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Robotic surfaces consisting of many actuators can change shape to perform 
tasks, such as object transportation and sorting. Increasing the number of 
actuators can enhance the robot’s capacity, but controlling a large number of 
actuators is a challenging problem that includes issues such as the increased 
system-wide refresh time. We propose a novel control method that has constant 
refresh times, no matter how many actuators are in the robot. Having a 
distributed nature, the method first approximates target shapes, then broadcasts 
the approximation coefficients to the actuators and relies on itself to compute 
the inputs. To confirm the system size-independent scaling, we build a robot 
surface and measure the refresh time as a function of the number of actuators. 
We also perform experiments to approximate target shapes, and a good 
agreement between the experiments and theoretical predictions is achieved. 
Our method is more efficient because it requires fewer control messages to 
coordinate robot surfaces with the same accuracy. We also present a modeling 
strategy for the complex robot–object interaction force based on our control 
method and derive a feedback controller for object transportation tasks. This 
feedback controller is further tested by object transportation experiments, and 
the results demonstrate the validity of the model and the controller.
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 1 Introduction

Robotic surfaces (Liu et al., 2021; Walker, 2017) typically consist of many actuation 
modules arranged in an array and can serve as intelligent conveyors (Uriarte et al., 
2019; Chen et al., 2024), adaptive structures (Wang et al., 2019; Salerno et al., 2020), 
molding tools (Tian et al., 2022), treadmills (Smoot et al., 2019), shape displays, or 
haptic interfaces (Leithinger et al., 2014; Nakagaki et al., 2019). The capability of a 
robotic surface is related to the number of actuators it has as the robot can perform 
multiple tasks in parallel with more actuators. Developments in soft robotics also 
bring new solutions to meet the demand of actuators (Liu et al., 2021; Johnson et al., 
2023; Robertson et al., 2019). However, coordinating many actuators is challenging. 
Generating control commands for them requires a large amount of resources, such as
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physical space, equipment, and communication bandwidth (Winck 
and Book, 2013). A noticeable quantity is the time delay between 
the first and the last actuator when updating the system to a new 
shape, which we note as the refresh time τ. A small τ is preferable 
in real-time tasks. Standard communication methods send control 
messages to each actuator in a sequential fashion (Follmer et al., 
2013; Xue et al., 2024; Siu et al., 2018; Stanley et al., 2016; Leithinger 
and Ishii, 2010), so τ has an O(N) scaling where N is the number 
of actuators. To control more actuators, strategies such as using 
multiple communication channels, sharing one motion controller in 
a small group of motors, or performing multithreading in the central 
computer have been employed (Johnson et al., 2023; Follmer et al., 
2013; Xue et al., 2024; Siu et al., 2018). By optimizing system 
architectures, these methods are helpful in reducing refresh time, 
but the fundamental scaling relation of the refresh time remains 
unchanged, and the scalability can be improved.

A non-sequential and more scalable approach is to drive each 
row and column of the actuator array, similar to the matrix drive 
technique used in LED displays (Chen et al., 2011). This method 
simultaneously controls all actuators on the same row or column. 
Early works from Zhu, Winck, and Book et al. show that the 
scaling of τ can be reduced to O(√N). They developed a control 
loop structure based on singular value decomposition that can 
drive a hydraulic cylinder robotic array to any shape via 2√N row 
and column controllers (Zhu and Book, 2004; 2006; Winck and 
Book, 2012; Winck et al., 2012; Winck and Book, 2017). In this 
method, a “control coupler” valve is needed for each cylinder to 
couple the row and column control signals (Ferguson et al., 2020). 
In soft robotics, a compact fluidic logic module is designed to 
regulate the input row and column pressures for a pneumatic soft 
linear actuator array (Jadhav et al., 2023). In addition, a robotic 
surface is fabricated with ionic polymer stripes and controlled using 
peripheral voltages (Wang et al., 2023). However, these methods also 
lack scalability because the τ is still dependent on system size. The 
τ scaling issue can become more severe when the area density of 
actuators increases.

We propose a novel control method for robotic surfaces 
that has a system size-independent refresh time. In general, a 
continuous surface profile is first discretized, and the relevant 
actuation commands are passed to each actuator. Our method 
focuses on the second part of shape control, so we simply 
discretize the surface profile on a square lattice representing the 
pin array. When approximating the discretized surface profile, 
it is worth noting that (1) neighboring actuators usually have 
similar inputs, so there is no need to send the inputs to every 
one of them; (2) the discretized surface profile may be simply 
parameterized, such as Gaussian function-like patterns used in 
object manipulation tasks (Johnson et al., 2023), in which only 
two center coordinates are important. Therefore, in our method, a 
central computer broadcasts features of the target shape to individual 
actuation modules and allows them to calculate their inputs. Our 
method is illustrated in Figure 1. This approach results in a size-
independent scaling O(1) of the refresh time, and the residual error 
of shape approximation becomes dependent on the target shape and 
approximation algorithm. We experimentally validate the refresh 
time scaling on a 4× 4 pin array setup and compare it to the 
sequential control method. In order to achieve any shape, we use 
function forms with universal approximation properties and employ 

the discrete cosine transform (DCT) and the matching pursuit (MP) 
algorithms (Mallat and Zhang, 1993) to compute shape features. 
We further characterize shape change capability by displaying six 
distinct shapes and measuring their height profiles. In addition to the 
improvement in the refresh time scaling, our control method allows 
an interpretable modeling procedure for the complex robot–object 
interaction force F. Based on the force model, we design a feedback 
controller for object transportation tasks and perform experiments 
to confirm its validity.

The rest of the article is organized as follows. In Section 2, we 
present the control method and algorithms to compute the shape 
features, derive equations for the object manipulation problem, and 
describe the robot setup. In Section 3, we present our experimental 
results on the time-delay scaling, quantification of shape-changing 
capacity, and object manipulation tasks. Section 4 contains a 
discussion and concluding remarks. 

2 Materials and methods

2.1 Control message calculation

Our control method is illustrated in Figure 1. One highlight 
is that the control messages γt are broadcast to all actuation 
modules at each time step t to eliminate communication time delays 
between the modules. In our case, an actuation module refers to 
an independent system that includes an actuator, a sensor, and 
microcontrollers (see Section 2.3). The actuator control subsystem 
is responsible for regulating the state of each actuator to a given 
reference so that all actuators can represent a given surface shape. γt
is a set of shape feature parameters used by each module to compute 
the reference input for the actuator control subsystem. To be able 
to generate any target shape using broadcast control message γt, 
we utilize function forms with universal approximation ability. To 
be more specific, once the modules receive the same γt, they can 
use a single function form f(xn,γt) with universal approximation 
properties and a local parameter xn to compute their inputs, making 
it possible for the robot to approximate any target shape. In practice, 
the function forms are stored on each module microcontroller board 
for computing the input, and xn is an identification value stored on 
the nth module.

The universal approximation ability guarantees that any target 
shape can be exactly represented by a set of γt. Depending on the 
function forms, different algorithms exist for computing γt. We 
use two function forms to test the refresh time scaling and shape-
changing ability. We first choose the cosine function because we 
can use off-the-shelf discrete cosine transform (DCT) algorithms to 
compute the shape features as γt. The input fn to the actuator control 
subsystem in the nth module is represented as:

fn = a0 + 2
N−1

∑
t=1

atcos(kt (2xn + 1)) , kt =
πt
2N

(1)

where at and kt are the amplitude and the wave vector at time t, 
and γt = (at,kt). The shape features at and kt are computed using 
the DCT algorithm from the Scipy package fftpack. To construct 
an accurate target shape, several γt are broadcast to all modules. 
Upon receiving the messages, each module computes the input fn
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FIGURE 1
An illustration of our control method. At time t, the control message γt is broadcast to all modules. In the nth module, the reference input is calculated 
via a function f and its arguments γt and xn. This input is sent to an actuator subsystem that generates a targeted position.

according to Equation 1 with its own xn. There is no system size-
dependent refresh time because all modules can simultaneously 
receive γt and compute fn in parallel.

Considering that the cosine function may not be efficient in 
representing localized patterns, we use time–frequency functions to 
capture both extended and localized patterns:

fn =
∞

∑
t=0

atgσt
(xn − pt)cos(

2πkt

N
xn +ϕt) (2)

where gσ(x) = ∑
+∞
j=−∞ exp (−π( x−jN

σ
)2) is a Gaussian function 

made periodically on the domain [0,N]. The coefficients in γt =
(at,σt,pt,kt,ϕt) are the amplitude, scale, position, frequency, and 
phase of the time–frequency function, respectively. If σt is large, and 
gσ(x) ≈ 1 over all x in the domain, then Equation 2 reduces to the 
cosine functions in Equation 1. To compute γt for any target shape, 
we use the matching pursuit algorithm (MP) for a dictionary of 
time-frequency atoms. The details of the algorithm can be found 
in Mallat and Zhang (1993). We implement the MP algorithm 
in Python. It takes a given pattern { fn}

N
n=1 and computes {γt}

M
t=0

sequentially to some prescribed M. The reconstructed pattern using 
finite terms converges to the original one exponentially fast, as 
proven in Mallat and Zhang (1993). In practice, we find that only a 
few terms are needed to approximate a pattern with good accuracy
(see Section 3.2).

For object manipulation tasks, we use the Gaussian radial basis 
function (GRBF):

fn =
∞

∑
t=0

at exp(−
(xn − d(x)t )

2
+ (yn − d(y)t )

2

σ2
t

) (3)

where the coefficients in γt = (at,σt,d
(x)
t ,d
(y)
t ) are the amplitude, 

width, and center coordinates of each Gaussian function. (xn,yn) are 
two identification values stored on the nth module, representing the 
2D physical coordinates of the module in the array. Although the 
GRBF is capable of universal approximation (Park and Sandberg, 
1991), algorithms computing γt may require time-consuming 
optimization. For this reason, we do not use this function form in 
shape-changing experiments. Instead, we use the GRBF in object 
manipulation tasks, and one term in Equation 3 is sufficient. 

2.2 Force model and controller design

Generally speaking, an object is governed by the equation of 
motion of its center of mass F =mẌ(t), where m is the object mass, 
and F is the total force acting on the object. F includes the object’s 
gravity, and, importantly, the nonlinear interactions between the 
object and the robotic surface. Because the surface usually involves 
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FIGURE 2
An illustration of the idealized object–robot surface interaction.

many degrees of freedom, determining a sequence of shapes to 
manipulate an object is a difficult task. Previous works achieve 
object manipulations with empirical relations (Johnson et al., 
2023; Chen et al., 2021) or black-box machine learning models 
(Wang et al., 2023; Xue et al., 2024), both of which require data for 
calibration. Our proposed control method utilizes shape features to 
generate surfaces, therefore effectively reducing the computational 
burden of searching for the right shapes. Furthermore, the shape we 
used allows us to build a reasonable force model to guide feedback 
controller design for object manipulation tasks; hence, no training 
data are needed to design the controller.

In this work, we manipulate an object with a shape defined by 
one concave (a < 0) GRBF in Equation 3 and a time-varying center 
coordinate Xc(t) ≔ (d(x),d(y)). The robot shape control problem is 
drastically reduced to determining two scalars contained in Xc(t). 
We first derive the force model. We assume that the surface is 
smooth, the object is always in contact with the surface, and the 
net force is purely determined by the static geometric configurations 
of the shape and the object. The case is illustrated in Figure 2. 
Depending on the local shape gradient, the object experiences a 
small net force either near or far away from the shape center Xc(t), 
and a large net force when ‖X(t) −Xc(t)‖ is comparable to the width 
of the Gaussian σ. Hence, the magnitude of F can be expressed as

‖F‖ = g(
‖X (t) −Xc (t)‖

σ
), (4)

where g(s) is a single-peak function that takes the maximum value at 
s = 1 and remains zero when s ≈ 0 and s≫ 1. Furthermore, because 
the GRBF has radial symmetry, the direction of F points to the shape 
center Xc(t):

F̂ =
Xc (t) −X (t)
‖Xc (t) −X (t)‖

. (5)

Equations 4, 5 together provide a force model when using a 
single GRBF to generate the shape.

F =
Xc (t) −X (t)
‖Xc (t) −X (t)‖

g(
‖X (t) −Xc (t)‖

σ
). (6)

The force model is obtained via order-of-magnitude analysis and 
a symmetry consideration; hence, many realistic details are not 

captured, such as the discreteness of the robot shape due to finite 
actuator size, object rotation, friction, and visco-elastic force at 
contact. We also focus on the planar movement of the object and 
ignore its vertical motion.

The feedback controller needs to compute the shape center Xc(t)
based on the object center X(t) and the target location Xref. Based on 
the force model in Equation 6, two heuristics can be used to guide 
the design of the controller. First, we want to maintain the net force 
direction F̂ toward the target position Xref, so the object will not 
go elsewhere. Moreover, we should keep Xc(t) next to X(t), so the 
driving force F does not vanish. Mathematically, we first demand that 
F point toward Xref. This constraint is expressed as

Xc (t) −X (t) = λ(Xref −X (t)) , (7)

where λ determines the magnitude of Xc(t). Based on the assumption 
that g(s) takes the maximum value at s = 1, we can demand

‖Xc (t) −X (t)‖ = σ (8)

so that ‖F‖ attains its greatest value. Equations 7, 8 together 
determine Xc(t):

Xc (t) = (λ− 1) (Xref −X (t)) +Xref (9)

λ = σ
‖Xref −X (t)‖

. (10)

The first and second terms (Equation 9) are the proportional 
feedback and feed-forward control, respectively. The control loop 
is shown in Figure 3.

To ensure control process stability when X(t) approaches Xref
and λ becomes large, we restrict λ to [0,1], so that Xc(t) = Xref
whenever ‖Xref −X(t)‖ ≤ σ. This nonlinear constraint replaces (10) 
and can be expressed as

λ =min( σ
‖Xref −X (t)‖

, 1), (11)

The controller only has one parameter σ to tune. In fact, σ should 
be comparable to the characteristic size of the object, leaving 
no additional parameter to adjust. Even though the force model 
is under many assumptions, the controller derived from it can 
accomplish object transportation tasks, as demonstrated in the 
experiments (Section 3.3), showing that this procedure is effective. 
However, as there is no explicit incorporation of disturbance 
rejection mechanisms, its performance may be compromised if the 
object–surface interactions largely deviate from ideal assumptions, 
as shown in Section 3.3. In practice, the control loop functions as 
follows: first, the position of the object X(t) is captured by a camera, 
and this information is sent to the central computer to compute 
the shape center Xc(t) according to Equations 9, 11. The central 
computer then sends Xc(t) along with other shape features required 
by the GRBF (Equation 3) to the robot, and the robot displays 
the shape to manipulate the object. The GRBF is not used in the 
feedback controller. Details of the hardware implementation are 
described in Section 2.3. 

2.3 Experimental setup

The robot has a modular design and consists of 16 identically built 
linear actuation modules arranged in an 85-mm-long square area. As 
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FIGURE 3
A control block diagram for the object manipulation task.

FIGURE 4
(A) A picture of a single linear actuation module. The rectangular cover is removed to expose mechanical components. (B) Block diagram of the 
electronic system. The arrows indicate information flows. (C) The robot and vision servo system for object manipulation.

shown in Figure 4A, the module is approximately 47 mm wide and 
200 mm long. A lead screw of 100 mm in length and 2.5 mm in pitch 
converts the rotary motion of a DC motor to linear motion. The screw 
is attached to a slider with two additional guide rails parallel to the 
lead screw to reduce friction. Two limit switches are installed at the 
two ends to prevent overshoot that may damage the motor, and the 
overall arrangement of mechanical parts results in a linear stroke of 
70 mm. A complete module also has a rectangular cover attached to the 
slider (see Figure 4C). The DC motor (Tianqu Motor, N20VA, 1:10) 
has a rated maximum speed of 50 revolutions per second, leading 
to a nominal speed of 125 mm/s of the linear motion. The motor’s 
tail has a Hall rotary encoder to measure the angular position of the 
shaft, defined as en for the nth module. The vertical position hn of the 
linear actuator is proportional to en. All mechanical components and 
electronics are mounted on 3D printed frames, and the modules are 
mounted on a portable aluminum frame. When varying the system 
size N, we simply connect or disconnect modules from the robot. 

The electronics block diagram is shown in Figure 4B. The 
controller of the actuator is an Arduino Nano board, which is 

programmed as a closed-loop control system for shaft position en
and can receive control messages from a central computer. A PID 
controller running every 16 ms (62.5 Hz) is in use. Two additional 
modules are connected to the controller board. A DRV8871 board is 
used to drive the motor with the standard pulse width modulation 
(PWM) technique. An MCP2515 CAN bus board is used for 
receiving control messages. All actuation modules are on one CAN 
bus, and the protocol is CAN 2.0B. While identical in hardware, 
there is a unique identification variable xn ranging from 0 to 15 in 
the nth module’s software. This variable is involved in reference input 
calculation in Equations 1–3, or acts as the CAN message identifier 
in the sequential control method. A central computer (Raspberry Pi 
4B) is used to generate target shapes { fn} and the control messages 
{γt} to drive the modules. In our method, we broadcast a single 
γt in one standard CAN data frame (which holds 8 bytes of data), 
meaning the coefficients are represented with limited resolution. The 
data frame also contains information on which function form to 
use, so we can switch between different approximation methods. 
An additional Arduino Nano and an MCP2515 module serve as 
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the CAN bus sender that interfaces with the central computer and 
the modules.

For the object manipulation tasks, a simple vision servo system 
is built to track the object and compute the control output Xc(t) to 
drive the robot. The setup is shown in Figure 4C. A web camera 
(Raspberry Pi Camera V1) is mounted above the robot and faces 
downward to capture an image sequence at a rate about 22Hz. 
Each image contains a colored object and the actuation modules 
as the background. The object coordinate X(t) is the center of 
mass of the largest connected component in a binarized image, 
and we use a color threshold to identify the object. All images 
are processed with OpenCV in Python. A calibrated 2D affine 
transform is used to relate the object coordinates in images to those 
in the lab. Given X(t) and the target position Xref, the new shape 
center position Xc(t) is computed according to Equations 9, 11. 
We reduce noise in Xc(t) with a moving average filter of size 15 to 
reduce actuator jittering. The smoothed Xc(t) is sent to the robot for 
actuation, and the control loop update frequency is the same as that
of the image. 

3 Results

3.1 Experiments on refresh time

We first perform an experiment to measure the refresh time 
where there is no actuator dynamics and only communication 
delay between the central computer and the actuator modules. The 
robot is refreshed between two uniform patterns { fn = 0}Nn=1 and 
{ fn = 1}Nn=1 at a constant rate using either the standard sequential 
control or our method described in (1). Note that because all 
actuators have equal fn values, only one CAN message is needed. 
To measure fn on each actuator, we correlate the variable with 
a PWM output on the controller board and convert the PWM 
output using a digital-to-analog converter based on an LCR low-
pass circuit. The signals of the first and the Nth actuation module are 
simultaneously measured on an oscilloscope (Rigol DS1202EZ), and 
the time delay is extracted. We vary N from 2 to 16. Typical signals 
are shown in Figure 5A and (B) for a system with N = 2 actuators. 
We extract the refresh time using normalized cross-correlation and 
average over at least 20 values.

The average refresh time is plotted as a function of N for 
both methods in Figure 5C. As expected, for the sequential control 
method, the refresh time shows a linear increasing trend, and the 
slope equals the time period Tmsg to send one control message. We 
vary Tmsg from 5 ms to 20 ms, and the predicted trends agree well 
with experimental results. In contrast, for our method, the refresh 
time remains at zero for all N and all Tmsg, showing that there is no 
time delay among the modules due to system size or communication 
delay. Therefore, we confirm that our method indeed achieves a 
system size-independent refresh time when no actuator dynamics 
is present.

In the second experiment, we take the actuator dynamics into 
account by measuring the refresh time between the shaft positions 
en of the first and the last actuator. In addition to the above, the robot 
is refreshed with a traveling wave pattern, so the refresh time is also 
determined by the wave speed v. The traveling wave is a quarter of a 

FIGURE 5
Experimental refresh time scaling without actuator dynamics. (A) The 
reference inputs of two actuators when using a sequential control 
method. The yellow (blue) line is the first (last) actuator in a 
two-actuator system; (B) the reference inputs of the same actuators 
when using our control method; (C) the averaged refresh time is 
plotted as a function of the number of actuators for the two control 
methods and at different communication rates (expressed in Tmsg). 
Each point is an average of at least 20 refresh time values observed in
(A) or (B). The darker color represents larger Tmsg. The triangles 
(circles) are experimentally measured refresh times with the sequential 
(our) control method, and the dashed lines are theoretical predictions.

moving sinusoid over N actuators, given by

fn = sin(kNxn − vt) (12)

where kN =
π

2(N−1)
 is the system-size-dependent wave vector chosen 

such that the last actuator xN = N− 1 always has a quarter phase, 
kNxN =

π
2

. t is the current time. The control message is sent every 
Tmsg = 5 ms from the central computer. For the sequential control 
method, fn is computed and transmitted to each actuator. For our 
method, we express fn using a simplified version of Equation 2 
because Equation 12 can be rewritten as fn = a cos (kNxn − π/2) +
b cos (kNxn), where a = cos (vt) and b = − sin (vt). The coefficients 
kN, a, and b are broadcast to all modules in one CAN data 
frame. The observed traveling waves for both methods are shown 
in Figures 6A,B, and the average refresh time τ as a function 
of the number of actuators N is shown in Figure 6C. For our 
method, τ stays constant for all N, hence validating the system 
size-independent refresh time when both signal transmission and 
actuator dynamics are present. According to Equation 12, the 
refresh time between the first and the last actuator should be the 
time to catch up their phase difference, that is, τ = kN(xN − x1)/v =
π/(2v). In all experiments, we set v = 2π/T and T = 3000 ms, so 
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FIGURE 6
Experimental refresh time scaling with actuator dynamics. (A) The 
motor shaft angular position when using the sequential control 
method. The yellow (blue) trace is the first (last) actuator in a 
16-actuator system, with its refresh time indicated in the dashed line;
(B) the shaft position of the same actuators when using our control 
method. (C) Refresh time is plotted as a function of the number of 
actuators for the two control methods. The triangles and circles are 
experimentally measured refresh times using the sequential and our 
control methods, respectively. Each point is an average of at least six 
refresh times, and the error bar is one standard deviation. The dashed 
lines are theoretical predictions.

τ = T/4 = 750 ms. Our experimental results in Figure 6C agree with 
this value, with a relative error less than 1% for all N, and the 
discrepancy is likely due to random errors. For the sequential 
control method, τ is larger than the theoretical 750 ms and linearly 
increases as N increases. When one module is added to the 
system, it takes an additional amount of time to transmit control 
messages to that module, so the refresh time for the sequential 
control method is τseq = T/4+Tmsg(N− 1). This prediction is 
plotted as a dashed line in Figure 6C, which also agrees with the 
experimental results.

3.2 Characterization of shape change

To quantify the approximation accuracy of our control method, 
we drive the robot to six distinct shapes and quantify the 
errors between the target and the measured shapes. The shape 
measurement apparatus is shown in Figure 7A. A laser distance 
meter (Shanghai Kedi, KG01) is used to measure the height change 
of each actuator, and the scan process is automated via a homemade 
Cartesian robot. The system has an accuracy of 0.2 mm. The six 

shapes are listed in Table 1. All shapes are represented as a 4×
4 matrix, where the elements are actuator vertical positions hn. 
The actuation module’s planar coordinates (xn,yn) are taken from 
{0,1,2,3}, and we stretch the vertical scale so that each shape can 
fill the entire 70-mm stroke of the actuator. The parabola shape 
displayed by the robot is shown in Figure 7B, and all shapes are 
illustrated as the insets in Figures 7C–H. For each run of the 
experiment, we start with the robot leveled at half stroke length. 
Then, the robot is actuated through a series of intermediate shapes. 
Following each shape actuation, we perform a height scan to 
track the shape change and compute the relative error between 
the intermediate shape and the target shape using root mean 
squared error. The intermediate shape is achieved incrementally 
with additional information from one control message γt that 
contains all coefficients in one approximation term in Equations 
1, 2. For the sequential control method, the term is the reference 
vertical position hn of a single actuator. For our method, we test both 
function approximation formulas in Equations 1, 2. To compute the 
coefficients, we reshape the 4× 4 shape matrix into a vector and apply 
the DCT or MP algorithm. For the order of shape actuation, we 
prioritize terms with a higher amplitude or hn values.

The relative error as a function of the number of terms 
(or equivalently, the number of control messages) is shown in 
Figures 7C–H. Our control method with the MP algorithm can 
outperform the sequential control method in the sense that it 
requires fewer terms to approximate the target shape for the same 
error. For example, it takes 11 terms for the sequential method 
to approximate the parabola shape to a 20% relative error, while 
it takes six and seven terms for the MP and DCT algorithms, 
respectively (Figure 7D). We also find that within our methods, 
MP can approximate both extended and localized patterns with 
fewer terms, while DCT approximates extended patterns better than 
localized patterns. The DCT algorithm outperforms the sequential 
method in three target shapes (plane, parabola, and checker) but can 
be worse for localized patterns. For example, for the peak shape, it 
takes only one term for MP to reach a perfect match, while DCT 
needs all 16 terms. The relative errors obtained from experiments 
are well captured by theoretical predictions based on Equations 
1, 2, except in the parabola, checker, and random cases, where 
MP leads to residual errors that are not captured by Equation 2. 
These residual errors are due to the limited coefficient resolution 
used in computing the approximation terms. To include the five 
coefficients from Equation 2 into one CAN data frame, st and 
at are allocated with 2 bytes each, and pt, kt, and ϕt are 1 byte 
each. By recalculating intermediate shapes using these less precise 
numbers, we can match the experimental results, as shown by the 
dotted lines in Figures 7D–F. 

3.3 Closed-loop object manipulation

We demonstrate the object manipulation capability of the robot 
based on our closed-loop control method derived in Section 2.2. 
Motion videos are provided in the Supplementary Material. The 
objects are 3D printed light-weight spheres of diameter Dsphere =
6, 8 cm and cubes of edge length Dcube = 6, 8 cm. A spherical cap is 
attached to the top of each rectangular cover to prevent the object 
from stabilizing itself on the cover. A single GRBF generates robot 
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FIGURE 7
Characterization of shape-changing ability. (A) The experimental setup 
for shape measurement; (B) the parabola shape displayed by the 
robot; (C–H) the relative error of the shape is plotted as a function of 
the number of terms used to approximate the shape. The triangles 
(circles) are from the sequential (our) control method. The orange and 
blue colors of the circles correspond to the DCT and MP algorithms, 
respectively. Each data point is an average of three independent runs. 
The error bar is smaller than the marker size, so it is not shown. The 
dashed lines are theoretical predictions calculated with 64-bit floating 
point numbers, and the dotted blue lines are calculated with 16- and 
8-bit resolution-limited numbers. The inset displays the target shape.

TABLE 1  Names and expressions of the six shapes.

Name Expression Name Expression

Identity a 4× 4 identity matrix Plane z = x+ 2y

Parabola z = 2x2 + 3y2 − 3xy Checkers Checkerboard pattern

Peak raise a single module at 
x = 1, y = 2

Random Random uniform 
distribution

shape to drive the object, and its amplitude a = −D and width σ = D, 
where D is the object’s characteristic size and equals Dsphere or Dcube, 
so that the robot shape is comparable to the object size. A negative 
a implies a concave valley for holding the object. Although the 
object can remain stable inside the valley when the shape is frozen, 
our controller always changes the shape such that the object never 

establishes force equilibrium until the target position is reached. 
Note that our controller does not assume the shape of the object, 
and the only tunable parameter in the controller is σ, which we set 
to D.

The initial and target position of the object are at opposite 
corners of the robot, and the snapshots of typical transportation 
processes are shown in Figures 8A,B. The objects can be repeatedly 
transported to their target positions, showing our closed-loop 
control method is robust. We collect 10 independent runs for 
each object, and the trajectories are visualized in Figure 8C and 
(E) for spheres and cubes, respectively. For the Dsphere = 6 cm 
sphere, at the beginning of the transportation, different trajectories 
are close to each other, as shown by the thin blue lines in 
Figure 8C. They start to diverge when the object hits the cover 
of an actuation module, marked by a dashed blue square region. 
Despite this random disturbance, our closed-loop control method 
can manipulate the sphere to the target position Xref, shown by the 
converging trajectories towards Xref marked by a black dot. For the 
Dsphere = 8 cm sphere, the trajectories diverge less than the smaller 
sphere. This trend is likely due to the fact that the object-to-actuator 
size ratio is greater for the larger sphere; hence, the disturbance due 
to the finite size effect is smaller, and the force model in Equation 6 is 
more applicable. We also compare the dynamics of the shape center 
Xc(t) with the object center X(t), and the relative distance to Xref
as a function of time is shown in Figure 8D. Initially, X(t) remains 
constant, presumably due to the response time of the actuator and 
the inertia of the object. Then, the Dsphere = 6 cm sphere undergoes 
rapid movement with an average speed of about 8.8 cm/s. Finally, the 
object is stabilized near the target position, and a constant offset of 
approximately 0.75 cm persists. This offset is likely due to the fact 
that steady-state errors cannot be eliminated by the proportional 
feedback controller we designed in Equation 9. The convergence 
of Xc(t) is similar to X(t), and it converges to Xref around t = 2 s, 
effectively stops the motion of the shape center. For the Dsphere =
8 cm sphere, the convergence is faster, and the constant offset is also 
presented.

Similar analysis can be performed for the cubic objects, and the 
results are shown in Figures 8E,F. The trajectories of cubes are much 
more scattered than those of the spheres. This can be understood 
as cubes are more irregular than spheres and experience more 
random forces during transportation. In addition, the trajectories 
of the larger cube diverge less than those of the smaller cube. The 
convergence of the distance to the target position is also less smooth, 
and sometimes cubes can go away from the target, as shown by 
the increasing trend in Figure 8F. The Dcube = 6 cm cube may not 
converge to a stable final position, as indicated by the nonzero 
‖Xc(t) −Xref‖. This may be due to its small size and shape so that 
the force disturbance is relatively large.

To further test the robustness of the design controller, we change 
the surface property by removing all spherical caps attached to 
the pins, so the surface becomes flat. This modification increases 
the randomness during object manipulation, as the objects can 
sometimes stabilize themselves on the pins or roll away quickly 
on the flat surface. In addition, the pins are sharper and stiffer, 
giving greater force disturbance than the soft spherical cap. 
Without modifying any control parameter, we perform the same 
object transportation experiments for two spheres and collect 10 
independent runs for each object. The resulting trajectories are 
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FIGURE 8
Object transportation experiments. (A) Snapshots of transportation processes of a sphere with Dsphere = 8 cm. The target position is marked by a red dot 
in each image; (B) the same plot as (A) except for cubes with Dcube = 6 cm. (C) trajectories of 10 independent runs for each sphere. The thin blue (thick 
green) lines are for spheres with Dsphere = 6 (8) cm. The target position is marked by a black dot. The blue dashed square region indicates an actuation 
module, which corresponds to the blue shaded region in the first image of (A). (D) The distance between the object center X(t) (shape center Xc(t)) and 
the target position Xref is plotted as a function of time in solid (dashed) line. The blue (green) lines are for spheres with Dsphere = 6 (8) cm; (E) the same 
plot as (C) except for cubes. The star markers indicate the end of the trajectories; (F) the same plot as (D) except for cubes.

shown in Figure 9. As expected, the trajectories are more scattered 
than those in Figure 8. For the Dsphere = 8 cm sphere, the all 10 tested 
trajectories can still converge to the target position (the same), while 
for the Dsphere = 6 cm sphere, four of ten trajectories fail to get close 
the target. The closest position is where the Dsphere = 6 cm sphere 

falls onto a single pin next to the target position, and that creates 
a distance gap in Figure 9 because the two positions do not coincide. 
This failure is likely due to the net effect of small sphere size and the 
removal of the spherical cap so that the total disturbance is large, 
and the controller is incapable of transporting the object. We also 
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FIGURE 9
Object transportation experiments without the spherical caps. The target position is marked by a circle, and the end position of each trajectory is 
marked by a star. (A) and (B) are trajectories of 10 independent runs for the Dsphere = 8 cm and Dsphere = 6 cm spheres, respectively.

note that the flat surface makes it difficult to control the two cubes 
in the current parameter setting. The cubes can sit perfectly on the 
flat surface, even if the shape is generated; hence, no experimental 
result is shown. Based on the comparison experiment, it is clear 
that the spherical caps should be used in practice. This robustness 
test on the controller suggests that it is still capable of transporting 
objects under increased disturbance but needs improvements such 
as additional sensors or advanced feedback methods to estimate and 
reduce the disturbance when the object stabilizes itself on the surface 
before reaching the target position.

It is worth noting that our proposed controller does not 
explicitly require any constraint on the object shape. The ideal 
object–surface interaction model in Equation 6 considers the object 
as a point mass, and the robotic surface being smooth. In this 
regard, a smooth spherical object would be close to the ideal 
model. In other words, the controller is more applicable to spherical 
objects. The effects of shape or surface irregularities are shown in 
Figure 8 or Figure 9, respectively. Irregularities in object shapes and 
the robotic surface are both considered disturbances and can lead 
to unstable trajectories, as the interaction force can have greater 
fluctuations via unstable contacts, rolling, or slipping, etc.

Finally, to showcase the object manipulation capability of the 
robot, we have the robot continuously controlling the D = 8 cm 
sphere along a bowtie-shaped trajectory (with the spherical caps 
installed). The bowtie shape consists of four linear segments, two 
of which are the diagonals and the other two are the edges of the 4-
by-4 pin array, and we let the sphere trace out of the shape 10 times 
without stopping. The whole trajectory is shown in Figure 10, and 
except for the beginning of the first time, all trajectories stay close 
and track out the bowtie shape.

4 Discussion

We present a novel control method for robotic surfaces that 
can substantially reduce the number of independent inputs. The 

FIGURE 10
The robot continuously controls the D = 8 cm sphere along a 
bowtie-shaped trajectory.

control method has size-independent refresh time and can lead 
to an effective object manipulation controller when a suitable 
approximation function is used. We implement the control method 
in a robotic surface and experimentally confirm the system size-
independent refresh time. In addition, the presence of actuator 
dynamics does not affect this refresh time scaling behavior. Based on 
the discrete cosine transform and the matching pursuit algorithm, 
different shapes are efficiently approximated because fewer control 
messages are required when compared to the standard sequential 
method. Hence, our control method is more scalable and has the 
potential to control robotic surfaces with more actuators. Note that
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the practical upper limit depends on whether the communication 
technology can reliably broadcast signals to every module in 
time. Based on our control method, we also provide a modeling 
method for object manipulation tasks. Using the GRBF as the shape 
generator, we simplify the complex interaction force with reasonable 
assumptions based on order-of-magnitude analysis and symmetry 
considerations and derive a compact feedback controller for object 
transportation tasks. The validity of the force model and controller 
is confirmed by the successful transportation of objects of different 
sizes and shapes.

Because all modules receive the same control message every 
time step, our control method can update the state of all 
modules simultaneously. Alternatively, one may design a schedule 
procedure that updates only relevant modules at a time and hence 
saves communication bandwidth even if serial communication is 
used. In this regard, the advantage of our method is that the 
schedule step is implicitly performed in computing the control 
message. For example, if only one module is determined to be 
actuated, a sufficiently small width parameter (such as σt in 
Equation 2 or Equation 3) will lead to the same control objective, 
thereby effectively performing the schedule procedure. This is 
the case in Section 3.2 for the “peak” shape. For cases when the shape 
of the robot requires changes in a few modules, our method and the 
schedule-based procedure can perform equally well. However, for 
complex tasks requiring control over a fraction of the system, our 
method is more scalable because it uses a system size-independent 
number of control messages to coordinate the robot. In practice, 
a hybrid control strategy that can alternate between the scheduled 
sequential control and a broadcast control method may be suitable to 
deploy various shapes quickly. Alternatively, one can switch between 
the DCT and MP algorithms at runtime by setting a threshold value 
for the fraction of pins that need to have noticeable movements. 
When the fraction is large, the DCT algorithm is preferable to the 
MP because it can handle extended patterns. When the fraction is 
small, MP can be used to actuate a few pins quickly.

As a multi-actuator system, robotic surfaces benefit from a large 
number of actuators working together to accomplish various tasks, 
while suffering from the cost and complexity of coordinating many 
actuators. In essence, our method sends compressed coordination 
commands to all actuators. A trade-off may exist between the 
complication due to system size and the complexity of the 
commands. Although the refresh time scaling is only validated on 
a small set of actuation modules, and the closed-loop controller 
is quite simple, we demonstrate its scalable performance. It can 
be interesting to achieve shape control and object manipulation 
with distributed control methods, such as designing a sparse state-
feedback gain matrix K (Chanfreut et al., 2021; Babazadeh and 
Nobakhti, 2017), and compare with our method. In our work, each 
module has its own microcontroller for processing incoming signals, 
computing function approximations, and performing position 
servoing. It may also be interesting to design simpler circuits or even 
mechanical components, such as the fluidic coupler (Jadhav et al., 
2023), for the function approximation purposes. Ongoing work 
focuses on theoretical controllability and closed-loop stability of this 
control method, as well as more advanced controllers to handle the 
disturbance when manipulating deformable or irregular geometries.
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