fitting results (solid lines: proposed parametric model; dotted lines: simulation data): (a) slip ratio vs. linear velocity, (b) slip angle vs. 
linear velocity.

expected to avoid the risk of the vehicle getting stuck and achieve safe 
traversal toward its target location. Furthermore, since the model 
adopts a parametric form, it also offers implementation advantages 
in terms of computational efficiency on onboard processors. Since 
slip ratio and slip angle represent different concepts, they are 
nondimensionalized to convert risk factor. When s < 0, the actual 
translational velocity exceeds the commanded velocity, indicating 
that the rover is slipping in the direction of travel. Conversely, s =
1 represents a state where the wheels are completely stuck, while 
s > 1 indicates that the rover is moving backward. Since positive 
and negative values of s correspond to different slip state, separate 
threshold values should be defined to determine hazardous slip 
conditions in each case. Thus, the risk factor Rs for slip ratio is 
computed as follows:

Rs =
{
{
{

|s/sth,up| if s ≥ 0,

|s/sth,low| if x < 0,
(11)

where sth,up > 0 and sth,low > 0. The risk factor Rβ for slip angle 
is written by

Rβ = |β/βth|, (12)

where βth > 0. Figure 8 shows the normalization process of Rs
and Rβ, as defined in Equations 11, 12. sth,low, sth,up and βth are 
design parameters and are set to values so that each risk factor 
exceeds 1 when the slip ratio and slip angle exceed the mission
tolerance.

To account for uncertainties, such as modeling errors, each risk 
factor is treated as a stochastic variable. The risk associated with 
the slip ratio is assumed to follow the distribution Rs ∼N (Rs,σ2

s ). 
Similarly, the risk with respect to the slip angle is assumed to 
follow Rβ ∼N (Rβ,σ2

β). The conversion from random variables to 
risk metrics uses Conditional Value-at-Risk (CVaR) (Majumdar and 
Pavone, 2020; Dixit et al., 2024). CVaR represents the expected 
value of a random variable when it exceeds a certain threshold. 
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FIGURE 7
Model fitting results (solid lines: proposed parametric model; dotted lines: simulation data): (a) slip ratio vs. total mass, (b) slip angle vs. total mass.

FIGURE 8
Normalization process. (a) Risk factor Rs and the slip ratio s, (b) the risk factor Rβ and the slip angle β.
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FIGURE 9
Coordinate frames and rover configuration parameters.

When R follows a normal distribution, CVaR can be obtained 
analytically as follows:

ρ (R) = μ+ σ
ϕ(Φ−1 (α))

1− α
, (13)

where ϕ and Φ is the probability density function and cumulative 
distribution function of a normal distribution, respectively. α ∈
(0,1 ] is the risk level and the larger the value, the more 
conservative the risk metric. Based on Equation 13, ρ(Rs) and ρ(Rβ)
can be calculated, and the risk is determined by whether each 
value exceeds 1. 

4 Performance verification

4.1 Robot kinematic model

Simulation analysis were conducted to validate the effectiveness 
of the proposed traversability assessment model. In this study, we 
assume a differential drive rover as shown in Figure 9. The two-
dimensional position and orientation of the rover’s body coordinate 
system relative to the inertial coordinate system is x ≔ [x,y,θ]T, and 
the rover is assumed to move according to the following kinematics:

x =
[[[[

[

ẋ

ẏ

θ̇

]]]]

]

=
[[[[

[

r ⋅ cos (θ)/2 r ⋅ cos (θ)/2

r ⋅ sin (θ)/2 r ⋅ sin (θ)/2

−r/d r/d

]]]]

]

[

[

ωl

ωr

]

]
, (14)

where ωl and ωr are the angular velocity command values for the left 
and right wheels, respectively.

The differential two-wheel is a nonholonomic system and has 
some limitations, which means that the rover cannot move directly 
sideways and is constrained in the heading direction and the 
direction of travel. Therefore, in order to ensure that the rover can 
follow the generated path properly, a motion planning method has 
to guarantee that the kinematics is satisfied. 

FIGURE 10
Terrain for motion planning simulations.

4.2 Motion planning algorithm

The proposed traversability assessment model should be set as 
a hard constraint for motion planning because it is a metric for 
avoiding vehicle getting stuck and any deviation from the specified 
value may lead to mission failure. As a result, a risk-constrained 
kinodynamic Rapidly-exploring Random Tree (RRT) algorithm was 
adopted for performance evaluation in this study. Algorithm 1 
represents the algorithm of risk-constrained kinodynamic RRT. The 
initial state of the rover is xinit and the target state is xgoal. In this 
case, these state vector consists of position and orientation [x,y,θ]
in a 2D plane. The z can be uniquely obtained from terrain elevation 
data and 2D location. K is the maximum number of iterations. T is 
the tree. C is a set of parameters used to calculate traversability, such 
as the mass m0.

The algorithm is an improvement of the basic RRT (LaValle, 
1998) to handle both kinematic constraints and traversability 

.

1: T.add_vertex(xinit)

2: for k = 1to K do
3:  xrand← Sample()

4:  xnear← NearestVertex(xrand,T)

5:  urand← Sample()

6:  xnew← Propagation(xnear,urand)

7:  ρ(Rs) ← SlipRatioRisk(xnew,urand,C)

8:  ρ(Rβ) ← SlipAngleRisk(xnew,urand,C)

9:  if ρ(Rs) < 1 and ρ(Rβ) < 1 then

10:   T.add_vertex(xnew)

11:   T.add_edge(xnear,xnew)

12:   if distance(xnew,xgoal) < ϵ then

13:     return T

14:    end if

15:  end if

16: end for

17: return T

Algorithm 1. Risk-Constrained Kinodynamic RRT.
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FIGURE 11
Comparison of motion planning results under different risk levels α: (a) generated paths, (b) time history of the linear velocity, and (c) time history of the 
risk metrics. The risk levels were set to (i) α = 0.5, (ii) α = 0.7, (iii) α = 0.9, and (iv) α = 0.95.

constraints (LaValle and Kuffner, 2001). The exploration starts with 
the tree initialized with the rover’s initial state xinit. In each iteration, 
a random sample of the 2D position and orientation xrand is selected 
from the exploration space (line 3). The function NearestVertex(x,T) 

searches for the vertex that is closest to the input x (line 4). In 
this process, relative attitude is not considered; instead, the nearest 
neighbor is determined by computing the Euclidean distance based 
on relative position. urand is a 2D state variable consisting of the 
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TABLE 3  Parameter settings for traversability assessment model.

Parameter Value

Upper threshold sth,up 0.1

Lower threshold sth,low −0.1

Variance σs 0.1

Threshold βth 0.1

Variance σβ 0.1

rotational velocities of the rover’s wheels. A value is randomly 
sampled from the possible range of angular velocities (line 5). 
Propagation(x,u) on line 6 is a function to compute the kinematics 
based on the state x and control input u using Equation 14. 
Substituting xnear and urand into the function, the rover’s state at the 
next time step is calculated and stored as xnew. Instead of directly 
sampling the state variables and adding them to the tree, the control 
inputs are sampled and propagated through time, ensuring that the 
generated random state variables are dynamically and kinematically 
valid. The risks based on the generated state xnew, control input 
urand, and parameter C are calculated (lines 7–8). If the risks exceed 
a threshold, the state is rejected as it presents a high risk of slip. 
Otherwise, the new vertex and edge information is added to the 
tree T. Since the algorithm is sampling-based method, it easily 
handles constraints by simply checking if the new state satisfies the 
constraints. If xnew is sufficiently close to the goal, the exploration is 
terminated; otherwise, it continues (lines 9–15).

In this study, the effectiveness of the traversability metric is 
validated using a risk-constrained kinodynamic RRT. The primary 
objective of the simulation is to evaluate the performance of the 
modeling method; therefore, a basic RRT was intentionally used 
as the motion planning algorithm. Improvements to the motion 
planning algorithm are considered beyond the scope for this work. 
Note that the proposed risk metric is not limited to this approach 
and can be applied to other motion planning techniques as well. 
Numerous constraint-aware motion planning methods exist, and 
they can be flexibly selected based on the specific application. 

4.3 Simulation results

The terrain map used for validation is shown in Figure 10. 
The starting point is set at [x,y] = [10,3] and the goal point at 
[x,y] = [10,17]. The rover is assumed to initially face the slope 
direction, ψ = 0. The heading angle of the rover at the goal point 
is not specified. Both points are placed on a flat surface with no 
slope. The slope between the starting point and the goal point 
was set to an inclination of 15°. When torque limitations are 
present, slopes beyond a certain angle cannot be climbed, which 
can affect operational strategies. However, torque limitations are 
hardware constraints of the rover itself and are not directly effected 
to the slip estimation model or the traversability assessment model 
proposed in this study. Therefore, the effects of torque limitations 
are not considered in this simulation. In addition, performance 

comparisons on actual hardware are out of scope in this paper and 
the feasibility of implementing the algorithm on a space-grade CPU 
is not also evaluated.

Figure 11a shows a graph comparing how the generated paths 
change depending on the risk level. In this analysis, wheel radius r =
0.168 m, the distance between wheels d = 0.5 m, and mass m = 50 kg 
were assumed. The hyperparameters for slip ratio and slip angle were 
obtained through optimization calculations, using the values from 
Table 2. The parameter settings for the traversability assessment 
model are shown in Table 3. The risk levels for slip ratio and slip 
angle, denoted by α, are set to the same values, and in Figure 11a, 
they are set to (i) 0.5, (ii) 0.7, (iii) 0.9, and (iv) 0.95, respectively. 
By adopting the Kinodynamic RRT, smooth paths that satisfy the 
kinematic constraints were successfully generated. In all conditions, 
paths were generated that climbed diagonally in sloped areas. The 
risk metric for slip ratio decreases as the heading angle increases 
when climbing the slope, whereas the risk metric for slip angle 
decreases as the heading angle decreases, as shown in Equations 3, 4. 
Therefore, it can be considered that the path climbs the slope at a 
balanced angle that reduces both risk metrics.

The comparison of the time history of the rover’s linear velocity is 
shown in Figure 11b. During periods when the rover is not climbing 
a slope, the linear velocity reaches nearly 0.3 m/s, but it decreases 
during slope climbing. Specifically, in Figure 11b, i the velocity 
during climbing remains below 0.2 m/s, while in Figure 11b, iv, it 
decreases to below 0.1 m/s. Thus, it was confirmed that the linear 
velocity during slope climbing tends to become lower as the value of 
α increases. Equations 3, 4 show that both the slip ratio and slip angle 
risk metrics decrease as the linear velocity decreases. These results 
demonstrate that the conservativeness of the motion planning can 
be adjusted by the risk level α.

Figure 11c is the comparison of the time history of the risk 
metrics. From this figure, we can observe that the both risks of slip 
ratio and slip angle increased during the slope-climbing phase, and 
by reducing the linear velocity, the rover was able to adjust the risks 
to avoid exceeding the threshold of 1 while still moving. Even when 
the rover is located in an area where the slope angle is 0°, ρ(Rs) and 
ρ(Rβ) were not zero, indicating that a positive bias exists. This bias 
is caused by the second term in Equation 13, and it becomes larger 
as the risk level α increases. This explains why the conservativeness 
of the motion planning varies depending on the value of α.

Next, we evaluated how the motion planning results varied with 
mass. Figure 12a shows the generated paths compared by different 
masses. The hyperparameters of the slip estimation model were set 
based on the values listed in Table 2. Parameters for the traversability 
assessment model were taken from Table 3, and the risk levels 
α for both slip ratio and slip angle were set to 0.7. Regarding 
the variances, they were set to include a margin, considering the 
modeling errors of the slip estimation model: the RMSE of slip ratio 
was 0.0293, and the RMSE of slip angle was 0.0279. In all cases, the 
generated path tended to climb the slope diagonally. In Figures 12a 
iii, iv there are sections where the path climbs more
directly uphill.

This is because the increased mass results in a lower slip ratio, 
as described by Equation 3, which makes it less risky to move more 
directly in the slope direction.

The comparison of the time history of the rover’s linear velocity 
is shown in Figure 12b. As the mass increases, there is a tendency for 
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FIGURE 12
Comparison of motion planning results under different total mass m: (a) generated paths, (b) time history of the linear velocity, and (c) time history of 
the risk metrics. The total masses were set to (i) m = 30 kg, (ii) m = 50 kg, (iii) m = 70 kg, and (iv) m = 90 kg.

the linear velocity while climbing a slope to become faster. Both the 
slip ratio and slip angle decrease with increasing mass, as shown in 
Equations 3, 4. Conversely, higher linear velocity tend to increase the 
slip ratio and slip angle. In other words, increasing the mass reduces 

the risk of slipping, which allows for higher linear velocity during 
slope climbing.

Figure 12c shows the time history of the risk metric for each case. 
The risk metrics remained below 1 in all cases. It was demonstrated

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1638667
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nishishita and Ishigami 10.3389/frobt.2025.1638667

that by using the RRT algorithm, the rover can safely reach the target 
position even under conditions of increased slip risk due to mass 
parameter settings, by appropriately adjusting its linear velocity and 
trajectory. 

5 Conclusion

In this study, we first proposed parametric models of slip ratio 
and slip angle, which use four input parameters: slope angle, heading 
angle, mass, and wheel angular velocity. By comparing the results 
with multi-body dynamics simulations, it was confirmed that the 
proposed model has sufficient expressive power to estimate slip. We 
also proposed a traversability assessment model that incorporates the 
parametric models for slip ratio and slip angle. This assessment model 
is designed to allow tuning, taking into account uncertainties such as 
modeling errors. To evaluate the effectiveness of the proposed method, 
we conducted a simulation evaluation. As an example of a motion 
planning method, we introduced the risk-constrained kinodynamic 
RRT algorithm, which incorporates the proposed assessment model. 
Through the simulation results, we analyzed how the coefficients of 
the slip parametric model affect the generated paths. For future work, 
it would be useful to verify the effectiveness of the proposed slip 
estimation model through real-world tests. The test results would be an 
important step toward practical application. Additionally, we intend 
to model the estimation errors of the four input parameters when 
calculated onboard and evaluate their impact on the robustness of the 
motion planning approach. 
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