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Slip estimation model for
traversability-based motion
planning of cargo rover on
extraterrestrial surface

Taisei Nishishita* and Genya Ishigami

Graduate School of Integrated Design Engineering, Faculty of Science and Technology, Keio
University, Yokohama, Japan

As part of the robotics technologies required for In-situ resource utilization
(ISRU), the development of cargo rovers for transporting resources is needed.
However, these cargo rovers have unique technical challenges that differ
from conventional exploration rovers, including the need to traverse rough
terrains with their varying mass due to transporting payloads. Moreover, research
addressing these challenges has been limited, and the relevant technologies
have not been fully established. To address these challenges, this paper proposes
a parametric model for estimating wheel slippage. The model is formulated
as a function of four input parameters: slope angle, rover heading angle,
payload mass, and wheel angular velocity, and is applicable to resource-
transporting rovers with varying mass. Additionally, the use of a parametric
model reduces computational load, which offers advantages for onboard
implementation. The proposed estimation model was quantitatively evaluated
by comparing datasets obtained from multi-body dynamics analysis. This paper
also introduces a new traversability assessment model which incorporates the
proposed slip estimation model. We demonstrated the proposed model by
integrating it into a sampling based motion planning. The simulation result
of the motion planning show that the planner with our model can generate
safer motions and enables the rover to reach the target regardless of the
cargo payload.

terramechanics, motion planning, traversability, slip estimation, SCM, project chrono

1 Introduction

In recent vyears, there has been active discussion regarding long-term
exploration activities of planets and moons. The Artemis program, for example,
aims to establish technologies for sustainable human presence in space, with
the Moon as a base for future Mars missions. A key component of Artemis
is In-Situ Resource Utilization (ISRU), which seeks to wuse local resources for
producing water, fuel, and construction materials (Smith etal, 2020; Sanders and
Kleinhenz, 2024; Werkheiser et al., 2024). Achieving ISRU will require advanced
robotics, particularly rovers capable of transporting resources to designated locations.
Additionally, future operations may involve multiple rovers, and there is an increasing
expectation for rovers to move autonomously while considering traversability. However,
implementing resource-transporting rovers presents several technical challenges not
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encountered with conventional exploration rovers. First, there are
differences in the environmental conditions in which rovers are
operated. One of the most critical risks in rover operations is the
vehicle getting stuck in sand, which is extremely difficult to recover
from via remote control, and in some cases, this could directly
lead to mission failure. Conventional exploration rovers have been
operated conservatively, avoiding areas prone to slipping, due to the
unique circumstances of space missions, such as being one-time
missions and the fact that human repairs are not feasible. However,
when considering applications for resource transportation, the roads
in excavation areas are unpaved, and repeated rover movements
and excavation activities can alter the terrain, impeding the rover
mobility. Autonomous systems capable of safely operating in such
harsh environments have not yet been demonstrated in space,
making this a highly challenging technical task. Next, transporting
resources means that the rover’s weight varies dynamically. The mass
properties are closely linked to the rover dynamics, making the rover
traversability significantly varies.

the
traversability of rovers, revealing that slip characteristics are

Experiments have been conducted to investigate
influenced by a wide range of factors (Ishigami et al., 2007;
Chhaniyara et al., 2012; Sutoh et al., 2010). Based on the result,
numerous non-parametric models have been proposed for
estimating slip characteristics (Sevastopoulos and Konstantopoulos,
2022). Non-parametric models have the advantage of being able to
flexibly represent complex real-world phenomena. Gonzalez et al.
(2018) proposed a machine learning algorithm to estimate slip
characteristics using proprioceptive sensors such as RTK-GPS
and IMUs, without relying on environmental information such as
terrain slope. A major advantage of this method, which solely uses
proprioceptive sensors, is that it does not require computationally
expensive processes like Visual Odometry and is not affected by
environmental conditions such as optical conditions. Another end-
to-end approach involves a neural network model that estimates
slip ratio from three parameters: translational speed, slope angle,
and heading angle (Sakayori and Ishigami, 2021). This model is
designed to output both the slip ratio and energy consumption
simultaneously. One key feature of neural network models is
their ability to integrate various types of information into a
single architecture for estimation. However, as the phenomena
become more complex and the dimensionality of the model
increases, a large amount of training data is required. This raises
concerns, especially in the context of planetary exploration, about
whether sufficient datasets can be prepared. Furthermore, the low
interpretability of black-box models can lead to issues such as
overfitting. Consequently, ensuring that these models do not exhibit
unexpected behavior requires exhaustive validation across a wide
range of scenarios, which makes their application to real missions
challenging.
The main contributions of this paper are as follows:

o A new parametric slip estimation model that incorporates
parameters such as mass variation and wheel velocity.

o A new traversability assessment model that integrates the above
slip estimation model.

In this paper, we propose a new slip estimation model using
parametric representation. The model is not only interpretable,
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but is formulated based on terramechanics theory to minimize
deviation from the actual environment. The impact of rover mass
on slip characteristics is also considered, and incorporates this
factor into the model. As a result, the model is expected to be
used for applications where mass variations are anticipated, such
as construction and resource transport rovers on the lunar surface.
Moreover, by formulating the model in a parametric manner,
the computational load is reduced compared to non-parametric
machine learning-based methods. This advantage facilitates
implementation on space-grade CPUs with limited computational
resources. Additionally, we propose a new traversability assessment
model that uses the developed slip model. This model incorporates
uncertainties, such as model errors, into its parameters. We further
demonstrate the motion planning that explicitly considers the slip
risk using the proposed model.

The outline of this paper is as follows. In Section 2, we propose a
parametric slip estimation model. Multi-body dynamics simulations
were conducted to identify the key factors influencing slip, and
the identified factors were then incorporated into the proposed
model. Section 3 introduces the traversability assessment model
incorporating the proposed parametric models. Section 4 presents
the results of simulation verification that the proposed risk metrics
can be used to move to the target point while minimizing the risk of
wheel slip.

2 Slip estimation model
2.1 Slip metrics definition

First, the concept for evaluating slippage is explained. When a
rover traverses on loose soil, the wheels of a rover can slip, resulting
in a difference between the desired and actual velocity vectors
(Wong, 1978). Slip in the longitudinal direction can be quantified
by the slip ratio s, as shown in Equation 1:

V.
s=1- 2, (1)

Vref

where v, is the linear velocity in the longitudinal direction. The
Vef is the desired velocity vector and is expressed as v ¢ = rw using
the wheel radius r and the angular velocity of the wheel w. When
the wheel does not slip and the desired translational velocity is
generated, s = 0, and when the wheel is stuck and the velocity is zero,
s = 1. There are various definitions of lateral slip, but in this study, we
use the slip angle as defined in Equation 2.

v
ﬁ:tan_1<—y),
VX

where v, is the linear velocity in the lateral direction. The slip angle

2

is an index that expresses the degree of lateral velocity relative to
longitudinal velocity in terms of an angle.

2.2 Parametric slip model

Slippage is closely related to various environmental and rover
system conditions. When estimating slip ratios and slip angles,
one approach would be to consider as many of these factors as
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FIGURE 1
Multi-body dynamics simulation with project chrono.

possible and build nonparametric models using techniques such as
machine learning. However, while onboard sensors such as LIDAR
can measure the terrain geometry, it can hardly directly identify soil
properties such as cohesion and friction. Therefore, in this study,
we extract parameters that are relatively easy to measure and have
a significant impact on slip metrics, and approximate them using a
parametric model for computational simplicity. One advantage of
the parametric model is that it reduces computational load.

Investigating the relationship between various parameters and
slip characteristics through experiments is not practical due to the
enormous number of test cases required and accurately reproducing
space conditions on Earth is difficult. Therefore, simulating low-
gravity conditions and analyzing rover behavior is also a valuable
approach for space applications. In fact, studies have analyzed the
slip characteristics of NASAs VIPER using a multi-body dynamics
simulator (Hu et al., 2025). In this study, the open-source software
Project Chrono was used to create datasets (Tasora et al., 2016;
Mazharetal., 2013). Considering the trade-off between computation
time and model accuracy, the Soil Contact Model (SCM) was
adopted (Krenn and Hirzinger, 2009). SCM represents the wheel as
a polygonal mesh and performs contact detection with the ground
for each grid, calculating the pressure acting on the wheel based
on the Bekker-Wong theory (Bekker, 1969). This calculation is
very simple, light on computational load, because assuming ideal
contact conditions. SCM provides results that are reasonably close
to actual phenomena, but the soil on actual planetary surfaces may
consist of mixed soils with different properties and may include
coarse materials such as gravel and rocks. As another approach,
Discrete Element Method (DEM) simulations provide results that
are more accurate than SCM, but it is still known to deviate from
real-world behavior. In addition, DEM requires long computation
times, making it unsuitable for applications such as generating large
datasets, as in this study. Figure 1 shows a simulation of a 4-wheeled
rover in the Project Chrono environment. The area where the wheels
are in contact with the soil and pressure is generated is visualized in
different colors.

The parameter conditions for obtaining the dataset are shown
in Table 1. The definitions of slope angle y and heading angle v
are illustrated in Figure 2. Slope angle, heading angle, total mass,
and wheel angular velocity were selected as the parameters with
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TABLE 1 SCM simulation conditions.

Parameter Range

Slope angle y [degrees] -15,-10, -5, 0, 5, 10

Heading angle y [degrees] 0, 15, 30, 45, 60, 75, 90

Linear velocity v, [m/s] 0.05, 0.10, 0.15, 0.20

Total mass m [kg] 20, 40, 60, 80, 100

FIGURE 2
Definition of the slope angle y, heading angle y and reference velocity

Vief-

particularly large effects on slippage, and data were collected for a
total of 840 cases. The simulation was performed with parameter
conditions within the range where the analysis was stable. For
example, when the slope angle exceeds 25° or the translational
velocity reaches 0.5 m/s, inertial and other dynamic effects become
significant, causing the assumptions of the quasi-static motion
model to break down and reducing the model’s reproducibility.
However, such extreme parameter regions are not included in
the applicable range of the slip risk metric introduced later in
this study, because in practice, operation under these conditions
would be excluded already at the motion planning stage. Therefore,
these extreme conditions do not need to be explicitly considered
for the purposes of this study. Constructing a dataset to evaluate
the robustness of the proposed model is impractical because it
would require handling a large number of parameters and an
enormous number of analysis cases. Instead, it is more reasonable
to assess robustness through experimental validation, which we
consider as future work, while focusing here on the model’s
nominal fitting ability. In addition, developing online parameter
adaptation strategies for slip estimation, given the large parameter
space, is a substantial challenge beyond the scope of this study
and is also identified as future work. The slip ratio and slip
angle are calculated based on measurements from each wheel and
subsequently aggregated into representative values for the rover as a
whole. The mass range was determined by assuming that the rover
itself weighs 20 kg and that the payload can be up to 80 kg. In the
case of a lunar rover application, the vehicle’s mass and payload are
expected to be larger. However, the proposed slip estimation model
described later is parametric, allowing it to be formulated in the
same manner. Although the behavior should change depending on
soil conditions, these parameters are not directly used to estimate
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FIGURE 3

Multi-body dynamics simulation results:

the slip ratio, but rather other parameters are adjusted to simulate
differences in characteristics depending on soil conditions.

Figure 3 shows the relationship between the slip characteristicsand
the three parameters of heading angle, slope angle and linear velocity
command. Here, the mass is fixed at 60 kg. Regardless of the other
parameters, the slip ratio tends to increase as the slope angle increases.
The slip ratio increases as the heading angle approaches zero, while the
slip angle tends to decrease. The slip ratio and slip angle also tended to
change more sensitively with the slope angle as the translational speed
increased. In addition, while linear velocity had a large effect on the
slippage when the velocity is small, the slippage do not change much
when the velocity increases to a certain degree.

Figure 4 shows the results of the verification of how the slip
characteristics change depending on the three parameters of heading
angle, slope angle, and mass, with linear velocity fixed at 0.2 m/s. The
same relationship between the slope angle, heading angle, and slip
characteristics can be seen in the figures. As the mass decreases, the
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(a) slip ratio vs. linear velocity, (b) slip angle vs. linear velocity.

slip ratio becomes more sensitive to the slope angle. A similar trend
was observed in the relationship between slip angle and mass.
Based on the trends of various parameters and slip
characteristics obtained from the dataset, the results of formulating
the slip ratio s and slip angle 3 as a parametric model are as follows.

s(y, v, w,k,,) = a, tan (a,y) - cos (y) - tanh (a;0) - % + a5, (3)

By, v, w,k,,) = b tan (b,y) - sin (y) - tanh (b;w) - ¢ bukm 4 bs, (4)

where a,...a; and b, ...bs are hyperparameters, which is tuned
according to environmental conditions and rover configurations. k,,,
is the ratio of the total mass to the reference mass m,. The slip ratio
and slip angle have the same equations except where the effect of the
heading angle is expressed. The influence of each parameter on slip
characteristics is formulated individually, and the overall model is
expressed as a product of these terms. For example, when the slope
angle y = 0, the rover is assumed to be traveling on flat terrain, and
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Multi-body dynamics simulation results: (a) slip ratio vs. total mass, (b) slip angle vs. total mass

the first term on the right-hand side becomes zero. The proposed
slip estimation model is constructed using a dataset generated by
a multibody dynamics simulator that incorporates uncertainties
such as rover system noises and environmental disturbances. As a
result, the proposed model is formulated with explicit consideration
of these uncertainties. In other words, rather than isolating and
addressing each source of uncertainty individually, the proposed
approach adopts a data-driven strategy to verify that the model
functions robustly under the presence of various uncertainties. The
following subsection qualitatively discusses the meaning of each
term in the proposed slip estimation model.

2.3 Discussion on slip model

The parametric model of slip ratio and slip angle proposed in
this study is discussed from a terramechanics perspective. Let y_ be
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the coeflicient of static friction, the conditions for the rover to slip
against the ground are given by Equation 5

©)

In other words, whether the rover slips or not is determined by
the tangent of the slope angle. While the slip behavior on soft soil

s > tan(y).

is not strictly deterministic, we simplify the model by assuming that
the slip ratio and the slip angle, which indicate how prone the rover
is to slipping, are proportional to tan y, as shown in the first factors
of the first product terms in Equations 3, 4, respectively.

The direction of the drawbar pull that the rover is subjected to
due to gravity is determined by the heading angle y. For example,
when y =0, the rover is facing upslope, and the slip ratio is the
highest at this time. Since the drawbar pull force acting on the
rover is proportional to cos (), the slip ratio is also modeled to be
proportional to cos(y), as shown in the second factor of the first
product term in Equation 3.
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FIGURE 5
Wheel-soil contact model.

TABLE 2 Hyperparameter optimization results.

Values of i 1 2 3 4 ’ 5
a 0.3988 3.6476 14396 | 15659 | —0.0335
b, 04255 | -33654 | 13634 | 1.1243 | —0.0065

The normal and shear stresses beneath a wheel on the loose
soil can be modeled as shown in Figure 5. In Equations 3, 4, the
effect of angular velocity is formulated using hyperbolic tangents.
If the angular velocity is sufficiently low, the rover behavior follows
the terramechanics theory under static conditions. Equation 6
represents the shear stress 7 (Janosi and Hanamoto, 1961).

T,-=(c+p(9)tan((p))[1—e’jx‘/kf] (i=xy), (6)

where c represents the cohesion stress, ¢ is the internal friction angle,
Jy and j, is the total soil deformation. p(6) is the normal stress. k,
and k, is the shear deformation modules. j, and j, are the total soil
deformations and are expressed as follows (Wong and Reece, 1967;
Yoshida and Ishigami, 2004):

j (0)=r[6;~0-(1-3)(sin(6;) -sin(6))], ()

jy(©)=r(1-5)(6;-6)-tan(B), 8)

where 0 is the entry angle. As the angular velocity increases,
the wheels move more soil, which can leads to an increase in
j. Additionally, from Equations 8, 9, it is clear that as the slip
ratio s increases, j, also increases. Therefore, the simulation results,
which show that the slip ratio s increases with angular velocity, are
consistent with this. Furthermore, j, increases as the slip angle
increases, indicating that as angular velocity increases, the slip angle
B also increases. These characteristics are incorporated into the third
factors in the first product terms of Equations 3, 4, respectively.

Frontiers in Robotics and Al

10.3389/frobt.2025.1638667

The fourth factors in the first product terms of Equations 3, 4
corresponds to the mass-dependent term. As the mass increases, the
slip ratio becomes less sensitive to the slope angle, and a similar trend
is observed for the slip angle. This is likely because the increased
mass causes the wheels to sink into the ground, increasing the
contact area between the wheel’s surface and the soil, which in turn
increases the shear stress.

2.4 Hyperparameters optimization

In the previous section, the relationship between various
parameters and slippage was investigated through multi-body
dynamics simulations, and a new parametric models of slip ratio
and slip angle were proposed. Here, we discuss the results of
hyperparameter tuning to investigate how well the proposed model
can simulate the simulation results. By solving the following
optimization problem, the hyperparameters of the slip ratio model,
a=[a,,...,as] are adjusted.

@ =argmin Y Y Y Y [ssen (k) -s(r vk, ). ©)

@ y v @k,

The hyperparameters of the slip angle model b := [b,,...,bs] are
obtained by solving the following equation.

b = arg;ninzzzz [Bsent (w0 k,) = B(rp k)P (10)

y ¥ ok,

The functions sgcy; and fgq, correspond to values contained in
the simulation dataset. The values of the hyperparameters obtained
from Equations 9, 10 are shown in Table 2. For the optimization
algorithm, we used Sequential Quadratic Programming (SQP). The
error between the parametric model and the simulation data was
evaluated using the Root Mean Squared Error (RMSE). As a result,
the RMSE for the slip ratio was 0.0293, and the RMSE for the slip
angle was 0.0279 radians. Figure 6 shows the results of comparing
parametric slip models and simulations with fixed mass parameters.
The primary purpose of calculating RMSE here is to provide reference
values when setting the modeling errorsin the traversability assessment
model, rather than to evaluate the model’s goodness of fit. On the
other hand, a previous study examining the relationship between
slip ratio, slip angle, and wheel-generated drawbar pull reported
that, despite estimation errors, the resulting drawbar pull remains
small and does not exhibit large variations Ishigami et al. (2007).
The dashed lines represent the simulation results, while the solid
lines indicate the parametric model. It was confirmed that the
proposed model is expressive enough to effectively reproduce the
simulation results. Figure 7 is a graph comparing the slip model
and simulation results with constant linear velocity. Similar to the
previous results, it can be seen that the proposed model shows similar
characteristics to the multi-body dynamics simulation.

3 Traversability assessment model

In this section, we construct a traversability assessment model
that serves as a guideline for rover motion planning by utilizing
the proposed parametric model of slip characteristics. By referring
to this assessment model during motion planning, the rover is
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Model fitting results (solid lines: proposed parametric model; dotted lines:
linear velocity.

expected to avoid the risk of the vehicle getting stuck and achieve safe
traversal toward its target location. Furthermore, since the model
adopts a parametric form, it also offers implementation advantages
in terms of computational efficiency on onboard processors. Since
slip ratio and slip angle represent different concepts, they are
nondimensionalized to convert risk factor. When s < 0, the actual
translational velocity exceeds the commanded velocity, indicating
that the rover is slipping in the direction of travel. Conversely, s =
1 represents a state where the wheels are completely stuck, while
s> 1 indicates that the rover is moving backward. Since positive
and negative values of s correspond to different slip state, separate
threshold values should be defined to determine hazardous slip
conditions in each case. Thus, the risk factor R for slip ratio is
computed as follows:

Is/sa o ifs>0,
R, = th.up 11)
Is/shpowl  ifx <0,
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simulation data): (a) slip ratio vs. linear velocity, (b) slip angle vs.

where sy, >0 and sy, o, > 0. The risk factor Ry for slip angle
is written by

Ry = 1B/By (12)

where f,; > 0. Figure 8 shows the normalization process of R
and Rﬁ, as defined in Equations 11, 12. Sthylow Sthup and B are
design parameters and are set to values so that each risk factor
exceeds 1 when the slip ratio and slip angle exceed the mission
tolerance.

To account for uncertainties, such as modeling errors, each risk
factor is treated as a stochastic variable. The risk associated with
the slip ratio is assumed to follow the distribution R, ~ N'(R,02).
Similarly, the risk with respect to the slip angle is assumed to
follow Rp ~ N (Rﬁ,oz). The conversion from random variables to
risk metrics uses Conditional Value-at-Risk (CVaR) (Majumdar and
Pavone, 2020; Dixit et al., 2024). CVaR represents the expected
value of a random variable when it exceeds a certain threshold.
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FIGURE 9
Coordinate frames and rover configuration parameters.

When R follows a normal distribution, CVaR can be obtained
analytically as follows:

-1
p(R) =u+oM, (13)
-
where ¢ and @ is the probability density function and cumulative
distribution function of a normal distribution, respectively. « €
(0,1] is the risk level and the larger the value, the more
conservative the risk metric. Based on Equation 13, p(R,) and p(Rﬁ)
can be calculated, and the risk is determined by whether each
value exceeds 1.

4 Performance verification
4.1 Robot kinematic model

Simulation analysis were conducted to validate the effectiveness
of the proposed traversability assessment model. In this study, we
assume a differential drive rover as shown in Figure 9. The two-
dimensional position and orientation of the rover’s body coordinate
system relative to the inertial coordinate system is x = [x,y,0]", and
the rover is assumed to move according to the following kinematics:

X r-cos(6)/2 r-cos(0)/2
x=|y|=|rsin@/2 rsin(0)/2 :l . (4)
0 —r/d r/d '

where w; and w, are the angular velocity command values for the left
and right wheels, respectively.

The differential two-wheel is a nonholonomic system and has
some limitations, which means that the rover cannot move directly
sideways and is constrained in the heading direction and the
direction of travel. Therefore, in order to ensure that the rover can
follow the generated path properly, a motion planning method has
to guarantee that the kinematics is satisfied.
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FIGURE 10
Terrain for motion planning simulations

4.2 Motion planning algorithm

The proposed traversability assessment model should be set as
a hard constraint for motion planning because it is a metric for
avoiding vehicle getting stuck and any deviation from the specified
value may lead to mission failure. As a result, a risk-constrained
kinodynamic Rapidly-exploring Random Tree (RRT) algorithm was
adopted for performance evaluation in this study. Algorithm 1
represents the algorithm of risk-constrained kinodynamic RRT. The
initial state of the rover is x;,;, and the target state is x,,,;. In this
case, these state vector consists of position and orientation [x,y, 0]
in a 2D plane. The z can be uniquely obtained from terrain elevation
data and 2D location. K is the maximum number of iterations. T is
the tree. C1is a set of parameters used to calculate traversability, such

as the mass ).
The algorithm is an improvement of the basic RRT (LaValle,

1998) to handle both kinematic constraints and traversability

T.add_vertex(X;nit)
. for k=1to K do
X ang — Sample()
X,oqar — NearestVertex(X,,,q, 1)

1
2

3

4

5! U,y < Sample()
6: X, — Propagation(X,c, U snq)

7: p(Rg) « SlipRatioRisk(X ey U sn4,C)
8: p(Rp) « SlipAngleRisk(X ey, U zng,0)
if p(Rs) <1 and p(Rg <1 then
10: T.add_vertex(X,e,)

11: T.add_edge(X,earXnen)

O

12: if distance(X,euXgoar) <€ then
13: return T

14: end if

15: end if

16: end for

17: return T

Algorithm 1. Risk-Constrained Kinodynamic RRT.
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FIGURE 11

Comparison of motion planning results under different risk levels a: (a) generated paths, (b) time history of the linear velocity, and (c) time history of the
risk metrics. The risk levels were set to (i) « = 0.5, (i) « = 0.7, (iii) «= 0.9, and (iv) a = 0.95.

constraints (LaValle and Kuffner, 2001). The exploration starts with
the tree initialized with the rover’ initial state x;,,;;. In each iteration,
arandom sample of the 2D position and orientation x,,,, is selected

from the exploration space (line 3). The function NearestVertex(x, T)
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searches for the vertex that is closest to the input x (line 4). In
this process, relative attitude is not considered; instead, the nearest
neighbor is determined by computing the Euclidean distance based
on relative position. u,,,; is a 2D state variable consisting of the
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TABLE 3 Parameter settings for traversability assessment model.

Parameter Value

Upper threshold s, 0.1
Lower threshold sy, .., -0.1
Variance o 0.1
Threshold 8, 0.1
Variance ag 0.1

rotational velocities of the rover’s wheels. A value is randomly
sampled from the possible range of angular velocities (line 5).
Propagation(x, #) on line 6 is a function to compute the kinematics
based on the state x and control input u using Equation 14.
into the function, the rover’s state at the

Substituting x,,,,. and u

near rand

next time step is calculated and stored as x,,,,,. Instead of directly

new*
sampling the state variables and adding them to the tree, the control
inputs are sampled and propagated through time, ensuring that the
generated random state variables are dynamically and kinematically
valid. The risks based on the generated state x,,,,, control input
U, and parameter C are calculated (lines 7-8). If the risks exceed
a threshold, the state is rejected as it presents a high risk of slip.
Otherwise, the new vertex and edge information is added to the
tree T. Since the algorithm is sampling-based method, it easily
handles constraints by simply checking if the new state satisfies the
constraints. If x,,,, is sufficiently close to the goal, the exploration is
terminated; otherwise, it continues (lines 9-15).

In this study, the effectiveness of the traversability metric is
validated using a risk-constrained kinodynamic RRT. The primary
objective of the simulation is to evaluate the performance of the
modeling method; therefore, a basic RRT was intentionally used
as the motion planning algorithm. Improvements to the motion
planning algorithm are considered beyond the scope for this work.
Note that the proposed risk metric is not limited to this approach
and can be applied to other motion planning techniques as well.
Numerous constraint-aware motion planning methods exist, and
they can be flexibly selected based on the specific application.

4.3 Simulation results

The terrain map used for validation is shown in Figure 10.
The starting point is set at [x,y] = [10,3] and the goal point at
[x,y] =[10,17]. The rover is assumed to initially face the slope
direction, y = 0. The heading angle of the rover at the goal point
is not specified. Both points are placed on a flat surface with no
slope. The slope between the starting point and the goal point
was set to an inclination of 15°. When torque limitations are
present, slopes beyond a certain angle cannot be climbed, which
can affect operational strategies. However, torque limitations are
hardware constraints of the rover itself and are not directly effected
to the slip estimation model or the traversability assessment model
proposed in this study. Therefore, the effects of torque limitations
are not considered in this simulation. In addition, performance
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comparisons on actual hardware are out of scope in this paper and
the feasibility of implementing the algorithm on a space-grade CPU
is not also evaluated.

Figure 11a shows a graph comparing how the generated paths
change depending on the risk level. In this analysis, wheel radius r =
0.168 m, the distance between wheels d = 0.5 m, and mass m = 50 kg
were assumed. The hyperparameters for slip ratio and slip angle were
obtained through optimization calculations, using the values from
Table 2. The parameter settings for the traversability assessment
model are shown in Table 3. The risk levels for slip ratio and slip
angle, denoted by a, are set to the same values, and in Figure 11a,
they are set to (i) 0.5, (ii) 0.7, (iii) 0.9, and (iv) 0.95, respectively.
By adopting the Kinodynamic RRT, smooth paths that satisfy the
kinematic constraints were successfully generated. In all conditions,
paths were generated that climbed diagonally in sloped areas. The
risk metric for slip ratio decreases as the heading angle increases
when climbing the slope, whereas the risk metric for slip angle
decreases as the heading angle decreases, as shown in Equations 3, 4.
Therefore, it can be considered that the path climbs the slope at a
balanced angle that reduces both risk metrics.

The comparison of the time history of the rover’s linear velocity is
shown in Figure 11b. During periods when the rover is not climbing
a slope, the linear velocity reaches nearly 0.3 m/s, but it decreases
during slope climbing. Specifically, in Figure 11b, i the velocity
during climbing remains below 0.2 m/s, while in Figure 11b, iv; it
decreases to below 0.1 m/s. Thus, it was confirmed that the linear
velocity during slope climbing tends to become lower as the value of
aincreases. Equations 3, 4 show that both the slip ratio and slip angle
risk metrics decrease as the linear velocity decreases. These results
demonstrate that the conservativeness of the motion planning can
be adjusted by the risk level a.

Figure 11c is the comparison of the time history of the risk
metrics. From this figure, we can observe that the both risks of slip
ratio and slip angle increased during the slope-climbing phase, and
by reducing the linear velocity, the rover was able to adjust the risks
to avoid exceeding the threshold of 1 while still moving. Even when
the rover is located in an area where the slope angle is 0°, p(R) and
p(Rg) were not zero, indicating that a positive bias exists. This bias
is caused by the second term in Equation 13, and it becomes larger
as the risk level o increases. This explains why the conservativeness
of the motion planning varies depending on the value of a.

Next, we evaluated how the motion planning results varied with
mass. Figure 12a shows the generated paths compared by different
masses. The hyperparameters of the slip estimation model were set
based on the values listed in Table 2. Parameters for the traversability
assessment model were taken from Table 3, and the risk levels
a for both slip ratio and slip angle were set to 0.7. Regarding
the variances, they were set to include a margin, considering the
modeling errors of the slip estimation model: the RMSE of slip ratio
was 0.0293, and the RMSE of slip angle was 0.0279. In all cases, the
generated path tended to climb the slope diagonally. In Figures 12a
iii, iv there are sections where the path climbs more
directly uphill.

This is because the increased mass results in a lower slip ratio,
as described by Equation 3, which makes it less risky to move more
directly in the slope direction.

The comparison of the time history of the rover’s linear velocity
is shown in Figure 12b. As the mass increases, there is a tendency for
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FIGURE 12

Comparison of motion planning results under different total mass m: (a) generated paths, (b) time history of the linear velocity, and (c) time history of
the risk metrics. The total masses were set to (i) m = 30 kg, (ii) m =50 kg, (iii) m =70 kg, and (iv) m =90 kg.

the linear velocity while climbing a slope to become faster. Both the  the risk of slipping, which allows for higher linear velocity during
slip ratio and slip angle decrease with increasing mass, as shown in  slope climbing.

Equations 3, 4. Conversely, higher linear velocity tend to increase the Figure 12¢ shows the time history of the risk metric for each case.
slip ratio and slip angle. In other words, increasing the mass reduces ~ The risk metrics remained below 1 in all cases. It was demonstrated
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that by using the RRT algorithm, the rover can safely reach the target
position even under conditions of increased slip risk due to mass
parameter settings, by appropriately adjusting its linear velocity and
trajectory.

5 Conclusion

In this study, we first proposed parametric models of slip ratio
and slip angle, which use four input parameters: slope angle, heading
angle, mass, and wheel angular velocity. By comparing the results
with multi-body dynamics simulations, it was confirmed that the
proposed model has sufficient expressive power to estimate slip. We
also proposed a traversability assessment model that incorporates the
parametric models for slip ratio and slip angle. This assessment model
is designed to allow tuning, taking into account uncertainties such as
modeling errors. To evaluate the effectiveness of the proposed method,
we conducted a simulation evaluation. As an example of a motion
planning method, we introduced the risk-constrained kinodynamic
RRT algorithm, which incorporates the proposed assessment model.
Through the simulation results, we analyzed how the coefficients of
the slip parametric model affect the generated paths. For future work,
it would be useful to verify the effectiveness of the proposed slip
estimation model through real-world tests. The test results would be an
important step toward practical application. Additionally, we intend
to model the estimation errors of the four input parameters when
calculated onboard and evaluate their impact on the robustness of the
motion planning approach.
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