:' frontiers ‘ Frontiers in Robotics and Al

‘ @ Check for updates

OPEN ACCESS

Xuelei Zhang,
Ministry of Natural Resources, China

Alberto Topini,

University of Florence, Italy
Ravishankar Prakash Desai,

Amrita Vishwa Vidyapeetham, India

Martin Fore,
martin.fore@ntnu.no

14 May 2025
22 September 2025
17 October 2025

Fore M, O'Brien EM and Kelasidi E (2025) Deep
learning methods for 3D tracking of fish in
challenging underwater conditions for future
perception in autonomous underwater
vehicles.

Front. Robot. Al 12:1628213.

doi: 10.3389/frobt.2025.1628213

© 2025 Fore, O'Brien and Kelasidi. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Robotics and Al

Original Research
17 October 2025
10.3389/frobt.2025.1628213

Deep learning methods for 3D
tracking of fish in challenging
underwater conditions for future
perception in autonomous
underwater vehicles

Martin Fore'*, Emilia May O'Brien® and Eleni Kelasidi**

'Department of Engineering Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway, ?Department of Aquaculture, SINTEF Ocean AS, Trondheim, Norway,
*Department of Mechanical and Industrial Engineering, Norwegian University of Science and
Technology, Trondheim, Norway

Due to their utility in replacing workers in tasks unsuitable for humans,
unmanned underwater vehicles (UUVs) have become increasingly common
tools in the fish farming industry. However, earlier studies and anecdotal
evidence from farmers imply that farmed fish tend to move away from and avoid
intrusive objects such as vehicles that are deployed and operated inside net pens.
Such responses could imply a discomfort associated with the intrusive objects,
which, in turn, can lead to stress and impaired welfare in the fish. To prevent this,
vehicles and their control systems should be designed to automatically adjust
operations when they perceive that they are repelling the fish. A necessary first
step in this direction is to develop on-vehicle observation systems for assessing
object/vehicle—fish distances in real-time settings that can provide inputs to the
control algorithms. Due to their small size and low weight, modern cameras are
ideal for this purpose. Moreover, the ongoing rapid developments within deep
learning methods are enabling the use of increasingly sophisticated methods
for analyzing footage from cameras. To explore this potential, we developed
three new pipelines for the automated assessment of fish—camera distances
in video and images. These methods were complemented using a recently
published method, yielding four pipelines in total, namely, SegmentDepth,
BBoxDepth, and SuperGlue that were based on stereo-vision and DepthAnything
that was monocular. The overall performance was investigated using field
data by comparing the fish—object distances obtained from the methods with
those measured using a sonar. The four methods were then benchmarked
by comparing the number of objects detected and the quality and overall
accuracy of the stereo matches (only stereo-based methods). SegmentDepth,
DepthAnything, and SuperGlue performed well in comparison with the sonar
data, yielding mean absolute errors (MAE) of 0.205 m (95% CI: 0.050-0.360),
0412 m (95% CI: 0.148-0.676), and 0.187 m (95% Cl: 0.073-0.300), respectively,
and were integrated into the Robot Operating System (ROS2) framework to
enable real-time application in fish behavior identification and the control of
robotic vehicles such as UUVs.

aquaculture, fish tracking, challenging optical conditions, perception in underwater
robotics, deep learning
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1 Introduction

Finfish aquaculture is a food production sector that that
significantly contributes to aquatic proteins (FAO, 2024). Although
intensive fish production is an industrial success story, fish
farms need to cope with persistent challenges associated with
various aspects of the production, including fish welfare (Martos-
Sitcha et al., 2020), personnel safety (Thorvaldsen et al., 2020),
farm integrity (Berstad et al., 2004), efficient feeding (Zhou et al.,
2018), and biofouling (Bannister et al., 2019). Moreover, there
are current industrial drives toward moving production practices
to more exposed areas, a trend that is likely to amplify such
issues (Bjelland et al., 2015; 2024). Although these challenges
have traditionally been handled manually, emerging trends such as
precision farming concepts seek to improve the ability and efficacy of
farm management using autonomous and robotic tools (Fore et al.,
2018). As technological solutions required for this shift become
more advanced and less costly, the number of initiatives in this
direction is increasing (Kelasidi and Svendsen, 2022), ranging today
from external monitoring (Chalkiadakis et al., 2017) to in-pen
monitoring (Kelasidi et al, 2022) and autonomous net cleaning
(Ohrem et al., 2020; Fu et al., 2024).

All robotic operations conducted within net pens entail
introducing an object into the habitat of the fish. This may disturb the
fish, thus potentially perturbing the production process. Although
this type of disturbance is difficult to quantify, earlier studies and
anecdotal observations by farmers have shown that farmed fish
usually try to maintain a certain distance from such intrusive objects.
The preferred distance kept from an object seems to depend on
its properties, and a specific link between object size and color
and fish-object distance has been identified (Marras and Porfiri,
2012; Kruusmaa et al., 2020). To explore these effects in more
detail, Zhang et al. (2024) recently conducted a systematic study
in which fish in a commercial salmon farm were exposed to
objects of different sizes, shapes, and colors, keeping the rest of the
experimental setup and object properties as constant as possible to
isolate the impacts of each specific factor. Data were collected in
that study using a sweeping sonar that scanned a horizontal plane
(i.e., 360°) around the object every 8s. For each case, a measure
of the fish-object distance was obtained by accumulating and
averaging all scans over 1, 5, and 10 min periods and then finding
the shortest distance between the inner perimeter of the resulting
fish distribution and the object. The main findings of Zhang et al.
(2024) were that the fish kept an average distance of 3.8 body lengths
from intrusive objects, that their preferred distances scaled with the
object size (i.e., greater distances to larger objects), and that they
stayed farther away from yellow objects than from white objects.

This type of avoidance behavior could imply a degree of
discomfort that can ultimately lead to impaired welfare or stress. It is,
therefore, desirable to design future robotic solutions with the intent
of minimizing their impact on the fish. This will include revising
the physical appearance of the vehicles and devising control systems
that allow for the adjustment of movements and actions based
on observed fish responses. These control systems will depend on
perception tools that can automatically assess vehicle-fish distances
and provide these as inputs in the control loop. The sonar approach
used by Zhang et al. (2024) had a minimum scan time of 8 s for
each full 360° scan. This enables accurate assessment of steady-state
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responses toward static and stationary objects but is not fast enough
to capture transient responses induced by, for example, vehicle
movements, sound emissions (thrusters and motors), toggling of
light sources, or similar stimuli. Since a proper perception tool
for this purpose will need to capture both stationary and transient
responses to provide reliable inputs to the control system, new
observation methods that measure fish-object distances with a high
time resolution are, therefore, needed to complement the established
sonar-based solution. Other sonar solutions with higher update
frequencies such as multibeam devices (Kristmundsson et al., 2023)
and acoustic cameras (Zhou and Mizuno, 2024) could represent
alternatives here. However, it would be interesting to explore the
potential of using optical solutions for this purpose as they tend
to cost and weigh less than acoustic systems, and most underwater
vehicles are already equipped with cameras, alleviating the need to
install new hardware.

Computer vision (CV) is a field that has seen explosive
development over the recent years, much because of affordable
hardware solutions and an increasing number of AI-based methods
available for automatic processing of videos and images. Although
most early uses of CV in aquaculture were aimed at processing
fish after slaughter (Misimi et al, 2008), these methods are
increasingly being applied to analyze live fish in net pens or tanks
(Saberioon et al., 2017). Recent studies have sought to apply CV
to the problem of assessing distances to fish from mobile camera
platforms (Saad et al., 2024). So far, this research has resulted in a
pipeline for automatically obtaining the distance between fish and
vehicles based on stereo video inputs (Alvheim et al., 2025). This
pipeline was built around a published method for stereo matching
and tracking called SuperGlue (Sarlin et al., 2020) and was proven
able to obtain distance outputs that were comparable to those
acquired with the aforementioned sonar solution (Zhang et al.,
2024). Although the results from SuperGlue were promising,
there exist several other methods capable of assessing fish-vehicle
distances. Robotic operations in aquaculture face challenges that
are not so prevalent in most CV applications, including limited
visibility due to high turbidity, occlusion by fish, and variable
underwater lighting. In addition, it is necessary to account for
biological factors such as species-specific morphology, rendering
the perception and detection of fish more challenging, and that the
vehicle may elicit avoidance behavior as described above, potentially
compromising the ability to observe undisturbed fish. A suitable
onboard fish—vehicle distance assessment method, therefore, needs
to cope with these and other challenges endemic to underwater use
in addition to being able to run in real time onboard the robotic
platform. It is thus prudent to compare the performance of several
possible approaches to ensure that further work on developing a
robot perception tool is based on the methods best able to balance
the accuracy and robustness in fish-vehicle distance assessments
and real-time operation capabilities.

The present study sought to compare the established SuperGlue
pipeline with other stereo video and monocular (i.e., requiring only
one video stream) methods for assessing depths in 2D images.
Two alternative stereo methods (SegmentDepth and BBoxDepth)
and one monocular method (DepthAnything) were chosen for this
purpose. New pipelines similar to that of SuperGlue were developed
for all three methods. The SegmentDepth pipeline required new
modules for segmenting and stereo association of segmented
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masks; BBoxDepth required a module for stereo association through
bounding box matching, while DepthAnything was implemented
as a single module providing 3D points directly based on depth
maps. The stereo-based pipelines were set up to track the caudal
fins of the fish as this is a feature in farmed fish that is easy to
distinguish and has lower potential for false positives than, for
example, the entire fish body. To evaluate their ability to assess
fish-object distances, the four methods were applied to selected
video data collected from the field study described by Zhang et al.
(2024). The results were then compared to assess the similarities
and differences between the methods in estimating the depth in
2D images and tracking the trajectory of keypoints in the image
streams in 3D. Distances obtained with the different pipelines were
then validated by comparing the values obtained with the videos for
each case in Zhang et al. (2024) with the corresponding distances
previously obtained with sonar. The pipelines were then subjected
to more detailed analyses comparing their ability to detect and
track objects (i.e., caudal fins/fish) with the quality of the stereo
matches (only for the stereo-based methods). The best performing
pipelines were implemented in the Robot Operating System (ROS2)
to ensure their compatibility with future implementation in robot-
or vehicle-borne systems. A proper test of their real-time capabilities
would require their implementation in the hardware of an actual
robotic system. However, it is useful to first evaluate the publication
frequency of the ROS2 implementation when running on a
conventional desktop computer. Since the hardware capabilities of
most robotic platforms are lower than those of a desktop computer,
this test provides a first indication of whether real-time operation
of the methods is theoretically possible and, if not, where the
performance needs to be improved to achieve this. The publication
frequencies achieved by the ROS2 implementation were, therefore,
evaluated against update frequencies assumed to be necessary for
autonomous navigation purposes (5-10 Hz).

2 Materials and methods
2.1 Data acquisition

This study used the same video footage as that used by Alvheim
etal. (In review). Data were collected in a commercial-scale fish
farm in September 2022 and featured fish with an average weight of
1,084 g (see Figure 1 for an overview of the full experimental setup).
The fish were exposed to a structure that varied in shape (cylinder or
cube), size (@30 x 30 cm, D60 x 60 cm, and 60 x 60 x 60 cm), and
color (yellow or white), resulting in six cases (Figure 1). All cases
are hereafter denoted with abbreviations: BY, big cylinder yellow;
BW, big cylinder white; CY, cube yellow; CW, cube white; SY, small
cylinder yellow; SW, small cylinder white. To capture the behavioral
response of the fish, the structure was equipped with a custom-made
stereo camera and Ping360 sonars (Blue Robotics Inc.) for collecting
video footage and sonar data, respectively. The Ping360 sonars were
set up with a range of 5m, a 360 ° scan time of 85, and an angle
step of 2 ° The stereo camera was housed in a BlueRobotics 4"
watertight housing, featured two Lucid TRI032S-CC GigE Vision
(Lucid Vision Labs Inc.) cameras attached to a 3D-printed bracket
with a 42 mm baseline and was attached to the top of the structure
(Figure 1). These cameras had a 3.14 MP Sony IMX265 color sensor,
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and each camera produced frames at a 1920x1200 pixel resolution.
One of the cameras was configured as “master” and used hardware
synchronization with the other camera. This was done by physically
wiring the TTL digital signal output of the “master” camera to the
TTL digital input of the other camera, thereby enabling triggering
the exposure on the two cameras at the exact same time. Both
cameras were set up with a fixed focal length, aperture, and exposure
time, while digital auto-gain was used individually on each camera
to control correct exposure at variable light intensities on different
depths. The camera output was stored as an uncompressed AVI at
25 fps, with each frame being at the left and right images stitched
together at 3840 x 1200 resolution. Stereo camera calibration was
conducted prior to the experiments using underwater images of a
chessboard plane with squares of known size (see Saad et al., 2024,
for details on the calibration process for this camera setup).

The structure was placed 5m from the net wall and at 8 m
depth in all cases. For each case (i.., shapes, colors, and sizes),
six replicate videos of 12 min were recorded using the stereo video
camera and the sonar, with the first and last minutes in each video
being discarded to reduce the impact of transients on the analyses.
The dataset for training, validation, and testing was built using
every 50th frame from the left camera in the video collected when
exposing the fish to the small yellow cylinder. This resulted in 686
images, which were labeled and made into a dataset (60% training,
20% validation, and 20% test) using Python and OpenCV, with
annotation performed through CVAT. To reset the situation between
the replicates, the structure was moved for approximately 25 s
between repetitions. Except four replicates for CW where cleaner
fish obstructed the view, all replicates were used in the analyses.

2.2 Implementation and development
environment

The four processing pipelines were originally designed,
developed, and implemented in a Python environment running on
a desktop computer. These pipelines were used for offline analyses
of the data from the field study to assess their respective abilities
in scoping the depth in underwater images. However, to allow
easier integration with underwater vehicles at a future point in time,
the pipelines were also ported to a ROS2 environment. The ROS2
implementation featured only those pipelines deemed sufficiently
accurate and efficient for use in real situations and was used in
runtime analyses.

2.3 Processing pipelines

The pipelines developed and evaluated will hereafter be
referred to as SuperGlue, DepthAnything, SegmentDepth, and
BBoxDepth. Although all four pipelines had common modules
for fish identification and tracking, each had their specific
modules for handling the estimation of 3D positions of the
tracked fish (Figure 2). SuperGlue, SegmentDepth, and BBoxDepth
were designed for stereo video streams and thus used both video
streams from the stereo video setup, while DepthAnything was a
monocular method that only used video from the camera on the left.
In the following, the different modules are discussed in more detail.
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FIGURE 1

Experimental setup showing the center structure (left) carrying the stereo video system and the Ping360 sonar, the six different shape (small cylinder,
cube, and big cylinder) and color (white and yellow) combinations of its exterior appearance (middle), and the deployment of the structure inside a
commercial pen (right). Reproduced from Zhang et al. (2022).
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FIGURE 2
The four pipelines developed in this study, including the common elements (FishDetector and FishTracker) and components specific for each pipeline.
(a) SuperGlue pipeline (b) DepthAnything pipeline, (c) SegmentDepth pipeline, and (d) BBoxDepth pipeline.

2.3.1 Common modaules for fish tracking to mark them as targets for tracking. To achieve this, the module

Two of the modules, FishDetector and FishTracker, were used  was set up with a YOLOv8n (Jocher et al., 2023) model trained
in all pipelines, the first of which was responsible for detecting the  to detect caudal fins, which was developed and used by Alvheim
caudal fins of individual fish and generating bounding boxes (BBs) et al. (In review). FishDetector was applied to both video streams in
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SegmentDepth and BBoxDepth, while it was only applied to the left
camera when using SuperGlue and DepthAnything.

Using the outputs from FishDetector, the FishTracker module
was set up with multiple objective tracking (MOT) capabilities to
track all identified BBs, along with unique IDs, class names, and
track confidences. After evaluating several candidates for MOT,
the ByteTrack algorithm was chosen due to its reported accuracy,
robustness, and real-time processing abilities (Zhang et al., 2022)
using the setup parameters identified by Jakobsen (2023).

2.3.2 SuperGlue pipeline

When using the SuperGlue pipeline (Figure 2a), both video
streams were fed into the SuperGlue module, which used a CNN-
based approach to detect and match features in stereo images
(Sarlin et al., 2020). Since there exist no version of SuperGlue fine-
tuned for underwater images, a model pretrained using outdoor
images (the MegaDepth3 dataset) was used. Stereo matching with
SuperGlue was done independently from fish identification, a feature
that may produce several matches that are not related to fish.
To prevent such no-fish matches from affecting the outcome, the
left image stream was run through FishDetector and FishTracker
to identify and track fish and mark these with BBs. Stereo
matches identified by SuperGlue were then filtered (Filter module
in Figure 2a), keeping only matched points with a confidence level
higher than 0.1 that fell within identified BBs (i.e., being likely to be
part of a fish), while the remaining matches were discarded. Each
matching point was thereafter associated with the individual fish
whose BB fell within on the left channel. To derive the 2D pixel
positions to be used in the triangulation, the center point of the BB
associated with the fish was first derived and used as the 2D position
in the left image (x;,y;). The 2D distance vector between this point
and the average position of the matched points in the left image was
then found, providing a measure of how far from the bounding box
centroid this average position is. This vector was then added to the
average position of the matched points in the right image, thereby
estimating the position corresponding to the point x;, y; in the right
image (x,,y,). These two values were then triangulated to find the 3D
position of the BB (and hence caudal fin) relative to the camera (X,
Y, and Z) by applying Equation 1.

f

X —X

u—-=c, y 7-b
fx ’ fy ,

Here, u and v are the horizontal and vertical 2D pixel coordinates,

X=2- Y=2.

(1)

r

respectively; ¢, and c, are the center points of the 2D pixel image;
x;—x, is the disparity (pixels); b is the baseline (mm); and f is the
focal length (mm), fx, and fy, being the x and y components of the

focal length.

2.3.3 DepthAnything pipeline

Since DepthAnything is monocular, it was set up to
use images only from the left camera. The DepthAnything
framework offers three models of varying sizes for relative depth
estimation (Yang et al., 2024). Although these models have different
compromises between accuracy and speed, only the largest (and
slowest) model has been tuned for metric depth estimation. Fine-
tuning was done using the ZoeDepth code base, by initializing the
DepthAnything model as an encoder training based on metric depth
maps. Since there exist no underwater depth map data to train the
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model or pre-trained version using such data, the model used in
this study was a downloaded version trained on data obtained in air
indoors (the NYU-Depth v2 dataset).

During operation, the DepthAnything model first estimates a
metric depth map for the entire picture frame (DepthAnything
module in Figure 2b). The central pixel coordinates within each
tracked BB received from FishTracker are then used to retrieve the
depth of that pixel from the map, representing the distance to the
tracked fish (3D Mapper module in Figure 2b).

2.3.4 SegmentDepth pipeline

Segmentation models contain more information about the
detected object than a bounding box. It is thus plausible that
segmentation-based models can identify the same points of interest
in both video streams more accurately than methods based on
bounding box matching, thereby obtaining more accurate 3D
positions. This was the motivation for setting up the SegmentDepth
pipeline that included a segmentation model in the workflow, in
addition to stereo matching and triangulation. Unlike for SuperGlue,
the image streams from both right and left cameras were run
through FishDetector to identify fish, with FishTracker also tracking
the fish from the left camera. BBs detected in both camera
streams were then fed into the segmentation method (Segmenter
box in Figure 2c), which segmented the image within the boxes
returning a segmentation mask. Although this segmentation should
ideally be done using a model specifically trained to detect and
segment caudal fins on fish, this would require a large training
dataset of images where the caudal fins are already manually
segmented. Since no such public datasets exist, a generic pre-trained,
promptable segmentation model was used instead. The Segment
Anything Model (SAM) ViT-B published by Meta (Kirillov et al.,
2023) was chosen for this purpose as it has a relatively light-
weight architecture, making it less computationally demanding
than more complex models while still being more accurate than
less complex models. Resulting masks from the two streams are
then correlated (Association box in figure) using an assignment
cost matrix quantifying overlap between the masks using IOU
calculations, thus identifying matching cases for 3D-positioning.
The centroids of the masks were found by averaging all their pixel
coordinates and then subjected to triangulation (Equation 1) to yield
the 3D positions.

2.3.5 BBoxDepth pipeline

Instead of identifying all features that are matchable between
left and right camera streams (as in SuperGlue) or correlating post-
segmentation masks between the two streams (as in SegmentDepth),
the BBoxDepth pipeline was based on directly matching the BBs
provided by FishTracker and FishDetector. The motivation behind
this approach was to test a less complex method that is likely
to be less computationally demanding than the other stereo
matching methods, albeit at a cost of being less accurate. Matching
was done by calculating a similar assignment cost matrix for
BB pairs as that used for masks by SegmentDepth (Association
in Figure 2d). The boxes were optimally assigned using the
Hungarian algorithm, before the triangulation routine (Equation 1)
was run for the center points of the matched BBs to yield a
3D position.
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Modified SegmentDepth pipeline implemented in ROS2.

2.4 ROS2 pipelines

Although the DepthAnything, SuperGlue, and SegmentDepth
pipelines were all implemented in ROS2, BBoxDepth was considered
less accurate, although otherwise comparable to SegmentDepth, and
was therefore not included in the ROS2 implementation. The first
two implemented pipelines were directly ported from the original
Python code, while SegmentDepth required modification as initial
testing proved that the approach to matching segmentation masks
was too computationally intensive for real-time operation. This
resulted in an alternative pipeline adapted to ROS2.

2.4.1 Modified SegmentDepth pipeline

The modified SegmentDepth pipeline featured a new module
called BBoxMatcher, which was inserted into the association step in
the pipeline. This module did the stereo matching based on IOU
using the bounding boxes instead of matching the segmentation
masks as in the original SegmentDepth pipeline (Figure 3).

Although this meant that stereo matching was made based on
the BBs, the segmentation masks were still found through SAM (the
MaskPredictor module in Figure 3) and used to find the center point
of the caudal fins in both images just as in the original pipeline. In
summary, this resulted in an approach that was considerably less
computationally demanding than the original pipeline but that still
offered the same accuracy in the 3D position for each matched image
pair. Since BBs from different fins are more likely to have similar
shapes than the segmented masks for these, the potential cost of
this modification is that the chance of erroneously matching two
unrelated fins may be higher than that for the original pipeline.

2.4.2 Full set of ROS2 nodes

The full ROS2 implementation (Figure 4) featured six ROS2
nodes pertaining to the three implemented pipelines, two auxiliary
ROS2 nodes (VideoSimulator and DepthPlotter), one ROS2 package
(FishMaster), and two different message formats (YOLOv8_msgs and
depth_msgs). FishMaster contained the launch files for all pipelines,
while the auxiliary node VideoSimulator was responsible for
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adapting the image stream to the method being used (i.e., providing
a monocular image stream to DepthAnything and calibrated stereo
streams to the other pipelines). The DepthPlotter provided visual
output from each run by annotating the source images with 3D
coordinates for each caudal fin identified. The YOLOv8_msgs and
depth_msgs message formats defined the contents of messages
describing YOLOV8 detection and the final 3D point outputs from
the pipeline, respectively.

2.4.3 Time synchronization

Using separate nodes to independently process the left and right
frames of a stereo pair enhances parallel processing, thereby both
saving time and increasing the efficiency of the pipelines. However,
this requires accurate time synchronization to coordinate the node
outputs, especially when these are used together in subsequent
processes such as matching. It is crucial to correctly link bounding
boxes and mask center points with the corresponding frame
number to enable the association between the video and estimated
trajectories. To achieve this, the TimeSynchronizer message filter,
which is available as an official ROS2 package, was used. This filter
synchronizes incoming channels based on the timestamps of each
data point by issuing a single callback for handling the synchronized
data. To facilitate this in the present system, the VideoSimulator
node was set up to assign identical timestamps to both left and
right frames of each stereo image pair before they were used in
further processing in other modules (i.e., FishDetector, FishTracker,
and MaskPredictor).

2.5 Method evaluation, comparison, and
validation with field data

When the pipelines were ready, they were subjected to a series of
tests to evaluate their performance. All tests were based on footage
obtained during the field study presented by Zhang et al. (2024). The
pipelines were set up to find the relative distance to all detected and
tracked individuals in each frame and then output these as datasets
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FIGURE 4

Full set of implemented nodes in ROS2.

of 3D positions and IDs. To properly benchmark the pipelines, they
were subjected to tests exploring their depth estimation abilities,
validating their outputs against sonar data, and scrutinizing their
internal properties and abilities. The first set of tests explored their
abilities in depth estimation and trajectory tracking, the second set of
tests compared the estimated distances with sonar data from the field
study, and the third set of tests were set up to compare the properties
of the methods in more detail.

2.5.1 Depth estimation and trajectory tracking

Since all methods used the computed distances to individual
fish in each frame as a basic metric, the first test compared the
distances estimated by the pipelines for a selection of individual
fish within a single frame. To investigate their tracking abilities
over time, the second test entailed applying the pipelines to short
(5-10s) clips of video, where one or more individuals were clearly
visible throughout the clip. For each of these clips, the individual
deemed to be most visible was chosen to be the focus of the test.
The 3D trajectories estimated using the different methods were then
obtained by concatenating the 3D positions given out per frame for
all pipelines. Given that the distance from the camera to fish was
the main focus of this experiment, the trajectories were plotted as an
x-y plotand a separate plot of z vs. time. Since there exists no ground
truth for these cases, the comparison could only be done visually and
qualitatively.

Since DepthAnything is monocular and hence only needs
one image stream, it was subjected to an additional test to
better illuminate the potential (and limitations) of this method
for future applications. This test was focused on the fact that
the metric distance returned by DepthAnything relies strongly
on the weighting applied to the relative depth map. It was
thus interesting to investigate the impact of applying a different
weighting on the distance estimates obtained with this method.
Another instance of DepthAnything pre-trained using the KITTI
dataset (which is based on outdoors images) was, therefore,
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downloaded and compared with the version trained using NYU-
Depth v2.

2.5.2 Distance to the intrusive object

To test the pipelines against the sonar data from Zhang et al.
(2024), they were set to process the videos used by Alvheim et al.
(In review) that were recorded when the fish were exposed to the
six different shape, size, and color combination cases. Since the aim
was to scope the shortest distance from the fish to the object, the
distance to the closest 3D point was used as the output for each
frame in the videos. This was then averaged across all six repetitions
to yield the mean minimum distance + standard deviations for
each case, which was then compared with the corresponding
sonar data from Zhang et al. (2024).

2.5.3 Object detection, stereo matching, and
processing efficiency

To evaluate how well the pipelines could capture all relevant
objects (i.e., fish) in the images, all objects detected and tracked
using each pipeline in all distance to intrusive object tests were
summed for each separate case (i.e., SW, SY, BW, BY, CW, and CY).
This resulted in a cumulative count of the number of objects each
pipeline could detect through all videos, with the expectation that
higher detection rates would imply a better ability to capture the true
mean and variability in vehicle—fish distances. In turn, this indicates
how well the methods could be expected to capture the variability
among individuals in the population (i.e., methods capturing few
fish are more at risk of experiencing bias in their output than those
that capture most of the visible fish). Since all pipelines used the
same FishDetector and FishTracker modules, the outcome from the
DepthAnything pipeline was considered the baseline in this case as i,
by only processing images from one image stream, should yield the
highest number of detections. This was necessary as there exists no
manual ground-truth data on the total number of detections across
all videos. The efficacy of the stereo-based pipelines in this metric,
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on the other hand, depends on their ability to detect and track the
same individual fish in both streams. Some variation within object
detection efficiency was, therefore, expected between these.

Although all stereo-based methods found the distance by
identifying key points in both video streams, they used different
approaches to achieve this. Since high-quality matches are critical for
accurate depth estimation, the matching quality of the stereo-based
pipelines was also compared. Although there existed no ground-
truth data for this comparison, qualitative considerations could be
made based on how well the points in the left and right images
coincided with visually recognizable features in the images.

The final element of inter-method comparison was real-
time performance when implemented in ROS2 on a desktop
computer. This was done by analyzing the mean update rate of the
modules comprising each pipeline (i.e., FishDetector, FishTracker,
DepthAnything, SuperGlue, MaskPredictor, and BBoxMatcher) after
implementation in ROS2. It was assumed that an update frequency
of 5-10 Hz would be sufficient for use in underwater navigation
scenarios and that the methods that can operate within this interval
were good candidates for real-time applications. In these tests, each
pipeline was executed on three selected video recordings from the
field datasets. Each video lasted 1 minute, with the initial 100 frames
being excluded from analysis to ensure accuracy in computing mean
processing times as this would account for the necessary warm-up
period of the components and models.

3 Results

3.1 Depth estimation and trajectory
tracking

3.1.1 Depth estimation

Figure 5 shows a single frame from a video marking nine
individual fish that were identified by all pipelines, while Table 1
contains the distance estimates of all methods to all nine individuals,
ranking these from the closest (superscript !) to the furthest away
from the camera (superscript °). The distances estimated for the
individuals using the three stereo-based methods were similar, albeit
not identical. Although all three pipelines assessed IDs 628 and 695
to be the furthest from the camera, SuperGlue assessed fish 695 to
be furthest away, while the others concluded on fish 628. Moreover,
although all stereo methods had fish 652, 670, and 699 ranked at
distances 5-7 from the camera, BBoxDepth had a different order of
these (670, 652, and 699) than the other two (652, 699, and 670).
Aside from this, the methods were in consensus, and in particular, all
individual rankings made by SegmentDepth were in agreement with
at least one of the other methods. DepthAnything provided values
that differed more from those obtained using the other methods.
This also led to a distance-based ranking of the individuals that
differed from the rankings generated by the other methods in all
slots, with the only common element being that fish 685 and 696
were identified as the two closest to the camera.

3.1.2 Trajectory tracking

The outcomes from a video segment of 5 s were used to illustrate
the tracking abilities of the pipelines (Figure 6). In this video, the
individual with ID 183 was chosen since it was clearly visible through
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FIGURE 5

Example illustrating the detection of 11 individual fish in an image.
Each individual is assigned a unique ID that is used throughout all the
tracking processes.

the track (Figures 6a,b). Both the raw and smoothed tracks (Savitzky
Golay filter) of all pipelines were used in the X-Y plot and time
series for Z (Figure 6¢). Despite some short-term differences, the
three stereo-based methods agreed on the shape and length of the
fish trajectory in this video segment. DepthAnything estimated a
trajectory that was longer in the X-Y plane but had considerably less
variation in Z.

3.1.3 Alternatively trained DepthAnything

Figure 7 illustrates the impact of using different training datasets
on the accuracy of DepthAnything in assessing metric distances. This
demonstrates the transition from the original image (Figure 7a) to
the relative depth map obtained using DepthAnything (Figure 7b)
and how the resulting metrics vary when using weights based on
outdoor (Figure 7c) and indoor (Figure 7d) datasets. Although the
relative depth map clearly implies that the method can distinguish
between differently spaced fish, the different weights resulted in
vastly different estimates. When trained with the KITTI dataset,
DepthAnything estimated distances that exceeded the expected
underwater range of the camera (i.e., fish being estimated to be
between 5 and 30 m from the camera). This contrasted with the
version trained on the indoor dataset, which provided distances
within the camera range, estimating the fish to be 1.5-5m from
the camera.

3.2 Distance to intrusive objects

Figure 8 contain boxplots describing the mean and variability
in the minimum estimated distance from the object carrying the
cameras and the fish closest to this object.

The monocular method (DepthAnything) estimated larger
distances than stereo-based methods in all cases. Furthermore,
although SuperGlue, SegmentDepth, and BBoxDepth had similar
trends across cases, SuperGlue tended to have slightly lower mean
values than the other two. These observations are confirmed
through Table 2, which provides the numerical values for
the mean and variability in distance. The last column of the
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TABLE 1 Estimated depth of all detected individuals in Figure 5 using the four pipelines. For each pipeline, superscripts denote the ranking of the
individuals from the closest (superscript!) to the furthest away (superscript®).

SuperGlue (m) SegmentDepth (m) BBoxDepth (m) DepthAnything (m)
628 2.174% 3.748° 2.734° 2.302°
652 1.582° 1.898° 1.960° 2.8447
670 2.017 2,015’ 1.659° 1.896°
683 1.350° 1.378° 1.414° 2.114*
685 0.670' 0.678' 0.717" 13812
695 2.244° 22218 2.2628 2.397°
696 1.062? 0.739* 1.011° 1.300!
697 1.514* 1.471* 1.630* 2.848%
699 1.933° 1.955° 22277 3.400°

The closest and furthest distances for each pipeline are also highlighted in bold text.

table describes independent reference distances obtained using ~ 3.3.3 Real-time performance
a sonar by Zhang et al. (2024). Although the trends and distances The runtime of the nodes after implementation in ROS2 was
obtained with sonar are similar to those obtained with the vision-  variable, as evident from the registered publication frequency of
based methods, in some cases, the mean values from computer  the node outputs (Table 3). The common modules used by all
vision varied between being shorter (CY) and longer (BW, SW,  pipelines (FishDetector and FishTracker) had updated frequencies
and SY) than the sonar-based data. Which of the four methods above 24 Hz, which is well above the desired 10 Hz for real-time
aligned most closely to the sonar estimate was found to vary  robotic operations. Of the pipeline-specific modules, MaskPredictor,
between the cases. DepthAnything, and SuperGlue all delivered update frequencies
at between 6.251 and 7.845 Hz, while BBoxMatcher delivered
update frequencies more rarely at 1.512 Hz. In summary, this
3.3 Object detection, stereo matching, and  led to the pipelines ranging from 4.75Hz/0.21s latency to
processing efficiency 1.15 Hz/0.88 s latency.

3.3.1 Object tracking ability ) )
Since all methods used the FishDetector module for object 4 Discussion

detection, it was expected that DepthAnything would be able to

track more objects than the others since it only needed to identify This study was aimed at comparing different methods for
objects (i.e., fish) in the left camera stream. Although the number of ~ assessing the depth in underwater images with the intent of creating
detections varied between cases, the total number of detections were ~ a basis for the future development of robot perception systems
in the same order of magnitude (SW: 52967 detections, SY: 32855,  for navigation in aquaculture net pens. The three stereo-video
BW: 60669, BY: 60301, SW: 25813, and CY: 60882). This number was ~ pipelines provided distance estimates that largely matched the
thus considered the benchmark when evaluating the performance of ~ sonar-based data obtained in the field study and were proven

the other methods (Figure 9). to have a potential for real-time tracking of individual fish.
The number of objects tracked using DepthAnything varied  Although this implies that all these methods may be sufficiently
across cases from 25813 (CW) to above 60000 (BW, BY, and CY).  accurate to be used in underwater navigation, the other evaluation

BBoxDepth and SegmentDepth were comparable in consistently = metrics helped differentiate between them. First, SegmentDepth
capturing 87%-94% of the objects tracked using DepthAnything, — and BBoxDepth evidenced better detection rates than SuperGlue
while SuperGlue was less successful, ranging from 57 (CY) to 71%  in detecting more of the objects of interest. Second, BBoxDepth is
(SW and CW). more likely to suffer from inaccurate positioning than the other
methods since it triangulates using the centroid of bounding boxes

3.3.2 Quality of matches rather than actual image features. In summary, these observations
An example of matched points used for triangulation across  suggest SegmentDepth as the most promising candidate of the
the three methods illustrates how the methods performed  three pipelines. This impression is further strengthened by the fact
differently in stereo matching (Figure 10). In general, SuperGlue  that all elements in the distance-based ranking of the individuals
and SegmentDepth appeared better at recognizing the same features  provided by SegmentDepth in the initial depth estimation test were
in both image streams than BBoxDepth. in consensus with at least one of the other methods. However, for
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FIGURE 6

Example of caudal fin tracking for individual with ID 183. (a) Detection at the start of the track; (b) detection at the end of the track; (c) XY tracks of the
caudal fin obtained using the different pipelines; (d) time series of the Z-coordinate of the caudal fin estimated using the different pipelines. All pipeline

this pipeline to also satisfy the real-time requirements of underwater
navigation, the BBoxMatcher module in ROS2 would have to be
improved such that it achieves a higher publication frequency
(minimum 5 Hz) than that registered in the runtime analysis. This is
particularly important considering that most robotic platforms have
lower hardware capabilities and performance than the computer
used in this study.

Although DepthAnything was not sufficiently accurate in its
present state, proper training can partly address this shortcoming.
With improved accuracy, this method could be considered
promising for future use as it requires only a single video
stream to provide distance data to the fish. This means that
the method could be applied to the standard cameras typically
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carried by underwater vehicles, which reduces the need to
invest in and install a more complex sensor package. However,
the benefit of simpler instrumentation needs to be weighed
against the desired accuracy as it is unlikely that any monocular
method has the potential of achieving the same accuracy as
stereo-based methods.

In summary, the methods presented and tested in this
study will complement other relevant parallel developments. This
includes studies using similar pipelines leveraging deep-learning to
segment and track cell movements (Wen et al., 2021) and recent
developments within underwater robot perception and navigation
that enable 3D tracking based on other approaches, such as
probabilistic semantic world modeling (Topini and Ridolfi, 2025).
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Mean depth and variability in the distance estimated using the four processing pipelines to intrusive objects of different shapes (cylinder or cube) and
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4.1 Depth estimation and trajectory
tracking

4.1.1 Depth estimation

Although there existed no ground-truth data on depth
estimation, all four pipelines provided plausible distance estimates
to the fish identified in the images. Despite their common features
in fish detection and tracking, the three stereo pipelines used
different principles to derive the pixel-based positions. The strong
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similarities between their absolute distances and distance-based
rankings thus indicate that all three methods were robust and
accurate at assessing the depth in 2D images. SegmentDepth
appeared to be slightly more reliable than the others since all
elements in the distance-based ranking it provided were in
agreement with at least one of the other pipelines. Although
these metrics and features varied between images, this pattern
was a consistent trend among images tested, supporting these
conclusions.
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TABLE 2 Mean + standard deviation in m of distances between the object and the nearest fish for all computer vision pipelines used in the study (first
four columns). The final column provides the corresponding findings using sonar by Zhang et al. (2024), which serves as an independent reference.

Mean =+ standard deviation [m]

DepthAnything SuperGlue SegmentDepth BBoxDepth Reference

BY 1.80 +0.25 1.55+ 0.44 1.72 +0.53 1.73+0.54 1724021
BW 1.51+0.21 1.15+0.33 119+ 0.36 1194037 0.93 +0.06
cY 1.59 +0.20 1.34+0.48 1.46 + 0.59 1.47 +0.59 1.72+0.26
cw 1.58 +0.30 1.05 +0.26 1.06 +0.28 1.06 +0.28 0.99 +0.04
SY 1.65 + 0.30 138+ 0.54 1.64 +0.79 1.64+0.79 1.23+0.25
SwW 1.44 +0.27 0.91 +0.41 1.00 + 0.54 0.95+0.53 0.77 +0.05
MAE 0.412 0.187 0.205 0.197

CI (95%) 0.148-0.676 0.073-0.300 0.050-0.360 0.046-0.348

Abbreviations for cases: BY, big cylinder yellow; BW, big cylinder white; CY, cube yellow; CW, cube white; SY, small cylinder yellow; SW, small cylinder white. Mean absolute error (MAE) and
the 95% confidence interval [CI (95%)] relative to the reference values are provided for all camera-based methods.

TABLE 3 Publishing frequency of ROS2 nodes, including both nodes
Total Tracked Objects common to all pipelines (FishDetectorand FishTracker), and
W pipeline-specific nodes.
SY
BB —— Node Mean rate (Hz) Latency (s)
e e EE
. CY
SuperGlue FishDetector 24.657 0.04
FishTracker 24.259 0.04
SegmentDepth
o% 26% 5% 0% 0% 105% MaskPredictor 7.845 0.13
Total Objects / Percentage of Total
DepthAnything 7.774 0.13
FIGURE 9
Comparison of object tracking success rates for the three stereo
o SuperGlue 6.251 0.15
pipelines for each case study. The reference values for the
percentages are the total numbers of objects tracked using the
DepthAnything pipeline. BBoxMatcher 1.512 0.67
Pipeline
DepthAnything 4.75 0.21
SuperGlue 4.13 0.24
Left Camera
SegmentDepth 1.15 0.88

DepthAnything, in contrast, provided estimated distances that
deviated from those of the other methods. This resulted in a
completely different distance-based ranking from that of the stereo-

based methods, suggesting that the monocular approach was

more inaccurate in assessing distances to the individual fish than
SuperGlue Disparity: 55

SegmentDepth Disparity: 66
BBoxDepth Disparity: 72 DepthAnything is partly because monocular methods have inherent

these. It is likely that this perceived inaccuracy in estimates from

challenges with scale ambiguity as they have to rely on the ability

FIGURE 10 t ¢ 1 d ti int tric dist This i
Example of matched points from SuperGlue (green), SegmentDepth 0 convert scales and perception Into metric distances. 15 18
(blue), and BBoxDepth (red). further complicated by the method not being specifically trained

for underwater applications and fish detection. One interesting
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observation was that the difference between estimates from
DepthAnything and the other methods decreased as individual fish
were farther from the camera. Moreover, DepthAnything appeared
to show better consistency in tracking between subsequent frames
than the stereo-based methods for fish far away from the camera or
when the water was turbid. This suggests that this approach may
have a higher robustness when the visibility is poor than that of
the stereo-based methods. A possible explanation for this lies in
that, unlike DepthAnything, the stereo-based methods depend on
correctly tracking the fish in both video streams. Stereo tracking is
likely to suffer when the visibility is poor since the inaccuracy and
uncertainty of the stereo matching then increase.

4.1.2 Trajectory tracking

For the single-frame depth estimation, all pipelines provided
realistic and plausible trajectories when set to track-selected
individuals in video clips. Although there existed no ground-truth
data for this case, all three stereo-based methods provided similar
trajectory estimates, while DepthAnything predicted a different path
that was farther away from the camera. This was also the general
trend throughout the analyses of all such trajectories, supporting
the notion that the stereo-based pipelines were more accurate at
depth estimation than the monocular method. Although the stereo-
based methods largely agreed, there were fluctuations around their
final trajectories. This is probably because stereo matching had
to be applied for each frame. The process of identifying features
in a single image is subject to uncertainty due to noise and
inaccuracy. Requiring the detection of the same features in both
images therefore introduces even larger uncertainties and variations
into the tracking process.

The stereo-based methods were also susceptible to noise due to
their respective approaches to stereo matching. In SuperGlue, the
center of the BB in the left stream is found first and then used
to estimate the likely position of this point relative to the tracked
features in the right stream. This estimate is, thus, based on the
relative position of the BB center to the matched points identified
within the BB in the left image, rather than on any actual features
in the image. In consequence, the accumulated impact of minor
inaccuracies in the positioning of the matched points could result
in noise in the final 3D position estimate and hence the trajectory.
BBoxDepth, on the other hand, used the center points of matched
BBs from both images and should, as such, have a closer link with
the image contents. However, the BBs enclosing an object may be
perceived slightly differently in the left and right images due to
the difference in the position and attitude of the fish relative to
the two cameras. This can, in turn, lead to discrepancies resulting
in fluctuations in the output trajectory. SegmentAnything is less
sensitive to such disturbances as it relies on first segmenting the
caudal fin and then finding the midpoint of the mask. This approach
is more closely linked with the actual image contents than the other
two and is thus more likely to yield more reliable and robust results.
However, in cases where the tracked fin assumes oblique angles
or other poses that are suboptimal for tracking, this pipeline also
exhibits variations and fluctuations, as reflected in the estimated
trajectories.

DepthAntyhing estimated considerably smoother trajectories
than the other three, which implies that it had a high confidence in its
estimates. This is most likely because the method is monocular and
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thus is not susceptible to the challenges related to stereo methods
mentioned above. The smoothness also implies the potential of this
method for future use in robotics since smooth trajectories can be
used to derive more consistent reference values that may, in turn, be
useful as inputs to a control system.

4.1.3 Alternatively trained DepthAnything

Although DepthAnything estimated realistic distances when
trained using indoor data, some of the distances provided by the
version trained with the KITTI dataset were unrealistically far away
from the camera (fish at 5-30 m distance from the camera). This
was not unexpected since the ranges of distances in the images
used to build the two datasets were very different, with outdoor
pictures featuring longer distances than those taken indoors. As a
consequence, the training process could bias the method toward
longer distances (the outdoor case) or shorter distances (the indoor
case), depending on the properties of the training dataset. This
underscores the limited generalizability of monocular metric depth
estimation models to new depth scales and environments once they
have been trained, which is a key challenge for this method.

In aggregate, the different tests run with DepthAnything have
also illustrated some more generic challenges related to the
functionality of the method. Although it appeared able to outline
individual fish based on their proximity to the camera, the method
could not outline the contours of each fish very well. This could
be an issue in cases where the fish density is high and individuals
are close, making individual recognition more difficult. Moreover,
the metric depth maps were unable to accurately describe distant
backgrounds in the images as being far away (i.e., extending beyond
the range of the camera) and rather labeled these to be a fixed
distance from the camera. This could pose a problem, particularly
if the aim is to compute, for example, the average distance to nearby
objects, where it would be natural to exclude the background from
the computations. These limitations did not have an impact on the
outcomes of the present study as the distances to the fish were found
referring to the positions of the center points of the bounding boxes
in the depth maps. However, improving these aspects could expand
the applicability of this method to also include new dimensions
such as direct identification of individual fish without preceding
object detection and more accurate 3D descriptions of in-pen
environments.

The most effective measure to mitigating the challenges of
DepthAnything would be to train the method using new datasets
that describe metric distances in underwater images. All existing
datasets used to train the method are based on pictures taken in
air and hence do not account for visual features encountered in
aquatic settings such as light attenuation, distortion, and turbidity.
Moreover, existing training datasets do not contain images of fish
in different shapes or sizes, which can be a crucial element in
accurately assessing the distances to fish based on monocular inputs.
A new dataset should thus contain fish of different species, life
stages, and ages across a range of environmental conditions to
ensure efficient and precise training. Since it is hard for humans to
assess distance directly based on images, manually labeling such a
dataset would be both difficult and very time-consuming. A better
approach could, therefore, be using a reliable stereo-based distance
estimation method, such as RAFT-stereo or triangulation, together
with ZoeDepth, to generate depth maps automatically. Although
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this integration would require an implementation effort, applying
this approach to stereo images could generate large amounts of
data for fine-tuning DepthAnything for more advanced underwater
applications in the future.

4.2 Distances to intrusive objects

The outcomes of the stereo-based method were also largely in
agreement with the sonar data obtained by Zhang et al. (2024),
indicating that they observed the same phenomenon, albeit through
a different measurement principle. This validates their accuracy in
gauging vehicle-fish distances and hence their potential utility as a
component in future solutions for robotic perception. In contrast,
the consistently higher distance estimates from DepthAnything
indicate that it was less accurate, corroborating the impressions from
the other trials. However, the silver lining of this observation is
that such a systematic overestimation could also be interpreted as
a sign of consistency. This suggests that the method could, indeed,
be a reliable and useful tool given proper training data.

For some scenarios, the stereo methods provided either
generally longer (BW and SW) or shorter (CY) distances than the
sonar. The most likely explanation for these disagreements lies in
the way in which the two different principles collect data. Although
the video-based methods can assess the distances to all identified
fish in each picture frame, the sonar-based method collects data in
the form of 360° sweeps horizontally around the unit. Data from one
sweep thus describe the formation of the fish group surrounding the
object through the entire sweep interval. To obtain more robust data,
Zhang et al. (2024) derived cumulative fish presence (CFP) images,
in which the observed formations from all sweeps conducted over a
1-, 5-, or 10-min period were accumulated. The CFP images were
then subjected to a deep learning network trained to identify the
inner perimeter of the formation of fish captured in each image.
Finally, the output from the method was the shortest distance
between the unit and this perimeter [see Zhang et al. (2024) for
more details]. The averaging over time in this approach can mask
the impacts of fish that are particularly close to the object from the
sonar data. This likely explains cases where the stereo-video methods
assessed shorter distances than the sonar method as the optical
methods took fish close to the camera more into account in the
estimates and is probably why the standard deviation of the camera-
based methods was higher than that of the sonar-based method.

Conversely, these methodical differences could also provide an
explanation for the cases where video-based methods estimated
longer distances than the sonar. Since the sonar-based method
averages the CFPs over time, it would be less able to pick up cases
where the closest fish are relatively far from the device as these would
effectually be filtered out due to the averaging. Such situations would
have a larger impact on the outputs from the camera-based methods
as these got one distinct data point per frame, indicating that cases
where fish are farther from the camera would count as much as other
cases. This effect would most likely be more pronounced in periods
where there is low occlusion of camera images due to fish staying
close to the object.

Rather than concluding that either sonar- or camera-based
methods are more accurate in assessing object-fish distances, the
findings in this study illustrate that the two principles have different
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traits and properties that should be considered complementary.
Although the sonar approach seems robust at capturing static fish
responses over longer time spans (e.g., how far the fish generally
stay from vehicles of a certain size, color, and shape), this approach
can never capture transient responses exhibited when the situation
changes abruptly. However, such changes are easy to pick up with
the camera-based methods since they have a much higher update
frequency (in this particular scenario, up to 5-10 Hz) than the sonar
(time resolution in minutes). The outcomes of this comparison thus
imply that multimodal sensory setups should be used for in-pen
fish-relative navigation purposes rather than being based on only
one measurement principle. Recent developments have identified
algorithms for safer collision-free autonomous operations in net
pens containing fish and flexible structures, such as nets and other
components (e.g., Amundsen et al., 2024), which need perception
systems that are robust in both stationary and transient situations.

4.3 Detailed comparisons of methods

4.3.1 Object tracking ability

Since monocular methods only need to detect objects in one
of the camera streams, it was expected that DepthAnything should
have the highest object detection rate of the four pipelines. Some
loss in this metric is expected with stereo-based methods as there
will be cases where a detection appears in only one video stream
since the cameras are spaced and hence do not capture the exact
same scene at a given time. In this study, this type of loss was
relatively low since both SegmentDepth and BBoxDepth detected
almost all fish identified by DepthAnything. SuperGlue, on the other
hand, tracked considerably fewer of these. This is probably because
it applied a different stereo matching method than the other two
pipelines. Although matching in SegmentDepth and BBoxDepth is
intrinsically linked with the fish, SuperGlue is, in practice, “domain
independent” as it analyzes a stereo video stream and identifies
matches regardless of the content of the images. Although this
can be considered a strength since the method may then be easily
adapted to new applications, it can also reduce its accuracy in specific
cases. The SuperGlue version used in this study was trained on
terrestrial datasets, and it is likely that it would perform better if also
trained using data from underwater environments featuring fish, an
improvement to consider for future applications.

4.3.2 Quality of matches

In most applications, the reliance on stereo matching is not a
major challenge in itself as a short baseline setup in air will tend
to result in left and right image streams that both provide a good
rendition of the motive and hence are relatively easy to match.
However, a net pen is a complex cluttered underwater environment
where illumination levels and turbidity may vary greatly even over
short distances. In addition, since the camera is placed in the same
volume as the fish, there is always a risk that fish may swim so
close to the camera that they may occlude one or both of the
cameras. These factors can make stereo matching more challenging,
especially if the impact on the two cameras differs. In most cases
with differential occlusion or turbidity, it is likely that the BBoxDepth
and SegmentDepth pipelines would simply fail to get a match in the
stereo matching, resulting in fewer data points. SuperGlue would be
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less sensitive to this since it stereo matches using features and not
bounding boxes but be more susceptible to other errors arising due
to these effects. In particular, differentiated occlusion and varying
visibility could disturb the visual appearance of different features to
the extent that they are perceived using the SuperGlue method as
being the same. This could lead to large errors in the positioning.

Although the discrepancy between key points identified by
BBoxDepth often appeared to be larger than those by the other stereo
pipelines, this statement can only be considered indicative due to
the lack of proper ground-truth data. However, such an effect can be
explained by the differences in how the three methods acquire the
key points. The approach of matching the centers of BBs from both
images used by BBoxDepth can lead to larger deviations since BBs are
only abstract entities derived from the picture rather than pertaining
to the actual image features. Minor discrepancies in box size and
placement could thus lead to larger errors in the 3D positioning.
The other two pipelines were probably less sensitive to such effects as
they related more strongly to the actual image contents by matching
actual image features (SuperGlue) and using segmentation masks
based on the image contents (SegmentDepth). In cases where the
fish is swimming at a fixed distance from the camera (i.e., moving in
parallel with the baseline spanning between the two cameras), this
error is likely low since the bounding box encasing the caudal fin
in both images is probably of similar size and similarly positioned
relative to the fin. However, when a fish moves at an oblique angle
relative to the baseline, the shape, size, and location of the BBs
relative to the caudal fins will differ more from left to right. A more
thorough analysis quantifying such discrepancies across matched
cases could be applied to support this finding.

Finally, BB matching can also result in erroneous matches
because its matching procedure depends solely on BB positions and
sizes. In scenarios where the fish are kept in high densities, there
will be a risk that situations where two or more fish of roughly the
same size stay close to each other may occur. Due to their proximity
and similar size, the BBs representing the detection of these fish
would be both close to each other and similarly sized, rendering the
matching of boxes from the left and right images more challenging
for the method.

4.3.3 Real-time performance

Although a true evaluation of the real-time performance of
the pipelines cannot be done without first implementing them
on a real mobile platform, the evaluations done in this study
sought to provide proof of concept that the methods should be
runnable in ROS2. Considering the wide variety of hardware
resources available in underwater robots and that these often have
limited capacity compared with desktop computers, this was thus
considered an important prerequisite before future testing in real
field deployments.

FishFinder and FishTracker maintained rates close to the video
frame rate at 25 fps, which is well above the desired interval of
5-10 Hz. Moreover, the modules specific to DepthAnything and
SuperGlue were also within this interval, implying that they too
have potential to be applied in operational studies. Of these,
DepthAnything appeared marginally more efficient probably because
it is a streamlined process with little inter-process communication
and depends on a single camera stream rather than two. It should
here be noted that the ability to deploy and run these in the field
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would finally depend on the computational abilities of the chosen
platform, robot, or vehicle.

The picture is more complex when considering the modified
SegmentDepth pipeline. Although MaskPredictor had an even faster
update frequency than SuperGlue and DepthAnything, achieving
a latency of 0.13s, the SegmentDepth pipeline also features
BBoxMatcher, which had the slowest publication rate of all nodes,
with a latency of 0.67s. This is probably not related to the
inference time of this node, but rather a result of synchronization
issues that arise when combining complex nodes in the same
pipeline. Although the MaskPredictor node processed images and
detections from both cameras, the resulting datasets do not always
have the same time stamps. BBoxMatcher will then struggle to
synchronize and process mask matching points from both camera
feeds effectively. This highlights a critical area for improvement
in ensuring better synchronization and data alignment within
the pipeline.

To complete the validation of these methods for field use,
future studies should seek to improve the efficiency of the
slowest modules to prevent them from bottlenecking data
throughputs. Moreover, it is also important that future tests
entail implementing the pipelines at actual underwater robots
or vehicles. This would demonstrate whether the pipelines can
achieve sufficient real-time performance when all modules are
run together and whether they can be run efficiently on the
hardware used to run such devices. Additional insight can also
be gained by testing the pipelines on several different embedded
platforms since they may vary greatly in hardware components
and hence processing power. This would shed light on their
performance when run on different systems, which will be an
important step before introducing them for active use with actual
underwater robots.

4.4 Future applications in underwater
vehicles

4.4.1 Pipeline improvements

Although the pipelines tested in this study performed well
at the intended tasks, they would need some further refinement
and improvements to be fully applicable as industrial tools for
underwater navigation in net pens. One important aspect is
robustness with respect to factors that may complicate fish detection
and tracking. In their present state, the methods have been trained
using footage collected when visibility and lighting conditions were
good, providing good contrast between the fish and the background.
This would not always be the case during robotic operations as
the natural light level in salmon net pens varies greatly during the
production cycle due to the annual (e.g., winter vs. summer) and
diurnal (e.g., dusk and dawn vs. noon) variations and with depth.
Moreover, feces and particular waste from feed may, at times, make
the water much more turbid than in the footage used in this study.
An important step in improving the robustness of the pipelines
would, therefore, be to also train these using videos collected during
darker periods and with high turbidity. These new data should
complement the existing datasets to ensure that the resulting method
is effective at detecting fish under both beneficial and sub-optimal
visibility conditions.
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Another factor that is important to consider is that video footage
of fish swimming in dense shoals often results in a greater degree of
overlap and occlusion between individuals in the images than when the
fish are more sparsely distributed. This may render the segmentation,
feature extraction, and tracking of individual fish more difficult as
the bounding box containing the detected object also contains parts
of the background, which are composed by other fish that may
complicate segmentation and extraction. The choice of focusing on
caudal fins instead of whole fish bodies in this study reduces this
complexity as the boxes used in the detection are smaller and thus
contain fewer proportions of other fish, thereby reducing the risk of
erroneous detections or segmentations. However, this effect is probably
not sufficient to fully compensate for this source of inaccuracy. One
possible way of improving this could be using oriented bounding
boxes (OBBs), which is an improvement where the bounding boxes are
oriented to fit better with the contours of the detected objects, thereby
circumscribing the object more closely than when the bounding box
is horizontally oriented. OBBs have previously been used for different
applications, including tracking of the motion and orientation of
farmed pigs (Liu et al., 2023). In other animals, it is likely that the
use of OBB would improve the performance of fish tracking as the
bounding boxes would then be more constricted around the object
of interest (in this case, caudal fins) and thus include less background
that may contain parts of other fish.

4.4.2 Vehicle implementation and field
deployment

This research was motivated from a perspective of enabling
future underwater vehicles to minimize their impact on the fish
while conducting operations in commercial fish farms. The end-
point application of the pipelines would thus be to serve as a sensory
mode for the vehicles to automatically detect and track fish in the
vicinity. To realize this, the observations from the pipelines would
have to be used as inputs to the control algorithm of the vehicle.
This algorithm could be designed such that the vehicle adapts its
positioning and motion in response to the presence and movement
of the fish. For instance, the position could be controlled such
that the vehicle never gets within a certain distance of detected
fish to prevent intruding upon them, which may elicit a startled
response. Likewise, observed fish movements could also be used
to control the vehicle movement speed, in that it could reduce
speed when observing that fish are actively swimming away from it.
This could be realized using existing motion planners with collision
avoidance, such as Amundsen et al. (2024), and considering the fish
as being dynamic obstacles with a certain radius. The parameters
of the chosen collision avoidance method could then be calibrated
to provide the proper responses toward the fish presence and
movement. However, it should be noted that a fish-relative motion
planner solely based on cameras would be very sensitive to visibility
conditions. Although some of the improvements mentioned above
will partly address this, the pipelines are not efficient if light levels
are too low. This indicates that a final version of such a fish-related
navigation system should also feature other modes of observation,
such as sonars and other acoustic devices.

In conclusion, we believe that the pipelines tested in this study
could be components in future control systems for underwater vehicles
designed for in-pen operations in fish farms. If they could enable
the vehicles to adjust their motions to the presence of the fish, it
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would be possible for them to move such that they disturb the fish
less, thereby possibly reducing the potential of impairing fish welfare
under production. This could have a particular impact on some of the
continual and periodic tasks conducted at commercial fish farms such
as net inspection and cleaning (Kelasidi and Svendsen, 2022). Due
to their pervasiveness in fish farm operations, these operations have
been suggested for automation to alleviate the need for manpower and
manual work (Fu et al., 2024). Continuous operation using the present
pipelines would put even stricter requirements on their accuracy and
real-time properties as the vehicle would then have to be equipped
to handle unforeseen situations and react quickly to changes. This
would also entail periodically recalibrating the cameras, possibly with a
permanently installed reference near the docking station of the vehicle.
Inaddition to these technical aspects, realizing autonomous operations
in commercial fish farms would require regulatory changes. These
changes would likely include a set of requirements and rules for the
design and operation of the vehicle to prevent unwanted interactions
between the vehicle and the fish farm structures.
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