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Mobile robots have emerged as a reliable solution for dynamic navigation
in real-world applications. Effective deployment in high-density crowds and
emergency scenarios requires not only accurate path planning but also
rapid adaptation to changing environments. However, autonomous navigation
in such environments remains a significant challenge, particularly in time-
sensitive applications such as emergency response. Existing path planning and
reinforcement learning approaches often lack adaptability to uncertainties and
time-varying obstacles, thereby making them less suitable for unstructured real-
world scenarios. To address these limitations, a Deep Reinforcement Learning
(DRL) framework for dynamic crowd navigation using three algorithms, Deep
Deterministic Policy Gradient (DDPG), Twin Delayed Deep Deterministic Policy
Gradient (TD3), and Deep Q-Network (DQN), is proposed. A context-aware
state representation that combines Light Detection and Ranging (LiDAR)-
based obstacle perception, goal orientation, and robot kinematics to enhance
situational awareness is developed. The proposed framework is implemented
in a ROS2 Gazebo simulation environment using the TurtleBot3 platform and
tested in challenging scenarios to identify the most effective algorithm. Extensive
simulation analysis demonstrates that TD3 outperforms the other approaches
in terms of success rate, path efficiency, and collision avoidance. This
study contributes a reproducible, constraint-aware DRL navigation architecture
suitable for real-time, emergency-oriented mobile robot applications.
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deep reinforcement learning, mobile robot, deep Q-network, deep deterministic policy
gradient, twin delayed DeepDeterministic policy gradient, crowd navigation

01 frontiersin.org


https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1612392
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1612392&domain=pdf&date_stamp=2025-10-08
mailto:kalaichelvi@dubai.bits-pilani.ac.in
mailto:kalaichelvi@dubai.bits-pilani.ac.in
https://doi.org/10.3389/frobt.2025.1612392
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1612392/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1612392/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1612392/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1612392/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Alexander et al.

1 Introduction

Mobile robots navigating in dynamic environments often face
challenges such as obstacle prediction and detection, environmental
awareness, and adaptive path planning. Real-time adaptation
of mobile robots in complex scenarios forms the basis of
almost every research and industrial application. The cumulative
integration of mobile robots in urban environments, especially
for applications in crowd management and emergency response,
has always stood to be a significant challenge. In such high-
risk environments, the robust-decision making depending on
the uncertain conditions and the ability of the mobile robot to
manoeuvre quickly and safely is always paramount. This makes
robotics a very vital tool in augmenting human efforts to increase
the overall safety (Hewawasam et al., 2022). The rapidly increasing
demand for autonomous robots in disaster management, with the
critical research focus on advanced navigation techniques suiting
various uncertain scenarios, is evident. Sensor integration enables
a mobile robot to perceive its exposed surroundings with better
accuracy, enabling it to detect hazards, avoid obstacles, and make
decisions in real time.

Over the last decades, the integration and deployment of mobile
robots in emergency response and dynamic crowd navigation have
gained significant attention. This is mainly due to the need for rapid
and autonomous decision-making in complex urban environments.
Traditional navigation and path planning methods often struggle to
handle these uncertain environments, particularly in the mentioned
complex situations and crowded public spaces like in a mall or public
gathering. For a mobile robot to improve response times and ensure
safe navigation, it must be able to adapt to uncertain environments
involving human movement patterns, shifting impediments, and
environmental risks.

Traditional navigation systems that currently exist struggle
to adapt to these complex environments. This is mainly due
to certain factors such as unexpected obstacles, crowd density,
and human unpredictability, as these pose significant risks to
both robots and individuals in the vicinity (Zhang et al., 2023).
Dynamic path planning algorithms, in contrast to static path
planning, adjust routes in response to evolving environmental
conditions. They will continuously update the robot’s trajectory
based on real-time sensor data. This adaptability is very crucial in
dynamic scenarios wherein there is a high chance of an obstacle
appearing unexpectedly. In recent years, DRL has emerged as a
promising technique for developing adaptive navigation strategies
that allow robots to learn optimal behaviours through interaction
with their environment (Li P. et al., 2024). DRL algorithms enable
robots to dynamically adjust their path planning in dynamic
environments, learning to balance competing objectives such
as avoiding collisions, minimizing travel time, and ensuring
human safety (Ou et al., 2024).

This paper explores the application of DRL in the context
of adaptive emergency response and dynamic crowd navigation.
Mobile robots learn to navigate these environments, making
decisions that ensure safe and efficient movement using DRL, even
in rapidly changing scenarios. After doing an intensive literature
survey on existing dynamic path planning algorithms, this study
aims to identify key advancements and challenges in modern
navigation algorithms, mainly DRL techniques. The main objective
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of this research is to develop an integrated approach that will
enable mobile robots to maneuver in a dynamic environment safely
and efficiently using the best-performing algorithm. To achieve
this, a framework that enables mobile robots to quickly adapt
to such situations where crowd density and movement patterns
shift unexpectedly, requiring instant decision-making ability using
various DRL path planning algorithms is developed. Each algorithm
is trained and tested on the same simulation platform, and results
are extracted. This research will contribute to the development of
an adaptable robotic system for disaster response, reducing the risk
to human life and thereby increasing the effectiveness of rescue
operations.

While recent works have explored DRL-based navigation
strategies, the focus has mostly been on structured or static
environments and tends to omit factors critical to real-time
navigation in dense dynamic settings. For instance, Bao et al. (2024),
proposed a digital twin-assisted DRL planner for multiple AGV's
in structured industrial setups, while Liu (2024a) benchmarked
DRL algorithms for generic continuous control with a focus on
navigation in unpredictable environments. Yu et al. (2023) utilized
a vision-based DRL for obstacle avoidance but did not incorporate
emergency responsiveness.

In contrast, our work addresses the above limitations by
developing a comprehensive DRL framework specially tailored to
emergency and crowd-aware navigation. The major contributions of
this work are as follows:

e A context-aware DRL-based navigation framework is
developed that can enable a real-time mobile robot to adapt to
emergency and high-density crowd scenarios.

A compact and dynamic state representation incorporating
LiDAR scan data, robot kinematics, and environmental
awareness is designed in a simulation environment.
Comparison and benchmark evaluation of three DRL
algorithms using consistent metrics on the same simulation
environment.

A detailed performance analysis based on collision rate,
success rate, path efficiency, and computational complexity is
provided.

A robust reward-shaping mechanism suited for both
emergency and crowded scenarios, and its impact on policy
learning is analyzed.

A unique and scalable simulation setup based on ROS2,
Gazebo, and real-world kinematic constraints is implemented,
making the framework easily extensible to hybrid DRL
approaches.

This paper is divided into the following sections. Section 2 will
explain the existing literature surveys of path planning algorithms,
also diving deeply into DRL techniques and also highlights the
gaps in existing literature. Section 3 explains the framework of path
planning algorithms and related DRL algorithms. The simulation
results and discussions are elaborated in Section 4. Finally,
the experimental results are tabulated, and the best algorithm
for adaptive response and crowd management implementation
is identified. The later section explains how efficiently this
implementation can be done in real time by incorporating the
analysis of this study.
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2 Related works
2.1 Dynamic path planning

Path planning remains the core challenge in robotics, mainly
while navigating in diverse environments, which include both
static and dynamic environments. In (Liu and Zhang, 2022), a
novel methodology is presented based on dynamic programming
to generate optimal paths for mobile robots employing Model
Predictive Control (MPC) for path tracking. It is shown that
the proposed approach addresses environmental complexities and
the robot navigates through different terrains. Compared to
Artificial Potential Fields (APF) and PSO combined techniques, this
highlights a notable improvement in path smoothness and accuracy
with low computational demands. However, while simulations are
promising, the method’s performance in an environment with high
sensory noise is to be studied in detail.

Reinforcement learning techniques have become increasingly
popular due to their adaptability in dynamic environments.
Xiao et al. (2024) have proposed a Q-learning-based trajectory
tracking approach. It integrates real-time obstacle avoidance
capabilities and has optimized efficiency in the decision-making
process. While simulation results validate the method’s effectiveness,
real world deployment remains a challenge, especially in complex
environments. To address the main challenges in achieving high
success rates and efficient training (Ou et al., 2024), DRL approaches.
By leveraging pre-trained models from static environments, the
proposed algorithm adapts to quick dynamic changes. However,
adaptation to real-world applications is challenging when exposed
to complex environments and sensor noise, which necessitates
future work on optimizing training speeds, sample efficiency, and
adaptation capabilities. Additionally, combining DRL with classical
path planning can yield better global planning and local obstacle
avoidance.

Recent research by Zhao et al. (2023) has leveraged a dynamic
path planning algorithm based on Gaussian probability models. This
approach will combine global reference path optimization using
quadratic programming with local planning. Simulation results
in ROS/Rviz show significant efficiency improvements compared
to traditional RRT algorithms. Additionally, field tests confirmed
the algorithm’s practicality in autonomous and effective obstacle
avoidance. Traditional A x algorithms often struggle with difficulties
in handling unknown obstacles. ASL-DWA is used in (Liu and
Zhang, 2022), which enhances the A algorithm by incorporating a
heuristic function that can combine Euclidean distance with point-
to-line distance, thereby decreasing the number of search nodes.
Experimental comparisons in three distinct indoor environments
highlight its better significance over traditional methods.

The traditional Harmony Search (HS) algorithm has proved its
effectiveness in many optimization problems; however, it requires
enhancements to effectively handle the dynamic world. Quan et al.
(2021) introduced an improved self-adaptive HS algorithm
combined with the Morphin algorithm for path planning. Relative
simulations demonstrate better convergence and accuracy over
Particle Swarm Optimization and Whale Optimization Algorithm.
Future research can include other hybrid strategies within the HS
framework. The Dynamic Window Approach (DWA) is another
method used for path planning; however, a primary limitation is

Frontiers in Robotics and Al

03

10.3389/frobt.2025.1612392

that it is dependent on the accurate tuning of the objective function’s
weight parameter.

Abubakr et al. (2022) proposed an Adaptive Dynamic Window
Approach (ADWA), which employs a fuzzy logic controller to
dynamically adjust the weight parameters based on real-time data.
The comparative analysis demonstrates superior performance and
shows improved path length. However, further refining of weight
and exposure to diverse environments needs to be included to
understand the efficiency of the algorithm in complex scenarios.
The recent advancements focus on integrating machine learning
techniques such as reinforcement learning (Zhang et al., 2023) and
deep learning techniques. Various strategies have been explored to
improve efficiency and adaptability in unknown environments in the
field of multi-swarm robotic systems. It is seen that initial research
mainly relied on either static or reactive approaches, where robots
follow a predefined path. One major remarkable advancement
is the use of polynomial fitting for predictions of trajectories,
as seen in (Song et al.,, 2024), where algorithms dynamically update
the positions of targets based on sampled trajectory points. It is also
seen that when combined with reinforcement learning, the system
performs better, enhancing path planning and target prediction.
DRL has further enhanced the system by allowing robots to learn
from their immediate environment and thereby improving their
performance.

2.2 Deep reinforcement learning (DRL)

The article (Kargin and Kolota, 2023) applied the DDPG
algorithm to address the complex control challenges of continuum
robots that belong to a class of robots that are highly flexible
and are characterized by a continuous structure, allowing high
dexterity in constrained or complex environments. However, the
control of these robots modulates unique challenges. This is
mainly due to the continuous nature of their movements and
highly nonlinear kinematics, which contrast with the traditional
robotic systems with discrete joints. In (Lee et al., 2024), the
authors explored the integration of Digital Twin technology with
DDPG to enhance communication efficiency in UAV networks. It
demonstrated that the approach maximizes sum-rate performance
effectively, highlighting the potential of the algorithm’s application
in complex communication scenarios. In (Liu et al., 2024), Liu
etal. introduced a learning method, applying DDPG to navigate
dynamic environments. The study illustrates TD3’s proficiency in
autonomous control by addressing issues such as dynamic path
adjustment and obstacle avoidance. DDPG’s capability in dynamic
robotic control is shown in the study, and the challenges, such as
obstacle avoidance and dynamic path navigation, are addressed.

The authors of (Jeng and Chiang, 2023) compare TD3 and
DDPG in tasks such as autonomous navigation. The study
demonstrates that employing a survival penalty function to address
limited reward problems reveals TD3’s superiority over DDPG in
dynamic environments regarding stability and convergence rate. It
emphasizes the extent to which DQN, DDPG, and TD3 algorithms
enhance robotic capabilities, particularly in the context of dynamic
path planning, when considered in their entirety. In (Antonyshyn
and Givigi, 2024), Antonyshyn and Givigi introduced a system that
employs DQN in scenarios with both sparse and dense rewards.
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The research demonstrates how DQN enhances predictive control in
robotic systems by adeptly achieving a balance between exploration
and exploitation. A new DDPG algorithm with an improved
experience replay mechanism and mixed rewards is proposed in
(Dong et al., 2023). This approach improves robotic limb control
by efficiently managing sluggish convergence and local optima. The
authors investigated the utilization of TD3 in the training of Spiking
Neural Networks (SNNs) for robotic control (Akl et al., 2023). The
study has demonstrated that the combination of TD3 and SNN
results in scalable and robust learning, which presents intriguing
opportunities for neuromorphic engineering in robotics.

Itis understood that recent studies continue to emphasize hybrid
and adaptive approaches to improve performance in unstructured
environments. As mentioned before (Bao et al., 2024), highlights
the potential of simulation-to-reality alignment through virtual
environments. While effective in industrial layouts, the approach
has limited scalability to dense crowds. As referred initially,
Yu et al. (2023) incorporated vision-based perception with DRL
for obstacle avoidance but showed a lack of responsiveness in
unpredictable emergency settings. In a similar context, Wang et al.
(2024) introduced a memory-augmented actor-critic architecture to
improve long-term planning in robots; however, high computational
complexity hinders real-time deployment. A novel safe exploration
technique was introduced by Zhang et al. (2025), applying
curriculum learning in DRL, which gradually exposes agents to
complex environments, improving stability but requiring extensive
pre-training phases.

In terms of algorithm benchmarking, the authors (Liu, 2024b)
conducted a diligent comparison of DDPG, TD3, Soft Actor Critic
(SAC), and Proximal Policy Optimization (PPO) in continuous
control domains but lacked crowd-focused evaluation. Antonyshyn
and Givigi (Antonyshyn and Givigi, 2024) analyzed DQN under
varying reward sparsity conditions and demonstrated its suitability
for sparse emergency signals. Meanwhile, a study by Kim etal. (2025)
applied multi-agent TD3 in cooperative rescue scenarios, achieving
high coordination success but depending heavily on predefined
communication protocols. These works indicate a growing interest
in robustness, safety, and contextual decision-making; however,
very few have explicitly addressed DRL-driven emergency response
in dynamic human environments. The present study fills this
gap by not only comparing TD3, DDPG, and DQN but also its
application in emergency crowd navigation. It also emphasize on
contextual perception, reward shaping, and safety constraints within
a simulation framework thereby making this study unique and
building a framework easily extensible to hybrid DRL approaches.

Mobile robot navigation has demonstrated its strength in
various kinds of surroundings by employing a wide range of
DRL algorithms. Among these, it is seen that DQN, DDPG, and
TD3 are emerging as prominent approaches, mainly due to their
adaptability. From the above literature works it’s evident that DQN
is effective in discrete actions and constrained spaces, and the other
two algorithms show superior performance in real-time navigation
tasks. Despite the evolving body of research around these three
algorithms, there remains a gap of comparative evaluations focusing
on emergency response and dynamic crowd navigation, where
the performance benchmarks of adaptability, responsiveness, and
collision avoidance are critical. As such, this research will aim
to conduct a focused study on the three state-of-the art DRL
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algorithms, evaluating their performance in unpredictable and
highly dynamic environments. By analyzing their decision-making
efficiency, trajectory smoothness, and real-time adaptability, we will
be able to determine the most suitable algorithm for mobile robot
application in emergency and crowd-dense scenarios.

3 Static and dynamic path planning

Path planning for mobile robots has evolved significantly
over time, from rigid, preset routes to highly adaptable and
dynamic navigation methods. Robots initially followed static routes,
which were preset trajectories or fixed waypoints, to function in
controlled environments like warehouses. The shortest path through
a mapped environment was the primary objective of traditional
techniques that used grid-based or graph-based algorithms, such
as the A= and Dijkstra algorithms. Static path planning decreased
overall operational efficiency in dynamic environments because
it was inadequate to handle unforeseen obstacles and changes in
the real-time environment, even though it was useful in simple,
controlled situations. These static path-planning methods work best
in environments that were actually controlled, predictable, and had
obstacles and operating conditions that were mostly constant.

Using a pre-existing map or environment model, static path
planning methods predict a robot’s future route. This approach
is commonly seen in warehouse automation, where robots
are programmed to follow floor markings, magnetic strips, or
predefined coordinates. Algorithms such as Dijkstra’s and A are
frequently used to calculate these paths and have thus gained
widespread popularity. Due to its predictability, repeatability, and
ease of use, static path planning is well-suited for structured,
unchanging environments. However, it struggles with unforeseen
obstacles or human interference. Delays and poor adaptability
typically result from the need for manual intervention, recalibration,
or environmental changes.

Contrary to the above, a robot’s dynamic path planning
enables real-time navigation and travel route modification based on
environmental changes. It incorporates sensor fusion techniques,
machine learning, and DRL to help robots to recognize and
respond to a shift in their surroundings. Dynamic algorithms
such as Rapidly-exploring Random Tree (RRT) and Dynamic
Window Approach (DWA) allow a robot to independently identify
obstacles and human activity and adjust its path accordingly.
In environments with frequent changes mainly due to human
presence, shifting inventory, or other moving automation, dynamic
path planning is essential. This ability enhances efficiency, reduces
the risk of collisions, and builds resilience within the system.
While static planning is beneficial, it is limited to simplistic and
constant environments where replication is vital. However, dynamic
planning is best suited for intricate and disorderly environments
without certainty of factors and conditions. The responsiveness
and efficiency of dynamic path planning are superior to those of
static systems in terms of both of these characteristics. In order
to accomplish the goal, it is necessary to combine sensor data in
real time, to make intelligent decisions, and to use learning models
that are flexible. As warehouse and industrial environments become
more complex, the demand for dynamic path planning continues
to grow. The integration of AI and robotics not only simplifies
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FIGURE 1

Framework of the dynamic path planning architecture based on DRL algorithm.

human-robot collaboration but also fosters greater autonomy
(Li Keqin et al., 2024; Bao et al., 2024; Chen et al., 2022).

3.1 Framework of dynamic path planning
using DRL algorithms

Dynamic path planning in real-world settings calls for robots to
make smart navigation choices in the presence of all impediments,
circumstances, and time-sensitive activities. This system uses DRL
algorithms, allowing mobile robots to acquire adaptive navigation
techniques by interacting with their environment to meet these
difficulties. The system lets agents constantly assess their status,
select the best behaviors, and get feedback in the form of incentives
by use of a Markov Decision Process (MDP) modeling of the
environment. To guarantee that robots can safely and effectively
reach their objective sites in complicated, dynamic situations like
emergency response or crowd navigation, the suggested method
combines sensor data, reward shaping, and decision-making
modules (Chen et al, 2023). Figure 1 is the framework of the
Dynamic Path Planning Architecture. It shows the end-to-end
system integrating state input, DRL agent, and actuator output for
robot navigation.

3.1.1 State space and action space

The mobile robot uses a number of sensory inputs that perceive
the environment. A 360° scan with 180 data points is provided by
the LiDAR per frame, thereby ensuring complete obstacle detection.
Additionally, the mobile robot processes the relative position of the
target, the distance to the nearest obstacles, and its own current
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velocity and angular acceleration, enabling situational awareness.
The constructed context-aware state vector integrates both spatial
and temporal perception.

Depending on the type of reinforcement learning, action
space varies (Xue et al, 2024). The 360-degree LiDAR captures
both static and dynamic obstacles in real time. As moving agents
or obstacles enter or exit the path of the mobile robot, the laser
scan values update the state representation, enabling the agent to
adapt its policy accordingly. This will allow the system to navigate
along dynamically changing environments while perceiving time-
varying obstacles. However, static structure remains consistent in the
state, while moving obstacles alter the state vector across time steps,
reinforcing the temporal aspect of learning. For DDPG and TD3,
the mobile robot commutes within a continuous action space, and
it controls its linear velocity v € [0,0.22] m/s and angular velocity
w € [0,0.22] rad/s, allowing for smooth and precise movement. In
contrast, DQN employs a discrete action space, restricting the robot

» «

to predefined movement commands such as “Move Forward,” “Turn
Left) and “Turn Right,” simplifying decision-making but limiting
flexibility in complex navigation scenarios. This modular state-
action modeling is essential to enable both fine-grained control
for DDPG and TD3 and efficient decision-making in constrained
environments for DQN.

The path planning problem for a mobile robot navigating
dynamic environments can be formulated as a Markov Decision
Process (MDP) described by the tuple ¢S, A, P, R, y). Here S
represents the state space, encoding the robot’s perception and
internal dynamics, and A denotes the action space, comprising
motion commands. P(s' | s,a) is the transition probability function.
R(s,a) is the reward function that guides learning. y € [0,1]
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is the discount factor for future rewards. In our framework,
the state s, €S encapsulates the robots sensory input and
trajectory context (Chen et al., 2023). It is defined as:

s, = [scan, v, w,_y, O4gp. ] (1

where scan, is defined as the laser scan data at time t, v,_, is the
linear velocity of the turtlebot at the previous time step t-1, w,_, is
the angular velocity at time t-1, 64 is the heading angle difference
between the robot’s current orientation and the direction toward the
goal. The distance to the goal is computed as:

2 2
dt = \/('xgoal - xt) + (ygoal _yt) (2)
The heading angle difference is given by:

egoal = arctan 2 (ygoal ~YpXgoal T xt) (3)

These Equations 1-3, define the expected return and update
rules central to value-based and policy gradient methods.

Ouier = 0 0, 4)

goal —
The robot’s orientation t is derived from odometry by converting
quaternion values into Euler angles:

0, = euler from quaternion(q) (5)

The action continuous  control

aeA

commands, defined as:

comprises

a,=[v,w,], where v,€[0,0.22] m/s, w,€[-2,2]rad/s (6)

This continuous control allows more precise maneuvering than
discretized actions, which is critical in cluttered and dynamic
environments such as emergency scenarios or crowded spaces. In
reinforcement learning, the agents objective is to maximize the

expected cumulative discounted reward:

J(m) =E, [Z YR (St’at)] )
=0

Here J(m) is defined as the performance objective of a policy
m, E
. [Y2y'R(spa,)] is the cumulative discounted reward. This is

. is the expected value when the agent follows a policy.

solved using the Bellman Optimality Equation, which defines the
optimal value function Vx(s) and Qx(s,a) the optimal action-value
function as:

V*(s):maax [R(s,a)+y2p(s’ |'s,a) V*(s’)] (8)

Alternatively, the optimal action-value function Qx(s,a)
is given by:

Q*(s,a) =R(s,a) + yE, [n};’axQ*(s’,a')] 9)

Here R(s,a) is the immediate reward for taking action a in
the state s, y which is the discount factor € [0,1). The transition
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probability of reaching the next state s’ wrtto the current state
and action is denoted as P(s' | s,a). Expectation over possible next
states s’ is By and max,,Q*(s',a’) indicates the agent will choose
the best possible action in the future. The above-defined equations
act as the basic theoretical foundation of Q-learning and value
iteration in dynamic programming. Equations 4-9 derive the actor-
critic gradient used in DDPG and TD3 to update their policies with
respect to continuous actions.

Using neural networks, deep reinforcement learning algorithms
like DDPG and TD3 mimic these functions, hence allowing
policy learning in high-dimensional and continuous action
spaces. Our approach guarantees real-time responsiveness
and adaptation to complicated navigation issues by using a
smooth continuous control space and an informative, compact
state representation. In a simulated environment, Bellman-
based optimization enables the agent to acquire optimal long-
term navigation techniques. It is done through trial and
error, whereby transferring them to actual robotic systems

(Lillicrap, 2015; Duan, 2016).

3.1.2 Reward function design

The reward function is designed to encourage efficient and
safe navigation while penalizing undesired behaviors. It consists
of multiple components that guide the learning process by
reinforcing positive actions and discouraging negative ones.
The function (Equation 10) begins by calculating several individual
reward components based on the robot’s orientation, movement
actions, proximity to the goal, and obstacle avoidance. For example,
Tyaw i calculated as the negative absolute value of the goal angle (6),
which means that any deviation from the desired orientation results
in a penalty. This encourages the robot to maintain a trajectory

aligned with the target direction. Similarly, .

vangular penalizes

large angular velocities by subtracting the square of the angular
action, thus discouraging erratic rotational movements that could
destabilize the robot’s path.

Ty = ryaw F Tdistance T Tobstacle T "vlinear rvangular = Toffset T Tterminal
(10)
where:
® Tyaw = — |0goa: Penalizes deviation from the goal direction
o = 24wl _ 1. Encourages goal proximit
distance — 7 g . ges g p y
initial T “goal
® Topstacle = — 20: Penalty when closer than 0.22 m to any obstacle
o Totinear = — ((Vinax = Vaction) - k)*: Penalizes erratic linear speeds
_ 2' . I
® Tyangular = — Wt Discourages large angular velocities

o 7o = 1: Baseline shift
® Tterminal’ +2500 ifgoal is reaChed; -2000 ifCOlll.SiOﬂ occurs

These components will collectively structure the learning signal
to ensure a tradeoff between path efficiency, safety, and goal
attainment, thereby shaping both the value function and the
control policy. The reward values are scaled to balance short-
term responsiveness with long-term goal achievement. A pseudo-
algorithm (Algorithm 1) shows that these elements taken together
guarantee that the robot not only concentrates on promptly attaining
the goal but also on preserving an efficient and secure path. This
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reward function plays a central role in shaping the learned behavior
of the agent by implicitly influencing the Q-function in DQN and the
state value function in DDPG and TD3. The individual components
of reward are carefully designed to balance goal seeking, safety,

and motion smoothness. For instance, ensures continuous

T distance

motivation towards the goal, whereas performs the duty of

obstacle
sharp penalty imposition to ensure collision avoidance. The angular
and linear velocity penalties act as regularization terms to promote
stable control, and 7mina calculates rewards based on goal state
achievement.

This structure ensures that the agent will not only learn to
reach the goal position efficiently but also internalize policies that
are safe and feasible dynamically. Our reward-shaping strategy is
consistent with reinforcement learning theory, where reward design
directly determines the optimal learned policy. This also aligns
with the findings from Tutsoy and Brown (Tutsoy and Brown,
2015) that demonstrate piecewise-linear control objectives can be
embedded into the reward structure to ensure convergence and
desirable control behaviors. Our framework leverages this principle
by ensuring that positive rewards drive goal-seeking, while heavy
obstacle penalties reinforce collision avoidance, resulting in well-
shaped policies capable of dynamic crowd navigation.

3.1.3 Learning model and training constraints

The learning model setup involves training DRL agent in Gazebo
using ROS2 Foxy and PyTorch. Below are the training parameters
and constraints included:

Input: Current state s;, action a,, laser scan
goal position g

: Output: Reward r;

w N =

: Compute heading error:
84001 < angle_diff(robot_heading,g)
4: Compute distance to goal:

dgoa1 — lIrobot_position-gl

2dinitial 1

5: Normalize distance: rgisrance < 7

6: Compute obstacle penalty: robst;:{:fg—mﬁ@ if
min(L)<0.22m else ©

7: Compute yaw alignment penalty: ry,, < =[6g0a1l
8: Compute velocity penalties:

9: Ftinear < ~((Viax = Vaction) k)

. 2
10: Ivangular < —W

11: Set baseline offset: rgffger < 1

12: Compute terminal reward:

13: if goal_reached then

T4:  Tierminal — 12500

15: else if collision then

16:  Iterminal — —2000

17: else

18:  TIterminal < @

19: end if

20: Compute total reward:

It < Iyawt ldistance T Mobstacle t Mvlinear
* Ivangular ~ Moffset T terminal

21: return r,

Algorithm 1. Reward Calculation for Mobile Robot.
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e Training episodes: 8000

e Max episode duration: 50 s

e Time step: 0.01 s

e Maximum linear velocity: 0.22 m/s

e Maximum angular velocity: +2 rad/s

e Minimum safe distance from obstacles: 0.22 m
e Discount factor: y = 0.99

e Batch sizes: 128 for DQN, 1024 for DDPG/TD3

These constraints impose safe exploration while enabling
learning under physical dynamics. Each algorithm is trained with
a prioritized experience replay mechanism and is periodically
evaluated to ensure convergence and robustness and to identify
the most efficient algorithm. These physical and safety constraints
are embedded in the simulation environment, and the DRL agent
learns to operate effectively within them. For example, an instance
exceeding the safe distance threshold triggers penalties in the reward
function, while timeouts prevent inefficient policies. This bounded
learning approach will ensure the agent outperforms in not only
finding the optimal policies but also does so while respecting the
real-world limitations such as speed caps, response deadlines, and
collision avoidance.

Although the training evaluations are conducted in a simulation
environment, the framework considers multiple real-world
constraints, including obstacle proximity, maximum velocity, and
time limits. These constraints reflect physical limitations that prevail
in the actual robotic platforms. Additionally, the robot operates
under nonlinear dynamics, where control inputs such as velocity
and rotation interact with environment perception in a strongly
coupled manner.

In real-world robotic applications, multiple forms of uncertainty
influence navigation safety and performance. Some of these
are as listed:

e Internal uncertainties, mainly due to actuator delays, sensor
inaccuracies, or localization drift;

e External uncertainties, which include unpredictable crowd
movements and various changes in environment;

e Parametric uncertainties such as robot mass, friction,

and inertia;

such human behavior and

e Non-parametric ones as

environmental stochasticity.

While the simulation abstracts away certain disturbances, our
model accounts for uncertainty by integrating randomized obstacle
motion and dynamic goal placement, thereby training the DRL
agent to generalize across variable situations. This is improving the
robustness of the learned policy against unexpected conditions.

3.2 Path planning algorithm

DRL has emerged as a powerful tool, allowing robots to learn
adaptive navigation strategies through experience. DRL-based
methods continuously update their decision-making policies by
interacting with the environment, unlike traditional algorithms.
DRL improves their ability to handle unforeseen obstacles
and changes in crowd behavior through continuous learning.
Figure 2 details basic reinforcement learning architecture. It
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FIGURE 2

Workflow of the basic reinforcement learning architecture.

presents the general RL loop structure, depicting environmental
interaction, reward feedback, and policy learning. The architecture
of reinforcement learning has a few key components, which work
together like a feedback loop, such as the agent, which is the
decision-maker. This is the algorithm that tries to learn the best
actions to take. Environment or world where the agent operates. It
responds to the agent’s actions and provides feedback. State (S) is the
current situation or condition of the environment, and action (A) is
the decision of the agent according to which it acts. The Reward (R)
is defined as the feedback from the environment. Positive rewards
for good actions are basically like a treat, and negative rewards are
penalties. Policy (7) is the strategy the agent follows to decide which
action to take based on the current state. The future rewards the
agent can expect from a state if it follows the policy are predicted by
the value function (V). Q-Function predicts the future rewards for a
state-action pair that defines how good it is to take a specific action
in a specific state (Chen et al., 2023).

Here in the block diagram the agent takes an action (A) based
on the current state (S) using a learned policy (7). The environment
changes based on the action and provides a new state (S) and
a reward (R). The agent updates its value function (V) and Q-
function (Q) based on the reward and new state. The agent refines
its policy (7r) to improve future decision-making. This paper focuses
on three widely used DRL algorithms, such as DDPG, which is
a model-free, off-policy algorithm that enables continuous action
control for smooth trajectory planning. TD3 is an improved version
of DDPG that reduces overestimation bias and enhances learning
stability. DQN can be described as a discrete-action reinforcement
learning approach effective for high-dimensional navigation tasks.
We will work on all three algorithms in a simulation environment
and find out which algorithm maximizes the total reward over time
by finding the best policy (Hamid et al., 2024; Kappagantula and
Mannayee, 2024).

3.2.1 Deep Q-Network (DQN)

DQN is a value-based DRL algorithm designed for discrete
action spaces where the agent selects actions based on predicted Q-
values. DQN approximates the Q-value function Q (s,a) using a deep
neural network. The Q-value represents the expected future reward
of taking action a in state s. It uses the Bellman Equation 11 (Zhang,
2024) to update Q-values as shown below. Here Q(s,a): the current
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Q-value of taking action a in state s, representing the expected total
return; r: the immediate reward received after taking action a in state
s; p: the discount factor, 0 < y < 1, which determines the importance
of future rewards; s': the next state after taking action a from state s;
a':apossible action in the next state s'; max,, Q(s’,a’): the maximum
expected future reward attainable from the next state s’.

Q(s,a)<—r+yme,1xQ(s’,a’) (11)

In (Zhang, 2024) the authors introduced a Deep Q-Learning
framework, which integrates RL with neural networks to enhance
accuracy, stability, and scalability in disease prediction using
Electronic Health Records. This shows a real-time application
demonstrating the applicability of DQN in handling complex
networks. It introduces key improvements over vanilla Q-learning
in experience replay, where it stores past experiences and samples
them randomly to break the correlation between experiences. It also
maintains a separate target network to stabilize training by updating
it slowly. Its application can be best applied in discrete action spaces
such as grid world, Atari games, and so on. Also, its application
lies in environments with a small or moderate number of actions.
However, the major limitation is that it cannot handle continuous
action spaces and struggles with high-dimensional or complex
action spaces. Figure 3 describes the framework of the DQN
algorithm. The various details of the DQN’s internal components
showing Q-network updates and discrete action selection are
demonstrated.

3.2.2 Deep Deterministic Policy Gradient (DDPG)

DDPG is a model-free, oft-policy RL designed for continuous
action spaces and is based on the Deterministic Policy Gradient
(DPG) algorithm and DQN. This algorithm uses two neural
networks mainly known as the actor network and the critic network.
In the actor network, it outputs the best action directly instead of
Q-values. And in the critic network, it estimates the Q-value of the
state-action pair. The below Equation 12 shows the updates using
policy gradients:

Vol = E[V,Q(5a16) | seps) - Voutt ()] (12)

The term Vg.J represents the gradient of the expected return J
with respect to the actor’s parameters 6. The operator E[-] denotes
the expectation, typically computed as an average over sampled
states from the replay buffer. The function Q(s,a | 69) is the critic
network, which estimates the Q-value of taking action a in state
s, parameterized by 82, The expression V,Q(s,a | 69)| a=u(s) i the
gradient of the Q-function with respect to the action, evaluated at
the action outputted by the actor. The function yu(s) represents the
actor network, which outputs a deterministic action given a state s.
Finally, Vg.u(s) is the gradient of the actor’s output with respect to its
parameters 6%.

Figure 4 describes the framework of the DDPG algorithm. The
figure depicts the continuous control learning process with actor-
critic networks and target updates. It learns by minimizing the
mean squared error between the predicted and target Q-values as
shown below Equation 13:

L=(r+yQ (s",4' (s') - Q(s,a))>? (13)
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FIGURE 3
Framework of the DQN algorithm proposed.

The loss function L represents the mean squared error between
the predicted Q-value and the target Q-value. The term r is the
reward received after taking action a in state s. The discount factor
y determines how much future rewards are considered in the target
calculation. The target Q-value is computed using the target critic
network Q'(s',u'(s")), where s’ is the next state and y'(s’) is the
action provided by the target actor network for that next state. The
main critic network estimates the current Q-value as Q(s,a). This
loss is minimized to train the critic to more accurately estimate the
expected return.

It uses experience replay and target networks like DQN and
continuous action output with a deterministic policy. It is best
suited for continuous action spaces like robot control, stock trading,
and tasks that require fine-grained action control. However, the
algorithm is prone to overestimation of Q-values, which leads to
suboptimal policies, and has high sensitivity to hyperparameters.
Recent advancements, such as the ETGL-DDPG algorithm, have
been proposed to address these challenges by introducing enhanced
exploration strategies and improved experience replay mechanisms
(Futuhi, 2024).

3.2.3 Twin Delayed Deep Deterministic Policy
Gradient (TD3)

An improved DDPG is TD3, which works on addressing the
key weaknesses of DDPG by reducing Q-value overestimation and
increasing training stability. It is built on DDPG but introduces
three key improvements to improve its efficiency. It is clipped
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Simulation Environment

TurtleBot 3 [*—

Double Q-Learning and uses two critic networks and takes the
minimum Q-value to reduce overestimation as shown below
Equation 14:

Q(S>a) = min (Q] (S>a)> Qz (S)a)) (14)

The above conservative estimate helps improve stability and
robustness during training. Equations 11-14 benchmark the
efficiency and safety of learned navigation policies. It also updates
the actor networkless frequently than the critic to avoid destabilizing
learning. Target smoothing is also done automatically by adding
small noise to the target action to make the value function smoother
and reduce overfitting. Due to its best accuracy, it is used for
continuous action spaces and tasks requiring high precision and
stability, such as robotic arm control. However, due to dual critic
networks, it is computationally more expensive than DDPG and
has slower training due to delayed updates (Fujita and Maeda,
2018; Husam, 2024). Figure 5 describes the framework of the TD3
algorithm. It illustrates TD3’s dual critic structure, delayed policy
updates, and target smoothing techniques.

4 Simulation analysis and discussion

This section describes the simulation environment and the DRL
framework used to train the Turtlebot three robot for adaptive
emergency response and dynamic crowd navigation.
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4.1 Simulation platform and environment

The experimental configuration comprises an Ubuntu 20.04
operating system, with PyTorch 1.10.0+cull3 as the deep
learning framework, running on an NVIDIA GeForce 4070 GPU
(8 GB memory) for accelerated computations. The simulation
environment is created using Gazebo 11, while the Turtlebot 3, a
tiny differential-drive mobile robot based on ROS Foxy, serves as
the core robotic platform. The 360° laser scanner (LiDAR) offers
real-time ambient awareness, enabling obstacle recognition and
dynamic object tracking. The robot’s control system is based on
ROS Foxy, allowing seamless communication between perception,
navigation, and control modules for reinforcement learning and
adaptive decision-making in challenging scenarios.

The simulation environment is designed to replicate real-world
scenarios where dynamic items move unpredictably, resembling a

Frontiers in Robotics and Al 1

robot navigating a mall or an emergency evacuation. These devices
show incredibly random motion, successfully simulating hectic
scenes in malls, warehouses, or disaster scenarios. Additionally,
static obstructions such as walls, furniture, and debris add further
navigation complexity. Figure 6 displays the gazebo simulation
space used for baseline environment testing with the first one
with no goals, all 10 goals depicted, and the navigation path
of three algorithms, which demonstrates the visual comparison
of real-time trajectories generated by all three under identical
conditions. The white objects are the randomly moving obstacles,
and the brown objects are the static wall separation. The robot’s
primary function is to reach preset target locations, such as an
injured person or an escape, with the added complexity that
these targets shift dynamically, obliging the robot to adapt its
navigation strategy in real time. Table I lists the experimental
parameters used in experimental analysis.
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B8 TurtleBot
= wa

. 4 Obstacle

(@

4.2 Performance metrics

4.2.1 Computational complexity

To evaluate the computational complexity of the DDPG, TD3,
and DQN algorithms employed in this study, the contribution of

Frontiers in Robotics and Al

important components to the overall computational load based on
the following five factors is measured.

Computational Load of Neural Networks: The computational
overhead changes across methods due to variances in network
architecture and data processing. DDPG and TD3, being actor-critic
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TABLE 1 Experimental hyperparameters for DQN, DDPG, and TD3.

Parameter Value
Actor Optimizer AdamW
Critic Optimizer AdamW

Loss Function

smooth_l1_loss

buffer_size 1000000
State Size 44
Discount Factor 0.99
Hidden Size 512
DQN

simulation_speed 1
action_size 4
input_size 44
batch_size 128
learning_rate 0.003
Tau 0.003
step_time 0.01
epsilon 1
epsilon_decay 0.9995
epsilon_minimum 0.05
reward_function A
backward_enabled TRUE
DDPG & TD3

Batch Size 1024
Action Size 2
Learning Rate 0.0003
Tau 0.0003
Step Time 0
Reward Function G
Enable Backward FALSE
Enable Stacking FALSE
DDPG

Alpha Start 3
Simulation Speed 3
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TABLE 1 (Continued) Experimental hyperparameters for DQN,
DDPG, and TD3.

Parameter Value

TD3

Simulation Speed 1
Alpha Start 10
Log Std Min 0.2
Log Std Max 0.5

approaches, entail training both actor and critic networks, leading to
alarger computational load per iteration. The DQN approach, on the
other hand, employs a single Q-network, lowering complexity but
requiring more exploration due to its discrete character. The choice
of batch size (128 for DDPG/TD3, 64 for DQN) and experience
replay buffer capacity (100,000 for DDPG/TD3, 50,000 for DQN)
directly affects the quantity of data processed every training step,
determining overall computing efficiency.

Prioritized Experience Replay: All three algorithms utilize an
experience replay buffer; however, TD3 and DDPG involve two
Q-networks and require delayed updates, increasing computation
each step. DQN, if implemented with prioritized experience replay,
requires additional categorization and priority updates in the
buffer, significantly increasing overhead. However, the computing
cost of experience replay is typically lower compared to neural
network training.

Learning Parameters: The learning rate (0.0003 for DDPG/TD3,
0.001 for DQN) and discount factor (0.99 for all algorithms)
influence the stability and convergence speed rather than the direct
computational overhead. However, a faster learning rate in DQN
leads to quicker convergence but with more frequent updates,
adding marginal computation.

Reward Mechanism: The reward function design, incorporating
several reward components with coefficients, influences training
efficiency but has minimal direct impact on computing load.
The added complexity comes from computing environmental
parameters, including barrier avoidance penalties, efficiency
penalties, and goal incentives at each step.

Optimizer: The Adam optimizer is employed throughout all
three techniques for efficient gradient updates; however, it has
a higher computational cost than simpler optimizers like SGD
(Stochastic Gradient Descent). While Adam improves learning
stability, it somewhat increases per-update computation owing to
adaptive learning rate modifications.

Among the three algorithms, TD3 incurs the largest
computational cost due to its twin delayed Q-networks and target
updates, followed by DDPG, which shares a similar actor-critic
architecture but lacks the twin-Q update mechanism. DQN has the
lowest computing complexity per step because of its single-network
structure but requires lengthier training durations to converge due
to discrete action selection. When tested on the same GeForce 4070
GPU, TD3 requires approximately 15 percent more computation per
batch compared to DDPG due to the added network evaluations,
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while DQN is about 20 percent more computationally efficient
than DDPG in terms of per-step processing but requires more total
iterations to achieve similar performance. These results coincide
with theoretical expectations based on algorithmic complexity.

4.2.2 Learning efficiency metrics

These measures assess how well the model learns from
experience. Sample efficiency (rewards per 1000 episodes) examines
how rapidly the system learns from minimal data. Training stability,
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or reward variance, assesses how stable the learning process is over
time. As per analysis, TD3 is more sample-efficient due to delayed
updates, while DQN requires more training episodes.

4.3 Experimental results and analysis

The experimental setting involves training three reinforcement
learning algorithms, DQN, DDPG, and TD3, over 8000 episodes,
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Simulation results of (A) average actor loss, (B) average critic Loss, and (C) reward Over 10 episodes of DDPG Algorithm.

with the model being stored every 100 episodes and the best model
chosen based on the highest overall reward. The study modeled
real-time emergency settings when speedy response is important,
imposing a stringent time-out of 50 s for each trial. Each algorithm
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was assessed across various target sites, with key performance
measures including the number of good outcomes (successful
trials out of 25), the total path length traveled in meters, and the
journey duration in seconds. To assess the safety performance of all
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Simulation results of (A) average actor loss, (B) average critic Loss, and (C) reward Over 10 episodes of TD3 Algorithm.

three algorithms, we analyzed a minimum distance of 0.22m as a
critical safety buffer with the robots physical dimensions and sensor
accuracy. This comprehensive examination is aimed at analyzing not
only the speed of the navigation but also the efficiency and safety of
the path planning in various and tough locations.
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4.3.1 DQN analysis

DQN, as one of the earliest techniques examined, displayed
variable effectiveness across the various circumstances. For some
target locations such as [0.5, 0.0] and [2.0, —2.0], DQN achieved
a reasonably high number of positive outcomes, with 10 and
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TABLE 2 Simulation-based evaluation of DQN, DDPG, and TD3 algorithms showing the path length and travel duration for Turtlebot three navigation.

Target Location Path Length (m) Travel duration (s)
DQN

1 [0.5,0.0] 15.533 0.963
2 [2.0,2.0] 16.02 5.567
3 [2.0,1.5] 13.536 4.698
4 [2.0, -2.0] 18.032 5.394
5 [-1.0,-12] 28213 5.929
6 [-2.0, 1.0] 49.971 10.791
7 [-2.4,2.4] 0 0

8 [03,-1.0] 5.731 1.831
9 [0.0, -1.0] 5.188 1.621
10 [0.0,2.0] 36 7.056
11 [-1.0, 1.0] 39.537 6.983

DDPG
1 [0.5,0.0] 1.638 0.142
2 [2.0,2.0] 15.744 5.488
3 (2.0, 1.5] 12.874 4.522
4 [2.0,-2.0] 23.23 4.017
5 [-1.0,-12] 16.757 4.405
6 [-2.0,1.0] 12.874 4522
7 [-24,2.4] 20472 7.057
8 [03,-1.0] 5.036 1.613
9 [0.0, -1.0] 11.074 3.723
10 (0.0, 2.0] 4.877 1.526
11 [-1.0, 1.0] 6.998 2.467
TD3

1 [0.5,0.0] 1.76 0.162
2 [2.0,2.0] 14.855 5.511
3 (2.0, 1.5] 12.504 4545
4 [2.0,-2.0] 16.166 5.503
5 [-1.0,-12] 15.017 4.101
6 [-2.0, 1.0] 49.773 10.867
7 [-24,24] 12 3

(Continued on the following page)
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TABLE 2 (Continued) Simulation-based evaluation of DQN, DDPG, and TD3 algorithms showing the path length and travel duration for Turtlebot three

navigation.

Travel duration (s)

Target Location

Path Length (m)

8 [0.3,-1.0] 5.335 1.568
9 [0.0, -1.0] 48.199 11.346
10 [0.0, 2.0] 4.658 1.525
11 [-1.0, 1.0] 25.832 6.414
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e —2000
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FIGURE 13
Comparative analysis showing average reward of the three proposed algorithms.

25 successes, respectively, indicating that it could occasionally
identify a possible path to the goal. However, its effectiveness was
erratic, as evidenced in most target scenarios where it failed to
yield any successful outcomes (0/25 successes). The inconsistency
in DQN’s performance implies that while it has the capacity
to attain the goal under certain situations, its technique lacks
the robustness required for consistently dependable navigation in
dynamic and uncertain environments, particularly under stringent
time restrictions. Figure 7 shows the performance outcome of the
DQN algorithm. This figure shows the final trajectory of the robot
using DQN, highlighting its obstacle avoidance and goal-attaining
behavior. Figure 8 plots the change in DQN’s policy network
loss, showing learning stability across training and reward trends
indicating DQN’s performance variability across multiple runs.

4.3.2 DDPG analysis

In contrast, DDPG consistently delivered impressive results
across most target locations, frequently attaining the maximum 25
positive outcomes. Its aggressive navigation strategy is reflected in
its substantially lower path lengths and travel durations compared
to DQN, enabling the robot to reach the target location quickly,
which is a critical advantage in emergency scenarios. For instance,
DDPG maintained swift travel durations while traversing complex
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paths, which underscores its ability to balance efficiency and speed
effectively. Figure 9 shows the trajectory of the robot using DDPG,
showing smoother movement and improved obstacle handling.
This consistent performance makes DDPG a strong performer for
scenarios where every second counts, even if it is less cautious when
encountering obstacles. Figure 10 shows average critic loss, average
actor loss, and the increased average reward over time, indicating
effective policy learning by DDPG.

4.3.3 TD3 analysis

TD3 stands out as a particularly robust algorithm from this
study, notably in terms of obstacle avoidance and precision in
path planning. Although there were cases where TD3’s journey
duration approached or slightly exceeded the 50-s time restriction,
its performance in most circumstances was equivalent to DDPG in
terms of success rate, obtaining near-perfect outcomes in several
target settings. Figure 11 shows robot trajectories under TD3,
reflecting better path smoothness and fewer collisions. Figure 12
highlights the critic loss trend for TD3, indicating stable value
prediction, also capturing training stability and improved policy
generation in TD3 over time. The average reward Over 10 episodes
of the TD3 algorithm demonstrates TD3’s superior reward gains
compared to DQN and DDPG across repeated trials.
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FIGURE 14

Navigation of Turtlebot three in dynamic environment setup showing the path of all three algorithms. (A) represents the paths taken by turtlebot to
achieve the goal position using DQN algorithm, (B) represents the paths taken by turtlebot to achieve the goal position using DDPG algorithm, and (C)
represent the paths taken by turtlebot to achieve the goal position using TD3 algorithm.

Table 2 displays the comprehensive test results of all three
methods in a dynamic environment.

TD3’s strength is in its balanced approach, where it not only
concentrates on reaching the objective but also meticulously avoids
obstacles, ensuring safe navigation over complicated terrains. This
thorough method, while occasionally resulting in minor delays,
provides a considerable advantage in circumstances where safety
is crucial, highlighting TD3’s promise for real-world emergency
applications where both speed and dependability are critical.
Comparison of the average reward curves is depicted in Figure 13
comparing performance metrics across all three RL algorithms,
confirming TD3’s robustness.

In the dynamic simulation environment, TD3 achieved the
highest success rate of 92% and the lowest collision rate of 5%,
outperforming the other two algorithms: DDPG with a success rate
of 88% and a collision rate of 9%. DQN has 79%, and a collision
rate of 16%. It is also observed that TD3 has generated smoother
paths with fewer emergency stops, demonstrating superior stability
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under dynamic constraints. These simulation results validate
the effectiveness of the reward function and training structure
developed in guiding robust policy learning. An experimental
environment with a navigation path of three algorithms overlaying
the path taken by each algorithm, illustrating navigation efficiency,
can be seen from Figure 14. This illustrates smoother navigation
paths generated by TD3 compared to DDPG and DQN.

In summary, the simulation results reveal a clear trade-off
between speed and safety in robotic navigation. DQN, with
its uneven performance, highlights the problems of managing
uncertain circumstances with a less robust method. DDPG, on
the other hand, specializes in accomplishing quick navigation with
high success rates, making it suited for time-critical applications.
Meanwhile, TD3’s balanced approach, typified by superior obstacle
avoidance and accurate path planning, offers a compelling solution
for instances where safety cannot be compromised even if it
occasionally risks exceeding the severe time limitations. Table 3
illustrates the number of successes each algorithm has, thus
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TABLE 3 Evaluation results comparing the performance of DQN, DDPG, and TD3 algorithms in the navigation environment.

Algorithm Target Location Success Collision object Collision wall Timeout
1 [0.5,0.0] 10 0 0 0
2 [2.0,2.0] 25 0 0 0
3 [2.0,1.5] 25 0 0 0
4 [2.0,-2.0] 20 4 1 0
5 [-1.0,-1.2] 12 11 1 1
6 DQN [-2.0, 1.0] 2 10 1 12
7 [-2.4,2.4] 0 0 0 25
8 [03,-1.0] 25 0 0 0
9 [0.0, -1.0] 4 17 3 1
10 [0.0,2.0] 25 0 0 0
11 [-1.0, 1.0] 1 20 0 4
12 [0.5,0.0] 10 0 0 0
13 [2.0,2.0] 25 0 0 0
14 [2.0,1.5] 25 0 0 0
15 [2.0,-2.0] 12 11 2 0
16 [-1.0,-12] 25 0 0 0
17 DDPG [-2.0, 1.0] 25 0 0 0
18 [-24,24] 25 0 0 0
19 [03,-1.0] 25 0 0 0
20 [0.0,-1.0] 25 0 0 0
21 [0.0,2.0] 25 0 0 0
2 [-1.0, 1.0] 25 0 0 0
23 [0.5,0.0] 10 0 0 0
24 [2.0,2.0] 25 0 0 0
25 [2.0,1.5] 25 0 0 0
26 [2.0,-2.0] 25 0 0 0
27 [-1.0,-12] 25 0 0 0
28 TD3 [-2.0, 1.0] 1 0 0 24
29 [-2.4,2.4] 0 0 0 25
30 [03,-1.0] 25 0 0 0
31 [0.0, -1.0] 25 0 0 0
32 [0.0,2.0] 25 0 0 0
33 [-1.0, 1.0] 23 2 0 0
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establishing the efficiency and the adaptability of each method.
From these results we can understand that the applications can be
implemented as well using these techniques. These observations
suggest that the best navigation technique lies in a hybrid approach
that combines the rapid reaction of DDPG with the careful, obstacle-
aware planning of TD3, paving the way for future breakthroughs in
autonomous emergency response systems.

4.4 Conclusion

In recent years, DRL has emerged as a potential technique for
constructing adaptive navigation systems. This research explored
the application of DRL in adaptive emergency response and
dynamic crowd navigation, revealing how robots can learn optimal
behaviors through interaction with their environments. The
experimental assessment of DQN, DDPG, and TD3 across severe
emergency scenarios illustrates the inherent trade-offs between
speed, safety, and environmental adaptability. While DQN fails
in continuous settings because of its discrete action space despite
running effectively in grid-based contexts, DDPG yields smoother
trajectories but is prone to overestimation bias. TD3, on the contrary,
exceeds DDPG in terms of stability and learning efficiency. This is
evident due to its delayed update technique, which enhances its
obstacle avoidance and general robustness.

DRL algorithms enhance mobile robots to dynamically adjust
their course planning. This effectively balances opposing objectives
such as saving travel time, avoiding collisions, and ensuring human
safety. This dynamic adaptation is critical for tackling rapidly
changing circumstances, particularly in crises where population
density and movement patterns could shift abruptly. The study’s
technique harnesses these qualities, enabling robots to respond
fast and intelligently in situations where every second counts. The
employment of performance comparison charts in our research
enables unambiguous representation of the navigation paths and
displays the nuanced differences in algorithm performance under
varied circumstances.

TD3’s higher performance in stability and learning efficiency is
particularly notable. 1ts delayed update technique enables it to learn
more comprehensive navigation policies that translate into effective
obstacle avoidance without compromising too much performance.
Although there were instances where TD3’s trip duration slightly
exceeded the rigorous 50-s time-out, its overall performance shows
its promise in real-world applications where both safety and swift
response are critical. These features offer TD3 as an appealing
solution for emergency response scenarios that need both agility and
precision.

DDPG, with its continuously high success rates and quick
navigation, remains an attractive alternative for cases when time is
crucial. However, its occasional susceptibility to overestimation bias
shows that there is a need for additional development. Meanwhile,
DQN’s limits in continuous action spaces remind us that algorithm
selection should be carefully linked with the specific dynamics of the
operating environment. The confluence of these insights provides a
full knowledge of the trade-offs involved in deploying DRL-based
navigation systems in real-world contexts.

It is important to note that real-world robotic navigation
involves uncertainties beyond those modeled in simulation, such
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as sensor noise, localization drift, dynamic human behaviors, and
various other mechanical disturbances. Our further work will
extend this framework to real-time hardware implementation,
where the described uncertainties can be directly measured
and incorporated. Also, adaptive mechanisms involving online
retraining, domain randomization, and uncertainty learning
strategies will be incorporated to bridge the sim-to-real gap and
enhance the robustness.

4.5 Futurescope

Further research will expand these studies to the deployment
of real-world robotic prototypes to validate simulation results and
to investigate the algorithms adaptability in live scenarios. We
intend to employ a hybrid DDPG-TD3 strategy, combining the
rapid reaction capabilities of DDPG with the improved stability and
obstacle avoidance afforded by TD3, to build a more robust and
adaptive navigation system. Additionally, exploring the integration
of DRL architectures like Long Short-Term Memory (LSTM) with
other machine learning methods such as swarm optimization
methodologies and Ant Colony Optimization (ACO) could open
innovative routes for tackling complex navigation challenges.
These new approaches, which duplicate collective intelligence and
natural decision-making processes, further boost path planning and
dynamic obstacle avoidance in congested locations. Incorporating
better sensor fusion and situational adaptation techniques will
also be crucial for forecasting and responding to dynamic crowd
behaviors. This multifaceted research will not only contribute to
the broader field of mobile robotics by offering innovative solutions
for robust and flexible crowd navigation, but it also paves the
way for developing next-generation autonomous systems capable of
safely and efficiently operating in complex, real-world emergency
scenarios.

Data availability statement

The original contributions presented in the study are
included in the article, further inquiries can be directed to the
corresponding author.

Author contributions

AA: Methodology, Data curation, Investigation, Software,
Writing - original draft, Formal Analysis, Visualization, Resources.
VV: Formal Analysis, Writing - review and editing, Software,
Methodology. KV: Resources, Writing - review and editing,
Supervision, Visualization, Project administration, Validation. JM:
Validation, Writing - review and editing, Project administration,
Supervision. KR: Conceptualization, Supervision, Writing - review
and editing, Validation.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1612392
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Alexander et al.

Acknowledgements

The authors would like to thank the authorities of Birla Institute
of Technology and Science, Pilani, Dubai Campus, for providing the
necessary resources and facilities support throughout this research
work.The authors would also like to thank the authorities of
Rochester Institute of Technology of Dubai, for providing support
throughout this research work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

References

Abubakr, O. A., Jaradat, M. A., and Abdel-Hafez, M. E (2022). Intelligent
optimization of adaptive dynamic Window approach for mobile robot motion control
using fuzzy logic. IEEE Access 10, 119368-119378. doi:10.1109/access.2022.3220703

AKl, M., Ergene, D., Walter, E, and Knoll, A. (2023). Toward robust and
scalable deep spiking reinforcement learning. Front. Neurorobotics 16, 1075647.
doi:10.3389/fnbot.2022.1075647

Antonyshyn, L., and Givigi, S. (2024). Deep model-based reinforcement learning for
predictive control of robotic systems with dense and sparse rewards. J. Intelligent &
Robotic Syst. 110, 100. doi:10.1007/s10846-024-02118-y

Bao, Q, Zheng, P, and Dai, S. (2024). A digital twin-driven dynamic path planning
approach for multiple AGVs based on deep reinforcement learning. Proc. Institution
Mech. Eng. Part C J. Mech. Eng. Sci. 238 (1), 3-15. doi:10.1177/09544062231151213

Chen, P, Pei, ], Lu, W,, and Li, M. (2022). A deep reinforcement learning based
method for real-time path planning and dynamic obstacle avoidance. Neurocomputing
497, 64-75. d0i:10.1016/j.neucom.2022.05.006

Chen, Y.-Ju, Jhong, B.-G., and Chen, M.-Y. (2023). A real-time path planning
algorithm based on the Markov decision process in a dynamic environment for Wheeled
mobile robots. Actuators 12.4, 166. doi:10.3390/act12040166

Dong, R., Du, ], Liu, Y., Heidari, A. A., and Chen, H. (2023). An enhanced deep
deterministic policy gradient algorithm for intelligent control of robotic arms. Front.
Neuroinformatics 17, 1096053. doi:10.3389/fninf.2023.1096053

Duan, Y. (2016). “Benchmarking deep reinforcement learning for continuous
control,” in arXiv preprint arXiv:1604. Available online at: https://arxiv.org/abs/
1604.06778.

Fujita, M., and Maeda, S. (2018). “Addressing function approximation error in actor-
critic methods,” in Proceedings of the 35th international conference on machine learning
(ICML 2018), 1224-1233.

Futuhi, E. (2024). “ETGL-DDPG: a deep deterministic policy gradient algorithm for
sparse reward continuous control,” in arXiv preprint arXiv:2410. Available online at:
https://arxiv.org/abs/2410.05225.

Hamid, T., Rasoul Hosseini, S., and Ali Nekoui, M. (2024). Deep reinforcement
learning with enhanced PPO for safe mobile robot navigation. arXiv Prepr. arXiv:2405,
16266. doi:10.48550/arXiv.2405.16266

Hewawasam, H. S., Ibrahim, M. Y., and Appuhamillage, G. K. (2022). Past,
present and future of path-planning algorithms for mobile robot navigation
in dynamic environments. IEEE Open J]. Industrial Electron. Soc. 3, 353-365.
doi:10.1109/0jies.2022.3179617

Husam, A. (2024). Neamah and Oscar Agustin Mayorga Mayorga.
“Optimized TD3 algorithm for robust autonomous navigation in crowded and
dynamic human-interaction environments” J. Aut. Robotics 12 (4), 356-369.
doi:10.1016/j.jautrob.2024.02.008

Frontiers in Robotics and Al

21

10.3389/frobt.2025.1612392

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/
frobt.2025.1612392/full#supplementary-material

Jeng, S.-L., and Chiang, C. (2023). End-to-End autonomous navigation based on
deep reinforcement learning with a survival penalty function. Sensors 23, 8651.
doi:10.3390/523208651

Kappagantula, S., and Mannayee, G. (2024). Dynamic path planning algorithm for
mobile robots: leveraging reinforcement learning for efficient navigation. J. Internet
Serv. Inf. Secur. 14 2, 226-236. doi:10.58346/JISIS.2024.12.014

Kargin, T. C., and Kolota, J. (2023). A reinforcement learning approach for
continuum robot control. J. Intelligent ¢ Robotic Syst. 109, 77. d0i:10.1007/s10846-023-
02003-0

Kim, J.,, Park, M., and Lee, S. (2025). Multi-agent deep reinforcement learning for
cooperative rescue using TD3 algorithm. Robotics Computer-Integrated Manuf. 85,
102577. doi:10.1016/j.rcim.2025.102577

Lee, ], Park, T., and Sung, W. (2024). Digital twin based DDPG reinforcement
learning for sum-rate maximization of AI-UAV communications. EURASIP J. Wirel.
Commun. Netw. 1, 57. doi:10.1186/s13638-024-02386-0

Li, P, Chen, D., Wang, Y., Zhang, L., and Zhao, S. (2024a). Path planning of mobile
robot based on improved TD3 algorithm in dynamic environment. Heliyon 10.11,
€32167. doi:10.1016/j.heliyon.2024.e32167

Li, K., Chen, J., and Yu, D. (2024b). “Deep reinforcement learning-based obstacle
avoidance for robot movement in warehouse environments,” in arXiv preprint
arXiv:2409. Available online at: https://arxiv.org/abs/2409.14972.

Lillicrap, T. P. (2015). “Continuous control with deep reinforcement learning,” in
arXiv preprint arXiv:1509. Available online at: https://arxiv.org/abs/1509.02971.

Liu, S. (2024a). “An evaluation of DDPG, TD3, SAC, and PPO for controlling
continuous systems,” in Proceedings of the 2023 international conference on data science,
advanced algorithm and intelligent computing (West Jordan, UT, United States: Atlantis
Press), 15-24.

Liu, S. (2024b). “An evaluation of DDPG, TD3, SAC, and PPO: deep reinforcement
learning algorithms for controlling continuous systems,” in Proceedings of the 2023
international conference on data science, advanced algorithm and intelligent computing
(Springer), 15-24. doi:10.1007/978-3-031-45618-9_2

Liu, H., and Zhang, Y. (2022). ASL-DWA: an improved A-star algorithm for
indoor cleaning robots. IEEE Access 10, 99498-99515. doi:10.1109/ACCESS.2022.
3206356

Liu, ], Yap, H. J,, and Khairuddin, A. S. M. (2024). “Path planning for the
robotic manipulator in dynamic environments based on a deep reinforcement learning
method,” in Journal of intelligent & robotic systems 111, 1. doi:10.1007/s10846-024-
02205-0

Ou, Y., Cai, Y, Sun, Y, and Qin, T. (2024). Autonomous navigation by mobile
robot with sensor fusion based on deep reinforcement learning. Sensors 24.12, 3895.
doi:10.3390/524123895

frontiersin.org


https://doi.org/10.3389/frobt.2025.1612392
https://www.frontiersin.org/articles/10.3389/frobt.2025.1612392/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2025.1612392/full#supplementary-material
https://doi.org/10.1109/access.2022.3220703
https://doi.org/10.3389/fnbot.2022.1075647
https://doi.org/10.1007/s10846-024-02118-y
https://doi.org/10.1177/09544062231151213
https://doi.org/10.1016/j.neucom.2022.05.006
https://doi.org/10.3390/act12040166
https://doi.org/10.3389/fninf.2023.1096053
https://arxiv.org/abs/1604.06778
https://arxiv.org/abs/1604.06778
https://arxiv.org/abs/2410.05225
https://arxiv.org/abs/2410.05225
https://doi.org/10.48550/arXiv.2405.16266
https://doi.org/10.1109/ojies.2022.3179617
https://doi.org/10.1016/j.jautrob.2024.02.008
https://doi.org/10.3390/s23208651
https://doi.org/10.58346/JISIS.2024.I2.014
https://doi.org/10.1007/s10846-023-02003-0
https://doi.org/10.1007/s10846-023-02003-0
https://doi.org/10.1016/j.rcim.2025.102577
https://doi.org/10.1186/s13638-024-02386-0
https://doi.org/10.1016/j.heliyon.2024.e32167
https://arxiv.org/abs/2409.14972
https://arxiv.org/abs/1509.02971
https://doi.org/10.1007/978-3-031-45618-9\string_2
https://doi.org/10.1109/ACCESS.2022.3206356
https://doi.org/10.1109/ACCESS.2022.3206356
https://doi.org/10.1007/s10846-024-02205-0
https://doi.org/10.1007/s10846-024-02205-0
https://doi.org/10.3390/s24123895
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Alexander et al.

Quan, Y., Ouyang, H., Zhang, C,, Li, S., and Gao, L. Q. (2021). Mobile robot
dynamic path planning based on self-adaptive Harmony search algorithm and Morphin
algorithm. IEEE Access 9, 102758-102769. doi:10.1109/access.2021.3098706

Song, Y., Wu, Y., Guo, Y., Suganthan, P. N., Zhang, Y., et al. (2024). Reinforcement
learning-assisted evolutionary algorithm: a survey and research opportunities. Swarm
Evol. Comput. 86, 101517. doi:10.1016/j.swevo0.2024.101517

Tutsoy, O., and Brown, M. (2015). An analysis of value function learning
with piecewise linear control. J. Exp. & Theor. Artif. Intell. 27 (3), 529-545.
doi:10.1080/0952813X.2015.1020517

Wang, L., Zhou, R., and Chen, Y. (2024). Memory-augmented deep reinforcement
learning for long-horizon mobile robot navigation. Robotics Aut. Syst. 165, 104422.
doi:10.1016/j.robot.2024.104422

Xiao, H., Chen, C,, Zhang, G., and Chen, C. P. (2024). Reinforcement learning-driven
dynamic obstacle avoidance for mobile robot trajectory tracking. Knowledge-Based Syst.
297, 111974. doi:10.1016/j.knosys.2024.111974

Xue, ], Zhang, S., Lu, Y., Yan, X, and Zheng, Y. (2024). Bidirectional obstacle
avoidance enhancement-deep deterministic policy gradient: a novel algorithm for

Frontiers in Robotics and Al

22

10.3389/frobt.2025.1612392

mobile-robot path planning in unknown dynamic environments. Adv. Intell. Syst. 6,
2300444. doi:10.1002/aisy.202300444

Yu, L., Zhang, W, and Chen, H. (2023). Dynamic obstacle avoidance for mobile
robots using vision and deep reinforcement learning. IEEE Access 11, 50231-50242.
doi:10.1109/ACCESS.2023.3268723

Zhang, W. (2024). Deep Q-network (DQN) model for disease prediction using
electronic Health records. Inf. 7 1, 14. doi:10.3390/information7010014

Zhang, Z., Hajieghrary, H., Dean, E., and Akesson, K. (2023). Prescient
collision-free navigation of mobile robots with iterative multimodal motion
prediction of dynamic obstacles. IEEE Robotics Automation Lett. 8 (9), 5488-5495.
doi:10.1109/1ra.2023.3296333

Zhang, Y., Hu, L., and Zhang, Y. (2025). Safe exploration in deep reinforcement
learning for robot navigation using curriculum learning. Knowledge-Based Syst. 290,
111234. doi:10.1016/j.knosys.2025.111234

Zhao, Y., Zhang, Z., Zhang, Z., Zeng, J., Wang, Y., and Huang, X. (2023). Dynamic
planning for obstacle avoidance of crawler based on Gaussian model. IEEE Access 11,
55442-55455. doi:10.1109/access.2023.3282695

frontiersin.org


https://doi.org/10.3389/frobt.2025.1612392
https://doi.org/10.1109/access.2021.3098706
https://doi.org/10.1016/j.swevo.2024.101517
https://doi.org/10.1080/0952813X.2015.1020517
https://doi.org/10.1016/j.robot.2024.104422
https://doi.org/10.1016/j.knosys.2024.111974
https://doi.org/10.1002/aisy.202300444
https://doi.org/10.1109/ACCESS.2023.3268723
https://doi.org/10.3390/information7010014
https://doi.org/10.1109/lra.2023.3296333
https://doi.org/10.1016/j.knosys.2025.111234
https://doi.org/10.1109/access.2023.3282695
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related works
	2.1 Dynamic path planning
	2.2 Deep reinforcement learning (DRL)

	3 Static and dynamic path planning
	3.1 Framework of dynamic path planning using DRL algorithms
	3.1.1 State space and action space
	3.1.2 Reward function design
	3.1.3 Learning model and training constraints

	3.2 Path planning algorithm
	3.2.1 Deep Q-Network (DQN)
	3.2.2 Deep Deterministic Policy Gradient (DDPG)
	3.2.3 Twin Delayed Deep Deterministic Policy Gradient (TD3)


	4 Simulation analysis and discussion
	4.1 Simulation platform and environment
	4.2 Performance metrics
	4.2.1 Computational complexity
	4.2.2 Learning efficiency metrics

	4.3 Experimental results and analysis
	4.3.1 DQN analysis
	4.3.2 DDPG analysis
	4.3.3 TD3 analysis

	4.4 Conclusion
	4.5 Futurescope

	Data availability statement
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

