

TYPE Original Research
PUBLISHED 05 November 2025
DOI 10.3389/frobt.2025.1633131

OPEN ACCESS

EDITED BY

Anthony Tzes,
New York University Abu Dhabi, United
Arab Emirates

REVIEWED BY

Nikolaos Evangeliou,
New York University Abu Dhabi, United
Arab Emirates
Yadan Zeng,
Nanyang Technological University, Singapore

*CORRESPONDENCE

Yuchen Zhao,
 yuchen.zhao078@seu.edu.cn

RECEIVED 22 May 2025
ACCEPTED 02 October 2025
PUBLISHED 05 November 2025

CITATION

Zhao Y and Chen Y (2025) A shape control
and object manipulation technique based on
function approximation for robotic surfaces.
Front. Robot. AI 12:1633131.
doi: 10.3389/frobt.2025.1633131

COPYRIGHT

© 2025 Zhao and Chen . This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A shape control and object
manipulation technique based
on function approximation for
robotic surfaces

Yuchen Zhao � 1,2* and Yuxin Chen 1,2

1School of Automation, Southeast University, Nanjing, Jiangsu, China, 2Ministry of Education Key
Laboratory of Measurement and Control of Complex Systems of Engineering, Southeast University,
Nanjing, Jiangsu, China

Robotic surfaces consisting of many actuators can change shape to perform
tasks, such as object transportation and sorting. Increasing the number of
actuators can enhance the robot’s capacity, but controlling a large number of
actuators is a challenging problem that includes issues such as the increased
system-wide refresh time. We propose a novel control method that has constant
refresh times, no matter how many actuators are in the robot. Having a
distributed nature, the method first approximates target shapes, then broadcasts
the approximation coefficients to the actuators and relies on itself to compute
the inputs. To confirm the system size-independent scaling, we build a robot
surface and measure the refresh time as a function of the number of actuators.
We also perform experiments to approximate target shapes, and a good
agreement between the experiments and theoretical predictions is achieved.
Our method is more efficient because it requires fewer control messages to
coordinate robot surfaces with the same accuracy. We also present a modeling
strategy for the complex robot–object interaction force based on our control
method and derive a feedback controller for object transportation tasks. This
feedback controller is further tested by object transportation experiments, and
the results demonstrate the validity of the model and the controller.

KEYWORDS

robotic surfaces, object manipulation, cellular robots, distributed robot systems, pin
array, refresh time scaling

 1 Introduction

Robotic surfaces (Liu et al., 2021; Walker, 2017) typically consist of many actuation
modules arranged in an array and can serve as intelligent conveyors (Uriarte et al.,
2019; Chen et al., 2024), adaptive structures (Wang et al., 2019; Salerno et al., 2020),
molding tools (Tian et al., 2022), treadmills (Smoot et al., 2019), shape displays, or
haptic interfaces (Leithinger et al., 2014; Nakagaki et al., 2019). The capability of a
robotic surface is related to the number of actuators it has as the robot can perform
multiple tasks in parallel with more actuators. Developments in soft robotics also
bring new solutions to meet the demand of actuators (Liu et al., 2021; Johnson et al.,
2023; Robertson et al., 2019). However, coordinating many actuators is challenging.
Generating control commands for them requires a large amount of resources, such as

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1633131
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1633131&domain=pdf&date_stamp=
2025-11-03
mailto:yuchen.zhao078@seu.edu.cn
mailto:yuchen.zhao078@seu.edu.cn
https://doi.org/10.3389/frobt.2025.1633131
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1633131/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1633131/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1633131/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1633131/full
http://orcid.org/0000-0002-9779-4577
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

physical space, equipment, and communication bandwidth (Winck
and Book, 2013). A noticeable quantity is the time delay between
the first and the last actuator when updating the system to a new
shape, which we note as the refresh time τ. A small τ is preferable
in real-time tasks. Standard communication methods send control
messages to each actuator in a sequential fashion (Follmer et al.,
2013; Xue et al., 2024; Siu et al., 2018; Stanley et al., 2016; Leithinger
and Ishii, 2010), so τ has an O(N) scaling where N is the number
of actuators. To control more actuators, strategies such as using
multiple communication channels, sharing one motion controller in
a small group of motors, or performing multithreading in the central
computer have been employed (Johnson et al., 2023; Follmer et al.,
2013; Xue et al., 2024; Siu et al., 2018). By optimizing system
architectures, these methods are helpful in reducing refresh time,
but the fundamental scaling relation of the refresh time remains
unchanged, and the scalability can be improved.

A non-sequential and more scalable approach is to drive each
row and column of the actuator array, similar to the matrix drive
technique used in LED displays (Chen et al., 2011). This method
simultaneously controls all actuators on the same row or column.
Early works from Zhu, Winck, and Book et al. show that the
scaling of τ can be reduced to O(√N). They developed a control
loop structure based on singular value decomposition that can
drive a hydraulic cylinder robotic array to any shape via 2√N row
and column controllers (Zhu and Book, 2004; 2006; Winck and
Book, 2012; Winck et al., 2012; Winck and Book, 2017). In this
method, a “control coupler” valve is needed for each cylinder to
couple the row and column control signals (Ferguson et al., 2020).
In soft robotics, a compact fluidic logic module is designed to
regulate the input row and column pressures for a pneumatic soft
linear actuator array (Jadhav et al., 2023). In addition, a robotic
surface is fabricated with ionic polymer stripes and controlled using
peripheral voltages (Wang et al., 2023). However, these methods also
lack scalability because the τ is still dependent on system size. The
τ scaling issue can become more severe when the area density of
actuators increases.

We propose a novel control method for robotic surfaces
that has a system size-independent refresh time. In general, a
continuous surface profile is first discretized, and the relevant
actuation commands are passed to each actuator. Our method
focuses on the second part of shape control, so we simply
discretize the surface profile on a square lattice representing the
pin array. When approximating the discretized surface profile,
it is worth noting that (1) neighboring actuators usually have
similar inputs, so there is no need to send the inputs to every
one of them; (2) the discretized surface profile may be simply
parameterized, such as Gaussian function-like patterns used in
object manipulation tasks (Johnson et al., 2023), in which only
two center coordinates are important. Therefore, in our method, a
central computer broadcasts features of the target shape to individual
actuation modules and allows them to calculate their inputs. Our
method is illustrated in Figure 1. This approach results in a size-
independent scaling O(1) of the refresh time, and the residual error
of shape approximation becomes dependent on the target shape and
approximation algorithm. We experimentally validate the refresh
time scaling on a 4× 4 pin array setup and compare it to the
sequential control method. In order to achieve any shape, we use
function forms with universal approximation properties and employ

the discrete cosine transform (DCT) and the matching pursuit (MP)
algorithms (Mallat and Zhang, 1993) to compute shape features.
We further characterize shape change capability by displaying six
distinct shapes and measuring their height profiles. In addition to the
improvement in the refresh time scaling, our control method allows
an interpretable modeling procedure for the complex robot–object
interaction force F. Based on the force model, we design a feedback
controller for object transportation tasks and perform experiments
to confirm its validity.

The rest of the article is organized as follows. In Section 2, we
present the control method and algorithms to compute the shape
features, derive equations for the object manipulation problem, and
describe the robot setup. In Section 3, we present our experimental
results on the time-delay scaling, quantification of shape-changing
capacity, and object manipulation tasks. Section 4 contains a
discussion and concluding remarks.

2 Materials and methods

2.1 Control message calculation

Our control method is illustrated in Figure 1. One highlight
is that the control messages γt are broadcast to all actuation
modules at each time step t to eliminate communication time delays
between the modules. In our case, an actuation module refers to
an independent system that includes an actuator, a sensor, and
microcontrollers (see Section 2.3). The actuator control subsystem
is responsible for regulating the state of each actuator to a given
reference so that all actuators can represent a given surface shape. γt
is a set of shape feature parameters used by each module to compute
the reference input for the actuator control subsystem. To be able
to generate any target shape using broadcast control message γt,
we utilize function forms with universal approximation ability. To
be more specific, once the modules receive the same γt, they can
use a single function form f(xn,γt) with universal approximation
properties and a local parameter xn to compute their inputs, making
it possible for the robot to approximate any target shape. In practice,
the function forms are stored on each module microcontroller board
for computing the input, and xn is an identification value stored on
the nth module.

The universal approximation ability guarantees that any target
shape can be exactly represented by a set of γt. Depending on the
function forms, different algorithms exist for computing γt. We
use two function forms to test the refresh time scaling and shape-
changing ability. We first choose the cosine function because we
can use off-the-shelf discrete cosine transform (DCT) algorithms to
compute the shape features as γt. The input fn to the actuator control
subsystem in the nth module is represented as:

fn = a0 + 2
N−1

∑
t=1

atcos(kt (2xn + 1)) , kt =
πt
2N

(1)

where at and kt are the amplitude and the wave vector at time t,
and γt = (at,kt). The shape features at and kt are computed using
the DCT algorithm from the Scipy package fftpack. To construct
an accurate target shape, several γt are broadcast to all modules.
Upon receiving the messages, each module computes the input fn

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

FIGURE 1
An illustration of our control method. At time t, the control message γt is broadcast to all modules. In the nth module, the reference input is calculated
via a function f and its arguments γt and xn. This input is sent to an actuator subsystem that generates a targeted position.

according to Equation 1 with its own xn. There is no system size-
dependent refresh time because all modules can simultaneously
receive γt and compute fn in parallel.

Considering that the cosine function may not be efficient in
representing localized patterns, we use time–frequency functions to
capture both extended and localized patterns:

fn =
∞

∑
t=0

atgσt
(xn − pt)cos(

2πkt

N
xn +ϕt) (2)

where gσ(x) = ∑
+∞
j=−∞ exp (−π(x−jN

σ
)2) is a Gaussian function

made periodically on the domain [0,N]. The coefficients in γt =
(at,σt,pt,kt,ϕt) are the amplitude, scale, position, frequency, and
phase of the time–frequency function, respectively. If σt is large, and
gσ(x) ≈ 1 over all x in the domain, then Equation 2 reduces to the
cosine functions in Equation 1. To compute γt for any target shape,
we use the matching pursuit algorithm (MP) for a dictionary of
time-frequency atoms. The details of the algorithm can be found
in Mallat and Zhang (1993). We implement the MP algorithm
in Python. It takes a given pattern { fn}

N
n=1 and computes {γt}

M
t=0

sequentially to some prescribed M. The reconstructed pattern using
finite terms converges to the original one exponentially fast, as
proven in Mallat and Zhang (1993). In practice, we find that only a
few terms are needed to approximate a pattern with good accuracy
(see Section 3.2).

For object manipulation tasks, we use the Gaussian radial basis
function (GRBF):

fn =
∞

∑
t=0

at exp(−
(xn − d(x)t)

2
+ (yn − d(y)t)

2

σ2
t

) (3)

where the coefficients in γt = (at,σt,d
(x)
t ,d
(y)
t) are the amplitude,

width, and center coordinates of each Gaussian function. (xn,yn) are
two identification values stored on the nth module, representing the
2D physical coordinates of the module in the array. Although the
GRBF is capable of universal approximation (Park and Sandberg,
1991), algorithms computing γt may require time-consuming
optimization. For this reason, we do not use this function form in
shape-changing experiments. Instead, we use the GRBF in object
manipulation tasks, and one term in Equation 3 is sufficient.

2.2 Force model and controller design

Generally speaking, an object is governed by the equation of
motion of its center of mass F =mẌ(t), where m is the object mass,
and F is the total force acting on the object. F includes the object’s
gravity, and, importantly, the nonlinear interactions between the
object and the robotic surface. Because the surface usually involves

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

FIGURE 2
An illustration of the idealized object–robot surface interaction.

many degrees of freedom, determining a sequence of shapes to
manipulate an object is a difficult task. Previous works achieve
object manipulations with empirical relations (Johnson et al.,
2023; Chen et al., 2021) or black-box machine learning models
(Wang et al., 2023; Xue et al., 2024), both of which require data for
calibration. Our proposed control method utilizes shape features to
generate surfaces, therefore effectively reducing the computational
burden of searching for the right shapes. Furthermore, the shape we
used allows us to build a reasonable force model to guide feedback
controller design for object manipulation tasks; hence, no training
data are needed to design the controller.

In this work, we manipulate an object with a shape defined by
one concave (a < 0) GRBF in Equation 3 and a time-varying center
coordinate Xc(t) ≔ (d(x),d(y)). The robot shape control problem is
drastically reduced to determining two scalars contained in Xc(t).
We first derive the force model. We assume that the surface is
smooth, the object is always in contact with the surface, and the
net force is purely determined by the static geometric configurations
of the shape and the object. The case is illustrated in Figure 2.
Depending on the local shape gradient, the object experiences a
small net force either near or far away from the shape center Xc(t),
and a large net force when ‖X(t) −Xc(t)‖ is comparable to the width
of the Gaussian σ. Hence, the magnitude of F can be expressed as

‖F‖ = g(
‖X (t) −Xc (t)‖

σ
), (4)

where g(s) is a single-peak function that takes the maximum value at
s = 1 and remains zero when s ≈ 0 and s≫ 1. Furthermore, because
the GRBF has radial symmetry, the direction of F points to the shape
center Xc(t):

F̂ =
Xc (t) −X (t)
‖Xc (t) −X (t)‖

. (5)

Equations 4, 5 together provide a force model when using a
single GRBF to generate the shape.

F =
Xc (t) −X (t)
‖Xc (t) −X (t)‖

g(
‖X (t) −Xc (t)‖

σ
). (6)

The force model is obtained via order-of-magnitude analysis and
a symmetry consideration; hence, many realistic details are not

captured, such as the discreteness of the robot shape due to finite
actuator size, object rotation, friction, and visco-elastic force at
contact. We also focus on the planar movement of the object and
ignore its vertical motion.

The feedback controller needs to compute the shape center Xc(t)
based on the object center X(t) and the target location Xref. Based on
the force model in Equation 6, two heuristics can be used to guide
the design of the controller. First, we want to maintain the net force
direction F̂ toward the target position Xref, so the object will not
go elsewhere. Moreover, we should keep Xc(t) next to X(t), so the
driving force F does not vanish. Mathematically, we first demand that
F point toward Xref. This constraint is expressed as

Xc (t) −X (t) = λ(Xref −X (t)) , (7)

where λ determines the magnitude of Xc(t). Based on the assumption
that g(s) takes the maximum value at s = 1, we can demand

‖Xc (t) −X (t)‖ = σ (8)

so that ‖F‖ attains its greatest value. Equations 7, 8 together
determine Xc(t):

Xc (t) = (λ− 1) (Xref −X (t)) +Xref (9)

λ = σ
‖Xref −X (t)‖

. (10)

The first and second terms (Equation 9) are the proportional
feedback and feed-forward control, respectively. The control loop
is shown in Figure 3.

To ensure control process stability when X(t) approaches Xref
and λ becomes large, we restrict λ to [0,1], so that Xc(t) = Xref
whenever ‖Xref −X(t)‖ ≤ σ. This nonlinear constraint replaces (10)
and can be expressed as

λ =min(σ
‖Xref −X (t)‖

, 1), (11)

The controller only has one parameter σ to tune. In fact, σ should
be comparable to the characteristic size of the object, leaving
no additional parameter to adjust. Even though the force model
is under many assumptions, the controller derived from it can
accomplish object transportation tasks, as demonstrated in the
experiments (Section 3.3), showing that this procedure is effective.
However, as there is no explicit incorporation of disturbance
rejection mechanisms, its performance may be compromised if the
object–surface interactions largely deviate from ideal assumptions,
as shown in Section 3.3. In practice, the control loop functions as
follows: first, the position of the object X(t) is captured by a camera,
and this information is sent to the central computer to compute
the shape center Xc(t) according to Equations 9, 11. The central
computer then sends Xc(t) along with other shape features required
by the GRBF (Equation 3) to the robot, and the robot displays
the shape to manipulate the object. The GRBF is not used in the
feedback controller. Details of the hardware implementation are
described in Section 2.3.

2.3 Experimental setup

The robot has a modular design and consists of 16 identically built
linear actuation modules arranged in an 85-mm-long square area. As

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

FIGURE 3
A control block diagram for the object manipulation task.

FIGURE 4
(A) A picture of a single linear actuation module. The rectangular cover is removed to expose mechanical components. (B) Block diagram of the
electronic system. The arrows indicate information flows. (C) The robot and vision servo system for object manipulation.

shown in Figure 4A, the module is approximately 47 mm wide and
200 mm long. A lead screw of 100 mm in length and 2.5 mm in pitch
converts the rotary motion of a DC motor to linear motion. The screw
is attached to a slider with two additional guide rails parallel to the
lead screw to reduce friction. Two limit switches are installed at the
two ends to prevent overshoot that may damage the motor, and the
overall arrangement of mechanical parts results in a linear stroke of
70 mm. A complete module also has a rectangular cover attached to the
slider (see Figure 4C). The DC motor (Tianqu Motor, N20VA, 1:10)
has a rated maximum speed of 50 revolutions per second, leading
to a nominal speed of 125 mm/s of the linear motion. The motor’s
tail has a Hall rotary encoder to measure the angular position of the
shaft, defined as en for the nth module. The vertical position hn of the
linear actuator is proportional to en. All mechanical components and
electronics are mounted on 3D printed frames, and the modules are
mounted on a portable aluminum frame. When varying the system
size N, we simply connect or disconnect modules from the robot.

The electronics block diagram is shown in Figure 4B. The
controller of the actuator is an Arduino Nano board, which is

programmed as a closed-loop control system for shaft position en
and can receive control messages from a central computer. A PID
controller running every 16 ms (62.5 Hz) is in use. Two additional
modules are connected to the controller board. A DRV8871 board is
used to drive the motor with the standard pulse width modulation
(PWM) technique. An MCP2515 CAN bus board is used for
receiving control messages. All actuation modules are on one CAN
bus, and the protocol is CAN 2.0B. While identical in hardware,
there is a unique identification variable xn ranging from 0 to 15 in
the nth module’s software. This variable is involved in reference input
calculation in Equations 1–3, or acts as the CAN message identifier
in the sequential control method. A central computer (Raspberry Pi
4B) is used to generate target shapes { fn} and the control messages
{γt} to drive the modules. In our method, we broadcast a single
γt in one standard CAN data frame (which holds 8 bytes of data),
meaning the coefficients are represented with limited resolution. The
data frame also contains information on which function form to
use, so we can switch between different approximation methods.
An additional Arduino Nano and an MCP2515 module serve as

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

the CAN bus sender that interfaces with the central computer and
the modules.

For the object manipulation tasks, a simple vision servo system
is built to track the object and compute the control output Xc(t) to
drive the robot. The setup is shown in Figure 4C. A web camera
(Raspberry Pi Camera V1) is mounted above the robot and faces
downward to capture an image sequence at a rate about 22Hz.
Each image contains a colored object and the actuation modules
as the background. The object coordinate X(t) is the center of
mass of the largest connected component in a binarized image,
and we use a color threshold to identify the object. All images
are processed with OpenCV in Python. A calibrated 2D affine
transform is used to relate the object coordinates in images to those
in the lab. Given X(t) and the target position Xref, the new shape
center position Xc(t) is computed according to Equations 9, 11.
We reduce noise in Xc(t) with a moving average filter of size 15 to
reduce actuator jittering. The smoothed Xc(t) is sent to the robot for
actuation, and the control loop update frequency is the same as that
of the image.

3 Results

3.1 Experiments on refresh time

We first perform an experiment to measure the refresh time
where there is no actuator dynamics and only communication
delay between the central computer and the actuator modules. The
robot is refreshed between two uniform patterns { fn = 0}Nn=1 and
{ fn = 1}Nn=1 at a constant rate using either the standard sequential
control or our method described in (1). Note that because all
actuators have equal fn values, only one CAN message is needed.
To measure fn on each actuator, we correlate the variable with
a PWM output on the controller board and convert the PWM
output using a digital-to-analog converter based on an LCR low-
pass circuit. The signals of the first and the Nth actuation module are
simultaneously measured on an oscilloscope (Rigol DS1202EZ), and
the time delay is extracted. We vary N from 2 to 16. Typical signals
are shown in Figure 5A and (B) for a system with N = 2 actuators.
We extract the refresh time using normalized cross-correlation and
average over at least 20 values.

The average refresh time is plotted as a function of N for
both methods in Figure 5C. As expected, for the sequential control
method, the refresh time shows a linear increasing trend, and the
slope equals the time period Tmsg to send one control message. We
vary Tmsg from 5 ms to 20 ms, and the predicted trends agree well
with experimental results. In contrast, for our method, the refresh
time remains at zero for all N and all Tmsg, showing that there is no
time delay among the modules due to system size or communication
delay. Therefore, we confirm that our method indeed achieves a
system size-independent refresh time when no actuator dynamics
is present.

In the second experiment, we take the actuator dynamics into
account by measuring the refresh time between the shaft positions
en of the first and the last actuator. In addition to the above, the robot
is refreshed with a traveling wave pattern, so the refresh time is also
determined by the wave speed v. The traveling wave is a quarter of a

FIGURE 5
Experimental refresh time scaling without actuator dynamics. (A) The
reference inputs of two actuators when using a sequential control
method. The yellow (blue) line is the first (last) actuator in a
two-actuator system; (B) the reference inputs of the same actuators
when using our control method; (C) the averaged refresh time is
plotted as a function of the number of actuators for the two control
methods and at different communication rates (expressed in Tmsg).
Each point is an average of at least 20 refresh time values observed in
(A) or (B). The darker color represents larger Tmsg. The triangles
(circles) are experimentally measured refresh times with the sequential
(our) control method, and the dashed lines are theoretical predictions.

moving sinusoid over N actuators, given by

fn = sin(kNxn − vt) (12)

where kN =
π

2(N−1)
 is the system-size-dependent wave vector chosen

such that the last actuator xN = N− 1 always has a quarter phase,
kNxN =

π
2

. t is the current time. The control message is sent every
Tmsg = 5 ms from the central computer. For the sequential control
method, fn is computed and transmitted to each actuator. For our
method, we express fn using a simplified version of Equation 2
because Equation 12 can be rewritten as fn = a cos (kNxn − π/2) +
b cos (kNxn), where a = cos (vt) and b = − sin (vt). The coefficients
kN, a, and b are broadcast to all modules in one CAN data
frame. The observed traveling waves for both methods are shown
in Figures 6A,B, and the average refresh time τ as a function
of the number of actuators N is shown in Figure 6C. For our
method, τ stays constant for all N, hence validating the system
size-independent refresh time when both signal transmission and
actuator dynamics are present. According to Equation 12, the
refresh time between the first and the last actuator should be the
time to catch up their phase difference, that is, τ = kN(xN − x1)/v =
π/(2v). In all experiments, we set v = 2π/T and T = 3000 ms, so

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

FIGURE 6
Experimental refresh time scaling with actuator dynamics. (A) The
motor shaft angular position when using the sequential control
method. The yellow (blue) trace is the first (last) actuator in a
16-actuator system, with its refresh time indicated in the dashed line;
(B) the shaft position of the same actuators when using our control
method. (C) Refresh time is plotted as a function of the number of
actuators for the two control methods. The triangles and circles are
experimentally measured refresh times using the sequential and our
control methods, respectively. Each point is an average of at least six
refresh times, and the error bar is one standard deviation. The dashed
lines are theoretical predictions.

τ = T/4 = 750 ms. Our experimental results in Figure 6C agree with
this value, with a relative error less than 1% for all N, and the
discrepancy is likely due to random errors. For the sequential
control method, τ is larger than the theoretical 750 ms and linearly
increases as N increases. When one module is added to the
system, it takes an additional amount of time to transmit control
messages to that module, so the refresh time for the sequential
control method is τseq = T/4+Tmsg(N− 1). This prediction is
plotted as a dashed line in Figure 6C, which also agrees with the
experimental results.

3.2 Characterization of shape change

To quantify the approximation accuracy of our control method,
we drive the robot to six distinct shapes and quantify the
errors between the target and the measured shapes. The shape
measurement apparatus is shown in Figure 7A. A laser distance
meter (Shanghai Kedi, KG01) is used to measure the height change
of each actuator, and the scan process is automated via a homemade
Cartesian robot. The system has an accuracy of 0.2 mm. The six

shapes are listed in Table 1. All shapes are represented as a 4×
4 matrix, where the elements are actuator vertical positions hn.
The actuation module’s planar coordinates (xn,yn) are taken from
{0,1,2,3}, and we stretch the vertical scale so that each shape can
fill the entire 70-mm stroke of the actuator. The parabola shape
displayed by the robot is shown in Figure 7B, and all shapes are
illustrated as the insets in Figures 7C–H. For each run of the
experiment, we start with the robot leveled at half stroke length.
Then, the robot is actuated through a series of intermediate shapes.
Following each shape actuation, we perform a height scan to
track the shape change and compute the relative error between
the intermediate shape and the target shape using root mean
squared error. The intermediate shape is achieved incrementally
with additional information from one control message γt that
contains all coefficients in one approximation term in Equations
1, 2. For the sequential control method, the term is the reference
vertical position hn of a single actuator. For our method, we test both
function approximation formulas in Equations 1, 2. To compute the
coefficients, we reshape the 4× 4 shape matrix into a vector and apply
the DCT or MP algorithm. For the order of shape actuation, we
prioritize terms with a higher amplitude or hn values.

The relative error as a function of the number of terms
(or equivalently, the number of control messages) is shown in
Figures 7C–H. Our control method with the MP algorithm can
outperform the sequential control method in the sense that it
requires fewer terms to approximate the target shape for the same
error. For example, it takes 11 terms for the sequential method
to approximate the parabola shape to a 20% relative error, while
it takes six and seven terms for the MP and DCT algorithms,
respectively (Figure 7D). We also find that within our methods,
MP can approximate both extended and localized patterns with
fewer terms, while DCT approximates extended patterns better than
localized patterns. The DCT algorithm outperforms the sequential
method in three target shapes (plane, parabola, and checker) but can
be worse for localized patterns. For example, for the peak shape, it
takes only one term for MP to reach a perfect match, while DCT
needs all 16 terms. The relative errors obtained from experiments
are well captured by theoretical predictions based on Equations
1, 2, except in the parabola, checker, and random cases, where
MP leads to residual errors that are not captured by Equation 2.
These residual errors are due to the limited coefficient resolution
used in computing the approximation terms. To include the five
coefficients from Equation 2 into one CAN data frame, st and
at are allocated with 2 bytes each, and pt, kt, and ϕt are 1 byte
each. By recalculating intermediate shapes using these less precise
numbers, we can match the experimental results, as shown by the
dotted lines in Figures 7D–F.

3.3 Closed-loop object manipulation

We demonstrate the object manipulation capability of the robot
based on our closed-loop control method derived in Section 2.2.
Motion videos are provided in the Supplementary Material. The
objects are 3D printed light-weight spheres of diameter Dsphere =
6, 8 cm and cubes of edge length Dcube = 6, 8 cm. A spherical cap is
attached to the top of each rectangular cover to prevent the object
from stabilizing itself on the cover. A single GRBF generates robot

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

FIGURE 7
Characterization of shape-changing ability. (A) The experimental setup
for shape measurement; (B) the parabola shape displayed by the
robot; (C–H) the relative error of the shape is plotted as a function of
the number of terms used to approximate the shape. The triangles
(circles) are from the sequential (our) control method. The orange and
blue colors of the circles correspond to the DCT and MP algorithms,
respectively. Each data point is an average of three independent runs.
The error bar is smaller than the marker size, so it is not shown. The
dashed lines are theoretical predictions calculated with 64-bit floating
point numbers, and the dotted blue lines are calculated with 16- and
8-bit resolution-limited numbers. The inset displays the target shape.

TABLE 1 Names and expressions of the six shapes.

Name Expression Name Expression

Identity a 4× 4 identity matrix Plane z = x+ 2y

Parabola z = 2x2 + 3y2 − 3xy Checkers Checkerboard pattern

Peak raise a single module at
x = 1, y = 2

Random Random uniform
distribution

shape to drive the object, and its amplitude a = −D and width σ = D,
where D is the object’s characteristic size and equals Dsphere or Dcube,
so that the robot shape is comparable to the object size. A negative
a implies a concave valley for holding the object. Although the
object can remain stable inside the valley when the shape is frozen,
our controller always changes the shape such that the object never

establishes force equilibrium until the target position is reached.
Note that our controller does not assume the shape of the object,
and the only tunable parameter in the controller is σ, which we set
to D.

The initial and target position of the object are at opposite
corners of the robot, and the snapshots of typical transportation
processes are shown in Figures 8A,B. The objects can be repeatedly
transported to their target positions, showing our closed-loop
control method is robust. We collect 10 independent runs for
each object, and the trajectories are visualized in Figure 8C and
(E) for spheres and cubes, respectively. For the Dsphere = 6 cm
sphere, at the beginning of the transportation, different trajectories
are close to each other, as shown by the thin blue lines in
Figure 8C. They start to diverge when the object hits the cover
of an actuation module, marked by a dashed blue square region.
Despite this random disturbance, our closed-loop control method
can manipulate the sphere to the target position Xref, shown by the
converging trajectories towards Xref marked by a black dot. For the
Dsphere = 8 cm sphere, the trajectories diverge less than the smaller
sphere. This trend is likely due to the fact that the object-to-actuator
size ratio is greater for the larger sphere; hence, the disturbance due
to the finite size effect is smaller, and the force model in Equation 6 is
more applicable. We also compare the dynamics of the shape center
Xc(t) with the object center X(t), and the relative distance to Xref
as a function of time is shown in Figure 8D. Initially, X(t) remains
constant, presumably due to the response time of the actuator and
the inertia of the object. Then, the Dsphere = 6 cm sphere undergoes
rapid movement with an average speed of about 8.8 cm/s. Finally, the
object is stabilized near the target position, and a constant offset of
approximately 0.75 cm persists. This offset is likely due to the fact
that steady-state errors cannot be eliminated by the proportional
feedback controller we designed in Equation 9. The convergence
of Xc(t) is similar to X(t), and it converges to Xref around t = 2 s,
effectively stops the motion of the shape center. For the Dsphere =
8 cm sphere, the convergence is faster, and the constant offset is also
presented.

Similar analysis can be performed for the cubic objects, and the
results are shown in Figures 8E,F. The trajectories of cubes are much
more scattered than those of the spheres. This can be understood
as cubes are more irregular than spheres and experience more
random forces during transportation. In addition, the trajectories
of the larger cube diverge less than those of the smaller cube. The
convergence of the distance to the target position is also less smooth,
and sometimes cubes can go away from the target, as shown by
the increasing trend in Figure 8F. The Dcube = 6 cm cube may not
converge to a stable final position, as indicated by the nonzero
‖Xc(t) −Xref‖. This may be due to its small size and shape so that
the force disturbance is relatively large.

To further test the robustness of the design controller, we change
the surface property by removing all spherical caps attached to
the pins, so the surface becomes flat. This modification increases
the randomness during object manipulation, as the objects can
sometimes stabilize themselves on the pins or roll away quickly
on the flat surface. In addition, the pins are sharper and stiffer,
giving greater force disturbance than the soft spherical cap.
Without modifying any control parameter, we perform the same
object transportation experiments for two spheres and collect 10
independent runs for each object. The resulting trajectories are

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

FIGURE 8
Object transportation experiments. (A) Snapshots of transportation processes of a sphere with Dsphere = 8 cm. The target position is marked by a red dot
in each image; (B) the same plot as (A) except for cubes with Dcube = 6 cm. (C) trajectories of 10 independent runs for each sphere. The thin blue (thick
green) lines are for spheres with Dsphere = 6 (8) cm. The target position is marked by a black dot. The blue dashed square region indicates an actuation
module, which corresponds to the blue shaded region in the first image of (A). (D) The distance between the object center X(t) (shape center Xc(t)) and
the target position Xref is plotted as a function of time in solid (dashed) line. The blue (green) lines are for spheres with Dsphere = 6 (8) cm; (E) the same
plot as (C) except for cubes. The star markers indicate the end of the trajectories; (F) the same plot as (D) except for cubes.

shown in Figure 9. As expected, the trajectories are more scattered
than those in Figure 8. For the Dsphere = 8 cm sphere, the all 10 tested
trajectories can still converge to the target position (the same), while
for the Dsphere = 6 cm sphere, four of ten trajectories fail to get close
the target. The closest position is where the Dsphere = 6 cm sphere

falls onto a single pin next to the target position, and that creates
a distance gap in Figure 9 because the two positions do not coincide.
This failure is likely due to the net effect of small sphere size and the
removal of the spherical cap so that the total disturbance is large,
and the controller is incapable of transporting the object. We also

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

FIGURE 9
Object transportation experiments without the spherical caps. The target position is marked by a circle, and the end position of each trajectory is
marked by a star. (A) and (B) are trajectories of 10 independent runs for the Dsphere = 8 cm and Dsphere = 6 cm spheres, respectively.

note that the flat surface makes it difficult to control the two cubes
in the current parameter setting. The cubes can sit perfectly on the
flat surface, even if the shape is generated; hence, no experimental
result is shown. Based on the comparison experiment, it is clear
that the spherical caps should be used in practice. This robustness
test on the controller suggests that it is still capable of transporting
objects under increased disturbance but needs improvements such
as additional sensors or advanced feedback methods to estimate and
reduce the disturbance when the object stabilizes itself on the surface
before reaching the target position.

It is worth noting that our proposed controller does not
explicitly require any constraint on the object shape. The ideal
object–surface interaction model in Equation 6 considers the object
as a point mass, and the robotic surface being smooth. In this
regard, a smooth spherical object would be close to the ideal
model. In other words, the controller is more applicable to spherical
objects. The effects of shape or surface irregularities are shown in
Figure 8 or Figure 9, respectively. Irregularities in object shapes and
the robotic surface are both considered disturbances and can lead
to unstable trajectories, as the interaction force can have greater
fluctuations via unstable contacts, rolling, or slipping, etc.

Finally, to showcase the object manipulation capability of the
robot, we have the robot continuously controlling the D = 8 cm
sphere along a bowtie-shaped trajectory (with the spherical caps
installed). The bowtie shape consists of four linear segments, two
of which are the diagonals and the other two are the edges of the 4-
by-4 pin array, and we let the sphere trace out of the shape 10 times
without stopping. The whole trajectory is shown in Figure 10, and
except for the beginning of the first time, all trajectories stay close
and track out the bowtie shape.

4 Discussion

We present a novel control method for robotic surfaces that
can substantially reduce the number of independent inputs. The

FIGURE 10
The robot continuously controls the D = 8 cm sphere along a
bowtie-shaped trajectory.

control method has size-independent refresh time and can lead
to an effective object manipulation controller when a suitable
approximation function is used. We implement the control method
in a robotic surface and experimentally confirm the system size-
independent refresh time. In addition, the presence of actuator
dynamics does not affect this refresh time scaling behavior. Based on
the discrete cosine transform and the matching pursuit algorithm,
different shapes are efficiently approximated because fewer control
messages are required when compared to the standard sequential
method. Hence, our control method is more scalable and has the
potential to control robotic surfaces with more actuators. Note that

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

the practical upper limit depends on whether the communication
technology can reliably broadcast signals to every module in
time. Based on our control method, we also provide a modeling
method for object manipulation tasks. Using the GRBF as the shape
generator, we simplify the complex interaction force with reasonable
assumptions based on order-of-magnitude analysis and symmetry
considerations and derive a compact feedback controller for object
transportation tasks. The validity of the force model and controller
is confirmed by the successful transportation of objects of different
sizes and shapes.

Because all modules receive the same control message every
time step, our control method can update the state of all
modules simultaneously. Alternatively, one may design a schedule
procedure that updates only relevant modules at a time and hence
saves communication bandwidth even if serial communication is
used. In this regard, the advantage of our method is that the
schedule step is implicitly performed in computing the control
message. For example, if only one module is determined to be
actuated, a sufficiently small width parameter (such as σt in
Equation 2 or Equation 3) will lead to the same control objective,
thereby effectively performing the schedule procedure. This is
the case in Section 3.2 for the “peak” shape. For cases when the shape
of the robot requires changes in a few modules, our method and the
schedule-based procedure can perform equally well. However, for
complex tasks requiring control over a fraction of the system, our
method is more scalable because it uses a system size-independent
number of control messages to coordinate the robot. In practice,
a hybrid control strategy that can alternate between the scheduled
sequential control and a broadcast control method may be suitable to
deploy various shapes quickly. Alternatively, one can switch between
the DCT and MP algorithms at runtime by setting a threshold value
for the fraction of pins that need to have noticeable movements.
When the fraction is large, the DCT algorithm is preferable to the
MP because it can handle extended patterns. When the fraction is
small, MP can be used to actuate a few pins quickly.

As a multi-actuator system, robotic surfaces benefit from a large
number of actuators working together to accomplish various tasks,
while suffering from the cost and complexity of coordinating many
actuators. In essence, our method sends compressed coordination
commands to all actuators. A trade-off may exist between the
complication due to system size and the complexity of the
commands. Although the refresh time scaling is only validated on
a small set of actuation modules, and the closed-loop controller
is quite simple, we demonstrate its scalable performance. It can
be interesting to achieve shape control and object manipulation
with distributed control methods, such as designing a sparse state-
feedback gain matrix K (Chanfreut et al., 2021; Babazadeh and
Nobakhti, 2017), and compare with our method. In our work, each
module has its own microcontroller for processing incoming signals,
computing function approximations, and performing position
servoing. It may also be interesting to design simpler circuits or even
mechanical components, such as the fluidic coupler (Jadhav et al.,
2023), for the function approximation purposes. Ongoing work
focuses on theoretical controllability and closed-loop stability of this
control method, as well as more advanced controllers to handle the
disturbance when manipulating deformable or irregular geometries.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

YZ: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Project administration, Software, Writing –
original draft, Writing – review and editing. YC: Data curation,
Software, Writing – review and editing, Formal Analysis.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the start-up research fund of Southeast University.

Acknowledgments

YZ thanks Cheng Zhao, Yifan Wang, Shihua Li, and Xin Xin for
helpful discussions.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
frobt.2025.1633131/full#supplementary-material

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://www.frontiersin.org/articles/10.3389/frobt.2025.1633131/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2025.1633131/full#supplementary-material
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao and Chen 10.3389/frobt.2025.1633131

References

Babazadeh, M., and Nobakhti, A. (2017). Sparsity promotion in state
feedback controller design. IEEE Trans. Automatic Control 62, 4066–4072.
doi:10.1109/TAC.2016.2626371

Chanfreut, P., Maestre, J. M., and Camacho, E. F. (2021). A survey on clustering
methods for distributed and networked control systems. Annu. Rev. Control 52, 75–90.
doi:10.1016/j.arcontrol.2021.08.002

Chen, J., Cranton, W., and Fihn, M. (2011). Handbook of visual display technology.
Incorporated: Springer Publishing Company.

Chen, Z., Deng, Z., Dhupia, J. S., Stommel, M., and Xu, W. (2021). Motion modeling
and trajectory tracking control for a soft robotic table. IEEE/ASME Trans. Mechatronics,
1–11. doi:10.1109/TMECH.2021.3120436

Chen, Z., Deng, Z., Dhupia, J. S., Stommel, M., and Xu, W. (2024). Trajectory
planning and tracking of multiple objects on a soft robotic table using a
hierarchical search on time-varying potential fields. IEEE Trans. Robotics 40,
351–363. doi:10.1109/tro.2023.3337291

Ferguson, K. M., Tong, D., and Winck, R. C. (2020). “Multiplicative valve to
control many cylinders,” in 2020 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM) (Boston, MA, USA: IEEE), 673–678.

Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H. (2013). “inFORM:
dynamic physical affordances and constraints through shape and object actuation,” in
Proceedings of the 26th annual ACM symposium on user interface software and technology
(New York, NY, USA: Association for Computing Machinery), 417–426.

Jadhav, S., Glick, P. E., Ishida, M., Chan, C., Adibnazari, I., Schulze, J. P.,
et al. (2023). Scalable fluidic matrix circuits for controlling large arrays of
individually addressable actuators. Adv. Intell. Syst. 5, 2300011. doi:10.1002/aisy.
202300011

Johnson, B. K., Naris, M., Sundaram, V., Volchko, A., Ly, K., Mitchell, S.
K., et al. (2023). A multifunctional soft robotic shape display with high-speed
actuation, sensing, and control. Nat. Commun. 14, 4516. doi:10.1038/s41467-023-
39842-2

Leithinger, D., and Ishii, H. (2010). “Relief: a scalable actuated shape display,”
in Proceedings of the fourth international conference on Tangible, embedded, and
embodied interaction (New York, NY, USA: Association for Computing Machinery),
221–222.

Leithinger, D., Follmer, S., Olwal, A., and Ishii, H. (2014). “Physical telepresence:
shape capture and display for embodied, computer-mediated remote collaboration,” in
Proceedings of the 27th annual ACM symposium on user interface software and technology
(New York, NY, USA: Association for Computing Machinery), 461–470.

Liu, K., Hacker, F., and Daraio, C. (2021). Robotic surfaces with reversible,
spatiotemporal control for shape morphing and object manipulation. Sci. Robotics 6,
eabf5116. doi:10.1126/scirobotics.abf5116

Mallat, S., and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries.
IEEE Trans. Signal Process. 41, 3397–3415. doi:10.1109/78.258082

Nakagaki, K., Fitzgerald, D., Ma, Z. J., Vink, L., Levine, D., and Ishii, H. (2019).
“inFORCE: bi-directional ‘force’ shape display for haptic interaction,” in Proceedings
of the Thirteenth International Conference on Tangible, Embedded, and Embodied
Interaction (New York, NY, USA: Association for Computing Machinery), 615–623.

Park, J., and Sandberg, I. W. (1991). Universal approximation using radial-basis-
function networks. Neural Comput. 3, 246–257. doi:10.1162/neco.1991.3.2.246

Robertson, M. A., Murakami, M., Felt, W., and Paik, J. (2019). A compact modular
soft surface with reconfigurable shape and stiffness. IEEE/ASME Trans. Mechatronics
24, 16–24. doi:10.1109/tmech.2018.2878621

Salerno, M., Paik, J., and Mintchev, S. (2020). Ori-pixel, a Multi-DoFs origami pixel
for modular reconfigurable surfaces. IEEE Robotics Automation Lett. 5, 6988–6995.
doi:10.1109/lra.2020.3028054

Siu, A. F., Gonzalez, E. J., Yuan, S., Ginsberg, J. B., and Follmer, S. (2018). “shapeShift:
2D spatial manipulation and self-actuation of tabletop shape displays for tangible and
haptic interaction,” in Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (New York, NY, USA: Association for Computing Machinery),
1–13. doi:10.1145/3173574.3173865

Smoot, L. S., Niemeyer, G. D., Christensen, D. L., and Bristow, R. (2019). Floor
system providing omnidirectional movement of a person walking in a virtual reality
environment

Stanley, A. A., Hata, K., and Okamura, A. M. (2016). “Closed-loop shape control
of a haptic jamming deformable surface,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), 2718–2724. doi:10.1109/icra.2016.7487433

Tian, Y., Fang, G., Petrulis, J. S., Weightman, A., and Wang, C. C. L. (2022). Soft
robotic mannequin: design and algorithm for deformation control. IEEE/ASME Trans.
Mechatronics 27, 1820–1828. doi:10.1109/tmech.2022.3175759

Uriarte, C., Asphandiar, A., Thamer, H., Benggolo, A., and Freitag, M. (2019). Control
strategies for small-scaled conveyor modules enabling highly flexible material flow
systems. Procedia CIRP 79, 433–438. doi:10.1016/j.procir.2019.02.117

Walker, I. D. (2017). “Continuum robot surfaces: smart saddles and seats,” in
Mechatronics and robotics engineering for advanced and intelligent manufacturing
(Cham: Springer), 97–105.

Wang, Y., Frazelle, C., Sirohi, R., Li, L., Walker, I. D., and Green, K. E. (2019). “Design
and characterization of a novel robotic surface for application to compressed physical
environments,” in 2019 International Conference on Robotics and Automation (ICRA),
102–108. doi:10.1109/icra.2019.8794043

Wang, J., Sotzing, M., Lee, M., and Chortos, A. (2023). Passively addressed
robotic morphing surface (parms) based on machine learning. Sci. Adv. 9, eadg8019.
doi:10.1126/sciadv.adg8019

Winck, R. C., and Book, W. J. (2012). A control loop structure based on singular value
decomposition for input-coupled systems. American Society of Mechanical Engineers
Digital Collection, 329–336.

Winck, R. C., and Book, W. J. (2013). Dimension reduction in a feedback loop
using the SVD: results on controllability and stability. Automatica 49, 3084–3089.
doi:10.1016/j.automatica.2013.07.017

Winck, R. C., and Book, W. J. (2017). Stability and performance of the SVD system.
IEEE Trans. Automatic Control 62, 6619–6624. doi:10.1109/TAC.2017.2717808

Winck, R. C., Kim, J., Book, W. J., and Park, H. (2012). Command generation
techniques for a pin array using the SVD and the SNMF. IFAC Proc. Vol. 45, 411–416.
doi:10.3182/20120905-3-hr-2030.00072

Xue, Z., Zhang, H., Cheng, J., He, Z., Ju, Y., Lin, C., et al. (2024). “ArrayBot:
reinforcement learning for generalizable distributed manipulation through touch,”
in 2024 IEEE International Conference on Robotics and Automation (ICRA),
16744–16751. doi:10.1109/ICRA57147.2024.10610350

Zhu, H., and Book, W. J. (2004). Practical structure design and control for digital clay.
American Society of Mechanical Engineers Digital Collection, 1051–1058.

Zhu, H., and Book, W. J. (2006). “Construction and control of massive hydraulic
miniature-actuator-sensor array,” in 2006 IEEE Conference on Computer
Aided Control System Design, 2006 IEEE International Conference on Control
Applications, 2006 IEEE International Symposium on Intelligent Control, 820–825.
doi:10.1109/cacsd-cca-isic.2006.4776751

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1633131
https://doi.org/10.1109/TAC.2016.2626371
https://doi.org/10.1016/j.arcontrol.2021.08.002
https://doi.org/10.1109/TMECH.2021.3120436
https://doi.org/10.1109/tro.2023.3337291
https://doi.org/10.1002/aisy.-✐202300011
https://doi.org/10.1002/aisy.-✐202300011
https://doi.org/10.1038/s41467-023-39842-2
https://doi.org/10.1038/s41467-023-39842-2
https://doi.org/10.1126/scirobotics.abf5116
https://doi.org/10.1109/78.258082
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1109/tmech.2018.2878621
https://doi.org/10.1109/lra.2020.3028054
https://doi.org/10.1145/3173574.3173865
https://doi.org/10.1109/icra.2016.7487433
https://doi.org/10.1109/tmech.2022.3175759
https://doi.org/10.1016/j.procir.2019.02.117
https://doi.org/10.1109/icra.2019.8794043
https://doi.org/10.1126/sciadv.adg8019
https://doi.org/10.1016/j.automatica.2013.07.017
https://doi.org/10.1109/TAC.2017.2717808
https://doi.org/10.3182/20120905-3-hr-2030.00072
https://doi.org/10.1109/ICRA57147.2024.10610350
https://doi.org/10.1109/cacsd-cca-isic.2006.4776751
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Control message calculation
	2.2 Force model and controller design
	2.3 Experimental setup

	3 Results
	3.1 Experiments on refresh time
	3.2 Characterization of shape change
	3.3 Closed-loop object manipulation

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

