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Mobile robots have emerged as a reliable solution for dynamic navigation 
in real-world applications. Effective deployment in high-density crowds and 
emergency scenarios requires not only accurate path planning but also 
rapid adaptation to changing environments. However, autonomous navigation 
in such environments remains a significant challenge, particularly in time-
sensitive applications such as emergency response. Existing path planning and 
reinforcement learning approaches often lack adaptability to uncertainties and 
time-varying obstacles, thereby making them less suitable for unstructured real-
world scenarios. To address these limitations, a Deep Reinforcement Learning 
(DRL) framework for dynamic crowd navigation using three algorithms, Deep 
Deterministic Policy Gradient (DDPG), Twin Delayed Deep Deterministic Policy 
Gradient (TD3), and Deep Q-Network (DQN), is proposed. A context-aware 
state representation that combines Light Detection and Ranging (LiDAR)-
based obstacle perception, goal orientation, and robot kinematics to enhance 
situational awareness is developed. The proposed framework is implemented 
in a ROS2 Gazebo simulation environment using the TurtleBot3 platform and 
tested in challenging scenarios to identify the most effective algorithm. Extensive 
simulation analysis demonstrates that TD3 outperforms the other approaches 
in terms of success rate, path efficiency, and collision avoidance. This 
study contributes a reproducible, constraint-aware DRL navigation architecture 
suitable for real-time, emergency-oriented mobile robot applications.
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deep reinforcement learning, mobile robot, deep Q-network, deep deterministic policy 
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1 Introduction

Mobile robots navigating in dynamic environments often face 
challenges such as obstacle prediction and detection, environmental 
awareness, and adaptive path planning. Real-time adaptation 
of mobile robots in complex scenarios forms the basis of 
almost every research and industrial application. The cumulative 
integration of mobile robots in urban environments, especially 
for applications in crowd management and emergency response, 
has always stood to be a significant challenge. In such high-
risk environments, the robust-decision making depending on 
the uncertain conditions and the ability of the mobile robot to 
manoeuvre quickly and safely is always paramount. This makes 
robotics a very vital tool in augmenting human efforts to increase 
the overall safety (Hewawasam et al., 2022). The rapidly increasing 
demand for autonomous robots in disaster management, with the 
critical research focus on advanced navigation techniques suiting 
various uncertain scenarios, is evident. Sensor integration enables 
a mobile robot to perceive its exposed surroundings with better 
accuracy, enabling it to detect hazards, avoid obstacles, and make 
decisions in real time.

Over the last decades, the integration and deployment of mobile 
robots in emergency response and dynamic crowd navigation have 
gained significant attention. This is mainly due to the need for rapid 
and autonomous decision-making in complex urban environments. 
Traditional navigation and path planning methods often struggle to 
handle these uncertain environments, particularly in the mentioned 
complex situations and crowded public spaces like in a mall or public 
gathering. For a mobile robot to improve response times and ensure 
safe navigation, it must be able to adapt to uncertain environments 
involving human movement patterns, shifting impediments, and 
environmental risks.

Traditional navigation systems that currently exist struggle 
to adapt to these complex environments. This is mainly due 
to certain factors such as unexpected obstacles, crowd density, 
and human unpredictability, as these pose significant risks to 
both robots and individuals in the vicinity (Zhang et al., 2023). 
Dynamic path planning algorithms, in contrast to static path 
planning, adjust routes in response to evolving environmental 
conditions. They will continuously update the robot’s trajectory 
based on real-time sensor data. This adaptability is very crucial in 
dynamic scenarios wherein there is a high chance of an obstacle 
appearing unexpectedly. In recent years, DRL has emerged as a 
promising technique for developing adaptive navigation strategies 
that allow robots to learn optimal behaviours through interaction 
with their environment (Li P. et al., 2024). DRL algorithms enable 
robots to dynamically adjust their path planning in dynamic 
environments, learning to balance competing objectives such 
as avoiding collisions, minimizing travel time, and ensuring 
human safety (Ou et al., 2024).

This paper explores the application of DRL in the context 
of adaptive emergency response and dynamic crowd navigation. 
Mobile robots learn to navigate these environments, making 
decisions that ensure safe and efficient movement using DRL, even 
in rapidly changing scenarios. After doing an intensive literature 
survey on existing dynamic path planning algorithms, this study 
aims to identify key advancements and challenges in modern 
navigation algorithms, mainly DRL techniques. The main objective 

of this research is to develop an integrated approach that will 
enable mobile robots to maneuver in a dynamic environment safely 
and efficiently using the best-performing algorithm. To achieve 
this, a framework that enables mobile robots to quickly adapt 
to such situations where crowd density and movement patterns 
shift unexpectedly, requiring instant decision-making ability using 
various DRL path planning algorithms is developed. Each algorithm 
is trained and tested on the same simulation platform, and results 
are extracted. This research will contribute to the development of 
an adaptable robotic system for disaster response, reducing the risk 
to human life and thereby increasing the effectiveness of rescue 
operations.

While recent works have explored DRL-based navigation 
strategies, the focus has mostly been on structured or static 
environments and tends to omit factors critical to real-time 
navigation in dense dynamic settings. For instance, Bao et al. (2024), 
proposed a digital twin-assisted DRL planner for multiple AGVs 
in structured industrial setups, while Liu (2024a) benchmarked 
DRL algorithms for generic continuous control with a focus on 
navigation in unpredictable environments. Yu et al. (2023) utilized 
a vision-based DRL for obstacle avoidance but did not incorporate 
emergency responsiveness.

In contrast, our work addresses the above limitations by 
developing a comprehensive DRL framework specially tailored to 
emergency and crowd-aware navigation. The major contributions of 
this work are as follows: 

• A context-aware DRL-based navigation framework is 
developed that can enable a real-time mobile robot to adapt to 
emergency and high-density crowd scenarios.
• A compact and dynamic state representation incorporating 

LiDAR scan data, robot kinematics, and environmental 
awareness is designed in a simulation environment.
• Comparison and benchmark evaluation of three DRL 

algorithms using consistent metrics on the same simulation 
environment.
• A detailed performance analysis based on collision rate, 

success rate, path efficiency, and computational complexity is
provided.
• A robust reward-shaping mechanism suited for both 

emergency and crowded scenarios, and its impact on policy 
learning is analyzed.
• A unique and scalable simulation setup based on ROS2, 

Gazebo, and real-world kinematic constraints is implemented, 
making the framework easily extensible to hybrid DRL 
approaches.

This paper is divided into the following sections. Section 2 will 
explain the existing literature surveys of path planning algorithms, 
also diving deeply into DRL techniques and also highlights the 
gaps in existing literature. Section 3 explains the framework of path 
planning algorithms and related DRL algorithms. The simulation 
results and discussions are elaborated in Section 4. Finally, 
the experimental results are tabulated, and the best algorithm 
for adaptive response and crowd management implementation 
is identified. The later section explains how efficiently this 
implementation can be done in real time by incorporating the 
analysis of this study. 
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2 Related works

2.1 Dynamic path planning

Path planning remains the core challenge in robotics, mainly 
while navigating in diverse environments, which include both 
static and dynamic environments. In (Liu and Zhang, 2022), a 
novel methodology is presented based on dynamic programming 
to generate optimal paths for mobile robots employing Model 
Predictive Control (MPC) for path tracking. It is shown that 
the proposed approach addresses environmental complexities and 
the robot navigates through different terrains. Compared to 
Artificial Potential Fields (APF) and PSO combined techniques, this 
highlights a notable improvement in path smoothness and accuracy 
with low computational demands. However, while simulations are 
promising, the method’s performance in an environment with high 
sensory noise is to be studied in detail.

Reinforcement learning techniques have become increasingly 
popular due to their adaptability in dynamic environments. 
Xiao et al. (2024) have proposed a Q-learning-based trajectory 
tracking approach. It integrates real-time obstacle avoidance 
capabilities and has optimized efficiency in the decision-making 
process. While simulation results validate the method’s effectiveness, 
real world deployment remains a challenge, especially in complex 
environments. To address the main challenges in achieving high 
success rates and efficient training (Ou et al., 2024), DRL approaches. 
By leveraging pre-trained models from static environments, the 
proposed algorithm adapts to quick dynamic changes. However, 
adaptation to real-world applications is challenging when exposed 
to complex environments and sensor noise, which necessitates 
future work on optimizing training speeds, sample efficiency, and 
adaptation capabilities. Additionally, combining DRL with classical 
path planning can yield better global planning and local obstacle 
avoidance.

Recent research by Zhao et al. (2023) has leveraged a dynamic 
path planning algorithm based on Gaussian probability models. This 
approach will combine global reference path optimization using 
quadratic programming with local planning. Simulation results 
in ROS/Rviz show significant efficiency improvements compared 
to traditional RRT algorithms. Additionally, field tests confirmed 
the algorithm’s practicality in autonomous and effective obstacle 
avoidance. Traditional A∗ algorithms often struggle with difficulties 
in handling unknown obstacles. ASL-DWA is used in (Liu and 
Zhang, 2022), which enhances the A∗ algorithm by incorporating a 
heuristic function that can combine Euclidean distance with point-
to-line distance, thereby decreasing the number of search nodes. 
Experimental comparisons in three distinct indoor environments 
highlight its better significance over traditional methods.

The traditional Harmony Search (HS) algorithm has proved its 
effectiveness in many optimization problems; however, it requires 
enhancements to effectively handle the dynamic world. Quan et al. 
(2021) introduced an improved self-adaptive HS algorithm 
combined with the Morphin algorithm for path planning. Relative 
simulations demonstrate better convergence and accuracy over 
Particle Swarm Optimization and Whale Optimization Algorithm. 
Future research can include other hybrid strategies within the HS 
framework. The Dynamic Window Approach (DWA) is another 
method used for path planning; however, a primary limitation is 

that it is dependent on the accurate tuning of the objective function’s 
weight parameter.

Abubakr et al. (2022) proposed an Adaptive Dynamic Window 
Approach (ADWA), which employs a fuzzy logic controller to 
dynamically adjust the weight parameters based on real-time data. 
The comparative analysis demonstrates superior performance and 
shows improved path length. However, further refining of weight 
and exposure to diverse environments needs to be included to 
understand the efficiency of the algorithm in complex scenarios. 
The recent advancements focus on integrating machine learning 
techniques such as reinforcement learning (Zhang et al., 2023) and 
deep learning techniques. Various strategies have been explored to 
improve efficiency and adaptability in unknown environments in the 
field of multi-swarm robotic systems. It is seen that initial research 
mainly relied on either static or reactive approaches, where robots 
follow a predefined path. One major remarkable advancement 
is the use of polynomial fitting for predictions of trajectories, 
as seen in (Song et al., 2024), where algorithms dynamically update 
the positions of targets based on sampled trajectory points. It is also 
seen that when combined with reinforcement learning, the system 
performs better, enhancing path planning and target prediction. 
DRL has further enhanced the system by allowing robots to learn 
from their immediate environment and thereby improving their 
performance. 

2.2 Deep reinforcement learning (DRL)

The article (Kargin and Kołota, 2023) applied the DDPG 
algorithm to address the complex control challenges of continuum 
robots that belong to a class of robots that are highly flexible 
and are characterized by a continuous structure, allowing high 
dexterity in constrained or complex environments. However, the 
control of these robots modulates unique challenges. This is 
mainly due to the continuous nature of their movements and 
highly nonlinear kinematics, which contrast with the traditional 
robotic systems with discrete joints. In (Lee et al., 2024), the 
authors explored the integration of Digital Twin technology with 
DDPG to enhance communication efficiency in UAV networks. It 
demonstrated that the approach maximizes sum-rate performance 
effectively, highlighting the potential of the algorithm’s application 
in complex communication scenarios. In (Liu et al., 2024), Liu 
et al. introduced a learning method, applying DDPG to navigate 
dynamic environments. The study illustrates TD3’s proficiency in 
autonomous control by addressing issues such as dynamic path 
adjustment and obstacle avoidance. DDPG’s capability in dynamic 
robotic control is shown in the study, and the challenges, such as 
obstacle avoidance and dynamic path navigation, are addressed.

The authors of (Jeng and Chiang, 2023) compare TD3 and 
DDPG in tasks such as autonomous navigation. The study 
demonstrates that employing a survival penalty function to address 
limited reward problems reveals TD3’s superiority over DDPG in 
dynamic environments regarding stability and convergence rate. It 
emphasizes the extent to which DQN, DDPG, and TD3 algorithms 
enhance robotic capabilities, particularly in the context of dynamic 
path planning, when considered in their entirety. In (Antonyshyn 
and Givigi, 2024), Antonyshyn and Givigi introduced a system that 
employs DQN in scenarios with both sparse and dense rewards. 
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The research demonstrates how DQN enhances predictive control in 
robotic systems by adeptly achieving a balance between exploration 
and exploitation. A new DDPG algorithm with an improved 
experience replay mechanism and mixed rewards is proposed in 
(Dong et al., 2023). This approach improves robotic limb control 
by efficiently managing sluggish convergence and local optima. The 
authors investigated the utilization of TD3 in the training of Spiking 
Neural Networks (SNNs) for robotic control (Akl et al., 2023). The 
study has demonstrated that the combination of TD3 and SNN 
results in scalable and robust learning, which presents intriguing 
opportunities for neuromorphic engineering in robotics.

It is understood that recent studies continue to emphasize hybrid 
and adaptive approaches to improve performance in unstructured 
environments. As mentioned before (Bao et al., 2024), highlights 
the potential of simulation-to-reality alignment through virtual 
environments. While effective in industrial layouts, the approach 
has limited scalability to dense crowds. As referred initially, 
Yu et al. (2023) incorporated vision-based perception with DRL 
for obstacle avoidance but showed a lack of responsiveness in 
unpredictable emergency settings. In a similar context, Wang et al. 
(2024) introduced a memory-augmented actor-critic architecture to 
improve long-term planning in robots; however, high computational 
complexity hinders real-time deployment. A novel safe exploration 
technique was introduced by Zhang et al. (2025), applying 
curriculum learning in DRL, which gradually exposes agents to 
complex environments, improving stability but requiring extensive 
pre-training phases.

In terms of algorithm benchmarking, the authors (Liu, 2024b) 
conducted a diligent comparison of DDPG, TD3, Soft Actor Critic 
(SAC), and Proximal Policy Optimization (PPO) in continuous 
control domains but lacked crowd-focused evaluation. Antonyshyn 
and Givigi (Antonyshyn and Givigi, 2024) analyzed DQN under 
varying reward sparsity conditions and demonstrated its suitability 
for sparse emergency signals. Meanwhile, a study by Kim et al. (2025) 
applied multi-agent TD3 in cooperative rescue scenarios, achieving 
high coordination success but depending heavily on predefined 
communication protocols. These works indicate a growing interest 
in robustness, safety, and contextual decision-making; however, 
very few have explicitly addressed DRL-driven emergency response 
in dynamic human environments. The present study fills this 
gap by not only comparing TD3, DDPG, and DQN but also its 
application in emergency crowd navigation. It also emphasize on 
contextual perception, reward shaping, and safety constraints within 
a simulation framework thereby making this study unique and 
building a framework easily extensible to hybrid DRL approaches.

Mobile robot navigation has demonstrated its strength in 
various kinds of surroundings by employing a wide range of 
DRL algorithms. Among these, it is seen that DQN, DDPG, and 
TD3 are emerging as prominent approaches, mainly due to their 
adaptability. From the above literature works it’s evident that DQN 
is effective in discrete actions and constrained spaces, and the other 
two algorithms show superior performance in real-time navigation 
tasks. Despite the evolving body of research around these three 
algorithms, there remains a gap of comparative evaluations focusing 
on emergency response and dynamic crowd navigation, where 
the performance benchmarks of adaptability, responsiveness, and 
collision avoidance are critical. As such, this research will aim 
to conduct a focused study on the three state-of-the art DRL 

algorithms, evaluating their performance in unpredictable and 
highly dynamic environments. By analyzing their decision-making 
efficiency, trajectory smoothness, and real-time adaptability, we will 
be able to determine the most suitable algorithm for mobile robot 
application in emergency and crowd-dense scenarios. 

3 Static and dynamic path planning

Path planning for mobile robots has evolved significantly 
over time, from rigid, preset routes to highly adaptable and 
dynamic navigation methods. Robots initially followed static routes, 
which were preset trajectories or fixed waypoints, to function in 
controlled environments like warehouses. The shortest path through 
a mapped environment was the primary objective of traditional 
techniques that used grid-based or graph-based algorithms, such 
as the A∗  and Dijkstra algorithms. Static path planning decreased 
overall operational efficiency in dynamic environments because 
it was inadequate to handle unforeseen obstacles and changes in 
the real-time environment, even though it was useful in simple, 
controlled situations. These static path-planning methods work best 
in environments that were actually controlled, predictable, and had 
obstacles and operating conditions that were mostly constant.

Using a pre-existing map or environment model, static path 
planning methods predict a robot’s future route. This approach 
is commonly seen in warehouse automation, where robots 
are programmed to follow floor markings, magnetic strips, or 
predefined coordinates. Algorithms such as Dijkstra’s and A∗  are 
frequently used to calculate these paths and have thus gained 
widespread popularity. Due to its predictability, repeatability, and 
ease of use, static path planning is well-suited for structured, 
unchanging environments. However, it struggles with unforeseen 
obstacles or human interference. Delays and poor adaptability 
typically result from the need for manual intervention, recalibration, 
or environmental changes.

Contrary to the above, a robot’s dynamic path planning 
enables real-time navigation and travel route modification based on 
environmental changes. It incorporates sensor fusion techniques, 
machine learning, and DRL to help robots to recognize and 
respond to a shift in their surroundings. Dynamic algorithms 
such as Rapidly-exploring Random Tree (RRT) and Dynamic 
Window Approach (DWA) allow a robot to independently identify 
obstacles and human activity and adjust its path accordingly. 
In environments with frequent changes mainly due to human 
presence, shifting inventory, or other moving automation, dynamic 
path planning is essential. This ability enhances efficiency, reduces 
the risk of collisions, and builds resilience within the system. 
While static planning is beneficial, it is limited to simplistic and 
constant environments where replication is vital. However, dynamic 
planning is best suited for intricate and disorderly environments 
without certainty of factors and conditions. The responsiveness 
and efficiency of dynamic path planning are superior to those of 
static systems in terms of both of these characteristics. In order 
to accomplish the goal, it is necessary to combine sensor data in 
real time, to make intelligent decisions, and to use learning models 
that are flexible. As warehouse and industrial environments become 
more complex, the demand for dynamic path planning continues 
to grow. The integration of AI and robotics not only simplifies 
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FIGURE 1
Framework of the dynamic path planning architecture based on DRL algorithm.

human-robot collaboration but also fosters greater autonomy 
(Li Keqin et al., 2024; Bao et al., 2024; Chen et al., 2022). 

3.1 Framework of dynamic path planning 
using DRL algorithms

Dynamic path planning in real-world settings calls for robots to 
make smart navigation choices in the presence of all impediments, 
circumstances, and time-sensitive activities. This system uses DRL 
algorithms, allowing mobile robots to acquire adaptive navigation 
techniques by interacting with their environment to meet these 
difficulties. The system lets agents constantly assess their status, 
select the best behaviors, and get feedback in the form of incentives 
by use of a Markov Decision Process (MDP) modeling of the 
environment. To guarantee that robots can safely and effectively 
reach their objective sites in complicated, dynamic situations like 
emergency response or crowd navigation, the suggested method 
combines sensor data, reward shaping, and decision-making 
modules (Chen et al., 2023). Figure 1 is the framework of the 
Dynamic Path Planning Architecture. It shows the end-to-end 
system integrating state input, DRL agent, and actuator output for 
robot navigation.

3.1.1 State space and action space
The mobile robot uses a number of sensory inputs that perceive 

the environment. A 360° scan with 180 data points is provided by 
the LiDAR per frame, thereby ensuring complete obstacle detection. 
Additionally, the mobile robot processes the relative position of the 
target, the distance to the nearest obstacles, and its own current 

velocity and angular acceleration, enabling situational awareness. 
The constructed context-aware state vector integrates both spatial 
and temporal perception.

Depending on the type of reinforcement learning, action 
space varies (Xue et al., 2024). The 360-degree LiDAR captures 
both static and dynamic obstacles in real time. As moving agents 
or obstacles enter or exit the path of the mobile robot, the laser 
scan values update the state representation, enabling the agent to 
adapt its policy accordingly. This will allow the system to navigate 
along dynamically changing environments while perceiving time-
varying obstacles. However, static structure remains consistent in the 
state, while moving obstacles alter the state vector across time steps, 
reinforcing the temporal aspect of learning. For DDPG and TD3, 
the mobile robot commutes within a continuous action space, and 
it controls its linear velocity v ∈ [0,0.22] m/s and angular velocity 
w ∈ [0,0.22] rad/s, allowing for smooth and precise movement. In 
contrast, DQN employs a discrete action space, restricting the robot 
to predefined movement commands such as “Move Forward,” “Turn 
Left,” and “Turn Right,” simplifying decision-making but limiting 
flexibility in complex navigation scenarios. This modular state-
action modeling is essential to enable both fine-grained control 
for DDPG and TD3 and efficient decision-making in constrained 
environments for DQN.

The path planning problem for a mobile robot navigating 
dynamic environments can be formulated as a Markov Decision 
Process (MDP) described by the tuple 〈S, A, P, R, γ〉. Here S 
represents the state space, encoding the robot’s perception and 
internal dynamics, and A denotes the action space, comprising 
motion commands. P(s′ ∣ s,a) is the transition probability function. 
R(s,a) is the reward function that guides learning. γ ∈ [0,1]
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is the discount factor for future rewards. In our framework, 
the state st ∈ S  encapsulates the robot’s sensory input and 
trajectory context (Chen et al., 2023). It is defined as:

st = [scant,vt−1,wt−1,θdiff,dt] (1)

where scant is defined as the laser scan data at time t, vt−1 is the 
linear velocity of the turtlebot at the previous time step t-1, wt−1 is 
the angular velocity at time t-1, θdiff is the heading angle difference 
between the robot’s current orientation and the direction toward the 
goal. The distance to the goal is computed as:

dt = √(xgoal − xt)
2 + (ygoal − yt)2 (2)

The heading angle difference is given by:

θgoal = arctan 2(ygoal − yt,xgoal − xt) (3)

These Equations 1–3, define the expected return and update 
rules central to value-based and policy gradient methods.

θdiff = θgoal − θt (4)

The robot’s orientation t is derived from odometry by converting 
quaternion values into Euler angles:

θt = euler from quaternion (q) (5)

The action at ∈A comprises continuous control 
commands, defined as:

at = [vt,ωt] , where vt ∈ [0,0.22]m/s, ωt ∈ [−2,2] rad/s (6)

This continuous control allows more precise maneuvering than 
discretized actions, which is critical in cluttered and dynamic 
environments such as emergency scenarios or crowded spaces. In 
reinforcement learning, the agent’s objective is to maximize the 
expected cumulative discounted reward:

J (π) = 𝔼π[
∞

∑
t=0

γtR(st,at)] (7)

Here J(π) is defined as the performance objective of a policy 
π, 𝔼π is the expected value when the agent follows a policy. 
π. [∑∞t=0γtR(st,at)] is the cumulative discounted reward. This is 
solved using the Bellman Optimality Equation, which defines the 
optimal value function V∗(s) and Q∗(s,a) the optimal action-value 
function as:

V∗(s) =max
a
[R (s,a) + γ∑

s′
P(s′ ∣ s,a)V∗(s′)] (8)

Alternatively, the optimal action-value function Q∗(s,a)
is given by:

Q∗(s,a) = R (s,a) + γ𝔼s′ [max
a′

Q∗(s′,a′)] (9)

Here R(s,a) is the immediate reward for taking action a in 
the state s, γ which is the discount factor ∈ [0,1). The transition 

probability of reaching the next state s′ wrt to the current state 
and action is denoted as P(s′ ∣ s,a). Expectation over possible next 
states s′ is 𝔼s′  and maxa′Q

∗(s′,a′) indicates the agent will choose 
the best possible action in the future. The above-defined equations 
act as the basic theoretical foundation of Q-learning and value 
iteration in dynamic programming. Equations 4–9 derive the actor-
critic gradient used in DDPG and TD3 to update their policies with 
respect to continuous actions.

Using neural networks, deep reinforcement learning algorithms 
like DDPG and TD3 mimic these functions, hence allowing 
policy learning in high-dimensional and continuous action 
spaces. Our approach guarantees real-time responsiveness 
and adaptation to complicated navigation issues by using a 
smooth continuous control space and an informative, compact 
state representation. In a simulated environment, Bellman-
based optimization enables the agent to acquire optimal long-
term navigation techniques. It is done through trial and 
error, whereby transferring them to actual robotic systems 
(Lillicrap, 2015; Duan, 2016). 

3.1.2 Reward function design
The reward function is designed to encourage efficient and 

safe navigation while penalizing undesired behaviors. It consists 
of multiple components that guide the learning process by 
reinforcing positive actions and discouraging negative ones. 
The function (Equation 10) begins by calculating several individual 
reward components based on the robot’s orientation, movement 
actions, proximity to the goal, and obstacle avoidance. For example, 
ryaw is calculated as the negative absolute value of the goal angle (θ), 
which means that any deviation from the desired orientation results 
in a penalty. This encourages the robot to maintain a trajectory 
aligned with the target direction. Similarly, rvangular penalizes 
large angular velocities by subtracting the square of the angular 
action, thus discouraging erratic rotational movements that could 
destabilize the robot’s path.

rt = ryaw + rdistance + robstacle + rvlinear + rvangular − roffset + rterminal
(10)

where: 

• ryaw = − |θgoal|: Penalizes deviation from the goal direction
• rdistance =

2⋅dinitial
dinitial+dgoal

− 1: Encourages goal proximity
• robstacle = − 20: Penalty when closer than 0.22 m to any obstacle
• rvlinear = − ((vmax − vaction) ⋅ k)2: Penalizes erratic linear speeds
• rvangular = −ω2: Discourages large angular velocities
• roffset = 1: Baseline shift
• rterminal: +2500 if goal is reached; -2000 if collision occurs

These components will collectively structure the learning signal 
to ensure a tradeoff between path efficiency, safety, and goal 
attainment, thereby shaping both the value function and the 
control policy. The reward values are scaled to balance short-
term responsiveness with long-term goal achievement. A pseudo-
algorithm (Algorithm 1) shows that these elements taken together 
guarantee that the robot not only concentrates on promptly attaining 
the goal but also on preserving an efficient and secure path. This 
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reward function plays a central role in shaping the learned behavior 
of the agent by implicitly influencing the Q-function in DQN and the 
state value function in DDPG and TD3. The individual components 
of reward are carefully designed to balance goal seeking, safety, 
and motion smoothness. For instance, rdistance ensures continuous 
motivation towards the goal, whereas robstacle performs the duty of 
sharp penalty imposition to ensure collision avoidance. The angular 
and linear velocity penalties act as regularization terms to promote 
stable control, and rterminal calculates rewards based on goal state 
achievement.

This structure ensures that the agent will not only learn to 
reach the goal position efficiently but also internalize policies that 
are safe and feasible dynamically. Our reward-shaping strategy is 
consistent with reinforcement learning theory, where reward design 
directly determines the optimal learned policy. This also aligns 
with the findings from Tutsoy and Brown (Tutsoy and Brown, 
2015) that demonstrate piecewise-linear control objectives can be 
embedded into the reward structure to ensure convergence and 
desirable control behaviors. Our framework leverages this principle 
by ensuring that positive rewards drive goal-seeking, while heavy 
obstacle penalties reinforce collision avoidance, resulting in well-
shaped policies capable of dynamic crowd navigation. 

3.1.3 Learning model and training constraints
The learning model setup involves training DRL agent in Gazebo 

using ROS2 Foxy and PyTorch. Below are the training parameters 
and constraints included: 

1: Input: Current state st, action at, laser scan 

L, goal position g

2: Output: Reward rt

3: Compute heading error: 

θgoal← angle_diff(robot_heading,g)

4: Compute distance to goal: 

dgoal← ‖robot_position−g‖

5: Normalize distance: rdistance←
2⋅dinitial

dinitial+dgoal
−1

6: Compute obstacle penalty: robstacle←−20 if 

min (L) < 0.22m else 0
7: Compute yaw alignment penalty: ryaw←−|θgoal|

8: Compute velocity penalties:
9:  rvlinear←−((vmax −vaction) ⋅k)2

10:  rvangular←−ω2
11: Set baseline offset: roffset← 1

12: Compute terminal reward:
13: if goal_reached then

14:  rterminal←+2500
15: else if collision then

16:  rterminal←−2000
17: else

18:  rterminal← 0

19: end if

20: Compute total reward:
rt← ryaw +rdistance +robstacle +rvlinear
+ rvangular −roffset +rterminal

21: return rt

Algorithm 1. Reward Calculation for Mobile Robot.

• Training episodes: 8000
• Max episode duration: 50 s
• Time step: 0.01 s
• Maximum linear velocity: 0.22 m/s
• Maximum angular velocity: ±2 rad/s
• Minimum safe distance from obstacles: 0.22 m
• Discount factor: γ = 0.99
• Batch sizes: 128 for DQN, 1024 for DDPG/TD3

These constraints impose safe exploration while enabling 
learning under physical dynamics. Each algorithm is trained with 
a prioritized experience replay mechanism and is periodically 
evaluated to ensure convergence and robustness and to identify 
the most efficient algorithm. These physical and safety constraints 
are embedded in the simulation environment, and the DRL agent 
learns to operate effectively within them. For example, an instance 
exceeding the safe distance threshold triggers penalties in the reward 
function, while timeouts prevent inefficient policies. This bounded 
learning approach will ensure the agent outperforms in not only 
finding the optimal policies but also does so while respecting the 
real-world limitations such as speed caps, response deadlines, and 
collision avoidance.

Although the training evaluations are conducted in a simulation 
environment, the framework considers multiple real-world 
constraints, including obstacle proximity, maximum velocity, and 
time limits. These constraints reflect physical limitations that prevail 
in the actual robotic platforms. Additionally, the robot operates 
under nonlinear dynamics, where control inputs such as velocity 
and rotation interact with environment perception in a strongly 
coupled manner.

In real-world robotic applications, multiple forms of uncertainty 
influence navigation safety and performance. Some of these 
are as listed: 

• Internal uncertainties, mainly due to actuator delays, sensor 
inaccuracies, or localization drift;
• External uncertainties, which include unpredictable crowd 

movements and various changes in environment;
• Parametric uncertainties such as robot mass, friction, 

and inertia;
• Non-parametric ones such as human behavior and 

environmental stochasticity.

While the simulation abstracts away certain disturbances, our 
model accounts for uncertainty by integrating randomized obstacle 
motion and dynamic goal placement, thereby training the DRL 
agent to generalize across variable situations. This is improving the 
robustness of the learned policy against unexpected conditions. 

3.2 Path planning algorithm

DRL has emerged as a powerful tool, allowing robots to learn 
adaptive navigation strategies through experience. DRL-based 
methods continuously update their decision-making policies by 
interacting with the environment, unlike traditional algorithms. 
DRL improves their ability to handle unforeseen obstacles 
and changes in crowd behavior through continuous learning. 
Figure 2 details basic reinforcement learning architecture. It 
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FIGURE 2
Workflow of the basic reinforcement learning architecture.

presents the general RL loop structure, depicting environmental 
interaction, reward feedback, and policy learning. The architecture 
of reinforcement learning has a few key components, which work 
together like a feedback loop, such as the agent, which is the 
decision-maker. This is the algorithm that tries to learn the best 
actions to take. Environment or world where the agent operates. It 
responds to the agent’s actions and provides feedback. State (S) is the 
current situation or condition of the environment, and action (A) is 
the decision of the agent according to which it acts. The Reward (R) 
is defined as the feedback from the environment. Positive rewards 
for good actions are basically like a treat, and negative rewards are 
penalties. Policy (π) is the strategy the agent follows to decide which 
action to take based on the current state. The future rewards the 
agent can expect from a state if it follows the policy are predicted by 
the value function (V). Q-Function predicts the future rewards for a 
state-action pair that defines how good it is to take a specific action 
in a specific state (Chen et al., 2023).

Here in the block diagram the agent takes an action (A) based 
on the current state (S) using a learned policy (π). The environment 
changes based on the action and provides a new state (S) and 
a reward (R). The agent updates its value function (V) and Q-
function (Q) based on the reward and new state. The agent refines 
its policy (π) to improve future decision-making. This paper focuses 
on three widely used DRL algorithms, such as DDPG, which is 
a model-free, off-policy algorithm that enables continuous action 
control for smooth trajectory planning. TD3 is an improved version 
of DDPG that reduces overestimation bias and enhances learning 
stability. DQN can be described as a discrete-action reinforcement 
learning approach effective for high-dimensional navigation tasks. 
We will work on all three algorithms in a simulation environment 
and find out which algorithm maximizes the total reward over time 
by finding the best policy (Hamid et al., 2024; Kappagantula and 
Mannayee, 2024). 

3.2.1 Deep Q-Network (DQN)
DQN is a value-based DRL algorithm designed for discrete 

action spaces where the agent selects actions based on predicted Q-
values. DQN approximates the Q-value function Q (s,a) using a deep 
neural network. The Q-value represents the expected future reward 
of taking action a in state s. It uses the Bellman Equation 11 (Zhang, 
2024) to update Q-values as shown below. Here Q(s,a): the current 

Q-value of taking action a in state s, representing the expected total 
return; r: the immediate reward received after taking action a in state 
s; γ: the discount factor, 0 ≤ γ ≤ 1, which determines the importance 
of future rewards; s′: the next state after taking action a from state s; 
a′: a possible action in the next state s′; maxa′Q(s′,a′): the maximum 
expected future reward attainable from the next state s′.

Q (s,a) ← r+ γmax
a′

Q(s′,a′) (11)

In (Zhang, 2024) the authors introduced a Deep Q-Learning 
framework, which integrates RL with neural networks to enhance 
accuracy, stability, and scalability in disease prediction using 
Electronic Health Records. This shows a real-time application 
demonstrating the applicability of DQN in handling complex 
networks. It introduces key improvements over vanilla Q-learning 
in experience replay, where it stores past experiences and samples 
them randomly to break the correlation between experiences. It also 
maintains a separate target network to stabilize training by updating 
it slowly. Its application can be best applied in discrete action spaces 
such as grid world, Atari games, and so on. Also, its application 
lies in environments with a small or moderate number of actions. 
However, the major limitation is that it cannot handle continuous 
action spaces and struggles with high-dimensional or complex 
action spaces. Figure 3 describes the framework of the DQN 
algorithm. The various details of the DQN’s internal components 
showing Q-network updates and discrete action selection are 
demonstrated.

3.2.2 Deep Deterministic Policy Gradient (DDPG)
DDPG is a model-free, off-policy RL designed for continuous 

action spaces and is based on the Deterministic Policy Gradient 
(DPG) algorithm and DQN. This algorithm uses two neural 
networks mainly known as the actor network and the critic network. 
In the actor network, it outputs the best action directly instead of 
Q-values. And in the critic network, it estimates the Q-value of the 
state-action pair. The below Equation 12 shows the updates using 
policy gradients:

∇θμJ ≈ 𝔼[∇aQ(s,a ∣ θQ) | a=μ(s) ⋅∇θμμ (s)] (12)

The term ∇θμJ represents the gradient of the expected return J
with respect to the actor’s parameters θμ. The operator 𝔼[⋅] denotes 
the expectation, typically computed as an average over sampled 
states from the replay buffer. The function Q(s,a ∣ θQ) is the critic 
network, which estimates the Q-value of taking action a in state 
s, parameterized by θQ. The expression ∇aQ(s,a ∣ θQ)| a=μ(s) is the 
gradient of the Q-function with respect to the action, evaluated at 
the action outputted by the actor. The function μ(s) represents the 
actor network, which outputs a deterministic action given a state s. 
Finally, ∇θμμ(s) is the gradient of the actor’s output with respect to its 
parameters θμ.

Figure 4 describes the framework of the DDPG algorithm. The 
figure depicts the continuous control learning process with actor-
critic networks and target updates. It learns by minimizing the 
mean squared error between the predicted and target Q-values as 
shown below Equation 13:

L = (r+ γQ′ (s′,μ′ (s′)) −Q (s,a))2 (13)
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FIGURE 3
Framework of the DQN algorithm proposed.

The loss function L represents the mean squared error between 
the predicted Q-value and the target Q-value. The term r is the 
reward received after taking action a in state s. The discount factor 
γ determines how much future rewards are considered in the target 
calculation. The target Q-value is computed using the target critic 
network Q′(s′,μ′(s′)), where s′ is the next state and μ′(s′) is the 
action provided by the target actor network for that next state. The 
main critic network estimates the current Q-value as Q(s,a). This 
loss is minimized to train the critic to more accurately estimate the 
expected return.

It uses experience replay and target networks like DQN and 
continuous action output with a deterministic policy. It is best 
suited for continuous action spaces like robot control, stock trading, 
and tasks that require fine-grained action control. However, the 
algorithm is prone to overestimation of Q-values, which leads to 
suboptimal policies, and has high sensitivity to hyperparameters. 
Recent advancements, such as the ETGL-DDPG algorithm, have 
been proposed to address these challenges by introducing enhanced 
exploration strategies and improved experience replay mechanisms
(Futuhi, 2024). 

3.2.3 Twin Delayed Deep Deterministic Policy 
Gradient (TD3)

An improved DDPG is TD3, which works on addressing the 
key weaknesses of DDPG by reducing Q-value overestimation and 
increasing training stability. It is built on DDPG but introduces 
three key improvements to improve its efficiency. It is clipped 

Double Q-Learning and uses two critic networks and takes the 
minimum Q-value to reduce overestimation as shown below
Equation 14:

Q (s,a) =min (Q1 (s,a) , Q2 (s,a)) (14)

The above conservative estimate helps improve stability and 
robustness during training. Equations 11–14 benchmark the 
efficiency and safety of learned navigation policies. It also updates 
the actor network less frequently than the critic to avoid destabilizing 
learning. Target smoothing is also done automatically by adding 
small noise to the target action to make the value function smoother 
and reduce overfitting. Due to its best accuracy, it is used for 
continuous action spaces and tasks requiring high precision and 
stability, such as robotic arm control. However, due to dual critic 
networks, it is computationally more expensive than DDPG and 
has slower training due to delayed updates (Fujita and Maeda, 
2018; Husam, 2024). Figure 5 describes the framework of the TD3 
algorithm. It illustrates TD3’s dual critic structure, delayed policy 
updates, and target smoothing techniques.

4 Simulation analysis and discussion

This section describes the simulation environment and the DRL 
framework used to train the Turtlebot three robot for adaptive 
emergency response and dynamic crowd navigation. 
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FIGURE 4
Framework of DDPG algorithm proposed.

4.1 Simulation platform and environment

The experimental configuration comprises an Ubuntu 20.04 
operating system, with PyTorch 1.10.0+cu113 as the deep 
learning framework, running on an NVIDIA GeForce 4070 GPU 
(8 GB memory) for accelerated computations. The simulation 
environment is created using Gazebo 11, while the Turtlebot 3, a 
tiny differential-drive mobile robot based on ROS Foxy, serves as 
the core robotic platform. The 360° laser scanner (LiDAR) offers 
real-time ambient awareness, enabling obstacle recognition and 
dynamic object tracking. The robot’s control system is based on 
ROS Foxy, allowing seamless communication between perception, 
navigation, and control modules for reinforcement learning and 
adaptive decision-making in challenging scenarios.

The simulation environment is designed to replicate real-world 
scenarios where dynamic items move unpredictably, resembling a 

robot navigating a mall or an emergency evacuation. These devices 
show incredibly random motion, successfully simulating hectic 
scenes in malls, warehouses, or disaster scenarios. Additionally, 
static obstructions such as walls, furniture, and debris add further 
navigation complexity. Figure 6 displays the gazebo simulation 
space used for baseline environment testing with the first one 
with no goals, all 10 goals depicted, and the navigation path 
of three algorithms, which demonstrates the visual comparison 
of real-time trajectories generated by all three under identical 
conditions. The white objects are the randomly moving obstacles, 
and the brown objects are the static wall separation. The robot’s 
primary function is to reach preset target locations, such as an 
injured person or an escape, with the added complexity that 
these targets shift dynamically, obliging the robot to adapt its 
navigation strategy in real time. Table 1 lists the experimental 
parameters used in experimental analysis.
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FIGURE 5
Framework of TD3 algorithm proposed.

FIGURE 6
Model showcasing the experimental environment in Gazebo Simulation Space, (A) with no goal, (B) all 10 goals setup and (C) navigation path of three 
algorithms.

4.2 Performance metrics

4.2.1 Computational complexity
To evaluate the computational complexity of the DDPG, TD3, 

and DQN algorithms employed in this study, the contribution of 

important components to the overall computational load based on 
the following five factors is measured.

Computational Load of Neural Networks: The computational 
overhead changes across methods due to variances in network 
architecture and data processing. DDPG and TD3, being actor-critic 
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TABLE 1  Experimental hyperparameters for DQN, DDPG, and TD3.

Parameter Value

Actor Optimizer AdamW

Critic Optimizer AdamW

Loss Function smooth_l1_loss

buffer_size 1000000

State Size 44

Discount Factor 0.99

Hidden Size 512

DQN

simulation_speed 1

action_size 4

input_size 44

batch_size 128

learning_rate 0.003

Tau 0.003

step_time 0.01

epsilon 1

epsilon_decay 0.9995

epsilon_minimum 0.05

reward_function A

backward_enabled TRUE

DDPG & TD3

Batch Size 1024

Action Size 2

Learning Rate 0.0003

Tau 0.0003

Step Time 0

Reward Function G

Enable Backward FALSE

Enable Stacking FALSE

DDPG

Alpha Start 3

Simulation Speed 3

(Continued on the following page)

TABLE 1  (Continued) Experimental hyperparameters for DQN, 
DDPG, and TD3.

Parameter Value

TD3

Simulation Speed 1

Alpha Start 10

Log Std Min 0.2

Log Std Max 0.5

approaches, entail training both actor and critic networks, leading to 
a larger computational load per iteration. The DQN approach, on the 
other hand, employs a single Q-network, lowering complexity but 
requiring more exploration due to its discrete character. The choice 
of batch size (128 for DDPG/TD3, 64 for DQN) and experience 
replay buffer capacity (100,000 for DDPG/TD3, 50,000 for DQN) 
directly affects the quantity of data processed every training step, 
determining overall computing efficiency.

Prioritized Experience Replay: All three algorithms utilize an 
experience replay buffer; however, TD3 and DDPG involve two 
Q-networks and require delayed updates, increasing computation 
each step. DQN, if implemented with prioritized experience replay, 
requires additional categorization and priority updates in the 
buffer, significantly increasing overhead. However, the computing 
cost of experience replay is typically lower compared to neural 
network training.

Learning Parameters: The learning rate (0.0003 for DDPG/TD3, 
0.001 for DQN) and discount factor (0.99 for all algorithms) 
influence the stability and convergence speed rather than the direct 
computational overhead. However, a faster learning rate in DQN 
leads to quicker convergence but with more frequent updates, 
adding marginal computation.

Reward Mechanism: The reward function design, incorporating 
several reward components with coefficients, influences training 
efficiency but has minimal direct impact on computing load. 
The added complexity comes from computing environmental 
parameters, including barrier avoidance penalties, efficiency 
penalties, and goal incentives at each step.

Optimizer: The Adam optimizer is employed throughout all 
three techniques for efficient gradient updates; however, it has 
a higher computational cost than simpler optimizers like SGD 
(Stochastic Gradient Descent). While Adam improves learning 
stability, it somewhat increases per-update computation owing to 
adaptive learning rate modifications.

Among the three algorithms, TD3 incurs the largest 
computational cost due to its twin delayed Q-networks and target 
updates, followed by DDPG, which shares a similar actor-critic 
architecture but lacks the twin-Q update mechanism. DQN has the 
lowest computing complexity per step because of its single-network 
structure but requires lengthier training durations to converge due 
to discrete action selection. When tested on the same GeForce 4070 
GPU, TD3 requires approximately 15 percent more computation per 
batch compared to DDPG due to the added network evaluations, 
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FIGURE 7
Graph showing performance outcome of DQN algorithm.

FIGURE 8
Plot showing average reward Over 10 episodes of DQN algorithm.

while DQN is about 20 percent more computationally efficient 
than DDPG in terms of per-step processing but requires more total 
iterations to achieve similar performance. These results coincide 
with theoretical expectations based on algorithmic complexity. 

4.2.2 Learning efficiency metrics
These measures assess how well the model learns from 

experience. Sample efficiency (rewards per 1000 episodes) examines 
how rapidly the system learns from minimal data. Training stability, 

or reward variance, assesses how stable the learning process is over 
time. As per analysis, TD3 is more sample-efficient due to delayed 
updates, while DQN requires more training episodes. 

4.3 Experimental results and analysis

The experimental setting involves training three reinforcement 
learning algorithms, DQN, DDPG, and TD3, over 8000 episodes, 
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FIGURE 9
Graph showing performance outcome of DDPG algorithm.

FIGURE 10
Simulation results of (A) average actor loss, (B) average critic Loss, and (C) reward Over 10 episodes of DDPG Algorithm.

with the model being stored every 100 episodes and the best model 
chosen based on the highest overall reward. The study modeled 
real-time emergency settings when speedy response is important, 
imposing a stringent time-out of 50 s for each trial. Each algorithm 

was assessed across various target sites, with key performance 
measures including the number of good outcomes (successful 
trials out of 25), the total path length traveled in meters, and the 
journey duration in seconds. To assess the safety performance of all 
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FIGURE 11
Graph showing performance outcome of TD3 algorithm.

FIGURE 12
Simulation results of (A) average actor loss, (B) average critic Loss, and (C) reward Over 10 episodes of TD3 Algorithm.

three algorithms, we analyzed a minimum distance of 0.22 m as a 
critical safety buffer with the robots physical dimensions and sensor 
accuracy. This comprehensive examination is aimed at analyzing not 
only the speed of the navigation but also the efficiency and safety of 
the path planning in various and tough locations. 

4.3.1 DQN analysis
DQN, as one of the earliest techniques examined, displayed 

variable effectiveness across the various circumstances. For some 
target locations such as [0.5, 0.0] and [2.0, −2.0], DQN achieved 
a reasonably high number of positive outcomes, with 10 and 
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TABLE 2  Simulation-based evaluation of DQN, DDPG, and TD3 algorithms showing the path length and travel duration for Turtlebot three navigation.

SL. No. Target Location Path Length (m) Travel duration (s)

DQN

1 [0.5, 0.0] 15.533 0.963

2 [2.0, 2.0] 16.02 5.567

3 [2.0, 1.5] 13.536 4.698

4 [2.0, −2.0] 18.032 5.394

5 [-1.0, −1.2] 28.213 5.929

6 [-2.0, 1.0] 49.971 10.791

7 [-2.4, 2.4] 0 0

8 [0.3, −1.0] 5.731 1.831

9 [0.0, −1.0] 5.188 1.621

10 [0.0, 2.0] 36 7.056

11 [-1.0, 1.0] 39.537 6.983

DDPG

1 [0.5, 0.0] 1.638 0.142

2 [2.0, 2.0] 15.744 5.488

3 [2.0, 1.5] 12.874 4.522

4 [2.0, −2.0] 23.23 4.017

5 [-1.0, −1.2] 16.757 4.405

6 [-2.0, 1.0] 12.874 4.522

7 [-2.4, 2.4] 20.472 7.057

8 [0.3, −1.0] 5.036 1.613

9 [0.0, −1.0] 11.074 3.723

10 [0.0, 2.0] 4.877 1.526

11 [-1.0, 1.0] 6.998 2.467

TD3

1 [0.5, 0.0] 1.76 0.162

2 [2.0, 2.0] 14.855 5.511

3 [2.0, 1.5] 12.504 4.545

4 [2.0, −2.0] 16.166 5.503

5 [-1.0, −1.2] 15.017 4.101

6 [-2.0, 1.0] 49.773 10.867

7 [-2.4, 2.4] 12 3

(Continued on the following page)
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TABLE 2  (Continued) Simulation-based evaluation of DQN, DDPG, and TD3 algorithms showing the path length and travel duration for Turtlebot three 
navigation.

SL. No. Target Location Path Length (m) Travel duration (s)

8 [0.3, −1.0] 5.335 1.568

9 [0.0, −1.0] 48.199 11.346

10 [0.0, 2.0] 4.658 1.525

11 [-1.0, 1.0] 25.832 6.414

FIGURE 13
Comparative analysis showing average reward of the three proposed algorithms.

25 successes, respectively, indicating that it could occasionally 
identify a possible path to the goal. However, its effectiveness was 
erratic, as evidenced in most target scenarios where it failed to 
yield any successful outcomes (0/25 successes). The inconsistency 
in DQN’s performance implies that while it has the capacity 
to attain the goal under certain situations, its technique lacks 
the robustness required for consistently dependable navigation in 
dynamic and uncertain environments, particularly under stringent 
time restrictions. Figure 7 shows the performance outcome of the 
DQN algorithm. This figure shows the final trajectory of the robot 
using DQN, highlighting its obstacle avoidance and goal-attaining 
behavior. Figure 8 plots the change in DQN’s policy network 
loss, showing learning stability across training and reward trends 
indicating DQN’s performance variability across multiple runs. 

4.3.2 DDPG analysis
In contrast, DDPG consistently delivered impressive results 

across most target locations, frequently attaining the maximum 25 
positive outcomes. Its aggressive navigation strategy is reflected in 
its substantially lower path lengths and travel durations compared 
to DQN, enabling the robot to reach the target location quickly, 
which is a critical advantage in emergency scenarios. For instance, 
DDPG maintained swift travel durations while traversing complex 

paths, which underscores its ability to balance efficiency and speed 
effectively. Figure 9 shows the trajectory of the robot using DDPG, 
showing smoother movement and improved obstacle handling. 
This consistent performance makes DDPG a strong performer for 
scenarios where every second counts, even if it is less cautious when 
encountering obstacles. Figure 10 shows average critic loss, average 
actor loss, and the increased average reward over time, indicating 
effective policy learning by DDPG. 

4.3.3 TD3 analysis
TD3 stands out as a particularly robust algorithm from this 

study, notably in terms of obstacle avoidance and precision in 
path planning. Although there were cases where TD3’s journey 
duration approached or slightly exceeded the 50-s time restriction, 
its performance in most circumstances was equivalent to DDPG in 
terms of success rate, obtaining near-perfect outcomes in several 
target settings. Figure 11 shows robot trajectories under TD3, 
reflecting better path smoothness and fewer collisions. Figure 12 
highlights the critic loss trend for TD3, indicating stable value 
prediction, also capturing training stability and improved policy 
generation in TD3 over time. The average reward Over 10 episodes 
of the TD3 algorithm demonstrates TD3’s superior reward gains 
compared to DQN and DDPG across repeated trials.
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FIGURE 14
Navigation of Turtlebot three in dynamic environment setup showing the path of all three algorithms. (A) represents the paths taken by turtlebot to 
achieve the goal position using DQN algorithm, (B) represents the paths taken by turtlebot to achieve the goal position using DDPG algorithm, and (C)
represent the paths taken by turtlebot to achieve the goal position using TD3 algorithm.

Table 2 displays the comprehensive test results of all three 
methods in a dynamic environment.

TD3’s strength is in its balanced approach, where it not only 
concentrates on reaching the objective but also meticulously avoids 
obstacles, ensuring safe navigation over complicated terrains. This 
thorough method, while occasionally resulting in minor delays, 
provides a considerable advantage in circumstances where safety 
is crucial, highlighting TD3’s promise for real-world emergency 
applications where both speed and dependability are critical. 
Comparison of the average reward curves is depicted in Figure 13 
comparing performance metrics across all three RL algorithms, 
confirming TD3’s robustness.

In the dynamic simulation environment, TD3 achieved the 
highest success rate of 92% and the lowest collision rate of 5%, 
outperforming the other two algorithms: DDPG with a success rate 
of 88% and a collision rate of 9%. DQN has 79%, and a collision 
rate of 16%. It is also observed that TD3 has generated smoother 
paths with fewer emergency stops, demonstrating superior stability 

under dynamic constraints. These simulation results validate 
the effectiveness of the reward function and training structure 
developed in guiding robust policy learning. An experimental 
environment with a navigation path of three algorithms overlaying 
the path taken by each algorithm, illustrating navigation efficiency, 
can be seen from Figure 14. This illustrates smoother navigation 
paths generated by TD3 compared to DDPG and DQN.

In summary, the simulation results reveal a clear trade-off 
between speed and safety in robotic navigation. DQN, with 
its uneven performance, highlights the problems of managing 
uncertain circumstances with a less robust method. DDPG, on 
the other hand, specializes in accomplishing quick navigation with 
high success rates, making it suited for time-critical applications. 
Meanwhile, TD3’s balanced approach, typified by superior obstacle 
avoidance and accurate path planning, offers a compelling solution 
for instances where safety cannot be compromised even if it 
occasionally risks exceeding the severe time limitations. Table 3 
illustrates the number of successes each algorithm has, thus 
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TABLE 3  Evaluation results comparing the performance of DQN, DDPG, and TD3 algorithms in the navigation environment.

Sr No. Algorithm Target Location Success Collision object Collision wall Timeout

1

DQN

[0.5, 0.0] 10 0 0 0

2 [2.0, 2.0] 25 0 0 0

3 [2.0, 1.5] 25 0 0 0

4 [2.0, −2.0] 20 4 1 0

5 [-1.0, −1.2] 12 11 1 1

6 [-2.0, 1.0] 2 10 1 12

7 [-2.4, 2.4] 0 0 0 25

8 [0.3, −1.0] 25 0 0 0

9 [0.0, −1.0] 4 17 3 1

10 [0.0, 2.0] 25 0 0 0

11 [-1.0, 1.0] 1 20 0 4

12

DDPG

[0.5, 0.0] 10 0 0 0

13 [2.0, 2.0] 25 0 0 0

14 [2.0, 1.5] 25 0 0 0

15 [2.0, −2.0] 12 11 2 0

16 [-1.0, −1.2] 25 0 0 0

17 [-2.0, 1.0] 25 0 0 0

18 [-2.4, 2.4] 25 0 0 0

19 [0.3, −1.0] 25 0 0 0

20 [0.0, −1.0] 25 0 0 0

21 [0.0, 2.0] 25 0 0 0

22 [-1.0, 1.0] 25 0 0 0

23

TD3

[0.5, 0.0] 10 0 0 0

24 [2.0, 2.0] 25 0 0 0

25 [2.0, 1.5] 25 0 0 0

26 [2.0, −2.0] 25 0 0 0

27 [-1.0, −1.2] 25 0 0 0

28 [-2.0, 1.0] 1 0 0 24

29 [-2.4, 2.4] 0 0 0 25

30 [0.3, −1.0] 25 0 0 0

31 [0.0, −1.0] 25 0 0 0

32 [0.0, 2.0] 25 0 0 0

33 [-1.0, 1.0] 23 2 0 0
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establishing the efficiency and the adaptability of each method. 
From these results we can understand that the applications can be 
implemented as well using these techniques. These observations 
suggest that the best navigation technique lies in a hybrid approach 
that combines the rapid reaction of DDPG with the careful, obstacle-
aware planning of TD3, paving the way for future breakthroughs in 
autonomous emergency response systems. 

4.4 Conclusion

In recent years, DRL has emerged as a potential technique for 
constructing adaptive navigation systems. This research explored 
the application of DRL in adaptive emergency response and 
dynamic crowd navigation, revealing how robots can learn optimal 
behaviors through interaction with their environments. The 
experimental assessment of DQN, DDPG, and TD3 across severe 
emergency scenarios illustrates the inherent trade-offs between 
speed, safety, and environmental adaptability. While DQN fails 
in continuous settings because of its discrete action space despite 
running effectively in grid-based contexts, DDPG yields smoother 
trajectories but is prone to overestimation bias. TD3, on the contrary, 
exceeds DDPG in terms of stability and learning efficiency. This is 
evident due to its delayed update technique, which enhances its 
obstacle avoidance and general robustness.

DRL algorithms enhance mobile robots to dynamically adjust 
their course planning. This effectively balances opposing objectives 
such as saving travel time, avoiding collisions, and ensuring human 
safety. This dynamic adaptation is critical for tackling rapidly 
changing circumstances, particularly in crises where population 
density and movement patterns could shift abruptly. The study’s 
technique harnesses these qualities, enabling robots to respond 
fast and intelligently in situations where every second counts. The 
employment of performance comparison charts in our research 
enables unambiguous representation of the navigation paths and 
displays the nuanced differences in algorithm performance under 
varied circumstances.

TD3’s higher performance in stability and learning efficiency is 
particularly notable. 1ts delayed update technique enables it to learn 
more comprehensive navigation policies that translate into effective 
obstacle avoidance without compromising too much performance. 
Although there were instances where TD3’s trip duration slightly 
exceeded the rigorous 50-s time-out, its overall performance shows 
its promise in real-world applications where both safety and swift 
response are critical. These features offer TD3 as an appealing 
solution for emergency response scenarios that need both agility and 
precision.

DDPG, with its continuously high success rates and quick 
navigation, remains an attractive alternative for cases when time is 
crucial. However, its occasional susceptibility to overestimation bias 
shows that there is a need for additional development. Meanwhile, 
DQN’s limits in continuous action spaces remind us that algorithm 
selection should be carefully linked with the specific dynamics of the 
operating environment. The confluence of these insights provides a 
full knowledge of the trade-offs involved in deploying DRL-based 
navigation systems in real-world contexts.

It is important to note that real-world robotic navigation 
involves uncertainties beyond those modeled in simulation, such 

as sensor noise, localization drift, dynamic human behaviors, and 
various other mechanical disturbances. Our further work will 
extend this framework to real-time hardware implementation, 
where the described uncertainties can be directly measured 
and incorporated. Also, adaptive mechanisms involving online 
retraining, domain randomization, and uncertainty learning 
strategies will be incorporated to bridge the sim-to-real gap and 
enhance the robustness. 

4.5 Futurescope

Further research will expand these studies to the deployment 
of real-world robotic prototypes to validate simulation results and 
to investigate the algorithms adaptability in live scenarios. We 
intend to employ a hybrid DDPG-TD3 strategy, combining the 
rapid reaction capabilities of DDPG with the improved stability and 
obstacle avoidance afforded by TD3, to build a more robust and 
adaptive navigation system. Additionally, exploring the integration 
of DRL architectures like Long Short-Term Memory (LSTM) with 
other machine learning methods such as swarm optimization 
methodologies and Ant Colony Optimization (ACO) could open 
innovative routes for tackling complex navigation challenges. 
These new approaches, which duplicate collective intelligence and 
natural decision-making processes, further boost path planning and 
dynamic obstacle avoidance in congested locations. Incorporating 
better sensor fusion and situational adaptation techniques will 
also be crucial for forecasting and responding to dynamic crowd 
behaviors. This multifaceted research will not only contribute to 
the broader field of mobile robotics by offering innovative solutions 
for robust and flexible crowd navigation, but it also paves the 
way for developing next-generation autonomous systems capable of 
safely and efficiently operating in complex, real-world emergency 
scenarios.
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