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Human-autonomy teaming is an increasingly integral component of operational 
environments, including crewed and remotely operated space missions, military 
settings, and public safety. The performance of such teams relies on proper 
trust in the autonomous system, thus creating an urgent need to capture the 
dynamic nature of trust and devise objective, non-disruptive means of precisely 
modeling trust. This paper describes the use of bio-signals and embedded 
measures to create a model capable of inferring and predicting trust. Data 
(2304 observations) was collected via human subject testing (n = 12, 7M/5F) 
during which participants interacted with a simulated autonomous system in 
an operationally relevant, human-on-the-loop, remote monitoring task and 
reported their subjective trust via visual analog scales. Electrocardiogram, 
respiration, electrodermal activity, electroencephalogram, functional near-
infrared spectroscopy, eye-tracking, and button click data were collected 
during each trial. Operator background information were collected prior to the 
experiment. Features were extracted and algorithmically down-selected, then 
ordinary least squares regression was used to fit the model, and predictive 
capabilities were assessed on unseen trials. Model predictions achieved a high 
level of accuracy with a Q2 of 0.64 and captured rapid changes in trust during an 
operationally relevant human-autonomy teaming task. The model advances the 
field of non-disruptive means of inferring trust by incorporating a broad suite of 
physiological signals into a model that is predictive, while many current models 
are purely descriptive. Future work should assess model performance on unseen 
participants.

KEYWORDS

autonomous system, human-on-the-loop, psychophysiology, neurophysiology, 
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Introduction

Human-autonomy teaming (HAT) is growing in relevance to operational environments, 
especially those where a remotely located human operator is supervising an autonomous 
system. Examples of these environments are remotely guided space missions, military
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settings, public safety, or search and rescue operations (Harel et al., 
2020; J. Kintz et al., 2023). Such situations are known as human-
on-the-loop (HOTL) scenarios because operators can intervene 
and make decisions during mission-critical events but can forfeit 
control to the autonomous system and take a passive role in nominal 
cases. This contrasts human-in-the-loop scenarios, where a co-
located operator actively collaborates with the autonomous system 
for all decision-making processes. In HOTL scenarios, the operator 
may be remotely located from the autonomous system, such that 
there is spatial and possibly temporal separation. The operator thus 
has limited information and context, necessitating reliance on the 
autonomous system (O’Neill et al., 2022). As spatial or temporal 
separation increases, the reliance on the autonomous system also 
increases (Frank et al., 2016; Chancey and Politowicz, 2020).

Reliance on the autonomous system is guided by an operator’s 
trust in that system. To facilitate effective HAT, operators must 
appropriately trust the autonomous system (de Visser et al., 2020). 
Lee and See define trust as “the attitude that an agent will 
help achieve an individual’s goals in a situation characterized 
by uncertainty and vulnerability” (Lee and See, 2004). Trust 
guides an operator’s use of autonomy, enabling them to calibrate 
their perceived appropriate level of reliance and manage complex 
systems. The mission- and safety-critical nature of high-functioning 
autonomous systems means that any operator distrust, overreliance, 
or mistrust of the autonomous system could lead to inadequate 
performance or mission failure. Further, HAT tasks involve rapidly 
changing, dynamic environments, which can result in dynamic 
changes to the person’s trust in response to interactions with the 
autonomous system (Chandrayee Basu, 2016; Tenhundfeld et al., 
2022). The operator develops an evolving perception of the 
autonomous system’s capabilities and faults over time, but this can 
also fluctuate dynamically due to discrete events that may occur 
while they are interacting. Capturing the temporal dynamics of trust 
should yield more accurate trust measurements at specific points in 
time. This is critical for enabling effective HAT, understanding trust 
relationships, and facilitating real-time applications.

Though trust is often measured as a single construct, it is 
multi-dimensional in nature. For example, trust dimensions may 
include affective, cognitive, and dispositional trust (Webber, 2008; 
Ayoub et al., 2021). Affective and cognitive trust are both dynamic 
in nature, where affective trust changes due to feelings and emotions, 
and cognitive trust changes due to rational and logical thoughts 
(Lewis and Weigert, 1985). Both components must be considered 
as part of overall dynamic trust, as they fluctuate during interaction 
with the autonomous system. Previous studies have investigated 
the effects of explainability on affective trust and reliability on 
cognitive trust (Markus et al., 2021; Kyung and Kwon, no date). The 
“explainability” of an autonomous system can alter the participant’s 
affective trust by varying the language used in communication with 
the participant (e.g., the level verbosity with which the autonomous 
system describes its confidence in its decisions). The “reliability” of 
an autonomous system can alter the participant’s cognitive trust by 
varying how often the autonomous system is correct. Both cognitive 
and affective trust have been extensively studied in the fields of 
social psychology (Yang et al., 2009), organizational leadership 
(Erdem and Ozen, 2003), and consumer behavior (Chang et al., 
2016; Ha et al., 2016; Punyatoya, 2019), yet their applications to 
HAT are less understood. These dynamic facets of trust will have 

a large impact on human-autonomy teams, the same way that 
has been shown for human-human teams (Johnson and Grayson, 
2005; Webber, 2008). Unlike cognitive and affective trust, the third 
relevant component of trust, dispositional trust, is not affected 
by qualities of a specific autonomous system. Dispositional trust 
is a person’s inherent attitude toward trusting autonomy and is 
considered part of their personality (Merritt et al., 2013; Ayoub et al., 
2021). On the time scale of most HAT tasks, dispositional trust is a 
static measure, formed in the context of organizations and cultures 
(Webber, 2008; Ayoub et al., 2021). It may be captured through pre-
experimental surveys. Dispositional trust is one primary contributor 
to inter-individual differences when measuring trust. It is a function 
of a person’s identity and demographics, and it impacts human 
relationships with autonomous systems (Lee and See, 2004; Chung 
and Yang, 2018). HAT tasks in the literature do not contain 
components that aim to alter both affective and cognitive trust as 
separate facets of trust. This suggests that current research lacks a 
nuanced ability to model trust and its multiple facets. Being able 
to model trust in a manner that is sensitive to changes in multiple 
forms of trust is crucial for evaluating and comprehending human-
autonomy relationships.

To understand trust in HAT applications, trust must be 
measured accurately. Trust is historically measured through 
empirically determined surveys, which are considered the 
“gold standard” due to their validity and heritage. While these 
provide accurate subjective “ground truth” trust values self-
reported by the participant, they are often obtrusive and static 
(Monfort et al., 2018; Kohn et al., 2021). Surveys are disruptive, 
in that they require the attentional resources of the operator or 
necessitate a pause in operation, rendering them unsuitable for real-
world mission environments. Furthermore, surveys only capture a 
static measure of trust because they are often administered after 
multiple minute-long trials. This makes surveys insensitive to 
rapid, dynamic changes in trust. Thus, there is a need to develop 
non-disruptive, unobtrusive and continuous trust measurement 
techniques to ensure operational feasibility and sensitivity to 
trust dynamics.

There has been increasing interest in estimating trust and trust 
dynamics based on physiological data, such as skin conductance, 
electrical activity of the heart, respiration, oxygenation in the brain, 
electrical activity of the brain, and eye movements (Kohn et al., 
2021). Critically, physiological sensors allow for unobtrusive and 
continuous data collection and have been shown to be promising 
indicators of trust without necessitating survey administration 
(Bandara et al., 2016; 2018). Trust is an emergent state of the 
brain which can be estimated by measuring activity in the 
central nervous system (CNS) and peripheral nervous systems 
(PNS). The activity of the CNS is measured by neurophysiological 
sensors, which focus on the brain, and the activity of the PNS 
is measured by psychophysiological sensors, which focus on 
the heart, eyes, lungs, and skin (Ajenaghughrure et al., 2020). 
The large body of research on these physiological correlates 
can be applied to predictive trust models in a HAT-specific 
context (Bellucci et al., 2017; Berberian et al., 2017; Krueger and 
Meyer-Lindenberg, 2019; Henschel et al., 2020). This research, 
though, has focused on human-in-the-loop HAT, while the trust 
dynamics of HOTL environments have not yet been modeled with 
physiological signals.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1624777
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Rindfuss et al. 10.3389/frobt.2025.1624777

Embedded measures are another method of unobtrusively 
estimating trust and trust dynamics. These are observable behaviors 
captured through gaze data (e.g., where the operator is focusing 
their visual attention) or button-clicks (e.g., how many times the 
operator disagrees with the AS). These behavioral actions, inactions, 
or timing of actions a person takes when interacting with autonomy 
may be indicative of their trust levels. However, embedded measures 
are often influenced by additional factors, including operator 
workload, fatigue, and situation awareness (Parasuraman et al., 2008; 
Chancey et al., 2017; Xie et al., 2019). Thus, embedded measures 
may require additional context and can be supplementary predictors 
when combined with other information, such as physiological data. 
Previous research supports the use of embedded measures to inform 
trust, but they are captured after multiple minutes, so they are static 
measures (Hergeth et al., 2016; Kunze et al., 2019; Petersen et al., 
2019; Walker et al., 2019). Embedded measures captured on the same 
time scale as physiological data can maximize their utility in trust 
estimation (Kintz et al., 2023).

Research in the literature contain various combinations of 
psychophysiological streams, neurophysiological streams, operator 
background information, and embedded measures as predictors of 
trust (Khalid et al., 2016; de Visser et al., 2018; Ajenaghughrure et al., 
2020). While these models show promise, there is no clear 
justification for the combinations of sensors and measures chosen, 
and none have used each of these measures together in one model. 
Further, prior experiments that implement physiological monitoring 
to gauge trust have largely been single-visit lab experiments 
(Akash et al., 2018; Ajenaghughrure et al., 2020), making it difficult 
to generalize the results to different systems or HAT scenarios. Thus, 
there is a need to investigate trust over multiple testing sessions.

Equally important as the suite of methods used to gather data 
is the HAT task during which the data is gathered. An additional 
gap in current research is that many efforts fail to capture the 
complexity of HAT, particularly in HOTL tasks, when characterizing 
trust. Models are built on HAT tasks that are not operationally 
relevant or applicable to real-world scenarios (Akash et al., 2018). 
For example, HAT tasks that require the participant to blindly trust 
the autonomous system without the opportunity to make judgement 
calls on additional available data are less applicable to real-world 
scenarios (Akash et al., 2018). Some tasks involve continuous 
interaction with the autonomous system, characteristic of human-
in-the-loop scenarios (Nikolaidis et al., 2017), and some provide 
simplified trusting options (Hirshfield et al., 2011; Oh et al., 2020). 
Other existing tasks place the participant in the same environment 
as the autonomous system (Hergeth et al., 2016; Morris et al., 
2017), leaving a gap in our understanding for remote operational 
scenarios. Here, we aim to develop trust models based on HAT 
tasks containing features that simulate both remote operations and 
rich trusting options with additional available data to help increase 
applicability to HOTL environments and improve trust prediction 
in such scenarios.

In summary, there are at least four gaps concerning models of 
trust that need to be addressed. The first being: there is insufficient 
research into models built on data collected during a HOTL 
HAT task, limiting the applicability of current models to remote 
operational environments. The second gap, also related to the HAT 
task, is the lack of purposeful alteration of multiple dimensions of 
dynamic trust during the task, meaning existing models may not 

be sensitive to multiple dimensions affecting trust. Thirdly, current 
models of trust do not utilize a comprehensive suite of physiological 
data sensors, rather, the use of multiple sensors at once is limited. 
Finally, the dynamics of trust have not yet been modeled on a 
time scale that allows for predicting rapid changes, making current 
models insensitive to such dynamics.

To address the described gaps, we modeled participants’ 
reported trust using their dynamic physiological responses and 
embedded measures gathered from an operationally relevant HOTL 
HAT task. The HAT task alters multiple dimensions of trust to 
capture a comprehensive measure of overall trust in the model. We 
aim to improve upon previous trust models by leveraging a wide 
physiological suite of measures for use as predictors. This research 
develops metrics and models capable of capturing inherent trust 
dynamics that are transferable across a wide range of tasks.

Methods

Task

To study trust dynamics, we developed an operationally relevant 
task where participants teamed with a simulated autonomous 
system with the goal of identifying ground troop movement in 
satellite data. Complete details of the task design are discussed 
previously (Sung et al., 2024) and summarized here. During the 
task, the participant interacted with the simulated autonomous 
system through a computer screen. The autonomous system received 
information from heritage satellites. The system classified satellite 
data as containing troops or not containing troops, analyzing 
simulated data from up to nine satellites. It then conveyed the 
classification for a given satellite to the participant on their computer 
screen, as seen in Figure 1. The participant had the option of 
“reviewing” the classification of the autonomous system, though this 
was not required. If choosing to “review,” the autonomous system 
provided the participant with three pieces of satellite data and a 
statement expressing how confident the autonomous system was 
in its classification of the data (Figure 2). To alter the cognitive 
dimension of trust, the autonomous system was fallible such that its 
classification was not always correct. The autonomous system had 
a “low reliability” condition in which the system is correct in its 
classification 67% of the time and a “high reliability” condition in 
which the system was correct 84% of the time. The participants were 
not informed of the reliability percentages, nor were they aware of 
the reliability setting during each session. Rather, subjects were told 
they would be working with a different autonomous system in each 
session. To alter the affective dimension of trust, the autonomous 
system would use either terse, robotic-like language (in the “low 
explainability” condition) or use naturalistic language (in the “high 
explainability” condition). Like reliability, participants were also not 
informed of the explainability conditions during testing. Varying 
explainability and reliability resulted in four different autonomous 
systems, each possessing a unique combination of reliability and 
explainability. An additional method implemented to alter overall 
trust was confidence matching, where the level of reliability and 
the level of the system’s communicated confidence either aligned 
or were mismatched (Sung et al., 2024). To increase co-reliance, 
the participants were asked to also assist the autonomous system in 
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FIGURE 1
Home screen, where users access the map and select classifications to review. Two satellite classifications appear every 30 s, with red indicating a 
classification of troop movement and blue indicating a classification of no troop movement. The participant may select two areas in the map every 
30 s. (A) scan guidance map. (B) satellite summary table. (C) satellite overview panels.

tasking satellite image acquisition. In this objective, the participant 
interacted with a map (Figure 1A) to suggest places on the globe for 
satellites to image. This “scan guidance” task required the participant 
to strategically allocate their attentional resources. The division of 
attention between the two tasks was designed to provide insight 
into the participants’ trust in the autonomous system teammates, 
depending on the amount of time they dedicated to monitoring the 
autonomous system or selecting locations on the map.

Experimental protocol

The experiment consisted of one training session and four 
testing sessions. Participants interacted with a unique autonomous 
system during each testing session. Each session was conducted on 
different days with no more than 1 month between the training 
session and the fourth testing session. Twelve participants (5 F and 
7 M, ages 25.6 +- 8.26 years) completed this study. The participant 
pool included people with diverse educational backgrounds: one 
individual held a Ph.D., three had Master’s degrees, and eight 
either held or were pursuing Bachelor’s degrees. Their fields of 
study included astrophysics, aerospace engineering, mechanical 
engineering, geography, biotechnology, and computer science. 
The experimental protocol was approved by the University of 
Colorado Boulder’s Institutional Review Board (IRB) under protocol 
number 23-0103.

The training session began with operator background surveys. 
These were selected based on a prior study identifying significant 

associations between trust dynamics and personal characteristics 
(Chung and Yang, 2024). Participants filled out the “Extraversion” 
and “Agreeableness” sections of the Big Five Factors of Personality 
(Donnellan et al., 2006) survey, the “High Expectations” component 
of the Perfect Automation Schema (PAS) (Merritt et al., 2015), 
the “Masculinity” dimension of the Cultural Values Scale (CVS) 
(Yoo et al., 2011), the Propensity to Trust (PT) (Merritt et al., 
2013) survey, the Automation Induced Complacency Potential 
(AICP) Scale (Merritt et al., 2019), and the “Performance 
Expectancy” as well as “Effort Expectancy” sections of the Unified 
Theory of Acceptance and Use of Technology (UTAUT) survey 
(Venkatesh et al., 2003). Subdimensions of these scales were 
administered, as recommended by Chung and Yang (Chung and 
Yang, 2024), in lieu of the full surveys to prevent survey fatigue. 
Participants also provided demographic and lifestyle information, 
including age, sex, race, ethnicity, dominant hand, experience with 
video games, experience with robotic systems, navigational aid use, 
experience with aerospace relevant displays, and experience with 
ground troop or other military monitoring systems.

Next, participants were trained on the task with a slideshow. 
They were instructed to click through it at their own pace and 
encouraged to ask questions as needed. The training slides presented 
relevant information about the task objectives and background. They 
also provided a detailed breakdown of the task screens, buttons, and 
data, including example images and trust slider pop-up instructions. 
Subjects were shown how the information on the review panel may 
agree or disagree with the autonomous system recommendation. 
They are also told that the autonomous system has access to 
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FIGURE 2
Satellite review screen, where users may assess the data and agree or disagree with the system’s recommendation. On this page, participants are 
provided with the satellite’s recommendation, an explanation of its confidence in its decision (which is meant to alter affective trust), a visual image, a 
thermal image, a command and data handling image (where the combination of information from the three images is meant to manipulate cognitive 
trust if subjects identify a conflict between the information and the recommendation of the autonomous system), and agree or disagree buttons. (A)
autonomous system recommendation and confidence explanation. (B) “I agree” and “I disagree” buttons. (C) satellite visual image. (D) satellite thermal 
image. (E) command and data handling (C&DH) information.

additional information provided by the satellites to help it make 
its determination, which they as the operator do not have access 
to. Thus, we do not explicitly tell them it is fallible, but leave it 
ambiguous as to whether or not they should trust the system. The 
slides emphasized that participants should rate their trust based 
on how the autonomous system performed on the current task, 
ignoring how they thought it would perform on any other task. 
Participants were given the Lee and See definition of trust (Lee 
and See, 2004) and were directed to use this definition when 
completing the trust sliders. The slides also informed participants of 
the compensation structure of combined base pay and performance 
bonuses. At the end of the training slideshow, they completed an oral 
quiz to ensure they understood all facets of the task.

As the final part of the training session, participants performed 
three hands-on practice trials with a version of the simulated 
autonomous system that was 100% correct and always explained 
that it was 100% confident in its assessment (subjects were told that 
this system is always correct so as not to bias their understanding of 
the task). The goal of the hands-on training is to get the participant 
accustomed to the functionality of the task and to practice finding 
“troop movement” in data provided by the autonomous system. 
Physiological data and embedded measure data were not collected 
during the practice trials. After the training session, participants 
were scheduled for the subsequent four testing sessions, each with 
a separate visit to the lab.

When participants arrived for the testing session, they first 
filled out a brief questionnaire where they indicated the amount 
of sleep they obtained the previous night and confirmed that 
they had not consumed alcohol within 6 hours prior to the 
session. Then, participants completed a psychomotor vigilance 
test on the computer screen to gauge their motoric alertness 
and sustained attention (‘Psychomotor Vigilance Task’, no date). 
Next, two trained personnel assisted in placing sensors on the 
participant (Figure 3). The suite of sensors includes a BIOPAC 
Binomadix 3-lead electrocardiogram (ECG) montage, a BIOPAC 
Binomadix respiratory (RSP) chest band, two BIOPAC Binomadix 
electrodermal activity (EDA) electrodes on the pointer and middle 
fingers, a Neuroelectrics Enobio 19-lead electroencephalogram 
(EEG) montage, a 15-optode (8 sources, seven detectors, 20 source-
detector pairs) NIR-X Sport Functional Near-Infrared Spectroscopy 
(fNIRS) montage (Figure 4B), and Pupil Lab’s Pupil Core eye-
tracking glasses. The monopolar EEG montage (Figure 4A) 
contained the temporal lobe, occipital lobe, parietal lobe, central 
lobe, and pre-frontal cortex. Both the EEG montage and the fNIRS 
montage were integrated in the same head cap (Figure 4C).

After all sensors were donned and calibrated, a short script was 
read to the participants to briefly remind them of the objectives 
of the task and how we would collect measures of trust. They 
were reminded of the Lee and See definition of trust to be used 
during the experiment. It was also emphasized that the autonomous 
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FIGURE 3
A person wearing the sensors while doing the HAT task.

system they were working with on that day was different from those 
of prior days. Prior to the start of the first trial, the participants 
completed a 2-min-long pre-experimental baseline, where they were 
instructed to stare at a crosshair on the computer screen, but not 
to think about the task. Once the pre-experimental baseline ended, 
the first trial immediately began. For trials 2-6, the pre-trial baseline 
period was 45 s.

Each trial was split into eight 45-s epochs (i.e., subdivisions 
of time over which physiological and embedded measures are 
captured). To capture trust, the task paused at the end of each 
epoch, and a screen appeared that asked the participant to rate their 
agreement with the statement “I trust this autonomous system” on 
a continuous scale from “Not at all” to “Completely”. This analog 
visual slider method was minimally disruptive, as it briefly captured 
a single trust value and allowed participants to quickly return to the 
task. After rating their trust, the task continued. This process was 
repeated for the entirety of the 6-min trial, which yielded eight trust 
slider reports per trial to capture trust dynamics during the trial. 
After the trial, we also administered the Jian Trust in Autonomous 
Systems survey (Jian et al., 2000), as a gold-standard, but static 
measure of trust. Lab Streaming Layer (LSL) time-synchronized the 
task and six bio-signal sensor streams and dynamic trust measures.

Over one testing session, a participant performed six trials 
total; over the experiment, a participant completed four testing 
sessions on four different days. They collaborated with a different 
autonomous system for each of the four sessions, each with a 
different combination of reliability and explainability. The testing 
protocol is outlined in Figure 5. Across all four testing sessions per 
each of the 12 participants, the experiment yielded 2,304 epochs 
total, which corresponds to 2,304 trust slider reports.

Data cleaning and feature extraction

The raw data from each sensor stream was imported into 
MATLAB (version 2024a), cleaned, and separated into 45-s epochs 
prior to feature extraction. Physiological and embedded features 
were calculated during each 45-s epoch between trust slider 
reports. Data cleaning and feature extraction for ECG, EDA, and 

respiration data was done identically to the methods described 
in Richardson et al. (Richardson et al., 2025). In summary, The 
ECG data was filtered using a highpass filter with a passband 
frequency of 1 Hz to remove baseline drift, a lowpass filter with 
a passband frequency of 100 Hz to remove electromyographic 
noise, and an infinite impulse response (IIR) Butterworth bandstop 
filter with a lower cutoff frequency of 59 Hz and an upper cutoff 
frequency 61 Hz to remove powerline interference. R-DECO was 
used to extract R-peaks from the cleaned ECG signal, all of 
which were subsequently visually inspected and confirmed. For 
EDA, to identify motion artifacts, values outside of 1–40 µS were 
identified and removed. Next, a Savitzky-Golay finite impulse 
response smoothing filter of polynomial order three was used 
to smooth the EDA signal. Ledalab’s continuous decomposition 
analysis was used to decompose the EDA signal (downsampled to 
10 Hz, as recommended) into tonic and phasic components. The 
toolkit returned the deconvolved components and skin conductance 
response (SCR) characteristics. Respiration data was filtered using 
an IIR Butterworth band-stop filter with a lower cutoff frequency of 
0.05 Hz and an upper cutoff frequency of 3 Hz to remove baseline 
drift and high frequency noise while preserving breathing rates 
between 3 and 180 breaths per minute. Zero-phase digital filtering 
was used to eliminate the non-linear phase distortion of IIR filtering 
for both ECG and respiration. ECG yielded 28 features, EDA yielded 
63 features, and respiration yielded 28 features. Surveys related to 
operator background were administered during the training session 
only. The features from the physiological data, embedded measures, 
and operator background information resulted in a total of 680 
features, which are detailed below. No features were calculated from 
interactions.

fNIRS data was analyzed as follows: The data acquisition 
software for the fNIRS system, Aurora (version 2021.4), 
automatically applies the Modified Beer-Lambert law to transform 
raw voltage data into oxygenated hemoglobin (HbO) and 
deoxygenated hemoglobin (HbR) concentrations. HbO and HbR 
were bandpass filtered with a lower cutoff frequency of 0.016 Hz 
and an upper cutoff frequency of 0.5 Hz to remove linear drift and 
cardiac artifacts (NIRx Medical Technologies, 2020). The following 
features were extracted for each channel: maximum amplitude 
(HbO only), minimum amplitude (HbR only), time to maximum 
amplitude (HbO only), time to minimum amplitude (HbR only) 
mean, variance, skew, kurtosis, RMS, slope, and area under the 
curve. In total, 360 fNIRS features were created.

The EEG data was analyzed as follows: A fourth order 
Butterworth bandpass filter was used with a lower cutoff frequency 
of 0.5 Hz and an upper cutoff frequency of 55 Hz. The EEGLAB 
MATLAB toolbox (version 2024.0) (Delorme and Makeig, 2004) 
was then used to conduct independent component analysis (ICA). 
Components were manually rejected if they were indicative of eye 
artifacts, such as blinks or saccades. The data was then reconstructed 
from the remaining independent components. The power spectral 
density (PSD) of the delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 
beta (13–30 Hz), and gamma (30–80 Hz) bands was calculated 
using standard tools in EEGLAB. This was done for each of the 19 
EEG channels. The first features extracted were the power spectral 
densities in each band for each channel, thus yielding 95 features. 
Then, the power spectral density of channels centered on brain 
regions of interest were averaged to generate region-specific features. 
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FIGURE 4
Integrated neurophysiological montages. (A) EEG Montage. (B) fNIRS montage. (C) Montages combined in the head cap.

FIGURE 5
Visual representation of the experimental protocol and data collection.

These regions included the 1) pre-frontal cortex, 2) central cortex, 
3) parietal lobe, 4) occipital lobe, 5) temporal lobe, and 6) entire 
head. This yielded an additional 30 features. All individual channel 
features and region features were used, totaling 125 features.

The Pupil Labs’ Pupil Core (version 3.5.1) (Kassner et al., 
2014) headset measured pupil diameter, blink duration, blink rate, 
saccades between pre-defined areas of interest on the screen, and 
fixation durations on areas of interest. Each were retained as features. 
There were 21 features associated with pupils and blinks and 16 
associated with fixations and saccades, yielding 37 total eye features.

Finally, 16 button-click-based embedded measures were 
collected. A full list of embedded measures is provided in Table 1.

There were multiple epochs that contained missing data for 
entire trial(s) or individual epoch(s) from various sensor streams. 
Data was imputed by filling in missing data with the average of the 
rest of the trial if an epoch was missing, the average of the rest of the 
session if a trial was missing, and the average of the remaining three 
sessions if a data stream was absent for an entire session. An entire 
session’s worth of missing data only occurred twice. In total, 0.24% of 
the data was imputed. To assess the impact of our chosen imputation 
method, we also implemented a feed-forward imputation method 
(i.e., using the most recent available data as a proxy for missing 
data) and found very similar predictive accuracy, suggesting our 
imputation method was not critical for how models were built. 

Feature versions

For all physiological features, the baseline values were removed 
to account for inter-individual differences among participants. 
There exist multiple methods of baselining physiological features 
(e.g., comparing a raw response to a participant’s pre-trial resting 
response). Since our model contains many different types of features 
ranging from neurophysiological to psychophysiological, the ideal 
method of baselining could be different for each. Multiple methods, 
or “versions,” were calculated to be potential predictors for the 
model. Feature versions are adapted from Richardson et al. (2025). 
Raw features were calculated over the 2-min pre-experimental 
baseline, 45-s pre-trial baseline, and active 45-s epochs, as defined in 
the Experimental Protocol. These raw values are used to create eight 
feature “versions,” which include: 1) subtracting out the participant’s 
per-trial pre-trial baseline from that trial’s active period values, 
2) subtracting out the participant’s mean pre-trial baseline from 
their active period values, 3) subtracting out the participant’s pre-
experimental from their active period values, 4) dividing the active 
period values by that participant’s per-trial pre-trial baseline, 5) 
dividing the active period values by that participant’s mean pre-trial 
baseline 6) dividing the active period values by that participant’s pre-
experimental baseline, 7) standardizing the active period values by 
subtracting that participant’s mean and dividing by their standard 
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TABLE 1  List of task-specific embedded measures.

Embedded measures

1. Session number (1-4)

2. Trial number (1-6, per session)

3. Epoch number (1-8, per trial)

4. Total time spent on the review screen per epoch

5. Average time on the review screen per epoch

6. Percent of satellites reviewed per epoch

7. Percent of satellites ignored per epoch

8. Percent of agreement with the autonomous system per epoch

9. Percent passive agreement with the autonomous system per epoch

10. Average time between clicking “review” and classifying the satellite per epoch

11. Percent of satellites re-reviewed per epoch

12. Number of map area selections made per epoch

13. Percent of allowable map interactions made per epoch

14. Post-trial analog slider: “How much did you rely on the system’s 
recommendation vs. additional data?”

15. Number of screen switches per epoch

16. Autonomous system explainability mode (per session)

deviation of those values, and 8) mean-centering the active period 
values by subtracting that participant’s mean of those values. 
All eight versions were applied to psychophysiological features, 
including ECG, EDA, respiration, and eye data. For EEG and fNIRS, 
the approaches to baseline these signals are more standardized in 
their respective fields. With EEG features, only version 4 (dividing by 
the per-trial pre-trial baseline) was applied. For fNIRS features, only 
version 1 (subtracting the per-trial pre-trial baseline) was applied. 
Applying only one baseline technique also reduced the risk of 
expanding the feature space unnecessarily due to the large quantity 
of channels on each device. 

Model building and evaluation

Predictive model
The predictive model on unseen trials was created by fitting 

the suite of psychophysiological measures, neurophysiological 
measures, operator background information, and embedded 
measures to the trust slider reports. The trust slider values were 
used as continuous, dynamic ground truth measurements, as these 
have been shown to be strongly correlated to the Jian et al. Trust 
in Automation Survey, using this same task (Leary et al., 2024). To 
assess model performance on trials not used in the model building 
process, we implemented external validation. External validation 

holds out a set portion of data for model building and the remainder 
is used for model evaluation. Thus, feature selection was conducted 
on 83% of the trials (training data) and the remaining 17% of the 
trials (test data) was held aside until after the final model was selected 
and fit. Leave-one-trial-out-per-session (LOTOPS) Monte-Carlo 
cross validation (MCCV) was implemented to split test and training 
data. Thus, for each distinct participant and session, one random 
trial out of six was withheld to be test data, resulting in 1/6th, or 
17%, of the data being set aside. The model was fit using the process 
described in the next paragraph on 5/6th, or 83% of the observations. 
The model was then evaluated on the test dataset to evaluate 
the model performance and generalizability. Finally, because the 
original train/test split was random, the entire process was repeated 
10 times, resulting in 10 unique models, known as MCCV, to 
provide the most realistic picture of the model building pipeline’s 
performance for future unseen predictions. Finally, the entire 
data set was used to fit the final model presented for descriptive 
evaluation using adjusted R2 as the metric of performance. The 
modeling process is summarized in Figure 6.

Our feature selection and modeling fitting approach builds 
on previous cognitive state estimation research and is useful for 
shrinking a large set of potential predictors (Buchner, 2022). The 
model was fit with ordinary least squares (OLS) multiple linear 
regression models (of the form y = β0 + β1X1 + . βpXp) using 
predictor variables to estimate the self-reported trust scores for 
each epoch (Buchner, 2022). The independent variable, trust ( y), 
is estimated by dependent variables, or predictor variables (X1, 
X2, ., Xp), each of which is multiplied by a coefficient (β0, β1, …, 
βp), with β0 being the y-intercept. Predictor variables were selected 
using Least Absolute Shrinkage and Selection Operator (LASSO) 
shrinkage. Ten-fold cross validation relaxed LASSO was used to 
identify two sets of predictors by 1) setting the shrinkage coefficient 
λ at the one standard error (1-SE) location and 2) setting λ at the 
minimum mean squared error (MSE) location (Tibshirani, 1996; 
Meinshausen, 2007). The λ value describes the amount of coefficient 
shrinkage occurring during down-selection, where λ = 0 implies 
zero shrinkage (all features are retained), and λ = ∞ implies that 
no features are retained. The 10-fold cross validation allows for λ 
values to be selected based on MSE, where the 1-SE location denotes 
the largest λ at which the MSE is within one standard error of 
the lowest MSE, and the minimum MSE location represents the 
minimum λ value (Hastie et al., 2009; Krstajic et al., 2014). Ten-
fold cross validation was used to balance bias and variance when 
selecting the λ parameter (Breiman and Spector, 1992). Because each 
run of LASSO is a stochastic process, this process was repeated 
50 times, generating 100 sets of down-selected predictors (50 at 
λ = 1-SE and 50 at λ = min MSE). Each unique model solution 
was retained. Then, a second round of feature down-selection was 
conducted with 50 additional runs of LASSO using only the retained 
features, identifying predictors by setting λ at the 1-SE location. This 
was done to reduce instability in the predictor sets (Meinshausen and 
Bühlmann, 2010). For each of these 50 models, the β coefficients 
and a y-intercept were fit. To determine the best of the 50 models, 
adjusted R2 was calculated. Q2, which is a measure of a model’s 
predictive ability, was also fit using exhaustive leave-one-trial-out 
(LOTO) cross validation. As such, an OLS using the LASSO-
determined predictors was fit on 239 trials. The model was then used 
to predict the remaining single trial. This was done iteratively for 
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FIGURE 6
Flow chart of the feature down-selection and model-fitting process. Note that this flow chart represents one single test-training split. Our modeling 
process involved 10 separate test-training splits.

each trial to generate a LOTO Q2. The selected model’s predictions 
were restricted to the bounds of [0,1], as trust slider reports do 
not exceed that range. Any prediction lower than 0 or higher than 
one was replaced with 0 and 1, respectively. To avoid overfitting, 
models were eliminated based on two constraints: 1) the number 
of predictor variables used in the model must not exceed 1/5th the 
number of observations, and 2) the LOTO Q2 must be within 0.2 of 
the adjusted R2 (Richardson, 2024). After constraints were applied, 
the model option with the highest R2 was chosen as the “selected” 
model. All feature selection was done in MATLAB 2024a.

Once the final model was selected, its performance was 
evaluated on the previously retained test data. A “test” Q2 was 
calculated to assess the model’s predictive capabilities on the 
unseen trials. Differences between model predictions and unseen 
trust slider reports were also calculated, in terms of root mean 
square error (RMSE) and median absolute error (MAE). The 
train/test split was repeated 10 times in MCCV. To qualitatively 
assess the model’s performance in predicting dynamic changes 
in trust, the per-epoch reported trust and predicted trust were 
compared side-by-side. Thus, for every 45 s of the test dataset, 
the trust prediction and corresponding ground truth value were 
plotted to observe the model’s ability to statically predict temporal 
fluctuations. This was done for each of the 10 MCCV train/
test splits. 

Descriptive model
In addition to creating 10 models using train/test splits to assess 

predictive performance, an “overall” model was also created using 
100 percent of the dataset. This was done to observe the model fit 
(R2) and the features down selected by LASSO. In this process, 10-
fold cross validation was repeated 50 times and constraints were 
applied, identical to the method described in Section 2.5. The R2 
associated with the selected model in this process is the overall 
descriptive R2, and it is the measurement used to describe the model 

fit on the complete data set. This overall model was also used to 
extract the names of features that were retained as predictor variables 
in the model.

Results

To assess the predictive fit, the adjusted R2 per model, the Q2

calculated per model (Model Q2), the Q2 used to measure the 
model’s predictive capabilities on the test data (Test Q2), the RMSE of 
the trust predictions in the test set, the MAE of the trust predictions 
in the test set, the number of predictors retained in the model, 
and the number of estimates that went outside the [0-1] range 
of the trust slider, and thus were capped (capped predictions) are 
summarized in Table 2. The mean and standard deviation across all 
10 predictive models is shown at the bottom of the table. Note that 
our most important metric of predictive performance on unseen 
trials yielded a mean test Q2 of 0.64 ± 0.05. The average descriptive 
adjusted R2 across all 10 predictive models is 0.83 ± 0.006. An 
average of 320 ± 60 predictors were used in the model, across 
10 train/test splits. The RMSE was an average of 0.13 ± 0.005, 
indicating that measures were generally within 13% of the scale. 
Across all measures, the standard deviations are low, demonstrating 
consistency in model performance regardless of the train/test split.

As a visual representation of one of the predictive model 
fit capabilities in a single train/test split, trust predictions are 
plotted against ground truth trust reports, as seen in Figure 7. The 
unity line provides a reference for perfectly accurate predictions. 
Figure 7A shows one example MCCV split with the training 
dataset and Figure 7B depicts the unseen test dataset (16.6% 
of the data). Each of the 12 participants are plotted in a
different color.

The descriptive model fit for all data is visualized in Figure 8. 
This is the fit of the model built on 100% of the data, in the “overall” 
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TABLE 2  Summary of 10 test-training splits. The adjusted R2 describes the model’s ability to estimate trust in the training data. The “Model Q2” describes 
the Q2 calculated during cross validation, which was used in model selection. The “Test Q2” describes the model’s ability to predict unseen test data. The 
“Predictors” column refers to the number of predictors that resulted from the LASSO down-selection. The “Capped Predictions” are the number of 
observations (out of 384 test observations) that were restricted to fit the bounds of [0,1].

Split Adj R2 Model Q2 Test Q2 RMSE MAE Predictors Capped predictions

1 0.82 0.74 0.68 0.12 0.073 263 2

2 0.83 0.75 0.67 0.12 0.076 260 5

3 0.84 0.72 0.58 0.13 0.088 419 5

4 0.83 0.66 0.66 0.13 0.083 286 8

5 0.84 0.64 0.67 0.13 0.082 387 2

6 0.84 0.74 0.55 0.13 0.085 372 12

7 0.83 0.66 0.69 0.12 0.075 234 0

8 0.83 0.74 0.63 0.12 0.079 323 2

9 0.83 0.72 0.68 0.13 0.076 321 2

10 0.83 0.75 0.61 0.13 0.080 280 1

Mean (σ) 0.832 (0.006) 0.71 (0.04) 0.64 (0.05) 0.126 (0.005) 0.080 (0.005) 320 (60) 4 (4)

FIGURE 7
One random example MCCV training-test split (split 10), where the model is assessed for fit on the training data and for predictive accuracy on the test 
data. All subjects are shown by a unique color as identified n the legend, and perfect model performance is represented by the unity line. (A) Model 
descriptive fit on training data. (B) Model predictive fit on test data.

model. The unity line and participant colors are identical to those 
of Figure 7. The adjusted R2 of the descriptive model is 0.83. The 
RMSE is 0.089 and the MAE is 0.064. The number of predictors in 
the descriptive model is 279. For each feature category or sensor 
type (e.g., fNIRS, EDA, embedded measures), the number of features 
in each category and the number of features retained per category 
are shown in Table 3.

The per-epoch predictive capabilities of model on unseen trials 
are also assessed on each participant, depicted in Figure 9. The 
reported, ground-truth trust is plotted in red, and the model’s 

predicted trust is plotted in navy. The model can predict fluctuations 
in trust between epochs during unseen trials for each participant, 
as the navy lines generally trend in the same direction as the red, 
ground truth trust values. While the model captures the dynamics 
per subject, it also captures individual differences between subjects. 
For example, Participants three and five are consistently low or high 
trusters, whereas participants such as four and six have a wider range 
of values across the trust scale. To quantify the model’s predictive 
accuracy per-participant, the RMSE for each of the 12 participants 
is listed in Table 4.
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FIGURE 8
Overall descriptive fit of the model. Note that this plot was generated without any MCCV train/test splits. It is used to assess the model’s descriptive 
capabilities on the entire dataset. All subjects are shown by a unique color as identified n the legend, and perfect model performance is represented by 
the unity line.

TABLE 3  Feature categories and down-selection.

Feature category Features created Features retained Percent retained

EEG 125 35 28%

fNIRS 360 157 44%

Eye 37 10 27%

ECG 28 9 32%

Respiration 28 9 32%

EDA 63 26 41%

Operator Background 25 14 56%

Embedded Measures 16 11 69%

Discussion

Model performance

The developed modeling approach demonstrated the ability 
to both describe and predict subject trust. The model achieved a 
descriptive accuracy of 0.83 (given by R2) and a predictive accuracy 
of 0.64 (given by Q2), which is an improvement (Kintz et al., 
2023) or is comparable with (Akash et al., 2018; Guo and 
Yang, 2021; Richardson et al., 2025) other models available in 
the literature (Rodriguez Rodriguez et al., 2023). Note that this 
work achieved this level of accuracy by collecting data from 

six physiological sensors, capturing a range of high and low 
trust implementing robust mathematical modeling techniques 
(e.g., external validation, stability selection, methods to prevent 
overfitting), and fitting the model to dynamic trust reports, which 
advances the field of research and addresses gaps present in 
past models.

A major focus of this effort was assessing model predictive 
performance and generalizability. This is important for translation 
into application because it represents how the model would be 
deployed and used in future operational settings, where the model 
is needed to predict performance on events happening in real 
time. Our modeling approach accurately predicts operator trust 
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FIGURE 9
Visualization of temporal fluctuations in trust. Each subplot is one subject. These plots correspond directly to Figure 7, as they are made with the same 
MCCV test/train split. The data shown here is identical to that of Figure 7B, where the test dataset is used to assess predictive accuracy, only here both 
predicted trust and reported trust are plotted together against time. Epoch number (1-32, with eight epochs per trial) indicates each 45s time segment. 
Here, one trial per session makes up the test dataset. Note that the vertical dashed lines indicate separate sessions, so each of the four sections should 
be interpreted as unique days. While the plot lines connect across these delimiters, the data is not continuous.

TABLE 4  Summary of RMSE per-participant. These values correspond directly with the predictions in Figure 9.

ID 1 2 3 4 5 6 7 8 9 10 11 12

RMSE 0.10 0.087 0.093 0.15 0.10 0.21 0.072 0.14 0.10 0.12 0.10 0.16

reported during left-out trials for each participant, for a range of 
high and low trust reports. The utility of the model is due to 
multiple factors. First, it harnesses a large suite of neurophysiological 
features, psychophysiological features, embedded measures, and 
operator background information. These measures are unobtrusive 
and can be collected in operational environments. Second, the 
model is built based on an operationally relevant HOTL HAT task 
that collects dynamic trust reports and purposely aims to affect 

multiple dimensions of trust. Thus, this research addresses gaps 
identified in reviews by Kohn, et al. and Ajenaghughrure et al. 
(Ajenaghughrure et al., 2020; Kohn et al., 2021). The inclusion of 
a variety of features fit to dynamic trust reports allows for high 
predictive capabilities when the model is assessed on left-out data. 
The RMSE was an average of 0.13, indicating that measures were 
within 13% of the scale (Table 2). With this level of granularity, being 
within 13% of the scale is an accomplishment and demonstrates the 
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model’s strength in being useful in HAT scenarios outside of our 
task. Additionally, the low standard deviation values in Table 2 show 
that these predictive models are consistent across all 10 test train 
splits, indicating that the model is stable and reliable, even though 
the test/train data is split differently each time. 

Data streams

The inclusion of a multitude of physiological sensors during data 
collection yields a novel model that implements a variety of features 
as predictors of trust. For each model fit in the process, features 
from each physiological sensor were retained, and thus provided 
valuable information that enhanced the predictive capabilities of 
the model. In prior work, features derived from ECG, EDA, 
respiration, eye-tracking, EEG, and fNIRS data have each been 
explored, but have never been combined for use in a single model 
as was done in this effort. A review by Ajenaghughrure et al. 
found the maximum number of physiological signals combined 
in any study that assessed trust is three (Ajenaghughrure et al., 
2020), including outside of HAT contexts but to study human-
human trust as well. Eye movements, EDA, and ECG have been 
used together to assess trust between active and passive technology 
users in the context of multi-user systems, customer service, 
healthcare, and workflow (Xu and Montague, 2013). Blood pressure, 
respiration rate, and electrical emotional rating scales were used 
in another study that assessed interpersonal trust in the context 
of gratitude and relationships with strangers (Drążkowski et al., 
2017). Not included in the review by Ajenaghughrure et al. is 
a third study that collected respiration, ECG, and pupillometry 
data to model trust (as well as situation awareness and mental 
workload) in an HAT scenario (Buchner et al., 2025). One additional 
study used four psychophysiological sensors (ECG, respiration, 
EDA, and pupillometry data), also to model trust, workload, and 
situation awareness in a HAT scenario (Richardson et al., 2025) 
These studies did not include neurophysiological data temporal 
resolution compared to the peripheral nervous system sensors. This 
is important since psychophysiological measures are non-specific, 
and so may be confounded by other aspects of the task, such as 
engagement or an action the operator might take each trial. Other 
studies on trust assessment have combined psychophysiological 
and neurophysiological sensors to monitor both the peripheral and 
central nervous system, respectively, however the maximum number 
of sensors used in these studies was two. For example, multiple 
experiments have combined EDA and EEG, electrooculography and 
EEG, or eye-tracking and functional magnetic resonance imaging 
(fMRI) for measuring trust (Boudreau et al., 2009; Marzi et al., 2014; 
Ma et al., 2015; Hu et al., 2016; Akash et al., 2018; de Visser et al., 
2018; Prochazkova et al., 2018; Ajenaghughrure et al., 2020). The 
landscape is ever changing and our own results in prior effort 
have pushed the boundary on total number of sensors, up to four 
(Richardson et al., 2025). Our results in this study are given by a 
combination of six sensors (ECG, EDA, respiration, eye-tracking, 
fNIRS, and EEG), and suggest that 1) combining both peripheral 
and central nervous system measurements, and 2) implementing 
multiple types of both neurophysiological and psychophysiological 
sensors, offers a more comprehensive understanding of trust as 
related to physiological monitoring. Further, we accounted for the 

non-specific nature of psychophysiological measures in this research 
by ensuring the trust slider movement was not included in the data 
analysis and accounting for any time-based effects (e.g., relaxation, 
novelty, learning, or boredom) by including trial number as a feature 
available to the model. We also fit our models to the gold-standard 
Jian Trust in Automation Scale which yielded similar outcomes as 
the trust sliders, helping to ensure high ecological validity, Thus, 
we believe this work better fulfills the suggestion outlined by Kohn, 
et al., which highlighted the need for a better model of trust based 
on the measurable components of trust (Kohn et al., 2021).

The use of physiological data to model trust in HOTL 
scenarios is under studied. However, it has been researched 
in many other areas of HAT, including assisted spacecraft 
docking scenarios and autonomous road vehicle environments 
(Hergeth et al., 2016; Buchner et al., 2025). Our results add to the 
field by applying methods comparable to previous research to a 
new HOTL remote supervision scenario, as it was not previously 
clear that modeling trust in this way could be generalized to all 
forms of HAT. Our results suggest that, in addition to its previous 
applications, physiological data is also useful to model and predict 
trust in a HOTL environmental context, addressing this gap.

Personality features included in the model were: AICP, PAS, 
PT, UTAUT relative advantage, UTAUT perceived ease of use, 
and UTAUT complexity scores, calculated from pre-experimental 
surveys, as described in Section 2.2. The AICP survey has been used 
historically to measure dispositional trust in autonomous systems 
(Merritt et al., 2019) and its inclusion as a predictor in our model 
demonstrates its validity. Similarly, the remaining surveys were 
captured as they were shown by Chung and Yang (Chung and 
Yang, 2024) to be significantly correlated with trust dynamics in 
how people will report trust during experiments (i.e., as Bayesian 
decision-makers, disbelievers, and oscillators). The inclusion of 
these surveys in our model corroborates their findings and indicates 
that dispositional attitudes play a role in a person’s feelings towards 
automation during the HAT task. Conversely to their results, though, 
the scores from the CVS and the Big Five Factors of Personality were 
not selected as predictors in the model. This may be because their 
study retrospectively identified important surveys, while the effort 
collected them prospectively, where the information they provided 
did not yield predictive utility beyond other features included in 
our models. Operator background measures related to demographic 
information included age and race as predictors in the overall model. 
No other demographic or cultural information was retained.

While operator background information including 
demographics and personality scores are indicative of a person’s 
history or values and thus provide insight into dispositional trust, 
these features may also aid in predicting how dynamic someone 
will be in trusting an autonomous system during a HAT task. In 
data collection, it was observed that some participants reported 
their trust as highly fluctuating between 0 and one throughout 
trials (e.g., participant four in Figure 9), whereas others reported 
their trust as consistently and steadily high or low (e.g., participant 
five in Figure 9). The findings from Chung and Yang show 
how a person’s personality may affect their moment-to-moment 
interactions with autonomous systems and how dynamic trust 
may be impacted by statically measured characteristics (Chung and 
Yang, 2024). This nuance further explains the operator background 
information in the context of our model. These features were used to 
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capture inter-individual differences in both dispositional trust and 
trust dynamics.

Embedded measures were also specifically created to be dynamic 
indicators of trust. Features taken from actions the participants 
took are directly indicative of trust, containing the following 
features as trust predictors: time spent on the recommendation 
review screen, percent of satellites reviewed, percent of satellites 
ignored, percent of agreement with the autonomous system, percent 
of passive agreement with the autonomous system, average time 
between clicking the review button to agreeing/disagreeing with 
the autonomous system, and the percent of satellites re-reviewed. 
Each of these are per-epoch measures, calculated every 45 s to 
inform dynamic changes in trust. The participant agreement and 
time-to-classify measures are synonymous to embedded measures 
historically used in assessing trust and workload during road 
vehicle simulations (e.g., time to take over, braking behavior) 
(Petersen et al., 2019). Additionally, our calculation of embedded 
measures improves upon previous models (Hergeth et al., 2016; 
Kunze et al., 2019; Petersen et al., 2019; Walker et al., 2019), as they 
are taken on the same time scale as the dynamic trust reports.

Information relating to the participant’s secondary actions 
during the task involves their interaction with the scan guidance 
map. When performing the map task, participants opted to 
divert attention away from monitoring the autonomous system 
and towards a different objective. These measures capture trust 
by describing the participant’s strategy in division of attentional 
resources (e.g., if an operator trusts their autonomous system 
teammate more, they will spend more time in a passive role, 
completing other tasks). This type of feature as a predictor 
of trust cannot be decoupled from workload, as described in 
previous research (Yamani et al., 2020). Thus, while proven relevant 
to trust predictions via the feature down-selection process, it 
is important to note that measures associated with allocating 
attentional resources are not absolute indicators. 

Trust dynamics and dimensions

An additional key advantage of this research is the purposeful 
alteration of multiple dimensions of trust during data collection. 
Aspects of the task were designed to influence affective and cognitive 
trust dynamically through the explainability and reliability of the 
simulated autonomous system, respectively. Even though the trust 
sliders during the HAT task asked participants to rate their overall 
trust in the autonomous system and collected ratings as a single 
construct, the multi-dimensional components of the task aimed to 
yield a comprehensive measure of overall trust. While we did not 
explicitly measure affective and cognitive trust, our results indicate 
that our model is sensitive to multiple facets by which trust may be 
altered. Past studies have considered multidimensional trust in other 
contexts, such as between supervisors and subordinates, within 
teams, and between consumers and online retailers (Erdem and 
Ozen, 2003; Yang et al., 2009; Punyatoya, 2019). Existing research 
into affective and cognitive trust demonstrates the value in separately 
observing trust constructs, and our findings imply that trust in 
autonomous systems should be studied in a similar manner. Other 
HAT-specific research recognizes the multidimensional nature of 
trust, but, during data collection, only aim to alter cognitive trust 

(Shamim et al., 2023; Buchner et al., 2025). The results of our 
research attempt to account for emotional states (synonymous with 
affective trust) in addition to rational thoughts (synonymous with 
cognitive trust).

Another primary contribution of this research is the model’s 
ability to predict rapid changes in trust. This adds to the body 
of work aiming to fill the gap outlined by previous research, 
which states that trust-oriented experiments should sample trust 
more frequently (Kohn et al., 2021; Tenhundfeld et al., 2022; 
Rodriguez Rodriguez et al., 2023). Our results indicate that 
physiological data and embedded measures mapped to 45-s trust 
ratings provide a high temporal resolution in trust predictions. 
Though the model itself is static, it can infer rapid trust dynamics 
when provided with previously unseen data. This adds value to the 
field of research because it has applicability to possible real-time 
applications of trust measurement or adaptive autonomous systems, 
as highlighted in previous research (Feigh et al., 2012; Schwarz and 
Fuchs, 2018; Kintz et al., 2023). For operational settings real-time 
prediction is required for the models to yield improved performance. 
Dynamic trust modeling allows for the effects of discrete interactions 
with the autonomous system to be captured, rather than multiple 
minute-long, generalized observations, as has been done in previous 
studies (Hergeth et al., 2016; Kunze et al., 2019; Petersen et al., 2019; 
Walker et al., 2019). One limitation of this model, however, is that 
participants with extreme shifts in trust (as seen in participants four 
and six in Figure 9) between epochs are not modeled as well as 
those with more steady trust trends. This is likely due to the model 
being a cohort model, rather than twelve personalized models. Thus, 
there is a smoothing effect because the highly variable trust reports 
from some participants are combined with the highly steady trust 
reports from others. The advantages of cohort models, however, are 
that they are more generalizable to new populations or tasks, they 
are simpler to implement, and they help identify trends across a 
wide dataset. Previous studies that have used personalized models 
were limited in their ability to quickly generalize their models to a 
large group of people, even though they achieved high personalized 
predictive power (Guo and Yang, 2021). Additionally, any model 
using autoregression in place of OLS may be worse at capturing 
highly variable trust. Another advantage of the model in predicting 
trust dynamics is the wide range of trust values that are predicted. 
The HAT task sufficiently altered trust to capture both high and low 
ranges of trust reports, forming a rich dataset for use in modeling. 
Thus, we see that the trust dynamics of people who are consistently 
low or high trusters, such as participants three and five in Figure 9, 
are still captured, rather than skewed towards the middle. 

Model validity

In addition to accurate trust estimations and predictions, one 
of the key advantages of this model is the robust approach in 
feature down-selection using LASSO. Concerns regarding model 
stability and repeatability arise when building models with large 
sets of potential predictors. To mitigate instability and flaws in the 
model, we implemented relaxed LASSO and stability selection in 
which LASSO was run once on the original potential predictor set, 
then again on the new down-selected feature set in an effort to 
remove falsely selected variables (Meinshausen, 2007; Meinshausen 
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and Bühlmann, 2010). This method has been implemented before 
internally (Buchner, 2022; Richardson et al., 2025) but is not 
typical in other models in the literature. Furthermore, an emphasis 
was placed on avoiding model overfitting when selecting the 
final model from the options generated during cross validation 
in the OLS step. The constraint of eliminating models where 
there were more predictors than 1/5 the number of observations 
helped to reduce model complexity, as a higher predictor-to-
observation ratio could yield an overfit model (Austin and 
Steyerberg, 2015; Richardson et al., 2025). The additional constraint 
of only retaining models with a Q2 within a predetermined value 
(0.2) of the adjusted R2 further avoids overfitting, as large differences 
in these values indicate misaligned model fit and predictive 
capabilities. While the focus of this effort was not to determine 
the optimal features to make these predictions, across the 10 cross 
validation splits the model performance remained consistent, even 
when the same features were not always selected in the model 
fitting process.

Another novel aspect of this research is the validation approach 
used during model evaluation. Many existing models use an internal 
validation method where feature down-selection is conducted on 
the entire dataset. Our model was built with an external validation 
method in which feature down-selection was conducted on only 
a subset of the dataset and the model’s predictive capabilities are 
evaluated on the left-out data, making the model more robust 
and applicable to real-world scenarios. Internal validation methods 
involve assessing a model’s predictive performance using data from 
the same dataset that was used for training the model. This poses 
multiple risks to model validity, including potential for overfitting, 
limited generalizability to new datasets, and optimistic bias in the 
performance metrics (Collins et al., 2024). Conversely, external 
validation methods aim to address these limitations by using 
independent datasets in model creation and model evaluation.

To further strengthen the validity of the model, the single-item 
analog scales to which the model was fit were validated against 
the 12-item Jian Trust in Autonomous Systems Survey, which has 
been used historically in a large body of trust assessment research 
(Jian et al., 2000; Leary et al., 2024). Single-item sliders were 
implemented in the experiment to quickly and frequently capture 
subjective trust ratings without taking the participant’s attention 
away from the task at hand and were thus deemed minimally 
obtrusive. To ensure these sliders were appropriately capturing 
participants’ trust ratings, the Jian survey was administered at 
the end of each trial and later used to validate the single-item 
scales. Our validation achieved an Adjusted R2 = 0.72 between 
the trust sliders and the Trust in Automation survey (Leary et al., 
2024). This provided us with confidence that the simplified surveys 
were functioning as intended, and that the model was fit to valid 
measurements. 

Implications, limitations, and future work

If operator trust can be predicted accurately, including 
dynamically changing trust, in a non-disruptive manner, the 
relationships between humans and their autonomous system 
teammates can be better understood. Our model may enable the 
creation of systems that help to better calibrate trust, identify 

distrust or mistrust, and improve HAT performance. This could 
be done by having operators wear sensors during their workday 
such that the sensor system’s measures can be fed directly into the 
model, yielding a real-time, dynamic estimate of trust. The model 
also provides trust predictions for a HOTL scenario. Thus, it may 
be applied in environments where there exists spatial or temporal 
separation between the operator and the autonomous system, the 
operator has limited additional information, and the operator is in 
a supervisory position.

There are several limitations to this research. Our external 
validation models are not fully blind to every participant, as 
1/6th of the cohort data was retained by removing one entire 
trial from each participant and each session before conducting 
feature down-selection and fitting the model. When the test and 
training data is split to remove all data for a given individual, the 
model’s predictive capabilities worsen due to high inter-individual 
differences among participants. Thus, the model is limited in its 
ability to predict completely unseen participants. However, this does 
not undermine the utility of the model in predicting rapid changes 
in trust. It becomes powerful when provided prior information such 
as operator background information and previous trials worth of 
physiological data. Future work could develop methods to achieve 
high performance when predicting unseen participants to make the 
model more easily generalizable without requiring additional data 
collection before use.

Our model building process also has a large feature space, 
many of which may be nearly co-linear. When developing the 
model-building process, LASSO was chosen as the predictor down-
selection tool due to its strength in managing large predictor 
sets, performance in both variable selection and regularization, 
and ability to resolve multicollinearity (Buchner, 2022; An et al., 
2024; Herawati, Nisa and Setiawan, no date). Relaxed LASSO, in 
particular, was used to address LASSO’s limitation of potential 
bias in parameter estimation when dealing with highly correlated 
variables (Meinshausen, 2007). Thus, all features and feature 
versions were provided to LASSO as potential predictors, and no 
additional efforts were taken to address the collinearity confound. 
However, the relaxed LASSO process was imperfect in removing 
all collinear predictors. This may mean that the model contains 
unstable coefficient estimates or unreliable predictions.

Future work should address the concern of sensor burden. In 
this work, we chose to include six psychophysiological sensors to 
provide a large suite of data streams and potential trust predictors, 
which is a strength of the model itself. It is, though, unrealistic that 
all these sensors may be worn at once in a real-world operational 
environment. These sensors are non-disruptive in that they do 
not directly detract attention from an operator’s task objectives, 
but they can often be obtrusive due to physical discomfort while 
wearing them for long periods of time (Buchner et al., 2025). While 
perceived obtrusiveness or discomfort varies based on the discipline, 
operational environment, and the operator’s personal preferences, 
any consistent and reliable use of physiological sensors requires 
operator acceptance (Eggemeier et al., 1991; Boggs et al., 2010). An 
ideal model of trust would achieve similar predictive and descriptive 
performance by utilizing fewer sensors. Future work may involve 
ablation studies to determine the minimum number of sensors 
needed to be worn to accomplish the same predictive strength. 
These efforts align with those of Buchner et al., who researched the 
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utility of psychophysiological sensors in modeling trust, situation 
awareness, and mental workload. Our ablation studies would look 
at both psychophysiological and neurophysiological categories.

Our ongoing work is capturing both affective and cognitive 
dimensions of trust, through both independent sliders and 
surveys. We hypothesize that future models may be improved 
by estimating and predicting affective and cognitive trust as
separate entities.

Finally, future work involves the use of trust models on live 
data streams in real time. The current model fits coefficients and 
computes trust values offline but still informs the capabilities of 
predicting trust unobtrusively. Real-time models may be able to 
utilize one to two bio-sensors, rather than all six, and still achieve 
similar results.

Conclusion

This research contributes to our fundamental understanding 
of trust dynamics, as it shows how human operators may engage 
with an autonomous system in a rapid processing scenario. The 
combination of physiological signals with embedded measures and 
operator background can better non-disruptively predict trust. The 
operationally relevant and complex HOTL HAT task captured 
inherent trust dynamics. This is reflected in the model, which 
has high descriptive fit and predictive accuracy. As systems reach 
higher levels of autonomy, HOTL scenarios will become increasingly 
prevalent. Modeling supervisory control where the operator has 
limited context, limited information, and limited collaboration with 
the autonomous system has been previously under-studied. Our 
model bridges those gaps. It also models trust as dynamical in nature 
and captured multiple facets as components of overall trust. These 
qualities improve upon previous experiments and have the potential 
to increase transferability to other tasks.
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