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Detecting surface discontinuities in welds is essential to ensure the structural 
integrity of welded elements. This study addresses the limitations of manual 
visual inspection in shielded metal arc welding by applying convolutional 
neural networks for automated discontinuities detection. A specific image 
dataset of discontinuities on Shielded Metal Arc Welding weld seams was 
developed through controlled experiments with various electrode types and 
welder experience levels, resulting in 3,000 images. The YOLOv7 architecture 
was trained and evaluated on this dataset, achieving a precision of 97% and 
mAP@0.5 of 94%. Results showed that increasing the dataset size and training 
periods significantly improved detection performance, with optimal accuracy 
observed around 250–300 epochs. The model demonstrated robustness to 
moderate variations in image aspect ratio and generalization capabilities to an 
external dataset. This paper presents an approach for detecting SMAW weld 
surface discontinuities, offering a reliable and efficient alternative to manual 
inspection and contributing to the advancement of intelligent welding quality 
control systems.
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 1 Introduction

Welding is an essential manufacturing process employed for the joining, repairing, 
and reinforcing of metal components. It comprises more than ninety processes 
employed in various industries (American Welding Society, 2008). The welding process 
selection depends on the material, joint design, required strength, available equipment, 
environmental conditions, etc. Among all the welding processes, Shielded Metal Arc 
Welding (SMAW) remains one of the most widely adopted due to its versatility, simplicity, 
and ease of implementation in small-scale applications (American Welding Society, 2001). 
Regardless of the welding process, welding discontinuities are inevitable, whether they 
are done manually or automatically. To ensure the quality of weldments, an efficient and 
accurate weld inspection plan is required (Xu and Li, 2024).
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Weld quality assurance is fundamental during fabrication as it 
guarantees the weldment complies with the design requirements. In 
the SMAW process, surface discontinuities such as cracks, porosity, 
undercut, slag inclusion, and incomplete fusion can result at the end 
of the process. These discontinuities can compromise the behavior 
of the welded joints, leading to failures or unsafe operations. To 
mitigate these risks, traditional quality assurance practices include 
both destructive (DE) and non-destructive examinations (NDE). 
Unlike destructive examination, NDE methods allow the weldment 
inspection without damaging the component, making them ideal 
for in-service inspection and production control (Deepak et al., 
2021). Among NDE techniques, methods such as radiographic 
testing (RT), ultrasonic testing (UT), magnetic particle testing 
(MT), dye penetrant testing (PT), and visual examination (VE) 
are widely used during and after fabrication to detect internal and 
superficial discontinuities in the weldments. Although considered 
the most basic inspection form, VE remains an important NDE due 
to its simplicity and cost effectiveness (American Welding Society, 
2001; American Welding Society, 2011). However, the examination 
depends on human judgment that introduces variability and 
subjectivity, potentially compromising the reliability and accuracy 
of defect detection on weldments (Yang et al., 2022). In this regard, 
the search for automated tools for the visual inspection method 
has gained popularity in the manufacturing industry as they could 
provide an objective and repeatable assessment of weld surfaces.

In this context, advances in machine vision technology have 
shown great potential for quality control of surface discontinuities. 
Over the years, various approaches have been developed to address 
this task, ranging from classical image processing techniques such 
as edge detection, thresholding, and morphological operations to 
more advanced machine-based and deep learning-based models 
(Bhatt et al., 2021). Traditional image processing methods are often 
limited by sensitivity to noise, lighting conditions, and surface 
variability (Tsai and Huang, 2003; Jie et al., 2009; Park et al., 
2009; Borghese and Fomasi, 2015). Learning-based approaches, 
including support vector machines (SVM) and random forests, have 
improved classification performance but still rely on handcrafted 
features and preprocessing steps (Chittilappilly and Subramaniam, 
2017; Mustaqeem and Saqib, 2021; Le, 2022). In contrast, deep 
learning models, particularly convolutional neural networks (CNN), 
have demonstrated superior performance by automatically learning 
hierarchical representations from raw image data (Yang D. et al., 
2021; Ding et al., 2022; Taheri et al., 2022; Wang et al., 2024).

Among deep learning methods, the You Only Look Once 
(YOLO) family of models has gained prominence due to its real-
time object detection capability, high accuracy, and efficiency 
(Redmon et al., 2015). Successive versions of YOLO, from YOLOv1 
to YOLOv8, have been applied to detect several industrial defects 
(Hussain, 2023). In this regard, it has been successfully implemented 
to detect welding discontinuities such as crack, pores, and slag 
inclusion in processes like Gas Metal Arc Welding (GMAW), 
Gas Tungsten Arc Welding (GTAW), and Laser Beam Welding 
(LBW) (Deng et al., 2021; Wang et al., 2024; Xu and Li, 
2024). However, each welding process exhibits unique thermal 
profiles, surface textures, and discontinuity types, which limit 
the transferability of models trained on one process to others. 
In this regard, SMAW processes exhibit process-specific visual 

and statistical properties that differ markedly from wire-fed, gas-
shielded processes (Lampman, 1997; Bohnart, 2017). In SMAW, 
flux-covered electrodes (e.g., E6010/E7018) produce variable slag 
formation and post-weld residues; the heat-affected zone (HAZ) 
heavily depends on manual operator control that introduces sample-
to-sample variations in arc length, travel speed, and weave pattern, 
resulting in a surface that exhibits uneven bead geometry, spatter, 
and oxidation that change reflectance and surface texture. Recent 
surface vision defect detectors remain centered on gas-shielded 
welds (Li et al., 2023; Xu and Li, 2024; Diaz-Cano et al., 2025), leaving 
SMAW unaddressed and establishing a domain gap.

In gas-shielded processes, surfaces are cleaner and heat 
input is more stable; the HAZ is typically narrower and more 
consistent across passes, and its dominant discontinuities 
differ (e.g., cold lap/lack of fusion in short-circuit GMAW; 
tungsten inclusion in GTAW). LBW features extremely high 
power density, a very narrow HAZ, and keyhole dynamics that 
promote porosity and solidification cracking, with fine-scale visual 
signatures. These process-specific differences produce domain shifts 
(occlusion, spatter noise, changes in bead-geometry, and distinct 
color/reflectance in the HAZ) that limit the direct transfer of models 
trained on GMAW/GTAW/LBW datasets (Bohnart, 2017). This 
motivates a SMAW-specific dataset and model that accounts for slag 
dynamics, manual variability, and SMAW-typical discontinuities.

This study aims to develop and evaluate a YOLOv7-based 
detector trained on a custom SMAW surface-image dataset 
annotated for eight discontinuity classes (slag inclusion, porosity, 
undercut, overlap, crater, arc strike, underfill and spatter) with ≥
90% precision and mAP@0.5, and to assess its performance and 
robustness under realistic industrial variability including operator 
skill, electrode type, illumination, and image aspect ratio. The 
analysis further examines the model’s generalization capability when 
applied to external SMAW images. 

2 Materials and methods

To enable the development of an automated system for surface 
discontinuities in the SMAW process, it is necessary to construct 
a dedicated image dataset representative of the specific visual 
characteristics and variability associated with this process. Unlike 
other welding methods, SMAW weld exhibits a broad range of 
surface appearances due to electrode type, operator skill, and process 
parameters. As publicly available datasets predominantly focus 
on GMAW, GTAW, or LBW, this study undertook a controlled 
experimental campaign to generate a high-quality, diverse dataset 
of SMAW weld beads with intentional surface discontinuities. 

2.1 Materials

The base material used for welding was A36 black steel, chosen 
for its common use in structural applications and compatibility with 
the selected electrodes. Steel plates of 150 mm × 50 mm x 6 mm were 
prepared for the welding tasks. Each plate provided a sufficient area 
for a single bead per electrode, ensuring clear visibility of surface 
characteristics and discontinuity formation.
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Before welding, the plate surfaces were cleaned using an angle 
grinder to eliminate any contaminants that could compromise weld 
quality. A total of 150 steel plates were prepared for this study, with 
each plate receiving two weld beads, resulting in 300 individual 
weld beads forming the complete set of samples used for subsequent 
imaging, labeling, and analysis in the experimental process. 

2.2 Welding equipment and consumables

All welding operations were performed using a Transpocket 
180 Fronius welding machine. Four commonly used electrode 
types, E6010, E6011, E6013, and E6018, with a 3.2 mm diameter, 
were selected for the experiments. These electrodes differ in 
arc characteristics, penetration, and slag properties, thereby 
introducing natural variability in weld bead appearance and 
potential discontinuity types. 

2.3 Welder participation

To ensure a broad representation of weld quality and surface 
conditions, operators with varying levels of expertise carried 
out the welding operations. The group included engineering 
students, general welders with practical field experience, and 
certified professional welders. This stratified approach was chosen to 
promote variability in weld outcomes and maximize the likelihood 
of capturing a diverse range of surface discontinuities across 
electrode types. 

2.4 Image acquisition setup

The visual documentation of each weld bead was carried out 
using a Canon EOS Rebel T8I (24.1 MP) and a Sigma 105 mm 
macro lens on a tripod. The camera operated in manual exposure 
at f/4, 1/400 s, and ISO 160, with no flash and fixed with white 
balance. Illumination was provided by a Godox Triple-light LED 
Mini Photography Studio (LST40) driven by a Godox LSC3 three-
channel controller, with all three channels set to 100% output; 
camera and lighting geometry were held constant across sessions, 
while illuminance at the weld surface (lux) was not instrumented. 
Figure 1 and Table 1 summarize the light-box configuration and 
geometric setup used throughout the experiments.

2.5 Welding protocol

The welders were provided with a welding procedure 
specification (WPS) with the welding process characteristics (base 
material, filler material, joint design, welding position, welding 
parameters, and cleaning procedures). This procedure enabled a 
controlled weld generation with varied features under repeatable 
conditions, forming the basis for a comprehensive SMAW weld 
surface image dataset.

SMAW beads were produced using the Fronius Transpocket 
180 power source’s preset programs, selected by coating family: 
CEL for cellulosic electrodes (E6010, E6011) and STICK for 

FIGURE 1
Image acquisition setup.

TABLE 1  Camera and lighting parameters.

Component Parameter Value

Camera Exposure mode f/4, 1/400 s, ISO 160; WB fixed; no 
flash

Lighting
Model/controller LST40 lightbox/Godox LSC3

Output 100% on all three channels

Geometry Mount Tripod; fixed camera – lightbox 
geometry

low-hydrogen/rutile electrodes (E7018, E6013). All deposits were 
bead-on-pate in the flat (1G) position with a single pass per 
electrode. The current window applied was E6013: 80–130 A, 
E7018: 90–130 A, E6010: 70–100 A, and E6011: 60–100 A; the 
power source automatically regulated arc voltage according to the 
selected program (no manual voltage setpoint). Travel speed was 
operator-controlled and not instrumented. Because our focus is on 
surface discontinuities, no joint preparation was used (bead-on-
plate only); thus, lack of fusion effects tied to joint geometry are not 
confounders. Table 2 summarizes the SMAW setup by electrode.

2.6 Post welding cleaning

After welding, the plates were moved to a cleaning station to 
remove the slag that may have remained on the surface. For the 
cleaning process, the plates were secured using C-clamps, and with 
the assistance of an angle grinder, they were cleaned to achieve a 
smooth and uniform finish. 

2.7 Image labeling process

A manual image labeling process was conducted following 
data acquisition to enable the supervised training of a deep 
learning model for weld surface discontinuity classification. For 
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TABLE 2  SMAW setup by electrode.

Electrode Program Geometry/
Position/Passes

Current window (A) Arc-voltage control Electrode diameter 
(mm)

E6010 CEL

Bead-on-plate/1G/1 pass

70–100
Program controlled (voltage 
cannot be set manually; arc 
dynamics and termination 

voltage are adjustable through 
the setup menu)

3.2

E6011 CEL 60–100 3.2

E6013 STICK 80–130 3.2

E7018 STICK 90–130 3.2

this task, eight types of SMAW discontinuities were selected: crater, 
slag inclusion, porosity, incomplete fusion, arc strike, underfill 
spatter, and undercut. The selection of these classes was based 
on their documented occurrence in SMAW processes and their 
industrial relevance according to established welding literature. The 
occurrence of discontinuities is described in Chapter 13, Table 13.1 
of the AWS Welding Handbook (American Welding Society, 2001). 
Definitions and visual identification criteria were aligned with the 
AWS Welding Inspection Handbook (American Welding Society, 
2015) and the AWS A3.0 Standard Welding Terms and 
Definitions (American Welding Society, 2020b).

From an industrial perspective, the acceptance criteria for many 
of these discontinuities are specified in Clause 8 of the AWS 
D1.1 Structural Welding Code–Steel (American Welding Society, 
2020a), particularly Section 8.9 on visual inspection and Table 8.1, 
which defines dimensional and qualitative acceptance limits. In the 
present work, the model aims to identify the presence and type of 
discontinuities as an automated visual inspection tool. The decision 
on whether a discontinuity constitutes a defect, according to the 
acceptance criteria in Table 8.1 or other standards, is outside the 
current scope of this study.

In addition to discontinuity classification, the model was 
also designed to identify the weld bead as a distinct class, 
allowing for better contextual understanding and spatial referencing 
during detection. Because the proposed system is based on visual 
inspection, only surface-visible discontinuities were included in the 
data set. Subsurface or internal conditions, such as incomplete joint 
penetration, cannot be reliably detected through this method and 
were therefore excluded.

During labeling, the main challenges involved complex 
surface textures, overlapping or closely spaced discontinuities, 
and minor variations in lighting or weld orientation that could 
affect defect interpretation. To ensure inter-annotator consistency, 
a discontinuity labeling protocol was developed based on 
the above AWS references (American Welding Society, 2001; 
American Welding Society, 2011; American Welding Society, 2015; 
American Welding Society, 2020b; American Welding Society, 
2020a). The protocol provided class definitions, visual examples, 
and decision rules for borderline cases, enabling annotators to 
follow a standardized procedure. Importantly, since the research 
team had access to the actual weld seams, annotators were able to 
visually verify the discontinuities directly on the physical specimens 
whenever uncertainty arose during image labeling. Prior to complete 
annotation, a calibration stage was conducted where annotators 
jointly reviewed a subset of images, compared observations with the 

real welds, discussed discrepancies, and refined the protocol until 
consensus was reached.

Annotation then proceeded in pairs (two annotators per pair). 
Within each pair, the annotator generated draft labels and then 
resolved discrepancies by discussion to produce pairwise consensus 
labels, which constitute the released dataset. Labels were created 
manually using open-source annotation software, following the 
discontinuity labeling protocol. Because labels were produced by 
pairwise consensus and pre-consensus disagreements were not 
logged, we do not report formal inter-annotator agreement for 
this release; future updates may include a stratified IAA on an 
independently re-annotated subset. We did not log pre-consensus 
disagreements or compute formal inter-annotator agreement 
metrics for this release. An example of a labeled weld bead image 
with annotated discontinuities is shown in Figure 2.

2.8 Data augmentation

To enhance the diversity of the training dataset, data augmentation 
techniques were applied to the original manually labeled images. Three 
augmentation methods were employed: 90-degree rotation, horizontal 
mirroring, and Gaussian filtering. Each transformation was performed 
systematically, and the corresponding annotation files were adjusted 
to preserve the discontinuity location and class labeling accuracy. 
Special attention was given to the spatial orientation transformation, 
ensuring the bounding boxes were correctly recalculated for each 
augmented image. The augmentation process expanded the dataset 
from three hundred to three thousand images, significantly increasing 
the quantity and variability of the training sample while maintaining 
the fidelity of label information. 

Augmentation was applied only to the training split and was 
designed to enhance discontinuity-level variability rather than to 
introduce new weld seams. This distinction aligns with the study’s 
objective of surface discontinuity detection, in which the weld 
bead primarily serves as a contextual class to support accurate 
localization. The augmented dataset, therefore, preserves the same 
300 unique weld seams while diversifying the visual appearance of 
discontinuities across them. 

2.9 Dataset analysis

Following the data augmentation, 108,140 labeled instances 
were obtained across nine classes: eight different discontinuity 
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FIGURE 2
Annotated example of a SMAW weld bead image showing labeled discontinuities.

FIGURE 3
Distribution of annotated instances across classes in the SMAW dataset.

types and the weld bead. The distribution of instances per 
class is shown in Figure 3, highlighting a higher occurrence of 
porosity and slag inclusions, followed by undercut, spatter, and 
weld bead. Less frequently annotated classes, such as crater, 
arc strike, and underfill, represent more subtle or less frequent
discontinuities.

The labels' spatial characteristics were also examined. Figure 4 
shows the relative bounding box dimensions normalized with 
respect to image size. Weld beads tend to occupy a larger spatial 
footprint, whereas discontinuities such as porosity, slag inclusions, 
and craters are typically smaller and more compact. This variation 
has implications for the model’s detection sensitivity across classes 
with different aspect ratios and scales.

Furthermore, Figure 5 shows the positional distribution of 
each class. Most classes are uniformly distributed across the 

weld surface, while others, such as weld bead and underfill, 
tend to align horizontally and vertically, reflecting their natural 
occurrence patterns during deposition. This visualization reinforces 
the variability and representativeness of the dataset for training 
robust object detection models.

2.10 Model selection and training 
configuration

For the surface discontinuities detection task, a YOLOv7-
p5 architecture initialized from the official pretrained 
weights was employed. This initialization, based on the MS 
COCO dataset (Lin et al., 2014), was used to accelerate convergence 
and stabilize early-stage learning on the relatively small, specialized 
SMAW dataset. All layers were retrained on the SMAW data with no 

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1632417
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mendieta et al. 10.3389/frobt.2025.1632417

FIGURE 4
Normalized bounding box size for each class.

frozen parameters of COCO-specific label mapping, allowing the 
network to fully adapt to weld-specific textures and discontinuity 
patterns while benefiting from the general feature priors of the 
pretrained backbone.

Although pretraining can introduce domain bias when 
transferring from natural images to metallic surfaces, this 
initialization produced faster, more stable convergence 
than random initialization, which led to unstable early 
training (Yosinski et al., 2014; Chen et al., 2021). Therefore, 
pretrained initialization was retained for all experiments as 
the most effective configuration for our dataset size and
computational resources.

A series of training runs were conducted using the augmented 
dataset to compare the model performance in terms of classification 
accuracy, convergence stability, and computational performance. 
All experiments were executed on a Dell Precision workstation 
with an Intel Core i9-13900K processor, 64 GB of RAM, and 
an NVIDIA RTX A5000 GPU under a Windows Subsystem 
for Linux (WSL) environment with open-source Python
libraries.

Training parameters followed the recommended YOLOv7 
configuration (Wang C. Y. et al., 2022), with minor adjustments 
to account for dataset size and class distribution. The main 
hyperparameters, including learning rate schedules, momentum, 
weight decay, and warm-up settings, are summarized in Table 3. 
Default values were confirmed to provide stable convergence 
in short validation trials, and no exhaustive grid search was 
performed due to the dataset size and available computational 
resources. Each training session was monitored throughout its 
epochs to evaluate model behavior, including loss evolution, 
prediction accuracy, and generalization capability. These 
evaluations were performed by tracking detection metrics such 
as precision, recall, and mean average precision, discussed in
Section 2.11.

2.10.1 Dataset partitioning
To train the YOLOv7 model, the augmented dataset of 3000 

images was split into training, validation, and test subsets. Each 
subset comprised 70%, 20%, and 10% of the images, respectively. 
The division was performed using grouped, stratified sampling at the 
source-image level to prevent augmentation leakage. All augmented 
variants derived from the same source image were assigned to a 
single subset.

The partition procedure used a fixed random seed of 40, yielding 
209, 61, 30 weld bead groups for training, validation, and testing, 
respectively. Distribution checks confirmed no leakage and slight 
drift between the test split and the overall dataset (≤ 4.59 pp in class 
proportions; ≤ 5.00 pp in electrode-type proportions).

The training and validation subsets were used exclusively 
for model optimization, threshold calibration, and convergence 
monitoring, while the test subset remained unseen until final 
evaluation (Section 3.3). All reported models were initialized 
from the official YOLOv7 pre-trained weights and retrained 
end-to-end on the SMAW dataset, following the configuration 
described in Section 2.10. 

2.11 Evaluation metrics and monitoring

Model performance was rated using widely accepted object 
detection metrics. These metrics are derived from four fundamental 
classification outcomes: true positives (TP) that represent correctly 
identified instances of a discontinuity, false positives (FP) that 
represent non-discontinuity regions incorrectly identified as 
discontinuities, false negatives (FN) that are actual discontinuities 
that the model failed to detect, and true negatives (TN) that 
are correctly identified non-discontinuity regions. From these 
outcomes, the following core evaluation metrics were computed: 
precision (P), recall (R), and mean average precision (mAP) 
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FIGURE 5
Spatial distribution heatmaps for all annotated classes.

TABLE 3  Hyperparameters used to train the YOLOv7 models.

Hyperparameter Value

Momentum 0.937

Initial learning rate (Lro) 0.01

Final learning rate (Lrf) 0.1

Weight_decay 0.0005

Warmup_epochs 3

Warmup_momentum 0.8

Warmup_bias_lr 0.1

Box 0.05

(Padilla et al., 2021). Precision is a metric used in object 
detection tasks to evaluate the accuracy of the model’s positive 
predictions. It helps determine the model’s reliability in identifying 
positive instances by minimizing false positives. Higher precision 
indicates a lower rate of falsely predicted positive instances, 
as shown in Equation 1.

P = TP
TP+ FP

(1)

Recall measures the proportion of actual positive instances 
correctly identified by the model. Recall quantifies the model’s 
ability to detect and capture object instances correctly. A higher 
recall indicates a lower rate of missed detections, as shown
in Equation 2.

R = TP
FN+TP

(2)
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The mean average precision (mAP) is the primary metric for 
evaluating object detection models. It summarizes the precision-
recall curve across different confidence thresholds. In this study, two 
versions were monitored: mAP@0.5, computed at an Intersection 
over Union (IoU) threshold of 0.5, and mAP@0.5:0.95, averaged 
over IoU thresholds ranging from 0.5 to 0.95 in steps of 0.05. 
As shown in Equation 3, mAP can be approximated by averaging 
the Average Precision (AP) values across all object classes.

mAP = 1
N

N

∑
q=1

AP(q) (3)

In this context, AP(q) is the average precision for the q-th 
class, and N is the total number of classes evaluated. This metric 
summarizes the model’s effectiveness in detecting multiple classes 
simultaneously, accounting for precision and recall across varying 
confidence thresholds.

The evolution of these metrics was tracked throughout training 
using the built-in monitoring tools of the YOLOv7 framework. 
Figures 7, 8 shows examples of the learning curves of different 
YOLOv7 models for the training and validation sets, including 
losses (box, objectness, and classification), recall, mAP@0.5, and 
mAP@0.5; 0.95. These metrics were used to evaluate convergence, 
detect potential overfitting, and guide model selection based on 
validation performance. 

2.11.1 Threshold calibration and test-time 
protocol

In this study, we set the Non Maximum Suppression (NMS) 
IoU to 0.45, following the standard YOLOv7 implementation 
defaults and prior YOLO-style practice (Gählert et al., 2025; 
Wang C. Y. et al., 2022; Liu et al., 2023), with only the confidence 
threshold being tuned on the validation subset. The confidence 
threshold was swept from 0.05 to 0.5 in increments of 0.5, and 
the operating point was selected by maximizing macro F1 on the 
validation subset. This procedure yielded confidence = 0.20. The 
selected thresholds were then fixed and applied once to the test 
subset for final reporting. Alongside threshold-dependent metrics 
like precision and recall, it is reported threshold-independent scores 
(mAP@0.5, mAP@0.5:0.95), per-class AP/precision/recall, and a test 
subset confusion matrix are reported to characterize class-specific 
behavior and error modes. 

3 Results

This section presents the training and evaluation results of 
YOLOv7 models for surface discontinuities detection in the 
SMAW process. Firstly, the impact of dataset size and epoch 
count on detection accuracy is evaluated to determine optimal 
training parameters. Then, the model’s predictive capability is 
examined through dataset image evaluations. Finally, the model’s 
generalization ability is explored using external images from publicly 
available data. 

3.1 Dataset size

To evaluate the impact of dataset size on the validation 
performance, the YOLOv7-p5 architecture was trained using three 

subsets of the original weld bead image database: 300, 1500, 
and 3000 images. The learning rate, batch size, and number of 
epochs were kept constant to isolate the effect of the training 
set size. All reported parameters in this subsection correspond 
to the validation subset evaluated during training and were used 
exclusively for model selection and parameter tuning. The results are 
summarized in Table 4, which shows the model identifier, number of 
epochs, dataset size, batch size, final precision, mAP@0.5, and total 
training time for each case.

A substantial improvement in precision and mAP was observed 
with increasing dataset size, as shown in Table 4. Precision rose 
from 32% to 93% when the training subset expanded from 300 
to 1500 images, and mAP@0.5 increased from 25% to 87%. 
This sharp improvement indicates a representativeness threshold: 
with only three hundred images, several rare discontinuities (arc 
strike, underfill, and crater) were underrepresented, as only a few 
instances of these classes were recorded in the original dataset. 
Even in the expanded dataset, their frequencies remain lower than 
those of more common classes such as porosity or spatter, which 
helps explain the residual performance gap at larger sample sizes. 
Expanding to 1500 images increased the number and diversity of 
label instances, improving class balance and reducing false positives, 
as shown in Figure 3. Further enlargement of 3000 images yielded 
smaller but consistent gains, with precision = 97% and mAP@0.5 
= 94%, confirming that performance depends strongly on sample 
diversity and augmented discontinuity coverage.

The expansion to 3000 images was achieved through controlled 
data augmentation applied only to the training subset, enriching 
discontinuity-level variability without introducing new weldments. 
Importantly, the objective of this work is to detect surface 
discontinuities, with the weld bead labeled primarily to provide 
spatial context and improve localization; the number of unique weld 
seams remained three hundred.

Additionally, a well-defined increase in training time was 
observed with a larger dataset. Training the model with 300 images 
required approximately 40 min, whereas training with 1500 images 
extended to about 4 h, and training with 3000 images took more 
than 6 h. This behavior shows the computational cost associated with 
dataset scaling, which must be considered when using environments 
with limited hardware resources or strict training time constraints. 

3.2 Epoch count

After analyzing the general effect of dataset size, the influence of 
training duration on the validation subset performance was analyzed 
to identify whether extended training offered additional benefits. 
The model’s precision was evaluated at four key training checkpoints: 
150, 200, 250, and 300 epochs.

All training runs employed a YOLOv7-p5 architecture 
initialized from the official pretrained weights, following standard 
YOLOv7 practice. No layers were frozen, and all weights were 
retrained on the SMAW dataset to ensure adaptation to weld-specific 
textures and discontinuities.

Pretrained initialization is widely recognized to improve 
convergence stability and sample efficiency in object-detection 
tasks (Yosinski et al., 2014; Morales et al., 2018). This configuration 
enabled stable convergence within 200–300 epochs without 
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TABLE 4  Effect of dataset size on precision, mAP, and training time for YOLOv7 models.

Model Epochs Dataset size Batch size Precision Recall mAP@0.5 mAP@0.5:0.95 Training time

A 300 300 16 32% 30% 26% 13% 0:38:42

B 300 1500 16 93% 81% 87% 51% 4:01:40

C 300 3000 16 97% 91% 94% 68% 6:17:24

TABLE 5  Validation subset precision achieved by YOLOv7-p5 at different 
epoch counts.

Model Epochs Precision mAP@0.5 Training 
time

D 150 94% 88% 2:54:32

E 200 95% 92% 3:54:21

F 250 97% 93% 4:51:18

C 300 97% 94% 6:17:24

overfitting, supporting its suitability for the relatively small 
SMAW dataset.

The results summarized in Table 5 correspond to validation 
metrics computed during training. These values were used 
exclusively for selecting the optimal number of epochs before testing 
on the independent subset presented later in Section 3.4.1.

The most substantial gains in precision and mAP, occur within 
the first 200 epochs. Training for 150 already yielded a precision 
of 94% and mAP, of 88%. Extending training to 200 epochs 
improves precision to 95% and mAP, to 92%, while training for 
250 to 300 epochs led to only marginal additional gains, with 
precision stabilizing at 97% and mAP, increasing slightly from 93%
to 94%.

The precision and mAP evolution curves shown in Figure 6 
were obtained from the validation subset at regular checkpoints 
using the exponential moving average (EMA) weights maintained 
during YOLOv7 training (Wang C. Y. et al., 2022). The EMA 
mechanism smooths short-term oscillations in the model 
parameters, providing a clearer view of convergence behavior and 
supporting a consistent assessment of stability and diminishing 
returns across epochs (Morales-Brotons et al., 2024). The curves 
show that performance improvements plateau after approximately 
250 epochs, marking the onset of diminishing returns, where further 
training increases computation cost without yielding meaningful 
accuracy gains.

To further examine convergence behavior, the complete training 
and validation histories of Model F (250 epochs) and Model C (300 
epochs) are presented in Figure 7. These two configurations were 
selected as representative cases: Model F corresponds to the epoch 
count where validation metrics have already stabilized, while Model 
C extends training beyond this point to confirm that the model 
maintains stable performance. Both models exhibit smooth and 
consistent trends across training and validation metrics, indicating 

that the model converge reliably without divergence between the loss 
and mAP@0.5 curves.

To provide additional context, Figure 8 shows the detailed 
evolution of all monitored metrics for Model C across the full 300 
epoch training period, including loss components, precision, recall, 
and mAP metrics. Together, these results confirm that extended 
training beyond 250 epochs primarily refines weights without 
improving generalization.

As shown in Table 5, Model F (250 epochs) and Model C 
(300 epochs) achieved the highest validation performance, both 
exhibiting stable convergence and no overfitting. Model F reached 
precision = 97% and mAP@0.5 = 93% with a total training 
time of 04:51:00, whereas Model C required 06:17:00 to complete 
300 epochs and improved mAP@0.5 by only one percentage 
point. These results confirm that extending training beyond 250 
epochs yields limited accuracy gains relative to the increase in
computational cost.

Nevertheless, Model C was selected as the final configuration for 
independent test subset evaluation (Section 3.3) because it provided 
the most consistent validation metrics and complete convergence 
across all monitored losses. 

3.3 Model prediction evaluation

After selecting Model C based on validation performance, its 
generalization capability was evaluated on the independent test 
subset. All results in this section correspond exclusively to unseen 
data and quantify the model’s predictive performance under the 
fixed operating point determined during validation, with conf = 0.20 
and NMS IoU = 0.45 (see Section 2.11.1). 

3.3.1 Operating point and test subset 
performance

Using the fixed operation point, Model C achieves mAP@0.5 
= 24% and mAP@0.5:0.95 = 13% on the test subset, with precision 
= 45%, recall = 31% and macro F1 = 37%, as shown in Table 6. 
The performance exhibits a precision-oriented behavior, 
demonstrating effective false-positive control but limited recall 
due to small, low-contrast surface discontinuities typical of
SMAW welds.

The reduction in mAP from validation (94%) to test 
(24%) reflects the expected domain gap between the 
training/validation weld seam and previously unseen weldments. 
This behavior confirms that while the model captured 
representative discontinuity features, generalization remains 
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FIGURE 6
Evolution curves for YOLOv7 models. (A) Precision curve (B) mAP@0.5 curve. Validation metrics were computed using EMA weights maintained during 
training, and the dashed line at 250 epochs highlights the onset of diminishing returns in validation performance.

FIGURE 7
Training box-loss (solid) and validation mAP@0.5 (dashed) versus epochs for YOLOv7-p5 models: (A) Model F (250 epochs) and (B) Model C (300 
epochs). The dashed line at 250 epoch indicates the saturation point in learning.

constrained by the number and diversity of independent
samples. 

3.3.2 Per-class test metrics
Table 7 lists the class-wise AP@0.5 scores. The highest 

performance was achieved for the weld bead (85%) and spatter 
(54%), followed by moderate values for arc strike, overlap, and 
crater. Lower values for porosity, underfill, undercut, and slag 

inclusion reveal that detection reliability scales with object size 
and contrast: significant, well-defined discontinuities are detected 
more consistently, whereas minor or edge-like defects remain 
recall-limited.

3.3.3 Confusion matrix
The confusion matrix presented in Figure 9 shows that the test 

subset background false positives and false negatives dominate the 
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FIGURE 8
Complete training and validation evolution curves of Model C (YOLOv7-p5, 300 epochs, 3000-image dataset).

TABLE 6  Operating point and test subset performance.

Subset Conf NMS IoU Precision Recall F1 mAP@0.5 mAP@0.5:0.95

Test 0.20 0.45 45% 31% 37% 24% 13%

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1632417
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mendieta et al. 10.3389/frobt.2025.1632417

TABLE 7  Per-class test metrics at conf = 0.20, IoU = 0.45.

Class AP@0.5

Weld bead 85%

Spatter 54%

Arc Strike 34%

Crater 13%

Overlap 20%

Underfill 7%

Porosity 4%

Undercut 3%

Slag Inclusion 0.2%

overall error distribution rather than cross-class confusions. False 
positives are concentrated in spatter and undercut, often triggered 
by reflective textures or weld toe irregularities. False negatives 
occur mostly in porosity, slag inclusion, underfill, and undercut, 
which have a small size and low visual contrast. Additionally, cross-
class confusions appear sporadically between crater-arc strike and 
undercut-overlap, where similar geometry and adjacency effect can 
cause NMS suppression of valid detections.

The test subset results indicates that class separation is robust; 
however, recall for small-scale discontinuities remains the primary 
limitation. Future work should explore other methodologies to 
improve small-defect sensitivity. 

3.4 Validation and robustness evaluation

The following subsection presents a qualitative and robustness 
evaluation of Model C. Unlike the previous section, which reported 
quantitative results on the independent test subset, these analyses 
utilize validation images to visualize prediction behavior, assess 
sensitivity to image geometry, and evaluate generalization to 
external datasets. 

3.4.1 Dataset image evaluation
The performance of Model C was qualitatively evaluated on 

the validation subset of the augmented dataset, to visually assess 
the localization and classification of surface discontinuities. To 
ensure the model’s robustness across different welding skill levels 
and conditions, the dataset included welds produced by operators 
of varying expertise: engineering students, general welders, and 
certified welders. This approach introduced realistic variability in 
bead quality, surface texture, and discontinuity occurrence.

Figure 10 presents representative results for each operator 
category. Model C correctly identified multiple discontinuity types 
across all examples, including porosity, slag inclusion, arc strike, 
spatter, underfill and weld bead geometry. The bounding boxes were 
closely aligned with the ground truth locations, and confidence 

scores were high even in more challenging cases, such as irregular 
weld patterns typical of less experienced welders. Figure 10A 
shows prediction for a weld bead produced by an engineering 
student, characterized by irregular geometry and abundant surface 
discontinuities. Figure 10B shows a weld bead produced by a general 
welder, exhibiting moderate discontinuity occurrence. Figure 10C 
shows a weld bead produced by a certified welder, where the model 
correctly detected the nearly discontinuity-free surface region. 
Notably, in Figure 10C, the model shows its ability to detect 
discontinuities and recognize discontinuity-free regions accurately. 
This dual capability is essential for practical automated inspection 
systems, ensuring that discontinuity detection and weld quality 
verification are reliable.

While the model shows good performance, challenges were 
noted in detecting overlapping discontinuities like porosity near 
slag inclusion and small discontinuities on uneven surfaces. These 
limitations suggest opportunities for future improvements through 
further dataset expansion or fine-tuning. 

3.4.2 Aspect ratio evaluation
To assess the robustness of Model C to geometric variations 

in image acquisition, an additional evaluation was conducted 
using validation images with modified aspect ratios. Aspect ratio 
variations can introduce challenges in the model as the images can be 
captured using different camera models or configurations. For this 
evaluation, a representative weld bead image from the validation set 
was resized to a 2.5:1 aspect ratio as shown in Figure 11A and a 4.0:1 
aspect ratio as shown in Figure 11B.

The model detected multiple discontinuities in both cases, 
including porosity, slag inclusion, underfill, crater, arc strike, and 
weld bead geometry. The bounding boxes remained consistent, and 
the confidence score stayed within acceptable margins. However, a 
slight reduction in confidence was noted in the 4.0:1 aspect ratio 
image, particularly for small discontinuities such as underfill and 
slag inclusion, dropping to 0.66 in isolated cases.

These results show that the model is relatively robust to moderate 
aspect ratio variations, maintaining spatial consistency and class 
confidence within expected tolerances. However, as the aspect ratio 
increases further, minor degradations in detection confidence and 
bounding box precision become evident. These findings suggest that 
training with augmented aspect ratios or multi-scale normalization 
could further enhance the model’s adaptability to varying image 
geometries. 

3.4.3 External image evaluation
An evaluation using external images that were not part of the 

dataset was conducted to further assess the generalization ability 
of the selected Model C. This test aimed to simulate real-world 
deployment scenarios, where weld images may come from different 
equipment, settings, or environments.

The images were sourced from a publicly available dataset 
on Kaggle (Wijaya, 2024). Images under different lighting 
and surface conditions compared to the original dataset were 
used in this study. These differences introduce additional 
challenges, such as variability in weld bead appearance, noise, and 
discontinuities contrast.

Before testing the images, a pre-processing pipeline was 
implemented to ensure the external images were compatible with 
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FIGURE 9
Confusion matrix on the test subset at conf = 0.20, NMS IoU = 0.45.

the input configuration. In this regard, only images that matched a 
similar plane shot were selected for testing. External images captured 
at angles, representing different welding processes, or involving 
different types of joints, were excluded to maintain consistency with 
the original dataset characteristics. Additionally, selected images 
were cropped to isolate the weld bead region and then resized to 
match the input dimensions of the original dataset.

Figure 12 shows the detection results for three representative 
external images from the Kaggle dataset. The selected images enable 
evaluation of the model’s performance when predicting images of 
different sizes, lighting conditions, surface texture, and weld bead 
orientation. When evaluated on these images, Model C achieved 
an overall precision of 65.2%, a recall of 25.2%, and an mAP@0.5 
of 26.3% as it is shown in Table 8. Among the annotated classes, 
the weld bead was detected with high accuracy, while porosity 
and overlap showed moderate reliability. In contrast, spatter and 
undercut detection were inconsistent, and no predictions were 
reported for slag inclusion, crater, arc strike, or underfill, as these 
discontinuities were not annotated in the selected images according 
to the dataset’s labeling protocol.

It is essential to note that, since the external images were cropped 
and resized, and the physically welded plates were not available for 
validation, the ground truth labels relied on public annotations, 
which may contain inconsistencies. This limitation, combined with 
the restricted number of evaluated images, introduces uncertainty in 
the reported quantitative metrics. Nevertheless, the observed results 
confirm the model’s ability to generalize to weld with unfamiliar 
textures and illumination, albeit with reduced recall. These results 

highlight the need for expanded cross-dataset evaluation and 
domain adaptation strategies to ensure robust deployment across 
diverse acquisition settings. 

4 Discussion

The results of this study demonstrate that the YOLOv7-p5 
model can effectively identify multiple surface discontinuities 
produced during SMAW welding. Model performance was first 
assessed on the validation subset to determine the influence of 
dataset size, epoch count, and other optimization factors. The 
final configuration (Model C) was subsequently evaluated on 
the independent test subset (Section 3.3) to verify generalization 
to unseen weldments and distinct acquisition conditions. The 
observed variability in bead texture and illumination also 
reflects the inherent complexity of SMAW welds (e.g., flux-
generated slag residues and manual operator variability), making 
SMAW surface conditions distinct from gas-shielded processes 
(GMAW/GTAW) and supporting the need for process-specific
datasets. 

4.1 Dataset size and training duration

Increasing the dataset size and the number of training epochs 
significantly improved detection accuracy. Expanding the training 
subset from 300 to one 1500 increased precision from 34% to 93%, 
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FIGURE 10
Detection results on validation dataset images produced by welder’s experience: (A) engineering student (B) general welder (C) certified welder.

confirming that dataset representativeness strongly affects model 
generalization, particularly for rare discontinuity classes such as arc 
strike, underfill, and crater (Table 5). Beyond 250 epochs, however, 
performance gains became marginal: both training and validation 
losses plateaued while validation mAP@0.5 remained stable 
(Figures 6–8), confirming convergence without overfitting. These 
findings are consistent with prior reports (Yang L. et al., 2021; Liu 
and Wang, 2023) that larger and more diverse datasets improve 
model generalization. Based on the observed convergence behavior, 
training was limited to 300 epochs to balance accuracy and
computational cost.

Future dataset expansion will continue within the SMAW 
process, incorporating fillet and butt-joint geometries to capture 
additional discontinuity modes beyond the bead-on-plate 
configuration used in this study. 

4.2 Aspect ratio and external-dataset 
behavior

The aspect ratio evaluation (Section 3.4.2) showed that the model 
is robust to moderate geometric changes but highlighted reduced 
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FIGURE 11
Aspect ratio evaluation of dataset images. (A) Model prediction for a 2.5:1 aspect ratio image; (B) prediction for a 4.0:1 aspect ratio image.

confidence at higher ratios, an important consideration for variable 
field camera setups. Other studies (Wang C. et al., 2022; Yang et al., 
2023) have similarly noted the importance of image preprocessing 
and input consistency for optimal model performance. In the external 
dataset evaluation (Section 3.4.3; Table 8; Figure 12), the model retains 
its detection capability, but shows lower recall and a drop in confidence 
scores due to domain shift and annotation inconsistencies. Despite 
these limitations, the correct localization of major discontinuities was 
maintained, demonstrating satisfactory robustness. 

4.3 Training strategy and domain 
adaptation

The model was initialized from the official YOLOv7 pre-trained 
weights, and all layers were retrained on SMAW-specific images. 
This configuration enables faster convergence and stable optimization, 
while allowing for complete adaptation to weld textures and surface 
morphology. Previous studies have demonstrated that initializing 
networks with transferred features can enhance generalization and 
reduce training time, even when the source and target data 
domains differ (Yosinski et al., 2014). In this study, full network 
retraining ensured that both low- and high-level features adapted to 
the SMAW domain. Future work will explore transfer learning and 
domain adaptation strategies based on welding-oriented pre-trained 
models to improve cross-process generalization further. 

4.4 Error sources and class imbalance

Despite robust in-dataset performance, some limitations remain. 
The model occasionally produced lower confidence scores or partial 
bounding boxes in dense weld regions with overlapping discontinuities 
or occlusion. These challenges are common in object detection 
tasks and are exacerbated by class imbalance, as discontinuities such 

as spatter and porosity occur more frequently than other types, 
as shown in Figure 3. While data augmentation partially mitigated this 
issue, the results indicate that further expansion with multi-source and 
field-acquired images is needed to improve balance and strengthen 
generalization. Another limitation concerns the absence of formal 
inter-annotator agreement metrics; although labels were created by 
consensus, a quantitative IAA assessment is planned for future dataset 
revision to strengthen reproducibility. 

4.5 Comparative analysis with related 
works

To contextualize the performance, Table 9 compares the 
proposed model, YOLOv7-p5, with recent weld-defect detectors 
across different welding processes and dataset sizes. Reported 
metrics reflect the evaluation split used in each study: YOLO-
MSAPF (Wang et al., 2023) reports on its validation subset of 
GMAW images; WeldNet (Wang et al., 2024) reports on a held-out 
test subset of 33254 TIG images; (Xu and Li, 2024); report averages 
over internal test subsets from multiple splits (6:3:1–8:1:1); and this 
work reports validation results for model selection and provides an 
independent test-subset evaluation. Unlike prior works centered on 
GMAW/TIG, our study contributes an annotated SMAW dataset 
(3000 images, nine classes). It shows that process-specific data 
and training optimization can match or exceed the accuracy of 
an architecturally enhanced model while maintaining practical 
efficiency.

4.6 Interpretation of external class 
anomalies

In the external dataset evaluation, the Undercut class reported 
contradictory results, such as precision values of 100% with recall 
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FIGURE 12
Detection results of model C for external images sourced from the Kaggle dataset (Wijaya, 2024). (A) Image sized 1019 x 675, (B) Image sized 1170 x 
760, (C) Image sized 639 x 437.

and mAP equal to 0%. This effect arises from the minimal size of 
the test set (three images) and the sparse distribution of annotated 
discontinuities. Precision is determined by the absence of false 

positives among the model’s predictions, whereas recall and mAP 
depend on the overlap between predictions and ground-truth 
annotations. In this case, the model produced few predictions 
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TABLE 8  External dataset evaluation results (only the images 
presented in Figure 11).

Class Precision (%) Recall (%) mAP@0.5 (%)

All 65.2 25.2 26.3

Porosity 0.0 0.0 0.3

Weld bead 83.7 100.0 99.6

Spatter 42.6 13.5 16.5

Undercut 100 0.0 0.0

Overlap 99.9 12.5 15.0

Undercut class report precision = 100% with recall and mAP, 0%.
This outcome results from class imbalance and the limited test set size: only one undercut 
instance was annotated across the three Kaggle images used for external testing. The model 
produces very few predictions without false positives (yielding high precision), but none 
overlapped with the annotated ground truth under the IoU ≥ 0.5 threshold, resulting in 
zero recall and mAP.

that were not contradicted by false detections, yielding perfect 
precision, but no matches under the IoU threshold with the 
annotated discontinuities, resulting in zero recall and mAP. These 
values should therefore be interpreted cautiously due to the dataset 
limitations, rather than as a true reflection of model performance for 
these classes. 

4.7 Practical deployment and future 
directions

While the present work focused on offline image-based 
detection to support visual inspection tasks, real-time inference 
was not evaluated. The intended application at this stage is 
a complementary tool. Once an image is captured, the model 
predicts the presence and location of discontinuities, and then the 
results are validated by a certified welding inspector. Nevertheless, 
enabling real-time operation remains an important future direction, 
particularly when coupled with a defect decision framework. Real-
time operation would allow the system to be deployed on edge 
devices, enabling inspection in areas with limited accessibility 
and reducing dependence on post-processing. Such integration 
could enhance field usability, providing inspectors with immediate 
feedback and facilitating continuous monitoring in production 
environments.

Building on this perspective, it is important to consider how 
the model’s predictions relate to human inspectors. The present 
evaluation relied on a labeled dataset as the reference standard; 
no direct quantitative comparison with human inspectors was 
conducted. Such a comparison would help assess the model’s 
practical utility in real inspection scenarios. Rather than comparing 
the number of individual discontinuities detected, which would 
effectively reduce the evaluation to a bounding-box count, a 
more representative approach would be at the joint level. In this 
framework, both the model and inspectors would provide a pass/fail 
decision for the weld segment based on detected discontinuities and 
applicable acceptance criteria. This strategy aligns with the planned 

integration of a defect decision framework and would enable a direct 
comparison with the holistic inspection process used by certified 
welding inspectors.

From a methodological standpoint, future improvements 
could also be achieved by integrating segmentation-based 
architectures such as Mask R-CNN (He et al., 2017) and 
DeepLab (Chen et al., 2016), which could further enhance 
this applicability. Unlike detection-only models, segmentation 
methods provide pixel-level localization of discontinuities, 
enabling more accurate quantification of defect size, shape, 
and orientation. This capability is particularly relevant when 
assessing discontinuities in the context of code compliance, 
where defect classification often depends on measured size and 
extent. Such integration is especially significant to AWS D1.1 
Structural Welding Code (Table 8) (American Welding Society, 
2020a), which established visual inspection acceptance criteria. 
Under this framework, the classification of a discontinuity 
as a defect is not based solely on its presence but also on 
whether its dimensions exceed defined thresholds. Combining 
detection with segmentation allows the system to evolve from a 
discontinuity identification tool into a decision-support framework 
capable of guiding automated pass/fail evaluations in inspection
workflows.

Finally, it is important to clarify the detection scope of the 
proposed model. In this work, a convolutional neural network 
model was trained to detect surface irregularities in SMAW weld 
seams, which are generally considered discontinuities. According 
to AWS A3.0 (American Welding Society, 2020b), discontinuity is 
an interruption of the typical structure of a material, such as a 
lack of homogeneity in its mechanical, metallurgical, or physical 
characteristics, and it is not necessarily a defect. In contrast, 
a defect is defined as a discontinuity or set of discontinuities 
that, by nature or accumulated effect, render a part or product 
unable to meet applicable standards or specifications. Within this 
framework, the model visually detects eight types of discontinuities 
as described in Section 2.7. However, some discontinuities (slag 
inclusions, lack of fusion, craters, and arc strikes) may be considered 
defects depending on specific code requirements. As a result, the 
proposed model should be regarded as a discontinuity detection 
tool, providing inspectors with reliable information that must 
be evaluated against acceptance criteria to determine whether a 
defect is present. This distinction highlights the model’s role as a 
complementary instrument for more complete and consistent visual 
inspection. 

5 Conclusion

This study successfully developed and validated a YOLOv7-
based deep learning model tailored for detecting surface 
discontinuities in the SMAW process. The following key conclusions 
were drawn: 

1. The dataset size was crucial to the model’s performance. 
Model A, trained on 300 images, achieved limited precision 
(32%), recall (30%), and mAP@0.5 (26%), highlighting 
the dataset’s under-representation and lack of discontinuity 
variability. In contrast, Models B and C, trained with 1500 
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TABLE 9  Comparison of the proposed YOLOv7-p5 model with state-of-the-art weld-defect detection approaches.

Study Model Welding process Dataset size No. of classes Precision (%) mAP@0.5 (%)

Wang et al. (2023) YOLO-MSAPF GMAW 7580 8 ≈ 95 95

Wang et al. (2024) WeldNet (+FE + KD) TIG 33254 6 83.8 (N/A)

Xu and Li (2024) Improved YOLOv7 
(+Le-HorBlock + 
CoordAtt + SIoU

GMAW 2000 3 96.5 78.6

This work (2025) YOLOv7-p5 SMAW 3000 9 97 94

Metrics are reported on validation or internal-test splits as in the original papers.

images and 300 images, respectively, achieved substantially 
higher performance, with Model C reaching 97% precision, 
91% recall, mAP@0.5 of 94%, and mAP@0.5:0.95 of 68%. 
These outcomes confirm the strong dependence of detection 
performance on dataset size and diversity, emphasizing 
the need for representative SMAW imagery covering all 
discontinuity types.

2. An optimal training range was identified between 200 and 300 
epochs, balancing detection performance with computational 
efficiency. As shown in Figures 6–8, training and validation 
losses stabilize beyond 250 epochs, while the validation 
mAP@0.5 plateaus, indicating convergence without overfitting 
and diminishing returns.

3. The model achieved robust in-dataset performance 
across welds produced by operators of different expertise 
levels, reflecting good consistency. However, an external 
evaluation of the Kaggle dataset showed reduced precision 
and recall, partially due to domain shift, illumination 
differences, and annotation inconsistencies, as discussed
in Section 3.4.3.

4. While the model exhibited good overall generalization ability, 
detection of overlapping or occluded discontinuities in 
noisy weld regions remained challenging, particularly for 
spatter and porosity. This limitation, primarily related to 
class imbalance, underscores the need for dataset expansion 
with multi-source and field-acquired images to enhance
generalization.

5. The system was designed as a complementary offline 
inspection tool rather than a real-time edge deployment. 
Future developments will consider real-time inference 
and decision-support frameworks, enabling deployment in 
environments with limited access.

6. No direct quantitative comparison with human inspectors was 
performed. A more representative approach would be a joint-
level evaluation where both inspectors and the model provide 
pass/fail decisions based on applicable acceptance criteria. This 
strategy aligns with the planned development of a decision 
framework for defects.

7. Comparison with advanced models (Wang et al., 
2023; 2024; Xu and Li, 2024) shows that, although 
architectural improvements improve accuracy, dataset 
engineering and domain-specific tuning remain equally
critical.

Future work will focus on:

• Expanding the dataset with multi-source and field-acquired 
images to improve class balance and generalization; future 
releases will also include fillet and butt-joint welds to 
capture additional discontinuity modes beyond bead-on-plate 
configurations.

• Applying transfer learning with welding oriented pretrained 
networks to enable generalization from SMAW to other arc-
welding processes while retaining accuracy on SMAW surface 
discontinuities.

• Integrating the detection with segmentation-based 
architectures to enable precise discontinuity quantification 
and support automated pass/fail decision in accordance 
with visual inspection acceptance criteria defined in
AWS D1.1.

• Conducting joint-level comparative studies with certified 
welding inspectors, evaluating pass/fail decisions based on 
detected discontinuities and acceptance criteria to assess the 
model’s practical utility in real inspection workflows; this work 
will serve as the foundation for a decision-support framework 
linking detection to code-based compliance.

• Exploring architectural enhancements (e.g., lightweight 
attention or multiscale fusion modules) to optimize detection 
accuracy and computational efficiency.
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