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Detecting surface discontinuities in welds is essential to ensure the structural
integrity of welded elements. This study addresses the limitations of manual
visual inspection in shielded metal arc welding by applying convolutional
neural networks for automated discontinuities detection. A specific image
dataset of discontinuities on Shielded Metal Arc Welding weld seams was
developed through controlled experiments with various electrode types and
welder experience levels, resulting in 3,000 images. The YOLOv7 architecture
was trained and evaluated on this dataset, achieving a precision of 97% and
mMAP@O.5 of 94%. Results showed that increasing the dataset size and training
periods significantly improved detection performance, with optimal accuracy
observed around 250-300 epochs. The model demonstrated robustness to
moderate variations in image aspect ratio and generalization capabilities to an
external dataset. This paper presents an approach for detecting SMAW weld
surface discontinuities, offering a reliable and efficient alternative to manual
inspection and contributing to the advancement of intelligent welding quality
control systems.

KEYWORDS

shielded metal arc welding (SMAW), weld quality assurance, weld surface
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1 Introduction

Welding is an essential manufacturing process employed for the joining, repairing,
and reinforcing of metal components. It comprises more than ninety processes
employed in various industries (American Welding Society, 2008). The welding process
selection depends on the material, joint design, required strength, available equipment,
environmental conditions, etc. Among all the welding processes, Shielded Metal Arc
Welding (SMAW) remains one of the most widely adopted due to its versatility, simplicity,
and ease of implementation in small-scale applications (American Welding Society, 2001).
Regardless of the welding process, welding discontinuities are inevitable, whether they
are done manually or automatically. To ensure the quality of weldments, an efficient and
accurate weld inspection plan is required (Xu and Li, 2024).
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Weld quality assurance is fundamental during fabrication as it
guarantees the weldment complies with the design requirements. In
the SMAW process, surface discontinuities such as cracks, porosity,
undercut, slag inclusion, and incomplete fusion can result at the end
of the process. These discontinuities can compromise the behavior
of the welded joints, leading to failures or unsafe operations. To
mitigate these risks, traditional quality assurance practices include
both destructive (DE) and non-destructive examinations (NDE).
Unlike destructive examination, NDE methods allow the weldment
inspection without damaging the component, making them ideal
for in-service inspection and production control (Deepak et al.,
2021). Among NDE techniques, methods such as radiographic
testing (RT), ultrasonic testing (UT), magnetic particle testing
(MT), dye penetrant testing (PT), and visual examination (VE)
are widely used during and after fabrication to detect internal and
superficial discontinuities in the weldments. Although considered
the most basic inspection form, VE remains an important NDE due
to its simplicity and cost effectiveness (American Welding Society,
2001; American Welding Society, 2011). However, the examination
depends on human judgment that introduces variability and
subjectivity, potentially compromising the reliability and accuracy
of defect detection on weldments (Yang et al., 2022). In this regard,
the search for automated tools for the visual inspection method
has gained popularity in the manufacturing industry as they could
provide an objective and repeatable assessment of weld surfaces.

In this context, advances in machine vision technology have
shown great potential for quality control of surface discontinuities.
Over the years, various approaches have been developed to address
this task, ranging from classical image processing techniques such
as edge detection, thresholding, and morphological operations to
more advanced machine-based and deep learning-based models
(Bhatt et al., 2021). Traditional image processing methods are often
limited by sensitivity to noise, lighting conditions, and surface
variability (Tsai and Huang, 2003; Jie et al, 2009; Park et al,
2009; Borghese and Fomasi, 2015). Learning-based approaches,
including support vector machines (SVM) and random forests, have
improved classification performance but still rely on handcrafted
features and preprocessing steps (Chittilappilly and Subramaniam,
2017; Mustageem and Saqib, 2021; Le, 2022). In contrast, deep
learning models, particularly convolutional neural networks (CNN),
have demonstrated superior performance by automatically learning
hierarchical representations from raw image data (Yang D. et al,
2021; Ding et al., 2022; Taheri et al., 2022; Wang et al., 2024).

Among deep learning methods, the You Only Look Once
(YOLO) family of models has gained prominence due to its real-
time object detection capability, high accuracy, and efficiency
(Redmon et al., 2015). Successive versions of YOLO, from YOLOv1
to YOLOVS, have been applied to detect several industrial defects
(Hussain, 2023). In this regard, it has been successfully implemented
to detect welding discontinuities such as crack, pores, and slag
inclusion in processes like Gas Metal Arc Welding (GMAW),
Gas Tungsten Arc Welding (GTAW), and Laser Beam Welding
(LBW) (Deng et al, 2021; Wang et al, 2024; Xu and Li,
2024). However, each welding process exhibits unique thermal
profiles, surface textures, and discontinuity types, which limit
the transferability of models trained on one process to others.
In this regard, SMAW processes exhibit process-specific visual
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and statistical properties that differ markedly from wire-fed, gas-
shielded processes (Lampman, 1997; Bohnart, 2017). In SMAW,
flux-covered electrodes (e.g., E6010/E7018) produce variable slag
formation and post-weld residues; the heat-affected zone (HAZ)
heavily depends on manual operator control that introduces sample-
to-sample variations in arc length, travel speed, and weave pattern,
resulting in a surface that exhibits uneven bead geometry, spatter,
and oxidation that change reflectance and surface texture. Recent
surface vision defect detectors remain centered on gas-shielded
welds (Lietal., 2023; Xu and Li, 2024; Diaz-Cano etal., 2025), leaving
SMAW unaddressed and establishing a domain gap.

In gas-shielded processes, surfaces are cleaner and heat
input is more stable; the HAZ is typically narrower and more
consistent across passes, and its dominant discontinuities
differ (e.g., cold lap/lack of fusion in short-circuit GMAW;
tungsten inclusion in GTAW). LBW features extremely high
power density, a very narrow HAZ, and keyhole dynamics that
promote porosity and solidification cracking, with fine-scale visual
signatures. These process-specific differences produce domain shifts
(occlusion, spatter noise, changes in bead-geometry, and distinct
color/reflectance in the HAZ) that limit the direct transfer of models
trained on GMAW/GTAW/LBW datasets (Bohnart, 2017). This
motivates a SMAW-specific dataset and model that accounts for slag
dynamics, manual variability, and SMAW-typical discontinuities.

This study aims to develop and evaluate a YOLOv7-based
detector trained on a custom SMAW surface-image dataset
annotated for eight discontinuity classes (slag inclusion, porosity,
undercut, overlap, crater, arc strike, underfill and spatter) with >
90% precision and mAP@0.5, and to assess its performance and
robustness under realistic industrial variability including operator
skill, electrode type, illumination, and image aspect ratio. The
analysis further examines the model’s generalization capability when
applied to external SMAW images.

2 Materials and methods

To enable the development of an automated system for surface
discontinuities in the SMAW process, it is necessary to construct
a dedicated image dataset representative of the specific visual
characteristics and variability associated with this process. Unlike
other welding methods, SMAW weld exhibits a broad range of
surface appearances due to electrode type, operator skill, and process
parameters. As publicly available datasets predominantly focus
on GMAW, GTAW, or LBW, this study undertook a controlled
experimental campaign to generate a high-quality, diverse dataset
of SMAW weld beads with intentional surface discontinuities.

2.1 Materials

The base material used for welding was A36 black steel, chosen
for its common use in structural applications and compatibility with
the selected electrodes. Steel plates of 150 mm x 50 mm x 6 mm were
prepared for the welding tasks. Each plate provided a sufficient area
for a single bead per electrode, ensuring clear visibility of surface
characteristics and discontinuity formation.
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Before welding, the plate surfaces were cleaned using an angle
grinder to eliminate any contaminants that could compromise weld
quality. A total of 150 steel plates were prepared for this study, with
each plate receiving two weld beads, resulting in 300 individual
weld beads forming the complete set of samples used for subsequent
imaging, labeling, and analysis in the experimental process.

2.2 Welding equipment and consumables

All welding operations were performed using a Transpocket
180 Fronius welding machine. Four commonly used electrode
types, E6010, E6011, E6013, and E6018, with a 3.2 mm diameter,
were selected for the experiments. These electrodes differ in
arc characteristics, penetration, and slag properties, thereby
introducing natural variability in weld bead appearance and
potential discontinuity types.

2.3 Welder participation

To ensure a broad representation of weld quality and surface
conditions, operators with varying levels of expertise carried
out the welding operations. The group included engineering
students, general welders with practical field experience, and
certified professional welders. This stratified approach was chosen to
promote variability in weld outcomes and maximize the likelihood
of capturing a diverse range of surface discontinuities across
electrode types.

2.4 Image acquisition setup

The visual documentation of each weld bead was carried out
using a Canon EOS Rebel T8I (24.1 MP) and a Sigma 105 mm
macro lens on a tripod. The camera operated in manual exposure
at f/4, 1/400 s, and ISO 160, with no flash and fixed with white
balance. Illumination was provided by a Godox Triple-light LED
Mini Photography Studio (LST40) driven by a Godox LSC3 three-
channel controller, with all three channels set to 100% output;
camera and lighting geometry were held constant across sessions,
while illuminance at the weld surface (lux) was not instrumented.
Figure 1 and Table I summarize the light-box configuration and
geometric setup used throughout the experiments.

2.5 Welding protocol

The welders were provided with a welding procedure
specification (WPS) with the welding process characteristics (base
material, filler material, joint design, welding position, welding
parameters, and cleaning procedures). This procedure enabled a
controlled weld generation with varied features under repeatable
conditions, forming the basis for a comprehensive SMAW weld
surface image dataset.

SMAW beads were produced using the Fronius Transpocket
180 power source’s preset programs, selected by coating family:
CEL for cellulosic electrodes (E6010, E6011) and STICK for
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FIGURE 1
Image acquisition setup.
TABLE 1 Camera and lighting parameters.
Component | Parameter Value ‘
Camera Exposure mode /4, 1/400 s, ISO 160; WB fixed; no
flash
Model/controller LST40 lightbox/Godox LSC3
Lighting
Output 100% on all three channels
Geometry Mount Tripod; fixed camera - lightbox
geometry

low-hydrogen/rutile electrodes (E7018, E6013). All deposits were
bead-on-pate in the flat (1G) position with a single pass per
electrode. The current window applied was E6013: 80-130 A,
E7018: 90-130 A, E6010: 70-100 A, and E6011: 60-100 A; the
power source automatically regulated arc voltage according to the
selected program (no manual voltage setpoint). Travel speed was
operator-controlled and not instrumented. Because our focus is on
surface discontinuities, no joint preparation was used (bead-on-
plate only); thus, lack of fusion effects tied to joint geometry are not
confounders. Table 2 summarizes the SMAW setup by electrode.

2.6 Post welding cleaning

After welding, the plates were moved to a cleaning station to
remove the slag that may have remained on the surface. For the
cleaning process, the plates were secured using C-clamps, and with
the assistance of an angle grinder, they were cleaned to achieve a
smooth and uniform finish.

2.7 Image labeling process

A manual image labeling process was conducted following
data acquisition to enable the supervised training of a deep
learning model for weld surface discontinuity classification. For
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TABLE 2 SMAW setup by electrode.

10.3389/frobt.2025.1632417

Electrode | Program Geometry/ Current window (A)  Arc-voltage control Electrode diameter
Position/Passes (mm)
E6010 CEL 70-100 3.2
Program controlled (voltage
E6011 CEL 60-100 cannot be set manually; arc 32
Bead-on-plate/1G/1 pass dynamics and termination
E6013 STICK 80-130 voltage are adjustable through 3.2
the setup menu)
E7018 STICK 90-130 32

this task, eight types of SMAW discontinuities were selected: crater,
slag inclusion, porosity, incomplete fusion, arc strike, underfill
spatter, and undercut. The selection of these classes was based
on their documented occurrence in SMAW processes and their
industrial relevance according to established welding literature. The
occurrence of discontinuities is described in Chapter 13, Table 13.1
of the AWS Welding Handbook (American Welding Society, 2001).
Definitions and visual identification criteria were aligned with the
AWS Welding Inspection Handbook (American Welding Society,
2015) and the AWS A3.0 Standard Welding Terms and
Definitions (American Welding Society, 2020b).

From an industrial perspective, the acceptance criteria for many
of these discontinuities are specified in Clause 8 of the AWS
D1.1 Structural Welding Code-Steel (American Welding Society,
2020a), particularly Section 8.9 on visual inspection and Table 8.1,
which defines dimensional and qualitative acceptance limits. In the
present work, the model aims to identify the presence and type of
discontinuities as an automated visual inspection tool. The decision
on whether a discontinuity constitutes a defect, according to the
acceptance criteria in Table 8.1 or other standards, is outside the
current scope of this study.

In addition to discontinuity classification, the model was
also designed to identify the weld bead as a distinct class,
allowing for better contextual understanding and spatial referencing
during detection. Because the proposed system is based on visual
inspection, only surface-visible discontinuities were included in the
data set. Subsurface or internal conditions, such as incomplete joint
penetration, cannot be reliably detected through this method and
were therefore excluded.

During labeling, the main challenges involved complex
surface textures, overlapping or closely spaced discontinuities,
and minor variations in lighting or weld orientation that could
affect defect interpretation. To ensure inter-annotator consistency,
a discontinuity labeling protocol was developed based on
the above AWS references (American Welding Society, 2001;
American Welding Society, 2011; American Welding Society, 2015;
2020b;
2020a). The protocol provided class definitions, visual examples,

American Welding Society, American Welding Society,
and decision rules for borderline cases, enabling annotators to
follow a standardized procedure. Importantly, since the research
team had access to the actual weld seams, annotators were able to
visually verify the discontinuities directly on the physical specimens
whenever uncertainty arose during image labeling. Prior to complete
annotation, a calibration stage was conducted where annotators
jointly reviewed a subset of images, compared observations with the
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real welds, discussed discrepancies, and refined the protocol until
consensus was reached.

Annotation then proceeded in pairs (two annotators per pair).
Within each pair, the annotator generated draft labels and then
resolved discrepancies by discussion to produce pairwise consensus
labels, which constitute the released dataset. Labels were created
manually using open-source annotation software, following the
discontinuity labeling protocol. Because labels were produced by
pairwise consensus and pre-consensus disagreements were not
logged, we do not report formal inter-annotator agreement for
this release; future updates may include a stratified IJAA on an
independently re-annotated subset. We did not log pre-consensus
disagreements or compute formal inter-annotator agreement
metrics for this release. An example of a labeled weld bead image
with annotated discontinuities is shown in Figure 2.

2.8 Data augmentation

To enhance the diversity of the training dataset, data augmentation
techniques were applied to the original manually labeled images. Three
augmentation methods were employed: 90-degree rotation, horizontal
mirroring, and Gaussian filtering. Each transformation was performed
systematically, and the corresponding annotation files were adjusted
to preserve the discontinuity location and class labeling accuracy.
Special attention was given to the spatial orientation transformation,
ensuring the bounding boxes were correctly recalculated for each
augmented image. The augmentation process expanded the dataset
from three hundred to three thousand images, significantly increasing
the quantity and variability of the training sample while maintaining
the fidelity of label information.

Augmentation was applied only to the training split and was
designed to enhance discontinuity-level variability rather than to
introduce new weld seams. This distinction aligns with the study’s
objective of surface discontinuity detection, in which the weld
bead primarily serves as a contextual class to support accurate
localization. The augmented dataset, therefore, preserves the same
300 unique weld seams while diversifying the visual appearance of
discontinuities across them.

2.9 Dataset analysis

Following the data augmentation, 108,140 labeled instances
were obtained across nine classes: eight different discontinuity

frontiersin.org
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FIGURE 2

Annotated example of a SMAW weld bead image showing labeled discontinuities.
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FIGURE 3
Distribution of annotated instances across classes in the SMAW dataset.

3690

Classes

types and the weld bead. The distribution of instances per
class is shown in Figure 3, highlighting a higher occurrence of
porosity and slag inclusions, followed by undercut, spatter, and
weld bead. Less frequently annotated classes, such as crater,
arc strike, and underfill, represent more subtle or less frequent
discontinuities.

The labels' spatial characteristics were also examined. Figure 4
shows the relative bounding box dimensions normalized with
respect to image size. Weld beads tend to occupy a larger spatial
footprint, whereas discontinuities such as porosity, slag inclusions,
and craters are typically smaller and more compact. This variation
has implications for the model’s detection sensitivity across classes
with different aspect ratios and scales.

Furthermore, Figure 5 shows the positional distribution of
each class. Most classes are uniformly distributed across the
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weld surface, while others, such as weld bead and underfill,
tend to align horizontally and vertically, reflecting their natural
occurrence patterns during deposition. This visualization reinforces
the variability and representativeness of the dataset for training
robust object detection models.

2.10 Model selection and training
configuration

For the surface discontinuities detection task, a YOLOv7-
p5 the official pretrained
weights was employed. This initialization, based on the MS

architecture initialized from
COCO dataset (Lin et al., 2014), was used to accelerate convergence
and stabilize early-stage learning on the relatively small, specialized
SMAW dataset. All layers were retrained on the SMAW data with no

05 frontiersin.org


https://doi.org/10.3389/frobt.2025.1632417
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mendieta et al.

10.3389/frobt.2025.1632417

1.04 o3 By o .;?..: s .
REREL A S
¢ e o o
0.8 . = -
0.6 s
c : .
prov] LN
=] l * e e
. .

Iy

Class
- Arc Strike
+  Slag inclusion
+  Porosity
«  Underfill
" - Undercut
- Weld bead
" Spatter
Overlap
Crater

0.0

0.4
Length

0.6

FIGURE 4
Normalized bounding box size for each class.

frozen parameters of COCO-specific label mapping, allowing the
network to fully adapt to weld-specific textures and discontinuity
patterns while benefiting from the general feature priors of the
pretrained backbone.

Although pretraining can introduce domain bias when
transferring from natural images to metallic surfaces, this
initialization = produced faster, more stable
than random initialization, which led to unstable early
training (Yosinski et al., 2014; Chen et al, 2021). Therefore,
pretrained initialization was retained for all experiments as

convergence

the most effective configuration for our dataset size and
computational resources.

A series of training runs were conducted using the augmented
dataset to compare the model performance in terms of classification
accuracy, convergence stability, and computational performance.
All experiments were executed on a Dell Precision workstation
with an Intel Core i9-13900K processor, 64 GB of RAM, and
an NVIDIA RTX A5000 GPU under a Windows Subsystem
Linux (WSL) Python
libraries.

for environment with open-source

Training parameters followed the recommended YOLOv7
configuration (Wang C. Y. et al., 2022), with minor adjustments
to account for dataset size and class distribution. The main
hyperparameters, including learning rate schedules, momentum,
weight decay, and warm-up settings, are summarized in Table 3.
Default values were confirmed to provide stable convergence
in short validation trials, and no exhaustive grid search was
performed due to the dataset size and available computational
resources. Each training session was monitored throughout its
epochs to evaluate model behavior, including loss evolution,
prediction accuracy, and generalization capability. These
evaluations were performed by tracking detection metrics such
as precision, recall, and mean average precision, discussed in
Section 2.11.
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2.10.1 Dataset partitioning

To train the YOLOvV7 model, the augmented dataset of 3000
images was split into training, validation, and test subsets. Each
subset comprised 70%, 20%, and 10% of the images, respectively.
The division was performed using grouped, stratified sampling at the
source-image level to prevent augmentation leakage. All augmented
variants derived from the same source image were assigned to a
single subset.

The partition procedure used a fixed random seed of 40, yielding
209, 61, 30 weld bead groups for training, validation, and testing,
respectively. Distribution checks confirmed no leakage and slight
drift between the test split and the overall dataset (< 4.59 pp in class
proportions; < 5.00 pp in electrode-type proportions).

The training and validation subsets were used exclusively
for model optimization, threshold calibration, and convergence
monitoring, while the test subset remained unseen until final
evaluation (Section 3.3). All reported models were initialized
from the official YOLOvV7 pre-trained weights and retrained
end-to-end on the SMAW dataset, following the configuration
described in Section 2.10.

2.11 Evaluation metrics and monitoring

Model performance was rated using widely accepted object
detection metrics. These metrics are derived from four fundamental
classification outcomes: true positives (TP) that represent correctly
identified instances of a discontinuity, false positives (FP) that
represent non-discontinuity regions incorrectly identified as
discontinuities, false negatives (FN) that are actual discontinuities
that the model failed to detect, and true negatives (TN) that
are correctly identified non-discontinuity regions. From these
outcomes, the following core evaluation metrics were computed:
precision (P), recall (R), and mean average precision (mAP)

frontiersin.org
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TABLE 3 Hyperparameters used to train the YOLOv7 models.

Hyperparameter Value

Momentum 0.937
Initial learning rate (Lro) 0.01
Final learning rate (Lrf) 0.1
Weight_decay 0.0005
Warmup_epochs 3
Warmup_momentum 0.8
Warmup_bias_Ir 0.1
Box 0.05

Frontiers in Robotics and Al

(Padilla et al, 2021). Precision is a metric used in object
detection tasks to evaluate the accuracy of the models positive
predictions. It helps determine the model’s reliability in identifying
positive instances by minimizing false positives. Higher precision
indicates a lower rate of falsely predicted positive instances,
as shown in Equation 1.

_ TP
" TP+FP

1

Recall measures the proportion of actual positive instances
correctly identified by the model. Recall quantifies the model’s
ability to detect and capture object instances correctly. A higher
recall indicates a lower rate of missed detections, as shown
in Equation 2.

TP

R=——
FN+TP

()
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The mean average precision (mAP) is the primary metric for
evaluating object detection models. It summarizes the precision-
recall curve across different confidence thresholds. In this study, two
versions were monitored: mAP@0.5, computed at an Intersection
over Union (IoU) threshold of 0.5, and mAP@0.5:0.95, averaged
over IoU thresholds ranging from 0.5 to 0.95 in steps of 0.05.
As shown in Equation 3, mAP can be approximated by averaging
the Average Precision (AP) values across all object classes.

N
1
AP=— ) AP
m Nq; ()
In this context, AP(q) is the average precision for the q-th
class, and N is the total number of classes evaluated. This metric

A3)

summarizes the model’s effectiveness in detecting multiple classes
simultaneously, accounting for precision and recall across varying
confidence thresholds.

The evolution of these metrics was tracked throughout training
using the built-in monitoring tools of the YOLOv7 framework.
Figures 7, 8 shows examples of the learning curves of different
YOLOv7 models for the training and validation sets, including
losses (box, objectness, and classification), recall, mAP@0.5, and
mAP@0.5; 0.95. These metrics were used to evaluate convergence,
detect potential overfitting, and guide model selection based on
validation performance.

2.11.1 Threshold calibration and test-time
protocol

In this study, we set the Non Maximum Suppression (NMS)
IoU to 0.45, following the standard YOLOv7 implementation
defaults and prior YOLO-style practice (Gihlert et al, 2025;
Wang C. Y. et al., 2022; Liu et al., 2023), with only the confidence
threshold being tuned on the validation subset. The confidence
threshold was swept from 0.05 to 0.5 in increments of 0.5, and
the operating point was selected by maximizing macro F1 on the
validation subset. This procedure yielded confidence = 0.20. The
selected thresholds were then fixed and applied once to the test
subset for final reporting. Alongside threshold-dependent metrics
like precision and recall, it is reported threshold-independent scores
(mAP@0.5, mAP@0.5:0.95), per-class AP/precision/recall, and a test
subset confusion matrix are reported to characterize class-specific
behavior and error modes.

3 Results

This section presents the training and evaluation results of
YOLOv7 models for surface discontinuities detection in the
SMAW process. Firstly, the impact of dataset size and epoch
count on detection accuracy is evaluated to determine optimal
training parameters. Then, the model’s predictive capability is
examined through dataset image evaluations. Finally, the model’s
generalization ability is explored using external images from publicly
available data.

3.1 Dataset size

To evaluate the impact of dataset size on the validation
performance, the YOLOv7-p5 architecture was trained using three
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subsets of the original weld bead image database: 300, 1500,
and 3000 images. The learning rate, batch size, and number of
epochs were kept constant to isolate the effect of the training
set size. All reported parameters in this subsection correspond
to the validation subset evaluated during training and were used
exclusively for model selection and parameter tuning. The results are
summarized in Table 4, which shows the model identifier, number of
epochs, dataset size, batch size, final precision, mAP@0.5, and total
training time for each case.

A substantial improvement in precision and mAP was observed
with increasing dataset size, as shown in Table 4. Precision rose
from 32% to 93% when the training subset expanded from 300
to 1500 images, and mAP@0.5 increased from 25% to 87%.
This sharp improvement indicates a representativeness threshold:
with only three hundred images, several rare discontinuities (arc
strike, underfill, and crater) were underrepresented, as only a few
instances of these classes were recorded in the original dataset.
Even in the expanded dataset, their frequencies remain lower than
those of more common classes such as porosity or spatter, which
helps explain the residual performance gap at larger sample sizes.
Expanding to 1500 images increased the number and diversity of
label instances, improving class balance and reducing false positives,
as shown in Figure 3. Further enlargement of 3000 images yielded
smaller but consistent gains, with precision = 97% and mAP@0.5
= 94%, confirming that performance depends strongly on sample
diversity and augmented discontinuity coverage.

The expansion to 3000 images was achieved through controlled
data augmentation applied only to the training subset, enriching
discontinuity-level variability without introducing new weldments.
Importantly, the objective of this work is to detect surface
discontinuities, with the weld bead labeled primarily to provide
spatial context and improve localization; the number of unique weld
seams remained three hundred.

Additionally, a well-defined increase in training time was
observed with a larger dataset. Training the model with 300 images
required approximately 40 min, whereas training with 1500 images
extended to about 4 h, and training with 3000 images took more
than 6 h. This behavior shows the computational cost associated with
dataset scaling, which must be considered when using environments
with limited hardware resources or strict training time constraints.

3.2 Epoch count

After analyzing the general effect of dataset size, the influence of
training duration on the validation subset performance was analyzed
to identify whether extended training offered additional benefits.
The model’s precision was evaluated at four key training checkpoints:
150, 200, 250, and 300 epochs.

All training runs employed a YOLOV7-p5 architecture
initialized from the official pretrained weights, following standard
YOLOvV7 practice. No layers were frozen, and all weights were
retrained on the SMAW dataset to ensure adaptation to weld-specific
textures and discontinuities.

Pretrained initialization is widely recognized to improve
convergence stability and sample efficiency in object-detection
tasks (Yosinski et al., 2014; Morales et al., 2018). This configuration
enabled stable convergence within 200-300 epochs without
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TABLE 4 Effect of dataset size on precision, mAP, and training time for YOLOv7 models.

Model | Epochs Datasetsize Batchsize Precision | Recall mAP@0.5 mAP@0.5:0.95 Training time
A 300 300 16 32% 30% 26% 13% 0:38:42
B 300 1500 16 93% 81% 87% 51% 4:01:40
¢ 300 3000 16 97% 91% 94% 68% 6:17:24

TABLE 5 Validation subset precision achieved by YOLOv7-p5 at different
epoch counts.

Model Epochs | Precision mAP@O0.5 Training
time
D 150 94% 88% 2:54:32
E 200 95% 92% 3:54:21
F 250 97% 93% 4:51:18
C 300 97% 94% 6:17:24

overfitting, supporting its suitability for the relatively small
SMAW dataset.

The results summarized in Table 5 correspond to validation
metrics computed during training. These values were used
exclusively for selecting the optimal number of epochs before testing
on the independent subset presented later in Section 3.4.1.

The most substantial gains in precision and mAP, occur within
the first 200 epochs. Training for 150 already yielded a precision
of 94% and mAP, of 88%. Extending training to 200 epochs
improves precision to 95% and mAP, to 92%, while training for
250 to 300 epochs led to only marginal additional gains, with
precision stabilizing at 97% and mAP, increasing slightly from 93%
to 94%.

The precision and mAP evolution curves shown in Figure 6
were obtained from the validation subset at regular checkpoints
using the exponential moving average (EMA) weights maintained
during YOLOV7 training (Wang C. Y. et al, 2022). The EMA
mechanism smooths short-term oscillations in the model
parameters, providing a clearer view of convergence behavior and
supporting a consistent assessment of stability and diminishing
returns across epochs (Morales-Brotons et al.,, 2024). The curves
show that performance improvements plateau after approximately
250 epochs, marking the onset of diminishing returns, where further
training increases computation cost without yielding meaningful
accuracy gains.

To further examine convergence behavior, the complete training
and validation histories of Model F (250 epochs) and Model C (300
epochs) are presented in Figure 7. These two configurations were
selected as representative cases: Model F corresponds to the epoch
count where validation metrics have already stabilized, while Model
C extends training beyond this point to confirm that the model
maintains stable performance. Both models exhibit smooth and
consistent trends across training and validation metrics, indicating
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that the model converge reliably without divergence between the loss
and mAP@0.5 curves.

To provide additional context, Figure 8 shows the detailed
evolution of all monitored metrics for Model C across the full 300
epoch training period, including loss components, precision, recall,
and mAP metrics. Together, these results confirm that extended
training beyond 250 epochs primarily refines weights without
improving generalization.

As shown in Table 5, Model F (250 epochs) and Model C
(300 epochs) achieved the highest validation performance, both
exhibiting stable convergence and no overfitting. Model F reached
precision = 97% and mAP@0.5 = 93% with a total training
time of 04:51:00, whereas Model C required 06:17:00 to complete
300 epochs and improved mAP@0.5 by only one percentage
point. These results confirm that extending training beyond 250
epochs yields limited accuracy gains relative to the increase in
computational cost.

Nevertheless, Model C was selected as the final configuration for
independent test subset evaluation (Section 3.3) because it provided
the most consistent validation metrics and complete convergence
across all monitored losses.

3.3 Model prediction evaluation

After selecting Model C based on validation performance, its
generalization capability was evaluated on the independent test
subset. All results in this section correspond exclusively to unseen
data and quantify the model’s predictive performance under the
fixed operating point determined during validation, with conf = 0.20
and NMS IoU = 0.45 (see Section 2.11.1).

3.3.1 Operating point and test subset
performance

Using the fixed operation point, Model C achieves mAP@0.5
= 24% and mAP@0.5:0.95 = 13% on the test subset, with precision
= 45%, recall = 31% and macro F1 = 37%, as shown in Table 6.
The performance exhibits a precision-oriented behavior,
demonstrating effective false-positive control but limited recall
due to small, low-contrast surface discontinuities typical of
SMAW welds.

The reduction in mAP from validation (94%) to test

(24%) reflects the expected domain gap between the
training/validation weld seam and previously unseen weldments.
This behavior confirms that while the model captured

representative discontinuity features, generalization remains
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constrained by the number and diversity of independent inclusion reveal that detection reliability scales with object size
samples. and contrast: significant, well-defined discontinuities are detected
more consistently, whereas minor or edge-like defects remain

i 1l-limited.
3.3.2 Per-class test metrics recali-limite

Table 7 lists the class-wise AP@0.5 scores. The highest
performance was achieved for the weld bead (85%) and spatter ~ 3.3.3 Confusion matrix
(54%), followed by moderate values for arc strike, overlap, and The confusion matrix presented in Figure 9 shows that the test
crater. Lower values for porosity, underfill, undercut, and slag  subset background false positives and false negatives dominate the
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TABLE 6 Operating point and test subset performance.

NMS loU

Precision

Recall ‘ F1

mAP@0.5 ’

mAP@0.5:0.95

Subset ’ Conf

Test

‘ 0.20 ‘

45%

31% ‘ 37% ‘

24%

13%
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TABLE 7 Per-class test metrics at conf = 0.20, loU = 0.45.

Class AP@0.5

Weld bead 85%

Spatter 54%

Arc Strike 34%

Crater 13%

Overlap 20%

Underfill 7%

Porosity 4%

Undercut 3%

Slag Inclusion 0.2%

overall error distribution rather than cross-class confusions. False
positives are concentrated in spatter and undercut, often triggered
by reflective textures or weld toe irregularities. False negatives
occur mostly in porosity, slag inclusion, underfill, and undercut,
which have a small size and low visual contrast. Additionally, cross-
class confusions appear sporadically between crater-arc strike and
undercut-overlap, where similar geometry and adjacency effect can
cause NMS suppression of valid detections.

The test subset results indicates that class separation is robust;
however, recall for small-scale discontinuities remains the primary
limitation. Future work should explore other methodologies to
improve small-defect sensitivity.

3.4 Validation and robustness evaluation

The following subsection presents a qualitative and robustness
evaluation of Model C. Unlike the previous section, which reported
quantitative results on the independent test subset, these analyses
utilize validation images to visualize prediction behavior, assess
sensitivity to image geometry, and evaluate generalization to
external datasets.

3.4.1 Dataset image evaluation

The performance of Model C was qualitatively evaluated on
the validation subset of the augmented dataset, to visually assess
the localization and classification of surface discontinuities. To
ensure the model’s robustness across different welding skill levels
and conditions, the dataset included welds produced by operators
of varying expertise: engineering students, general welders, and
certified welders. This approach introduced realistic variability in
bead quality, surface texture, and discontinuity occurrence.

Figure 10 presents representative results for each operator
category. Model C correctly identified multiple discontinuity types
across all examples, including porosity, slag inclusion, arc strike,
spatter, underfill and weld bead geometry. The bounding boxes were
closely aligned with the ground truth locations, and confidence
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scores were high even in more challenging cases, such as irregular
weld patterns typical of less experienced welders. Figure 10A
shows prediction for a weld bead produced by an engineering
student, characterized by irregular geometry and abundant surface
discontinuities. Figure 10B shows a weld bead produced by a general
welder, exhibiting moderate discontinuity occurrence. Figure 10C
shows a weld bead produced by a certified welder, where the model
correctly detected the nearly discontinuity-free surface region.
Notably, in Figure 10C, the model shows its ability to detect
discontinuities and recognize discontinuity-free regions accurately.
This dual capability is essential for practical automated inspection
systems, ensuring that discontinuity detection and weld quality
verification are reliable.

While the model shows good performance, challenges were
noted in detecting overlapping discontinuities like porosity near
slag inclusion and small discontinuities on uneven surfaces. These
limitations suggest opportunities for future improvements through
further dataset expansion or fine-tuning.

3.4.2 Aspect ratio evaluation

To assess the robustness of Model C to geometric variations
in image acquisition, an additional evaluation was conducted
using validation images with modified aspect ratios. Aspect ratio
variations can introduce challenges in the model as the images can be
captured using different camera models or configurations. For this
evaluation, a representative weld bead image from the validation set
was resized to a 2.5:1 aspect ratio as shown in Figure 11A and a 4.0:1
aspect ratio as shown in Figure 11B.

The model detected multiple discontinuities in both cases,
including porosity, slag inclusion, underfill, crater, arc strike, and
weld bead geometry. The bounding boxes remained consistent, and
the confidence score stayed within acceptable margins. However, a
slight reduction in confidence was noted in the 4.0:1 aspect ratio
image, particularly for small discontinuities such as underfill and
slag inclusion, dropping to 0.66 in isolated cases.

These results show that the model is relatively robust to moderate
aspect ratio variations, maintaining spatial consistency and class
confidence within expected tolerances. However, as the aspect ratio
increases further, minor degradations in detection confidence and
bounding box precision become evident. These findings suggest that
training with augmented aspect ratios or multi-scale normalization
could further enhance the model’s adaptability to varying image
geometries.

3.4.3 External image evaluation

An evaluation using external images that were not part of the
dataset was conducted to further assess the generalization ability
of the selected Model C. This test aimed to simulate real-world
deployment scenarios, where weld images may come from different
equipment, settings, or environments.

The images were sourced from a publicly available dataset
on Kaggle (Wijaya, 2024). Images under different lighting
and surface conditions compared to the original dataset were
used in this study. These differences introduce additional
challenges, such as variability in weld bead appearance, noise, and
discontinuities contrast.

Before testing the images, a pre-processing pipeline was
implemented to ensure the external images were compatible with
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FIGURE 9
Confusion matrix on the test subset at conf = 0.20, NMS loU = 0.45.

the input configuration. In this regard, only images that matched a
similar plane shot were selected for testing. External images captured
at angles, representing different welding processes, or involving
different types of joints, were excluded to maintain consistency with
the original dataset characteristics. Additionally, selected images
were cropped to isolate the weld bead region and then resized to
match the input dimensions of the original dataset.

Figure 12 shows the detection results for three representative
external images from the Kaggle dataset. The selected images enable
evaluation of the model’s performance when predicting images of
different sizes, lighting conditions, surface texture, and weld bead
orientation. When evaluated on these images, Model C achieved
an overall precision of 65.2%, a recall of 25.2%, and an mAP@0.5
of 26.3% as it is shown in Table 8. Among the annotated classes,
the weld bead was detected with high accuracy, while porosity
and overlap showed moderate reliability. In contrast, spatter and
undercut detection were inconsistent, and no predictions were
reported for slag inclusion, crater, arc strike, or underfill, as these
discontinuities were not annotated in the selected images according
to the dataset’s labeling protocol.

It is essential to note that, since the external images were cropped
and resized, and the physically welded plates were not available for
validation, the ground truth labels relied on public annotations,
which may contain inconsistencies. This limitation, combined with
the restricted number of evaluated images, introduces uncertainty in
the reported quantitative metrics. Nevertheless, the observed results
confirm the model’s ability to generalize to weld with unfamiliar
textures and illumination, albeit with reduced recall. These results
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highlight the need for expanded cross-dataset evaluation and
domain adaptation strategies to ensure robust deployment across
diverse acquisition settings.

4 Discussion

The results of this study demonstrate that the YOLOv7-p5
model can effectively identify multiple surface discontinuities
produced during SMAW welding. Model performance was first
assessed on the validation subset to determine the influence of
dataset size, epoch count, and other optimization factors. The
final configuration (Model C) was subsequently evaluated on
the independent test subset (Section 3.3) to verify generalization
to unseen weldments and distinct acquisition conditions. The
observed variability in bead texture and illumination also
reflects the inherent complexity of SMAW welds (e.g., flux-
generated slag residues and manual operator variability), making
SMAW surface conditions distinct from gas-shielded processes
(GMAW/GTAW) and supporting the need for process-specific
datasets.

4.1 Dataset size and training duration

Increasing the dataset size and the number of training epochs
significantly improved detection accuracy. Expanding the training
subset from 300 to one 1500 increased precision from 34% to 93%,
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FIGURE 10
Detection results on validation dataset images produced by welder's experience: (A) engineering student (B) general welder (C) certified welder.

confirming that dataset representativeness strongly affects model Future dataset expansion will continue within the SMAW
generalization, particularly for rare discontinuity classes such asarc ~ process, incorporating fillet and butt-joint geometries to capture
strike, underfill, and crater (Table 5). Beyond 250 epochs, however, ~ additional ~discontinuity modes beyond the bead-on-plate
performance gains became marginal: both training and validation ~ configuration used in this study.

losses plateaued while validation mAP@0.5 remained stable

(Figures 6-8), confirming convergence without overfitting. These

findings are consistent with prior reports (Yang L. et al., 2021; Liu =~ 4.2 Aspect ratio and external-dataset

and Wang, 2023) that larger and more diverse datasets improve  behavior

model generalization. Based on the observed convergence behavior,

training was limited to 300 epochs to balance accuracy and The aspect ratio evaluation (Section 3.4.2) showed that the model
computational cost. is robust to moderate geometric changes but highlighted reduced
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FIGURE 11

Aspect ratio evaluation of dataset images. (A) Model prediction for a 2.5:1 aspect ratio image; (B) prediction for a 4.0:1 aspect ratio image.
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confidence at higher ratios, an important consideration for variable
field camera setups. Other studies (Wang C. et al., 2022; Yang et al.,
2023) have similarly noted the importance of image preprocessing
and input consistency for optimal model performance. In the external
dataset evaluation (Section 3.4.3; Table 8; Figure 12), the model retains
its detection capability, but shows lower recall and a drop in confidence
scores due to domain shift and annotation inconsistencies. Despite
these limitations, the correct localization of major discontinuities was
maintained, demonstrating satisfactory robustness.

4.3 Training strategy and domain
adaptation

The model was initialized from the official YOLOV7 pre-trained
weights, and all layers were retrained on SMAW-specific images.
This configuration enables faster convergence and stable optimization,
while allowing for complete adaptation to weld textures and surface
morphology. Previous studies have demonstrated that initializing
networks with transferred features can enhance generalization and
reduce training time, even when the source and target data
domains differ (Yosinski et al, 2014). In this study, full network
retraining ensured that both low- and high-level features adapted to
the SMAW domain. Future work will explore transfer learning and
domain adaptation strategies based on welding-oriented pre-trained
models to improve cross-process generalization further.

4.4 Error sources and class imbalance

Despite robust in-dataset performance, some limitations remain.
The model occasionally produced lower confidence scores or partial
boundingboxes in dense weld regions with overlapping discontinuities
or occlusion. These challenges are common in object detection
tasks and are exacerbated by class imbalance, as discontinuities such
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as spatter and porosity occur more frequently than other types,
asshown in Figure 3. While data augmentation partially mitigated this
issue, the results indicate that further expansion with multi-source and
field-acquired images is needed to improve balance and strengthen
generalization. Another limitation concerns the absence of formal
inter-annotator agreement metrics; although labels were created by
consensus, a quantitative IAA assessment is planned for future dataset
revision to strengthen reproducibility.

4.5 Comparative analysis with related
works

To contextualize the performance, Table 9 compares the
proposed model, YOLOv7-p5, with recent weld-defect detectors
across different welding processes and dataset sizes. Reported
metrics reflect the evaluation split used in each study: YOLO-
MSAPF (Wang et al., 2023) reports on its validation subset of
GMAW images; WeldNet (Wang et al., 2024) reports on a held-out
test subset of 33254 TIG images; (Xu and Li, 2024); report averages
over internal test subsets from multiple splits (6:3:1-8:1:1); and this
work reports validation results for model selection and provides an
independent test-subset evaluation. Unlike prior works centered on
GMAW/TIG, our study contributes an annotated SMAW dataset
(3000 images, nine classes). It shows that process-specific data
and training optimization can match or exceed the accuracy of
an architecturally enhanced model while maintaining practical
efficiency.

4.6 Interpretation of external class
anomalies

In the external dataset evaluation, the Undercut class reported
contradictory results, such as precision values of 100% with recall
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FIGURE 12
Detection results of model C for external images sourced from the Kaggle dataset (Wijaya, 2024). (A) Image sized 1019 x 675, (B) Image sized 1170 x
760, (C) Image sized 639 x 437.

and mAP equal to 0%. This effect arises from the minimal size of =~ positives among the model’s predictions, whereas recall and mAP
the test set (three images) and the sparse distribution of annotated ~ depend on the overlap between predictions and ground-truth
discontinuities. Precision is determined by the absence of false  annotations. In this case, the model produced few predictions
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TABLE 8 External dataset evaluation results (only the images
presented in Figure 11).

Class Precision (%)  Recall (%) | mAP@O0.5 (%)
All 65.2 252 26.3
Porosity 0.0 0.0 0.3
Weld bead 83.7 100.0 99.6
Spatter 42.6 13.5 16.5
Undercut 100 0.0 0.0
Overlap 99.9 12.5 15.0

Undercut class report precision = 100% with recall and mAP, 0%.

This outcome results from class imbalance and the limited test set size: only one undercut
instance was annotated across the three Kaggle images used for external testing. The model
produces very few predictions without false positives (yielding high precision), but none
overlapped with the annotated ground truth under the IoU > 0.5 threshold, resulting in
zero recall and mAP.

that were not contradicted by false detections, yielding perfect
precision, but no matches under the IoU threshold with the
annotated discontinuities, resulting in zero recall and mAP. These
values should therefore be interpreted cautiously due to the dataset
limitations, rather than as a true reflection of model performance for
these classes.

4.7 Practical deployment and future
directions

While the present work focused on offline image-based
detection to support visual inspection tasks, real-time inference
was not evaluated. The intended application at this stage is
a complementary tool. Once an image is captured, the model
predicts the presence and location of discontinuities, and then the
results are validated by a certified welding inspector. Nevertheless,
enabling real-time operation remains an important future direction,
particularly when coupled with a defect decision framework. Real-
time operation would allow the system to be deployed on edge
devices, enabling inspection in areas with limited accessibility
and reducing dependence on post-processing. Such integration
could enhance field usability, providing inspectors with immediate
feedback and facilitating continuous monitoring in production
environments.

Building on this perspective, it is important to consider how
the model’s predictions relate to human inspectors. The present
evaluation relied on a labeled dataset as the reference standard;
no direct quantitative comparison with human inspectors was
conducted. Such a comparison would help assess the model’s
practical utility in real inspection scenarios. Rather than comparing
the number of individual discontinuities detected, which would
effectively reduce the evaluation to a bounding-box count, a
more representative approach would be at the joint level. In this
framework, both the model and inspectors would provide a pass/fail
decision for the weld segment based on detected discontinuities and
applicable acceptance criteria. This strategy aligns with the planned
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integration of a defect decision framework and would enable a direct
comparison with the holistic inspection process used by certified
welding inspectors.

From a methodological standpoint, future improvements
could also be achieved by integrating segmentation-based
architectures such as Mask R-CNN (He et al, 2017) and
DeepLab (Chen et al., 2016), which could further enhance
this applicability. Unlike detection-only models, segmentation
methods provide pixel-level localization of discontinuities,
enabling more accurate quantification of defect size, shape,
and orientation. This capability is particularly relevant when
assessing discontinuities in the context of code compliance,
where defect classification often depends on measured size and
extent. Such integration is especially significant to AWS DI.1
Structural Welding Code (Table 8) (American Welding Society,
2020a), which established visual inspection acceptance criteria.
Under this framework, the classification of a discontinuity
as a defect is not based solely on its presence but also on
whether its dimensions exceed defined thresholds. Combining
detection with segmentation allows the system to evolve from a
discontinuity identification tool into a decision-support framework
capable of guiding automated pass/fail evaluations in inspection
workflows.

Finally, it is important to clarify the detection scope of the
proposed model. In this work, a convolutional neural network
model was trained to detect surface irregularities in SMAW weld
seams, which are generally considered discontinuities. According
to AWS A3.0 (American Welding Society, 2020b), discontinuity is
an interruption of the typical structure of a material, such as a
lack of homogeneity in its mechanical, metallurgical, or physical
characteristics, and it is not necessarily a defect. In contrast,
a defect is defined as a discontinuity or set of discontinuities
that, by nature or accumulated effect, render a part or product
unable to meet applicable standards or specifications. Within this
framework, the model visually detects eight types of discontinuities
as described in Section 2.7. However, some discontinuities (slag
inclusions, lack of fusion, craters, and arc strikes) may be considered
defects depending on specific code requirements. As a result, the
proposed model should be regarded as a discontinuity detection
tool, providing inspectors with reliable information that must
be evaluated against acceptance criteria to determine whether a
defect is present. This distinction highlights the model’s role as a
complementary instrument for more complete and consistent visual
inspection.

5 Conclusion

This study successfully developed and validated a YOLOv7-
based deep learning model tailored for detecting surface
discontinuities in the SMAW process. The following key conclusions
were drawn:

1. The dataset size was crucial to the model’s performance.
Model A, trained on 300 images, achieved limited precision
(32%), recall (30%), and mAP@0.5 (26%), highlighting
the dataset’s under-representation and lack of discontinuity
variability. In contrast, Models B and C, trained with 1500
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TABLE 9 Comparison of the proposed YOLOvV7-p5 model with state-of-the-art weld-defect detection approaches.

Model Welding process | Dataset size | No. of classes | Precision (%) mAP@O0.5 (%)
Wang et al. (2023) YOLO-MSAPF GMAW 7580 8 ~95 95
Wang et al. (2024) WeldNet (+FE + KD) TIG 33254 6 83.8 (N/A)
Xu and Li (2024) Improved YOLOvV7 GMAW 2000 3 96.5 78.6
(+Le-HorBlock +
CoordAtt + SIoU
This work (2025) YOLOV7-p5 SMAW 3000 9 97 94

Metrics are reported on validation or internal-test splits as in the original papers.

. The

images and 300 images, respectively, achieved substantially
higher performance, with Model C reaching 97% precision,
91% recall, mAP@0.5 of 94%, and mAP@0.5:0.95 of 68%.
These outcomes confirm the strong dependence of detection
performance on dataset size and diversity, emphasizing
the need for representative SMAW imagery covering all
discontinuity types.

. An optimal training range was identified between 200 and 300
epochs, balancing detection performance with computational
efficiency. As shown in Figures 6-8, training and validation
losses stabilize beyond 250 epochs, while the validation
mAP@0.5 plateaus, indicating convergence without overfitting
and diminishing returns.

model achieved robust in-dataset performance
across welds produced by operators of different expertise
levels, reflecting good consistency. However, an external
evaluation of the Kaggle dataset showed reduced precision
and recall, partially due to domain shift, illumination
differences, and annotation inconsistencies, as discussed
in Section 3.4.3.

. While the model exhibited good overall generalization ability,
detection of overlapping or occluded discontinuities in
noisy weld regions remained challenging, particularly for
spatter and porosity. This limitation, primarily related to
class imbalance, underscores the need for dataset expansion
with multi-source and field-acquired images to enhance
generalization.

. The system was designed as a complementary offline
inspection tool rather than a real-time edge deployment.
Future developments will consider real-time inference
and decision-support frameworks, enabling deployment in
environments with limited access.

. No direct quantitative comparison with human inspectors was
performed. A more representative approach would be a joint-
level evaluation where both inspectors and the model provide
pass/fail decisions based on applicable acceptance criteria. This
strategy aligns with the planned development of a decision
framework for defects.

. Comparison with advanced models (Wang et al,
2023; 2024; Xu and Li, 2024) shows that, although
architectural improvements improve accuracy, dataset
engineering and domain-specific tuning remain equally

critical.
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Future work will focus on:

Expanding the dataset with multi-source and field-acquired
images to improve class balance and generalization; future
releases will also include fillet and butt-joint welds to
capture additional discontinuity modes beyond bead-on-plate
configurations.

Applying transfer learning with welding oriented pretrained
networks to enable generalization from SMAW to other arc-
welding processes while retaining accuracy on SMAW surface
discontinuities.

the with
architectures to enable precise discontinuity quantification

Integrating detection segmentation-based
and support automated pass/fail decision in accordance
with visual inspection acceptance criteria defined in
AWS DI.1.

Conducting joint-level comparative studies with certified
welding inspectors, evaluating pass/fail decisions based on
detected discontinuities and acceptance criteria to assess the
model’s practical utility in real inspection workflows; this work
will serve as the foundation for a decision-support framework
linking detection to code-based compliance.

Exploring architectural enhancements (e.g., lightweight
attention or multiscale fusion modules) to optimize detection
accuracy and computational efficiency.
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