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Due to their utility in replacing workers in tasks unsuitable for humans, 
unmanned underwater vehicles (UUVs) have become increasingly common 
tools in the fish farming industry. However, earlier studies and anecdotal 
evidence from farmers imply that farmed fish tend to move away from and avoid 
intrusive objects such as vehicles that are deployed and operated inside net pens. 
Such responses could imply a discomfort associated with the intrusive objects, 
which, in turn, can lead to stress and impaired welfare in the fish. To prevent this, 
vehicles and their control systems should be designed to automatically adjust 
operations when they perceive that they are repelling the fish. A necessary first 
step in this direction is to develop on-vehicle observation systems for assessing 
object/vehicle–fish distances in real-time settings that can provide inputs to the 
control algorithms. Due to their small size and low weight, modern cameras are 
ideal for this purpose. Moreover, the ongoing rapid developments within deep 
learning methods are enabling the use of increasingly sophisticated methods 
for analyzing footage from cameras. To explore this potential, we developed 
three new pipelines for the automated assessment of fish–camera distances 
in video and images. These methods were complemented using a recently 
published method, yielding four pipelines in total, namely, SegmentDepth,
BBoxDepth, and SuperGlue that were based on stereo-vision and DepthAnything
that was monocular. The overall performance was investigated using field 
data by comparing the fish–object distances obtained from the methods with 
those measured using a sonar. The four methods were then benchmarked 
by comparing the number of objects detected and the quality and overall 
accuracy of the stereo matches (only stereo-based methods). SegmentDepth,
DepthAnything, and SuperGlue performed well in comparison with the sonar 
data, yielding mean absolute errors (MAE) of 0.205 m (95% CI: 0.050–0.360), 
0.412 m (95% CI: 0.148–0.676), and 0.187 m (95% CI: 0.073–0.300), respectively, 
and were integrated into the Robot Operating System (ROS2) framework to 
enable real-time application in fish behavior identification and the control of 
robotic vehicles such as UUVs.
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1 Introduction

Finfish aquaculture is a food production sector that that 
significantly contributes to aquatic proteins (FAO, 2024). Although 
intensive fish production is an industrial success story, fish 
farms need to cope with persistent challenges associated with 
various aspects of the production, including fish welfare (Martos-
Sitcha et al., 2020), personnel safety (Thorvaldsen et al., 2020), 
farm integrity (Berstad et al., 2004), efficient feeding (Zhou et al., 
2018), and biofouling (Bannister et al., 2019). Moreover, there 
are current industrial drives toward moving production practices 
to more exposed areas, a trend that is likely to amplify such 
issues (Bjelland et al., 2015; 2024). Although these challenges 
have traditionally been handled manually, emerging trends such as 
precision farming concepts seek to improve the ability and efficacy of 
farm management using autonomous and robotic tools (Føre et al., 
2018). As technological solutions required for this shift become 
more advanced and less costly, the number of initiatives in this 
direction is increasing (Kelasidi and Svendsen, 2022), ranging today 
from external monitoring (Chalkiadakis et al., 2017) to in-pen 
monitoring (Kelasidi et al., 2022) and autonomous net cleaning 
(Ohrem et al., 2020; Fu et al., 2024).

All robotic operations conducted within net pens entail 
introducing an object into the habitat of the fish. This may disturb the 
fish, thus potentially perturbing the production process. Although 
this type of disturbance is difficult to quantify, earlier studies and 
anecdotal observations by farmers have shown that farmed fish 
usually try to maintain a certain distance from such intrusive objects. 
The preferred distance kept from an object seems to depend on 
its properties, and a specific link between object size and color 
and fish–object distance has been identified (Marras and Porfiri, 
2012; Kruusmaa et al., 2020). To explore these effects in more 
detail, Zhang et al. (2024) recently conducted a systematic study 
in which fish in a commercial salmon farm were exposed to 
objects of different sizes, shapes, and colors, keeping the rest of the 
experimental setup and object properties as constant as possible to 
isolate the impacts of each specific factor. Data were collected in 
that study using a sweeping sonar that scanned a horizontal plane 
(i.e., 360°) around the object every 8 s. For each case, a measure 
of the fish–object distance was obtained by accumulating and 
averaging all scans over 1, 5, and 10 min periods and then finding 
the shortest distance between the inner perimeter of the resulting 
fish distribution and the object. The main findings of Zhang et al. 
(2024) were that the fish kept an average distance of 3.8 body lengths 
from intrusive objects, that their preferred distances scaled with the 
object size (i.e., greater distances to larger objects), and that they 
stayed farther away from yellow objects than from white objects.

This type of avoidance behavior could imply a degree of 
discomfort that can ultimately lead to impaired welfare or stress. It is, 
therefore, desirable to design future robotic solutions with the intent 
of minimizing their impact on the fish. This will include revising 
the physical appearance of the vehicles and devising control systems 
that allow for the adjustment of movements and actions based 
on observed fish responses. These control systems will depend on 
perception tools that can automatically assess vehicle–fish distances 
and provide these as inputs in the control loop. The sonar approach 
used by Zhang et al. (2024) had a minimum scan time of 8 s for 
each full 360° scan. This enables accurate assessment of steady-state 

responses toward static and stationary objects but is not fast enough 
to capture transient responses induced by, for example, vehicle 
movements, sound emissions (thrusters and motors), toggling of 
light sources, or similar stimuli. Since a proper perception tool 
for this purpose will need to capture both stationary and transient 
responses to provide reliable inputs to the control system, new 
observation methods that measure fish–object distances with a high 
time resolution are, therefore, needed to complement the established 
sonar-based solution. Other sonar solutions with higher update 
frequencies such as multibeam devices (Kristmundsson et al., 2023) 
and acoustic cameras (Zhou and Mizuno, 2024) could represent 
alternatives here. However, it would be interesting to explore the 
potential of using optical solutions for this purpose as they tend 
to cost and weigh less than acoustic systems, and most underwater 
vehicles are already equipped with cameras, alleviating the need to 
install new hardware.

Computer vision (CV) is a field that has seen explosive 
development over the recent years, much because of affordable 
hardware solutions and an increasing number of AI-based methods 
available for automatic processing of videos and images. Although 
most early uses of CV in aquaculture were aimed at processing 
fish after slaughter (Misimi et al., 2008), these methods are 
increasingly being applied to analyze live fish in net pens or tanks 
(Saberioon et al., 2017). Recent studies have sought to apply CV 
to the problem of assessing distances to fish from mobile camera 
platforms (Saad et al., 2024). So far, this research has resulted in a 
pipeline for automatically obtaining the distance between fish and 
vehicles based on stereo video inputs (Alvheim et al., 2025). This 
pipeline was built around a published method for stereo matching 
and tracking called SuperGlue (Sarlin et al., 2020) and was proven 
able to obtain distance outputs that were comparable to those 
acquired with the aforementioned sonar solution (Zhang et al., 
2024). Although the results from SuperGlue were promising, 
there exist several other methods capable of assessing fish–vehicle 
distances. Robotic operations in aquaculture face challenges that 
are not so prevalent in most CV applications, including limited 
visibility due to high turbidity, occlusion by fish, and variable 
underwater lighting. In addition, it is necessary to account for 
biological factors such as species-specific morphology, rendering 
the perception and detection of fish more challenging, and that the 
vehicle may elicit avoidance behavior as described above, potentially 
compromising the ability to observe undisturbed fish. A suitable 
onboard fish–vehicle distance assessment method, therefore, needs 
to cope with these and other challenges endemic to underwater use 
in addition to being able to run in real time onboard the robotic 
platform. It is thus prudent to compare the performance of several 
possible approaches to ensure that further work on developing a 
robot perception tool is based on the methods best able to balance 
the accuracy and robustness in fish–vehicle distance assessments 
and real-time operation capabilities.

The present study sought to compare the established SuperGlue
pipeline with other stereo video and monocular (i.e., requiring only 
one video stream) methods for assessing depths in 2D images. 
Two alternative stereo methods (SegmentDepth and BBoxDepth) 
and one monocular method (DepthAnything) were chosen for this 
purpose. New pipelines similar to that of SuperGlue were developed 
for all three methods. The SegmentDepth pipeline required new 
modules for segmenting and stereo association of segmented 
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masks; BBoxDepth required a module for stereo association through 
bounding box matching, while DepthAnything was implemented 
as a single module providing 3D points directly based on depth 
maps. The stereo-based pipelines were set up to track the caudal 
fins of the fish as this is a feature in farmed fish that is easy to 
distinguish and has lower potential for false positives than, for 
example, the entire fish body. To evaluate their ability to assess 
fish–object distances, the four methods were applied to selected 
video data collected from the field study described by Zhang et al. 
(2024). The results were then compared to assess the similarities 
and differences between the methods in estimating the depth in 
2D images and tracking the trajectory of keypoints in the image 
streams in 3D. Distances obtained with the different pipelines were 
then validated by comparing the values obtained with the videos for 
each case in Zhang et al. (2024) with the corresponding distances 
previously obtained with sonar. The pipelines were then subjected 
to more detailed analyses comparing their ability to detect and 
track objects (i.e., caudal fins/fish) with the quality of the stereo 
matches (only for the stereo-based methods). The best performing 
pipelines were implemented in the Robot Operating System (ROS2) 
to ensure their compatibility with future implementation in robot- 
or vehicle-borne systems. A proper test of their real-time capabilities 
would require their implementation in the hardware of an actual 
robotic system. However, it is useful to first evaluate the publication 
frequency of the ROS2 implementation when running on a 
conventional desktop computer. Since the hardware capabilities of 
most robotic platforms are lower than those of a desktop computer, 
this test provides a first indication of whether real-time operation 
of the methods is theoretically possible and, if not, where the 
performance needs to be improved to achieve this. The publication 
frequencies achieved by the ROS2 implementation were, therefore, 
evaluated against update frequencies assumed to be necessary for 
autonomous navigation purposes (5–10 Hz). 

2 Materials and methods

2.1 Data acquisition

This study used the same video footage as that used by Alvheim 
et al. (In review). Data were collected in a commercial-scale fish 
farm in September 2022 and featured fish with an average weight of 
1,084 g (see Figure 1 for an overview of the full experimental setup). 
The fish were exposed to a structure that varied in shape (cylinder or 
cube), size (Ø30 × 30 cm, Ø60 × 60 cm, and 60 × 60 × 60 cm), and 
color (yellow or white), resulting in six cases (Figure 1). All cases 
are hereafter denoted with abbreviations: BY, big cylinder yellow; 
BW, big cylinder white; CY, cube yellow; CW, cube white; SY, small 
cylinder yellow; SW, small cylinder white. To capture the behavioral 
response of the fish, the structure was equipped with a custom-made 
stereo camera and Ping360 sonars (Blue Robotics Inc.) for collecting 
video footage and sonar data, respectively. The Ping360 sonars were 
set up with a range of 5 m, a 360 ° scan time of 8 s, and an angle 
step of 2 °. The stereo camera was housed in a BlueRobotics 4″

watertight housing, featured two Lucid TRI032S-CC GigE Vision 
(Lucid Vision Labs Inc.) cameras attached to a 3D-printed bracket 
with a 42 mm baseline and was attached to the top of the structure 
(Figure 1). These cameras had a 3.14 MP Sony IMX265 color sensor, 

and each camera produced frames at a 1920×1200 pixel resolution. 
One of the cameras was configured as “master” and used hardware 
synchronization with the other camera. This was done by physically 
wiring the TTL digital signal output of the “master” camera to the 
TTL digital input of the other camera, thereby enabling triggering 
the exposure on the two cameras at the exact same time. Both 
cameras were set up with a fixed focal length, aperture, and exposure 
time, while digital auto-gain was used individually on each camera 
to control correct exposure at variable light intensities on different 
depths. The camera output was stored as an uncompressed AVI at 
25 fps, with each frame being at the left and right images stitched 
together at 3840×  1200 resolution. Stereo camera calibration was 
conducted prior to the experiments using underwater images of a 
chessboard plane with squares of known size (see Saad et al., 2024, 
for details on the calibration process for this camera setup).

The structure was placed 5 m from the net wall and at 8 m 
depth in all cases. For each case (i.e., shapes, colors, and sizes), 
six replicate videos of 12 min were recorded using the stereo video 
camera and the sonar, with the first and last minutes in each video 
being discarded to reduce the impact of transients on the analyses. 
The dataset for training, validation, and testing was built using 
every 50th frame from the left camera in the video collected when 
exposing the fish to the small yellow cylinder. This resulted in 686 
images, which were labeled and made into a dataset (60% training, 
20% validation, and 20% test) using Python and OpenCV, with 
annotation performed through CVAT. To reset the situation between 
the replicates, the structure was moved for approximately 25 s 
between repetitions. Except four replicates for CW where cleaner 
fish obstructed the view, all replicates were used in the analyses. 

2.2 Implementation and development 
environment

The four processing pipelines were originally designed, 
developed, and implemented in a Python environment running on 
a desktop computer. These pipelines were used for offline analyses 
of the data from the field study to assess their respective abilities 
in scoping the depth in underwater images. However, to allow 
easier integration with underwater vehicles at a future point in time, 
the pipelines were also ported to a ROS2 environment. The ROS2 
implementation featured only those pipelines deemed sufficiently 
accurate and efficient for use in real situations and was used in 
runtime analyses. 

2.3 Processing pipelines

The pipelines developed and evaluated will hereafter be 
referred to as SuperGlue, DepthAnything, SegmentDepth, and 
BBoxDepth. Although all four pipelines had common modules 
for fish identification and tracking, each had their specific 
modules for handling the estimation of 3D positions of the 
tracked fish (Figure 2). SuperGlue, SegmentDepth, and BBoxDepth
were designed for stereo video streams and thus used both video 
streams from the stereo video setup, while DepthAnything was a 
monocular method that only used video from the camera on the left. 
In the following, the different modules are discussed in more detail.
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FIGURE 1
Experimental setup showing the center structure (left) carrying the stereo video system and the Ping360 sonar, the six different shape (small cylinder, 
cube, and big cylinder) and color (white and yellow) combinations of its exterior appearance (middle), and the deployment of the structure inside a 
commercial pen (right). Reproduced from Zhang et al. (2022).

FIGURE 2
The four pipelines developed in this study, including the common elements (FishDetector and FishTracker) and components specific for each pipeline.
(a) SuperGlue pipeline (b) DepthAnything pipeline, (c) SegmentDepth pipeline, and (d) BBoxDepth pipeline.

2.3.1 Common modules for fish tracking
Two of the modules, FishDetector and FishTracker, were used 

in all pipelines, the first of which was responsible for detecting the 
caudal fins of individual fish and generating bounding boxes (BBs) 

to mark them as targets for tracking. To achieve this, the module 
was set up with a YOLOv8n (Jocher et al., 2023) model trained 
to detect caudal fins, which was developed and used by Alvheim 
et al. (In review). FishDetector was applied to both video streams in 
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SegmentDepth and BBoxDepth, while it was only applied to the left 
camera when using SuperGlue and DepthAnything.

Using the outputs from FishDetector, the FishTracker module 
was set up with multiple objective tracking (MOT) capabilities to 
track all identified BBs, along with unique IDs, class names, and 
track confidences. After evaluating several candidates for MOT, 
the ByteTrack algorithm was chosen due to its reported accuracy, 
robustness, and real-time processing abilities (Zhang et al., 2022) 
using the setup parameters identified by Jakobsen (2023). 

2.3.2 SuperGlue pipeline
When using the SuperGlue pipeline (Figure 2a), both video 

streams were fed into the SuperGlue module, which used a CNN-
based approach to detect and match features in stereo images 
(Sarlin et al., 2020). Since there exist no version of SuperGlue fine-
tuned for underwater images, a model pretrained using outdoor 
images (the MegaDepth3 dataset) was used. Stereo matching with 
SuperGlue was done independently from fish identification, a feature 
that may produce several matches that are not related to fish. 
To prevent such no-fish matches from affecting the outcome, the 
left image stream was run through FishDetector and FishTracker
to identify and track fish and mark these with BBs. Stereo 
matches identified by SuperGlue were then filtered (Filter module 
in Figure 2a), keeping only matched points with a confidence level 
higher than 0.1 that fell within identified BBs (i.e., being likely to be 
part of a fish), while the remaining matches were discarded. Each 
matching point was thereafter associated with the individual fish 
whose BB fell within on the left channel. To derive the 2D pixel 
positions to be used in the triangulation, the center point of the BB 
associated with the fish was first derived and used as the 2D position 
in the left image (xl,yl). The 2D distance vector between this point 
and the average position of the matched points in the left image was 
then found, providing a measure of how far from the bounding box 
centroid this average position is. This vector was then added to the 
average position of the matched points in the right image, thereby 
estimating the position corresponding to the point xl,yl in the right 
image (xr,yr). These two values were then triangulated to find the 3D 
position of the BB (and hence caudal fin) relative to the camera (X, 
Y, and Z) by applying Equation 1.

X = Z ⋅
u− cx

fx
, Y = Z ⋅

v− cy

fy
, Z = b

f
xl − xr

(1)

Here, u and v are the horizontal and vertical 2D pixel coordinates, 
respectively; cx and cy are the center points of the 2D pixel image; 
xl − xr is the disparity (pixels); b is the baseline (mm); and f is the 
focal length (mm), fx, and fy, being the x and y components of the 
focal length. 

2.3.3 DepthAnything pipeline
Since DepthAnything is monocular, it was set up to 

use images only from the left camera. The DepthAnything
framework offers three models of varying sizes for relative depth 
estimation (Yang et al., 2024). Although these models have different 
compromises between accuracy and speed, only the largest (and 
slowest) model has been tuned for metric depth estimation. Fine-
tuning was done using the ZoeDepth code base, by initializing the 
DepthAnything model as an encoder training based on metric depth 
maps. Since there exist no underwater depth map data to train the 

model or pre-trained version using such data, the model used in 
this study was a downloaded version trained on data obtained in air 
indoors (the NYU-Depth v2 dataset).

During operation, the DepthAnything model first estimates a 
metric depth map for the entire picture frame (DepthAnything
module in Figure 2b). The central pixel coordinates within each 
tracked BB received from FishTracker are then used to retrieve the 
depth of that pixel from the map, representing the distance to the 
tracked fish (3D Mapper module in Figure 2b). 

2.3.4 SegmentDepth pipeline
Segmentation models contain more information about the 

detected object than a bounding box. It is thus plausible that 
segmentation-based models can identify the same points of interest 
in both video streams more accurately than methods based on 
bounding box matching, thereby obtaining more accurate 3D 
positions. This was the motivation for setting up the SegmentDepth
pipeline that included a segmentation model in the workflow, in 
addition to stereo matching and triangulation. Unlike for SuperGlue, 
the image streams from both right and left cameras were run 
through FishDetector to identify fish, with FishTracker also tracking 
the fish from the left camera. BBs detected in both camera 
streams were then fed into the segmentation method (Segmenter
box in Figure 2c), which segmented the image within the boxes 
returning a segmentation mask. Although this segmentation should 
ideally be done using a model specifically trained to detect and 
segment caudal fins on fish, this would require a large training 
dataset of images where the caudal fins are already manually 
segmented. Since no such public datasets exist, a generic pre-trained, 
promptable segmentation model was used instead. The Segment 
Anything Model (SAM) ViT-B published by Meta (Kirillov et al., 
2023) was chosen for this purpose as it has a relatively light-
weight architecture, making it less computationally demanding 
than more complex models while still being more accurate than 
less complex models. Resulting masks from the two streams are 
then correlated (Association box in figure) using an assignment 
cost matrix quantifying overlap between the masks using IOU 
calculations, thus identifying matching cases for 3D-positioning. 
The centroids of the masks were found by averaging all their pixel 
coordinates and then subjected to triangulation (Equation 1) to yield 
the 3D positions. 

2.3.5 BBoxDepth pipeline
Instead of identifying all features that are matchable between 

left and right camera streams (as in SuperGlue) or correlating post-
segmentation masks between the two streams (as in SegmentDepth), 
the BBoxDepth pipeline was based on directly matching the BBs 
provided by FishTracker and FishDetector. The motivation behind 
this approach was to test a less complex method that is likely 
to be less computationally demanding than the other stereo 
matching methods, albeit at a cost of being less accurate. Matching 
was done by calculating a similar assignment cost matrix for 
BB pairs as that used for masks by SegmentDepth (Association
in Figure 2d). The boxes were optimally assigned using the 
Hungarian algorithm, before the triangulation routine (Equation 1) 
was run for the center points of the matched BBs to yield a 
3D position. 
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FIGURE 3
Modified SegmentDepth pipeline implemented in ROS2.

2.4 ROS2 pipelines

Although the DepthAnything, SuperGlue, and SegmentDepth
pipelines were all implemented in ROS2, BBoxDepth was considered 
less accurate, although otherwise comparable to SegmentDepth, and 
was therefore not included in the ROS2 implementation. The first 
two implemented pipelines were directly ported from the original 
Python code, while SegmentDepth required modification as initial 
testing proved that the approach to matching segmentation masks 
was too computationally intensive for real-time operation. This 
resulted in an alternative pipeline adapted to ROS2. 

2.4.1 Modified SegmentDepth pipeline
The modified SegmentDepth pipeline featured a new module 

called BBoxMatcher, which was inserted into the association step in 
the pipeline. This module did the stereo matching based on IOU 
using the bounding boxes instead of matching the segmentation 
masks as in the original SegmentDepth pipeline (Figure 3).

Although this meant that stereo matching was made based on 
the BBs, the segmentation masks were still found through SAM (the 
MaskPredictor module in Figure 3) and used to find the center point 
of the caudal fins in both images just as in the original pipeline. In 
summary, this resulted in an approach that was considerably less 
computationally demanding than the original pipeline but that still 
offered the same accuracy in the 3D position for each matched image 
pair. Since BBs from different fins are more likely to have similar 
shapes than the segmented masks for these, the potential cost of 
this modification is that the chance of erroneously matching two 
unrelated fins may be higher than that for the original pipeline. 

2.4.2 Full set of ROS2 nodes
The full ROS2 implementation (Figure 4) featured six ROS2 

nodes pertaining to the three implemented pipelines, two auxiliary 
ROS2 nodes (VideoSimulator and DepthPlotter), one ROS2 package 
(FishMaster), and two different message formats (YOLOv8_msgs and 
depth_msgs). FishMaster contained the launch files for all pipelines, 
while the auxiliary node VideoSimulator was responsible for 

adapting the image stream to the method being used (i.e., providing 
a monocular image stream to DepthAnything and calibrated stereo 
streams to the other pipelines). The DepthPlotter provided visual 
output from each run by annotating the source images with 3D 
coordinates for each caudal fin identified. The YOLOv8_msgs and 
depth_msgs message formats defined the contents of messages 
describing YOLOv8 detection and the final 3D point outputs from 
the pipeline, respectively.

2.4.3 Time synchronization
Using separate nodes to independently process the left and right 

frames of a stereo pair enhances parallel processing, thereby both 
saving time and increasing the efficiency of the pipelines. However, 
this requires accurate time synchronization to coordinate the node 
outputs, especially when these are used together in subsequent 
processes such as matching. It is crucial to correctly link bounding 
boxes and mask center points with the corresponding frame 
number to enable the association between the video and estimated 
trajectories. To achieve this, the TimeSynchronizer message filter, 
which is available as an official ROS2 package, was used. This filter 
synchronizes incoming channels based on the timestamps of each 
data point by issuing a single callback for handling the synchronized 
data. To facilitate this in the present system, the VideoSimulator
node was set up to assign identical timestamps to both left and 
right frames of each stereo image pair before they were used in 
further processing in other modules (i.e., FishDetector, FishTracker, 
and MaskPredictor). 

2.5 Method evaluation, comparison, and 
validation with field data

When the pipelines were ready, they were subjected to a series of 
tests to evaluate their performance. All tests were based on footage 
obtained during the field study presented by Zhang et al. (2024). The 
pipelines were set up to find the relative distance to all detected and 
tracked individuals in each frame and then output these as datasets 
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FIGURE 4
Full set of implemented nodes in ROS2.

of 3D positions and IDs. To properly benchmark the pipelines, they 
were subjected to tests exploring their depth estimation abilities, 
validating their outputs against sonar data, and scrutinizing their 
internal properties and abilities. The first set of tests explored their 
abilities in depth estimation and trajectory tracking, the second set of 
tests compared the estimated distances with sonar data from the field 
study, and the third set of tests were set up to compare the properties 
of the methods in more detail. 

2.5.1 Depth estimation and trajectory tracking
Since all methods used the computed distances to individual 

fish in each frame as a basic metric, the first test compared the 
distances estimated by the pipelines for a selection of individual 
fish within a single frame. To investigate their tracking abilities 
over time, the second test entailed applying the pipelines to short 
(5–10 s) clips of video, where one or more individuals were clearly 
visible throughout the clip. For each of these clips, the individual 
deemed to be most visible was chosen to be the focus of the test. 
The 3D trajectories estimated using the different methods were then 
obtained by concatenating the 3D positions given out per frame for 
all pipelines. Given that the distance from the camera to fish was 
the main focus of this experiment, the trajectories were plotted as an 
x–y plot and a separate plot of z vs. time. Since there exists no ground 
truth for these cases, the comparison could only be done visually and 
qualitatively.

Since DepthAnything is monocular and hence only needs 
one image stream, it was subjected to an additional test to 
better illuminate the potential (and limitations) of this method 
for future applications. This test was focused on the fact that 
the metric distance returned by DepthAnything relies strongly 
on the weighting applied to the relative depth map. It was 
thus interesting to investigate the impact of applying a different 
weighting on the distance estimates obtained with this method. 
Another instance of DepthAnything pre-trained using the KITTI 
dataset (which is based on outdoors images) was, therefore, 

downloaded and compared with the version trained using NYU-
Depth v2. 

2.5.2 Distance to the intrusive object
To test the pipelines against the sonar data from Zhang et al. 

(2024), they were set to process the videos used by Alvheim et al. 
(In review) that were recorded when the fish were exposed to the 
six different shape, size, and color combination cases. Since the aim 
was to scope the shortest distance from the fish to the object, the 
distance to the closest 3D point was used as the output for each 
frame in the videos. This was then averaged across all six repetitions 
to yield the mean minimum distance ± standard deviations for 
each case, which was then compared with the corresponding 
sonar data from Zhang et al. (2024). 

2.5.3 Object detection, stereo matching, and 
processing efficiency

To evaluate how well the pipelines could capture all relevant 
objects (i.e., fish) in the images, all objects detected and tracked 
using each pipeline in all distance to intrusive object tests were 
summed for each separate case (i.e., SW, SY, BW, BY, CW, and CY). 
This resulted in a cumulative count of the number of objects each 
pipeline could detect through all videos, with the expectation that 
higher detection rates would imply a better ability to capture the true 
mean and variability in vehicle–fish distances. In turn, this indicates 
how well the methods could be expected to capture the variability 
among individuals in the population (i.e., methods capturing few 
fish are more at risk of experiencing bias in their output than those 
that capture most of the visible fish). Since all pipelines used the 
same FishDetector and FishTracker modules, the outcome from the 
DepthAnything pipeline was considered the baseline in this case as it, 
by only processing images from one image stream, should yield the 
highest number of detections. This was necessary as there exists no 
manual ground-truth data on the total number of detections across 
all videos. The efficacy of the stereo-based pipelines in this metric, 
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on the other hand, depends on their ability to detect and track the 
same individual fish in both streams. Some variation within object 
detection efficiency was, therefore, expected between these.

Although all stereo-based methods found the distance by 
identifying key points in both video streams, they used different 
approaches to achieve this. Since high-quality matches are critical for 
accurate depth estimation, the matching quality of the stereo-based 
pipelines was also compared. Although there existed no ground-
truth data for this comparison, qualitative considerations could be 
made based on how well the points in the left and right images 
coincided with visually recognizable features in the images.

The final element of inter-method comparison was real-
time performance when implemented in ROS2 on a desktop 
computer. This was done by analyzing the mean update rate of the 
modules comprising each pipeline (i.e., FishDetector, FishTracker, 
DepthAnything, SuperGlue, MaskPredictor, and BBoxMatcher) after 
implementation in ROS2. It was assumed that an update frequency 
of 5–10 Hz would be sufficient for use in underwater navigation 
scenarios and that the methods that can operate within this interval 
were good candidates for real-time applications. In these tests, each 
pipeline was executed on three selected video recordings from the 
field datasets. Each video lasted 1 minute, with the initial 100 frames 
being excluded from analysis to ensure accuracy in computing mean 
processing times as this would account for the necessary warm-up 
period of the components and models. 

3 Results

3.1 Depth estimation and trajectory 
tracking

3.1.1 Depth estimation
Figure 5 shows a single frame from a video marking nine 

individual fish that were identified by all pipelines, while Table 1 
contains the distance estimates of all methods to all nine individuals, 
ranking these from the closest (superscript 1) to the furthest away 
from the camera (superscript 9). The distances estimated for the 
individuals using the three stereo-based methods were similar, albeit 
not identical. Although all three pipelines assessed IDs 628 and 695 
to be the furthest from the camera, SuperGlue assessed fish 695 to 
be furthest away, while the others concluded on fish 628. Moreover, 
although all stereo methods had fish 652, 670, and 699 ranked at 
distances 5–7 from the camera, BBoxDepth had a different order of 
these (670, 652, and 699) than the other two (652, 699, and 670). 
Aside from this, the methods were in consensus, and in particular, all 
individual rankings made by SegmentDepth were in agreement with 
at least one of the other methods. DepthAnything provided values 
that differed more from those obtained using the other methods. 
This also led to a distance-based ranking of the individuals that 
differed from the rankings generated by the other methods in all 
slots, with the only common element being that fish 685 and 696 
were identified as the two closest to the camera.

3.1.2 Trajectory tracking
The outcomes from a video segment of 5 s were used to illustrate 

the tracking abilities of the pipelines (Figure 6). In this video, the 
individual with ID 183 was chosen since it was clearly visible through 

FIGURE 5
Example illustrating the detection of 11 individual fish in an image. 
Each individual is assigned a unique ID that is used throughout all the 
tracking processes.

the track (Figures 6a,b). Both the raw and smoothed tracks (Savitzky 
Golay filter) of all pipelines were used in the X–Y plot and time 
series for Z (Figure 6c). Despite some short-term differences, the 
three stereo-based methods agreed on the shape and length of the 
fish trajectory in this video segment. DepthAnything estimated a 
trajectory that was longer in the X–Y plane but had considerably less 
variation in Z.

3.1.3 Alternatively trained DepthAnything
Figure 7 illustrates the impact of using different training datasets 

on the accuracy of DepthAnything in assessing metric distances. This 
demonstrates the transition from the original image (Figure 7a) to 
the relative depth map obtained using DepthAnything (Figure 7b) 
and how the resulting metrics vary when using weights based on 
outdoor (Figure 7c) and indoor (Figure 7d) datasets. Although the 
relative depth map clearly implies that the method can distinguish 
between differently spaced fish, the different weights resulted in 
vastly different estimates. When trained with the KITTI dataset, 
DepthAnything estimated distances that exceeded the expected 
underwater range of the camera (i.e., fish being estimated to be 
between 5 and 30 m from the camera). This contrasted with the 
version trained on the indoor dataset, which provided distances 
within the camera range, estimating the fish to be 1.5–5 m from 
the camera.

3.2 Distance to intrusive objects

Figure 8 contain boxplots describing the mean and variability 
in the minimum estimated distance from the object carrying the 
cameras and the fish closest to this object.

The monocular method (DepthAnything) estimated larger 
distances than stereo-based methods in all cases. Furthermore, 
although SuperGlue, SegmentDepth, and BBoxDepth had similar 
trends across cases, SuperGlue tended to have slightly lower mean 
values than the other two. These observations are confirmed 
through Table 2, which provides the numerical values for 
the mean and variability in distance. The last column of the 
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TABLE 1  Estimated depth of all detected individuals in Figure 5 using the four pipelines. For each pipeline, superscripts denote the ranking of the 
individuals from the closest (superscript1) to the furthest away (superscript9).

ID SuperGlue (m) SegmentDepth (m) BBoxDepth (m) DepthAnything (m)

628 2.1748 3.7489 2.7349 2.3025

652 1.5825 1.8985 1.9606 2.8447

670 2.0177 2.0157 1.6595 1.8963

683 1.3503 1.3783 1.4143 2.1144

685 0.6701 0.6781 0.7171 1.3812

695 2.2449 2.2218 2.2628 2.3976

696 1.0622 0.7392 1.0112 1.3001

697 1.5144 1.4714 1.6304 2.8488

699 1.9336 1.9556 2.2277 3.4009

The closest and furthest distances for each pipeline are also highlighted in bold text.

table describes independent reference distances obtained using 
a sonar by Zhang et al. (2024). Although the trends and distances 
obtained with sonar are similar to those obtained with the vision-
based methods, in some cases, the mean values from computer 
vision varied between being shorter (CY) and longer (BW, SW, 
and SY) than the sonar-based data. Which of the four methods 
aligned most closely to the sonar estimate was found to vary 
between the cases.

3.3 Object detection, stereo matching, and 
processing efficiency

3.3.1 Object tracking ability
Since all methods used the FishDetector module for object 

detection, it was expected that DepthAnything would be able to 
track more objects than the others since it only needed to identify 
objects (i.e., fish) in the left camera stream. Although the number of 
detections varied between cases, the total number of detections were 
in the same order of magnitude (SW: 52967 detections, SY: 32855, 
BW: 60669, BY: 60301, SW: 25813, and CY: 60882). This number was 
thus considered the benchmark when evaluating the performance of 
the other methods (Figure 9).

The number of objects tracked using DepthAnything varied 
across cases from 25813 (CW) to above 60000 (BW, BY, and CY). 
BBoxDepth and SegmentDepth were comparable in consistently 
capturing 87%–94% of the objects tracked using DepthAnything, 
while SuperGlue was less successful, ranging from 57 (CY) to 71% 
(SW and CW). 

3.3.2 Quality of matches
An example of matched points used for triangulation across 

the three methods illustrates how the methods performed 
differently in stereo matching (Figure 10). In general, SuperGlue
and SegmentDepth appeared better at recognizing the same features 
in both image streams than BBoxDepth.

3.3.3 Real-time performance
The runtime of the nodes after implementation in ROS2 was 

variable, as evident from the registered publication frequency of 
the node outputs (Table 3). The common modules used by all 
pipelines (FishDetector and FishTracker) had updated frequencies 
above 24 Hz, which is well above the desired 10 Hz for real-time 
robotic operations. Of the pipeline-specific modules, MaskPredictor, 
DepthAnything, and SuperGlue all delivered update frequencies 
at between 6.251 and 7.845 Hz, while BBoxMatcher delivered 
update frequencies more rarely at 1.512 Hz. In summary, this 
led to the pipelines ranging from 4.75 Hz/0.21 s latency to 
1.15 Hz/0.88 s latency.

4 Discussion

This study was aimed at comparing different methods for 
assessing the depth in underwater images with the intent of creating 
a basis for the future development of robot perception systems 
for navigation in aquaculture net pens. The three stereo-video 
pipelines provided distance estimates that largely matched the 
sonar-based data obtained in the field study and were proven 
to have a potential for real-time tracking of individual fish. 
Although this implies that all these methods may be sufficiently 
accurate to be used in underwater navigation, the other evaluation 
metrics helped differentiate between them. First, SegmentDepth
and BBoxDepth evidenced better detection rates than SuperGlue
in detecting more of the objects of interest. Second, BBoxDepth is 
more likely to suffer from inaccurate positioning than the other 
methods since it triangulates using the centroid of bounding boxes 
rather than actual image features. In summary, these observations 
suggest SegmentDepth as the most promising candidate of the 
three pipelines. This impression is further strengthened by the fact 
that all elements in the distance-based ranking of the individuals 
provided by SegmentDepth in the initial depth estimation test were 
in consensus with at least one of the other methods. However, for 
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FIGURE 6
Example of caudal fin tracking for individual with ID 183. (a) Detection at the start of the track; (b) detection at the end of the track; (c) XY tracks of the 
caudal fin obtained using the different pipelines; (d) time series of the Z-coordinate of the caudal fin estimated using the different pipelines. All pipeline 
trajectories are shown using both raw and smoothed data.

this pipeline to also satisfy the real-time requirements of underwater 
navigation, the BBoxMatcher module in ROS2 would have to be 
improved such that it achieves a higher publication frequency 
(minimum 5 Hz) than that registered in the runtime analysis. This is 
particularly important considering that most robotic platforms have 
lower hardware capabilities and performance than the computer 
used in this study.

Although DepthAnything was not sufficiently accurate in its 
present state, proper training can partly address this shortcoming. 
With improved accuracy, this method could be considered 
promising for future use as it requires only a single video 
stream to provide distance data to the fish. This means that 
the method could be applied to the standard cameras typically 

carried by underwater vehicles, which reduces the need to 
invest in and install a more complex sensor package. However, 
the benefit of simpler instrumentation needs to be weighed 
against the desired accuracy as it is unlikely that any monocular 
method has the potential of achieving the same accuracy as
stereo-based methods.

In summary, the methods presented and tested in this 
study will complement other relevant parallel developments. This 
includes studies using similar pipelines leveraging deep-learning to 
segment and track cell movements (Wen et al., 2021) and recent 
developments within underwater robot perception and navigation 
that enable 3D tracking based on other approaches, such as 
probabilistic semantic world modeling (Topini and Ridolfi, 2025). 
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FIGURE 7
Example outputs from DepthAnythingcomparing different depth maps. (a)Original image; (b)relative depth map prediction made using DepthAnything;
(c)conversion of relative depth map to metric depth map using outdoor weights; (d)conversion of relative depth map to metric depth map using 
indoor weights.

FIGURE 8
Mean depth and variability in the distance estimated using the four processing pipelines to intrusive objects of different shapes (cylinder or cube) and 
sizes. (a) Boxplots of estimated distances when the intrusive object was white; (b) boxplots of estimated distances when the intrusive object was yellow.

4.1 Depth estimation and trajectory 
tracking

4.1.1 Depth estimation
Although there existed no ground-truth data on depth 

estimation, all four pipelines provided plausible distance estimates 
to the fish identified in the images. Despite their common features 
in fish detection and tracking, the three stereo pipelines used 
different principles to derive the pixel-based positions. The strong 

similarities between their absolute distances and distance-based 
rankings thus indicate that all three methods were robust and 
accurate at assessing the depth in 2D images. SegmentDepth
appeared to be slightly more reliable than the others since all 
elements in the distance-based ranking it provided were in 
agreement with at least one of the other pipelines. Although 
these metrics and features varied between images, this pattern 
was a consistent trend among images tested, supporting these 
conclusions.
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TABLE 2  Mean ± standard deviation in m of distances between the object and the nearest fish for all computer vision pipelines used in the study (first 
four columns). The final column provides the corresponding findings using sonar by Zhang et al. (2024), which serves as an independent reference.

Case Mean ± standard deviation [m]

DepthAnything SuperGlue SegmentDepth BBoxDepth Reference

BY 1.80 ± 0.25 1.55 ± 0.44 1.72 ± 0.53 1.73 ± 0.54 1.72 ± 0.21

BW 1.51 ± 0.21 1.15 ± 0.33 1.19 ± 0.36 1.19 ± 0.37 0.93 ± 0.06

CY 1.59 ± 0.20 1.34 ± 0.48 1.46 ± 0.59 1.47 ± 0.59 1.72 ± 0.26

CW 1.58 ± 0.30 1.05 ± 0.26 1.06 ± 0.28 1.06 ± 0.28 0.99 ± 0.04

SY 1.65 ± 0.30 1.38 ± 0.54 1.64 ± 0.79 1.64 ± 0.79 1.23 ± 0.25

SW 1.44 ± 0.27 0.91 ± 0.41 1.00 ± 0.54 0.95 ± 0.53 0.77 ± 0.05

MAE 0.412 0.187 0.205 0.197

CI (95%) 0.148–0.676 0.073–0.300 0.050–0.360 0.046–0.348

Abbreviations for cases: BY, big cylinder yellow; BW, big cylinder white; CY, cube yellow; CW, cube white; SY, small cylinder yellow; SW, small cylinder white. Mean absolute error (MAE) and 
the 95% confidence interval [CI (95%)] relative to the reference values are provided for all camera-based methods.

FIGURE 9
Comparison of object tracking success rates for the three stereo 
pipelines for each case study. The reference values for the 
percentages are the total numbers of objects tracked using the
DepthAnything pipeline.

FIGURE 10
Example of matched points from SuperGlue (green), SegmentDepth
(blue), and BBoxDepth (red).

TABLE 3  Publishing frequency of ROS2 nodes, including both nodes 
common to all pipelines (FishDetectorand FishTracker), and 
pipeline-specific nodes.

Node Mean rate (Hz) Latency (s)

FishDetector 24.657 0.04

FishTracker 24.259 0.04

MaskPredictor 7.845 0.13

DepthAnything 7.774 0.13

SuperGlue 6.251 0.15

BBoxMatcher 1.512 0.67

Pipeline

DepthAnything 4.75 0.21

SuperGlue 4.13 0.24

SegmentDepth 1.15 0.88

DepthAnything, in contrast, provided estimated distances that 
deviated from those of the other methods. This resulted in a 
completely different distance-based ranking from that of the stereo-
based methods, suggesting that the monocular approach was 
more inaccurate in assessing distances to the individual fish than 
these. It is likely that this perceived inaccuracy in estimates from 
DepthAnything is partly because monocular methods have inherent 
challenges with scale ambiguity as they have to rely on the ability 
to convert scales and perception into metric distances. This is 
further complicated by the method not being specifically trained 
for underwater applications and fish detection. One interesting 
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observation was that the difference between estimates from 
DepthAnything and the other methods decreased as individual fish 
were farther from the camera. Moreover, DepthAnything appeared 
to show better consistency in tracking between subsequent frames 
than the stereo-based methods for fish far away from the camera or 
when the water was turbid. This suggests that this approach may 
have a higher robustness when the visibility is poor than that of 
the stereo-based methods. A possible explanation for this lies in 
that, unlike DepthAnything, the stereo-based methods depend on 
correctly tracking the fish in both video streams. Stereo tracking is 
likely to suffer when the visibility is poor since the inaccuracy and 
uncertainty of the stereo matching then increase. 

4.1.2 Trajectory tracking
For the single-frame depth estimation, all pipelines provided 

realistic and plausible trajectories when set to track-selected 
individuals in video clips. Although there existed no ground-truth 
data for this case, all three stereo-based methods provided similar 
trajectory estimates, while DepthAnything predicted a different path 
that was farther away from the camera. This was also the general 
trend throughout the analyses of all such trajectories, supporting 
the notion that the stereo-based pipelines were more accurate at 
depth estimation than the monocular method. Although the stereo-
based methods largely agreed, there were fluctuations around their 
final trajectories. This is probably because stereo matching had 
to be applied for each frame. The process of identifying features 
in a single image is subject to uncertainty due to noise and 
inaccuracy. Requiring the detection of the same features in both 
images therefore introduces even larger uncertainties and variations 
into the tracking process.

The stereo-based methods were also susceptible to noise due to 
their respective approaches to stereo matching. In SuperGlue, the 
center of the BB in the left stream is found first and then used 
to estimate the likely position of this point relative to the tracked 
features in the right stream. This estimate is, thus, based on the 
relative position of the BB center to the matched points identified 
within the BB in the left image, rather than on any actual features 
in the image. In consequence, the accumulated impact of minor 
inaccuracies in the positioning of the matched points could result 
in noise in the final 3D position estimate and hence the trajectory. 
BBoxDepth, on the other hand, used the center points of matched 
BBs from both images and should, as such, have a closer link with 
the image contents. However, the BBs enclosing an object may be 
perceived slightly differently in the left and right images due to 
the difference in the position and attitude of the fish relative to 
the two cameras. This can, in turn, lead to discrepancies resulting 
in fluctuations in the output trajectory. SegmentAnything is less 
sensitive to such disturbances as it relies on first segmenting the 
caudal fin and then finding the midpoint of the mask. This approach 
is more closely linked with the actual image contents than the other 
two and is thus more likely to yield more reliable and robust results. 
However, in cases where the tracked fin assumes oblique angles 
or other poses that are suboptimal for tracking, this pipeline also 
exhibits variations and fluctuations, as reflected in the estimated 
trajectories.

DepthAntyhing estimated considerably smoother trajectories 
than the other three, which implies that it had a high confidence in its 
estimates. This is most likely because the method is monocular and 

thus is not susceptible to the challenges related to stereo methods 
mentioned above. The smoothness also implies the potential of this 
method for future use in robotics since smooth trajectories can be 
used to derive more consistent reference values that may, in turn, be 
useful as inputs to a control system. 

4.1.3 Alternatively trained DepthAnything
Although DepthAnything estimated realistic distances when 

trained using indoor data, some of the distances provided by the 
version trained with the KITTI dataset were unrealistically far away 
from the camera (fish at 5–30 m distance from the camera). This 
was not unexpected since the ranges of distances in the images 
used to build the two datasets were very different, with outdoor 
pictures featuring longer distances than those taken indoors. As a 
consequence, the training process could bias the method toward 
longer distances (the outdoor case) or shorter distances (the indoor 
case), depending on the properties of the training dataset. This 
underscores the limited generalizability of monocular metric depth 
estimation models to new depth scales and environments once they 
have been trained, which is a key challenge for this method.

In aggregate, the different tests run with DepthAnything have 
also illustrated some more generic challenges related to the 
functionality of the method. Although it appeared able to outline 
individual fish based on their proximity to the camera, the method 
could not outline the contours of each fish very well. This could 
be an issue in cases where the fish density is high and individuals 
are close, making individual recognition more difficult. Moreover, 
the metric depth maps were unable to accurately describe distant 
backgrounds in the images as being far away (i.e., extending beyond 
the range of the camera) and rather labeled these to be a fixed 
distance from the camera. This could pose a problem, particularly 
if the aim is to compute, for example, the average distance to nearby 
objects, where it would be natural to exclude the background from 
the computations. These limitations did not have an impact on the 
outcomes of the present study as the distances to the fish were found 
referring to the positions of the center points of the bounding boxes 
in the depth maps. However, improving these aspects could expand 
the applicability of this method to also include new dimensions 
such as direct identification of individual fish without preceding 
object detection and more accurate 3D descriptions of in-pen 
environments.

The most effective measure to mitigating the challenges of 
DepthAnything would be to train the method using new datasets 
that describe metric distances in underwater images. All existing 
datasets used to train the method are based on pictures taken in 
air and hence do not account for visual features encountered in 
aquatic settings such as light attenuation, distortion, and turbidity. 
Moreover, existing training datasets do not contain images of fish 
in different shapes or sizes, which can be a crucial element in 
accurately assessing the distances to fish based on monocular inputs. 
A new dataset should thus contain fish of different species, life 
stages, and ages across a range of environmental conditions to 
ensure efficient and precise training. Since it is hard for humans to 
assess distance directly based on images, manually labeling such a 
dataset would be both difficult and very time-consuming. A better 
approach could, therefore, be using a reliable stereo-based distance 
estimation method, such as RAFT-stereo or triangulation, together 
with ZoeDepth, to generate depth maps automatically. Although 
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this integration would require an implementation effort, applying 
this approach to stereo images could generate large amounts of 
data for fine-tuning DepthAnything for more advanced underwater 
applications in the future. 

4.2 Distances to intrusive objects

The outcomes of the stereo-based method were also largely in 
agreement with the sonar data obtained by Zhang et al. (2024), 
indicating that they observed the same phenomenon, albeit through 
a different measurement principle. This validates their accuracy in 
gauging vehicle–fish distances and hence their potential utility as a 
component in future solutions for robotic perception. In contrast, 
the consistently higher distance estimates from DepthAnything
indicate that it was less accurate, corroborating the impressions from 
the other trials. However, the silver lining of this observation is 
that such a systematic overestimation could also be interpreted as 
a sign of consistency. This suggests that the method could, indeed, 
be a reliable and useful tool given proper training data.

For some scenarios, the stereo methods provided either 
generally longer (BW and SW) or shorter (CY) distances than the 
sonar. The most likely explanation for these disagreements lies in 
the way in which the two different principles collect data. Although 
the video-based methods can assess the distances to all identified 
fish in each picture frame, the sonar-based method collects data in 
the form of 360° sweeps horizontally around the unit. Data from one 
sweep thus describe the formation of the fish group surrounding the 
object through the entire sweep interval. To obtain more robust data, 
Zhang et al. (2024) derived cumulative fish presence (CFP) images, 
in which the observed formations from all sweeps conducted over a 
1-, 5-, or 10-min period were accumulated. The CFP images were 
then subjected to a deep learning network trained to identify the 
inner perimeter of the formation of fish captured in each image. 
Finally, the output from the method was the shortest distance 
between the unit and this perimeter [see Zhang et al. (2024) for 
more details]. The averaging over time in this approach can mask 
the impacts of fish that are particularly close to the object from the 
sonar data. This likely explains cases where the stereo-video methods 
assessed shorter distances than the sonar method as the optical 
methods took fish close to the camera more into account in the 
estimates and is probably why the standard deviation of the camera-
based methods was higher than that of the sonar-based method.

Conversely, these methodical differences could also provide an 
explanation for the cases where video-based methods estimated 
longer distances than the sonar. Since the sonar-based method 
averages the CFPs over time, it would be less able to pick up cases 
where the closest fish are relatively far from the device as these would 
effectually be filtered out due to the averaging. Such situations would 
have a larger impact on the outputs from the camera-based methods 
as these got one distinct data point per frame, indicating that cases 
where fish are farther from the camera would count as much as other 
cases. This effect would most likely be more pronounced in periods 
where there is low occlusion of camera images due to fish staying 
close to the object.

Rather than concluding that either sonar- or camera-based 
methods are more accurate in assessing object–fish distances, the 
findings in this study illustrate that the two principles have different 

traits and properties that should be considered complementary. 
Although the sonar approach seems robust at capturing static fish 
responses over longer time spans (e.g., how far the fish generally 
stay from vehicles of a certain size, color, and shape), this approach 
can never capture transient responses exhibited when the situation 
changes abruptly. However, such changes are easy to pick up with 
the camera-based methods since they have a much higher update 
frequency (in this particular scenario, up to 5–10 Hz) than the sonar 
(time resolution in minutes). The outcomes of this comparison thus 
imply that multimodal sensory setups should be used for in-pen 
fish-relative navigation purposes rather than being based on only 
one measurement principle. Recent developments have identified 
algorithms for safer collision-free autonomous operations in net 
pens containing fish and flexible structures, such as nets and other 
components (e.g., Amundsen et al., 2024), which need perception 
systems that are robust in both stationary and transient situations. 

4.3 Detailed comparisons of methods

4.3.1 Object tracking ability
Since monocular methods only need to detect objects in one 

of the camera streams, it was expected that DepthAnything should 
have the highest object detection rate of the four pipelines. Some 
loss in this metric is expected with stereo-based methods as there 
will be cases where a detection appears in only one video stream 
since the cameras are spaced and hence do not capture the exact 
same scene at a given time. In this study, this type of loss was 
relatively low since both SegmentDepth and BBoxDepth detected 
almost all fish identified by DepthAnything. SuperGlue, on the other 
hand, tracked considerably fewer of these. This is probably because 
it applied a different stereo matching method than the other two 
pipelines. Although matching in SegmentDepth and BBoxDepth is 
intrinsically linked with the fish, SuperGlue is, in practice, “domain 
independent” as it analyzes a stereo video stream and identifies 
matches regardless of the content of the images. Although this 
can be considered a strength since the method may then be easily 
adapted to new applications, it can also reduce its accuracy in specific 
cases. The SuperGlue version used in this study was trained on 
terrestrial datasets, and it is likely that it would perform better if also 
trained using data from underwater environments featuring fish, an 
improvement to consider for future applications. 

4.3.2 Quality of matches
In most applications, the reliance on stereo matching is not a 

major challenge in itself as a short baseline setup in air will tend 
to result in left and right image streams that both provide a good 
rendition of the motive and hence are relatively easy to match. 
However, a net pen is a complex cluttered underwater environment 
where illumination levels and turbidity may vary greatly even over 
short distances. In addition, since the camera is placed in the same 
volume as the fish, there is always a risk that fish may swim so 
close to the camera that they may occlude one or both of the 
cameras. These factors can make stereo matching more challenging, 
especially if the impact on the two cameras differs. In most cases 
with differential occlusion or turbidity, it is likely that the BBoxDepth
and SegmentDepth pipelines would simply fail to get a match in the 
stereo matching, resulting in fewer data points. SuperGlue would be 
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less sensitive to this since it stereo matches using features and not 
bounding boxes but be more susceptible to other errors arising due 
to these effects. In particular, differentiated occlusion and varying 
visibility could disturb the visual appearance of different features to 
the extent that they are perceived using the SuperGlue method as 
being the same. This could lead to large errors in the positioning.

Although the discrepancy between key points identified by 
BBoxDepth often appeared to be larger than those by the other stereo 
pipelines, this statement can only be considered indicative due to 
the lack of proper ground-truth data. However, such an effect can be 
explained by the differences in how the three methods acquire the 
key points. The approach of matching the centers of BBs from both 
images used by BBoxDepth can lead to larger deviations since BBs are 
only abstract entities derived from the picture rather than pertaining 
to the actual image features. Minor discrepancies in box size and 
placement could thus lead to larger errors in the 3D positioning. 
The other two pipelines were probably less sensitive to such effects as 
they related more strongly to the actual image contents by matching 
actual image features (SuperGlue) and using segmentation masks 
based on the image contents (SegmentDepth). In cases where the 
fish is swimming at a fixed distance from the camera (i.e., moving in 
parallel with the baseline spanning between the two cameras), this 
error is likely low since the bounding box encasing the caudal fin 
in both images is probably of similar size and similarly positioned 
relative to the fin. However, when a fish moves at an oblique angle 
relative to the baseline, the shape, size, and location of the BBs 
relative to the caudal fins will differ more from left to right. A more 
thorough analysis quantifying such discrepancies across matched 
cases could be applied to support this finding.

Finally, BB matching can also result in erroneous matches 
because its matching procedure depends solely on BB positions and 
sizes. In scenarios where the fish are kept in high densities, there 
will be a risk that situations where two or more fish of roughly the 
same size stay close to each other may occur. Due to their proximity 
and similar size, the BBs representing the detection of these fish 
would be both close to each other and similarly sized, rendering the 
matching of boxes from the left and right images more challenging 
for the method. 

4.3.3 Real-time performance
Although a true evaluation of the real-time performance of 

the pipelines cannot be done without first implementing them 
on a real mobile platform, the evaluations done in this study 
sought to provide proof of concept that the methods should be 
runnable in ROS2. Considering the wide variety of hardware 
resources available in underwater robots and that these often have 
limited capacity compared with desktop computers, this was thus 
considered an important prerequisite before future testing in real 
field deployments.

FishFinder and FishTracker maintained rates close to the video 
frame rate at 25 fps, which is well above the desired interval of 
5–10 Hz. Moreover, the modules specific to DepthAnything and 
SuperGlue were also within this interval, implying that they too 
have potential to be applied in operational studies. Of these, 
DepthAnything appeared marginally more efficient probably because 
it is a streamlined process with little inter-process communication 
and depends on a single camera stream rather than two. It should 
here be noted that the ability to deploy and run these in the field 

would finally depend on the computational abilities of the chosen 
platform, robot, or vehicle.

The picture is more complex when considering the modified 
SegmentDepth pipeline. Although MaskPredictor had an even faster 
update frequency than SuperGlue and DepthAnything, achieving 
a latency of 0.13 s, the SegmentDepth pipeline also features 
BBoxMatcher, which had the slowest publication rate of all nodes, 
with a latency of 0.67 s. This is probably not related to the 
inference time of this node, but rather a result of synchronization 
issues that arise when combining complex nodes in the same 
pipeline. Although the MaskPredictor node processed images and 
detections from both cameras, the resulting datasets do not always 
have the same time stamps. BBoxMatcher will then struggle to 
synchronize and process mask matching points from both camera 
feeds effectively. This highlights a critical area for improvement 
in ensuring better synchronization and data alignment within 
the pipeline.

To complete the validation of these methods for field use, 
future studies should seek to improve the efficiency of the 
slowest modules to prevent them from bottlenecking data 
throughputs. Moreover, it is also important that future tests 
entail implementing the pipelines at actual underwater robots 
or vehicles. This would demonstrate whether the pipelines can 
achieve sufficient real-time performance when all modules are 
run together and whether they can be run efficiently on the 
hardware used to run such devices. Additional insight can also 
be gained by testing the pipelines on several different embedded 
platforms since they may vary greatly in hardware components 
and hence processing power. This would shed light on their 
performance when run on different systems, which will be an 
important step before introducing them for active use with actual 
underwater robots. 

4.4 Future applications in underwater 
vehicles

4.4.1 Pipeline improvements
Although the pipelines tested in this study performed well 

at the intended tasks, they would need some further refinement 
and improvements to be fully applicable as industrial tools for 
underwater navigation in net pens. One important aspect is 
robustness with respect to factors that may complicate fish detection 
and tracking. In their present state, the methods have been trained 
using footage collected when visibility and lighting conditions were 
good, providing good contrast between the fish and the background. 
This would not always be the case during robotic operations as 
the natural light level in salmon net pens varies greatly during the 
production cycle due to the annual (e.g., winter vs. summer) and 
diurnal (e.g., dusk and dawn vs. noon) variations and with depth. 
Moreover, feces and particular waste from feed may, at times, make 
the water much more turbid than in the footage used in this study. 
An important step in improving the robustness of the pipelines 
would, therefore, be to also train these using videos collected during 
darker periods and with high turbidity. These new data should 
complement the existing datasets to ensure that the resulting method 
is effective at detecting fish under both beneficial and sub-optimal 
visibility conditions.
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Another factor that is important to consider is that video footage 
of fish swimming in dense shoals often results in a greater degree of 
overlap and occlusion between individuals in the images than when the 
fish are more sparsely distributed. This may render the segmentation, 
feature extraction, and tracking of individual fish more difficult as 
the bounding box containing the detected object also contains parts 
of the background, which are composed by other fish that may 
complicate segmentation and extraction. The choice of focusing on 
caudal fins instead of whole fish bodies in this study reduces this 
complexity as the boxes used in the detection are smaller and thus 
contain fewer proportions of other fish, thereby reducing the risk of 
erroneous detections or segmentations. However, this effect is probably 
not sufficient to fully compensate for this source of inaccuracy. One 
possible way of improving this could be using oriented bounding 
boxes (OBBs), which is an improvement where the bounding boxes are 
oriented to fit better with the contours of the detected objects, thereby 
circumscribing the object more closely than when the bounding box 
is horizontally oriented. OBBs have previously been used for different 
applications, including tracking of the motion and orientation of 
farmed pigs (Liu et al., 2023). In other animals, it is likely that the 
use of OBB would improve the performance of fish tracking as the 
bounding boxes would then be more constricted around the object 
of interest (in this case, caudal fins) and thus include less background 
that may contain parts of other fish. 

4.4.2 Vehicle implementation and field 
deployment

This research was motivated from a perspective of enabling 
future underwater vehicles to minimize their impact on the fish 
while conducting operations in commercial fish farms. The end-
point application of the pipelines would thus be to serve as a sensory 
mode for the vehicles to automatically detect and track fish in the 
vicinity. To realize this, the observations from the pipelines would 
have to be used as inputs to the control algorithm of the vehicle. 
This algorithm could be designed such that the vehicle adapts its 
positioning and motion in response to the presence and movement 
of the fish. For instance, the position could be controlled such 
that the vehicle never gets within a certain distance of detected 
fish to prevent intruding upon them, which may elicit a startled 
response. Likewise, observed fish movements could also be used 
to control the vehicle movement speed, in that it could reduce 
speed when observing that fish are actively swimming away from it. 
This could be realized using existing motion planners with collision 
avoidance, such as Amundsen et al. (2024), and considering the fish 
as being dynamic obstacles with a certain radius. The parameters 
of the chosen collision avoidance method could then be calibrated 
to provide the proper responses toward the fish presence and 
movement. However, it should be noted that a fish-relative motion 
planner solely based on cameras would be very sensitive to visibility 
conditions. Although some of the improvements mentioned above 
will partly address this, the pipelines are not efficient if light levels 
are too low. This indicates that a final version of such a fish-related 
navigation system should also feature other modes of observation, 
such as sonars and other acoustic devices.

In conclusion, we believe that the pipelines tested in this study 
could be components in future control systems for underwater vehicles 
designed for in-pen operations in fish farms. If they could enable 
the vehicles to adjust their motions to the presence of the fish, it 

would be possible for them to move such that they disturb the fish 
less, thereby possibly reducing the potential of impairing fish welfare 
under production. This could have a particular impact on some of the 
continual and periodic tasks conducted at commercial fish farms such 
as net inspection and cleaning (Kelasidi and Svendsen, 2022). Due 
to their pervasiveness in fish farm operations, these operations have 
been suggested for automation to alleviate the need for manpower and 
manual work (Fu et al., 2024). Continuous operation using the present 
pipelines would put even stricter requirements on their accuracy and 
real-time properties as the vehicle would then have to be equipped 
to handle unforeseen situations and react quickly to changes. This 
would also entail periodically recalibrating the cameras, possibly with a 
permanently installed reference near the docking station of the vehicle. 
In addition to these technical aspects, realizing autonomous operations 
in commercial fish farms would require regulatory changes. These 
changes would likely include a set of requirements and rules for the 
design and operation of the vehicle to prevent unwanted interactions 
between the vehicle and the fish farm structures. 
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