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This paper discusses the functional advantages of the Selection-Broadcast Cycle
structure proposed by Global Workspace Theory (GWT), inspired by human
consciousness, particularly focusing on its applicability to artificial intelligence
and robotics in dynamic, real-time scenarios. While previous studies often
examined the Selection and Broadcast processes independently, this research
emphasizes their combined cyclic structure and the resulting benefits for
real-time cognitive systems. Specifically, the paper identifies three primary
benefits: Dynamic Thinking Adaptation, Experience-Based Adaptation, and
Immediate Real-Time Adaptation. This work highlights GWT's potential as a
cognitive architecture suitable for sophisticated decision-making and adaptive
performance in unsupervised, dynamic environments. It suggests new directions
for the development and implementation of robust, general-purpose Al and
robotics systems capable of managing complex, real-world tasks.

global workspace theory, selection, broadcast, serial processing, parallel processing,
real-time world

1 Introduction

In recent years, a major research theme in the fields of artificial intelligence (AI),
robotics, and cognitive science has been how to implement the advanced intelligence
and flexible problem-solving abilities of humans and animals into systems Hassabis et al.
(2017); Ho and Griffiths (2022). For example, large language models (LLMs) learn
from vast amounts of text data through attention mechanisms and acquire the ability
to respond flexibly to unknown questions Vaswani et al. (2017). This capability is
seen as going beyond mere pattern matching and mimicking some of the human
cognitive functions such as reasoning and knowledge integration. Similarly, in the
field of image recognition, deep learning-based feature extraction techniques have
made significant progress, leading to practical applications in various tasks such

01 frontiersin.org


https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1607190
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1607190&domain=pdf&date_stamp=2025-11-11
mailto:nakanishi.junya@irl.sys.es.osaka-u.ac.jp
mailto:nakanishi.junya@irl.sys.es.osaka-u.ac.jp
https://doi.org/10.3389/frobt.2025.1607190
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1607190/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1607190/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1607190/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1607190/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1607190/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1607190/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Nakanishi et al.

as object detection, face recognition, and scene understanding
Edozie et al. (2025); Ni et al. (2023). While the development of
learning and recognition technologies in individual modalities is
remarkable, the advanced intelligence exhibited by humans and
animals is characterized by their ability to adapt to the environment
by integrating multiple sensory modalities rather than relying
on a single information source. As a result, there is growing
interest in “multimodal” and “parallel” architectures that execute
tasks by simultaneously utilizing multiple cognitive functions
Kotseruba and Tsotsos (2020); Ajay et al. (2023). However, the
integration of information and complementary reasoning between
these specialized modules (e.g., visual, linguistic, logical reasoning,
and motor control) remain limited, and this is one of the major
challenges in the field Liu et al. (2025).

Against this background, the Global Workspace Theory (GWT),
which was devised by imitating human consciousness, is attracting
attention. GWT positions “consciousness” from the perspective
of information processing structure and proposes a framework
in which information that has been competed for and integrated
among numerous parallel specialized modules is temporarily
brought “into consciousness” and then shared system-wide Baars
(2005). Since it was first proposed by the psychologist Bernard Baars,
GWT has been linked to many empirical findings in neuroscience
and cognitive science Dehaene and Naccache (2001); Mashour et al.
(2020). More recently, its advantages as an information processing
architecture have begun to attract attention in Al research as well.
Previous GWT research suggests that the “Selection” process, which
integrates information among multiple parallel specialized modules,
and the “Broadcast” process, which disseminates the selected
information throughout the system, are expected to be effective
as a wide range of functions, including creative thinking, transfer
learning, top-down control, and attention allocation Mashour et al.
(2020); Juliani et al. (2022); VanRullen and Kanai (2021).

However, there is one perspective that continues to be
overlooked in many of these discussions. That is information
processing with a temporal dimension, i.e., not a single process or
static environment, but a chain of multiple information processing
operations that require careful consideration to find an answer,
and responses to dynamically changing environments. These
information processing methods with a temporal dimension are
important research topics in artificial intelligence systems that
handle complex tasks that require learning and adaptation, and in
robotics, where real-time processing is required Lesort et al. (2020);
Shaheen et al. (2022); Shiwa et al. (2008); Alhaddad et al. (2020). For
example, in unknown complex tasks, it is not possible to arrive at an
answer with a single processing step, and it is necessary to consider
various perspectives and organize information to derive an answer.
Furthermore, in tasks performed in dynamic environments, sensor
data is updated moment by moment, and task goals and external
conditions change depending on the situation. In short, the essence
of intelligence lies not only in single-shot input processing, but also
in the flow of information processing that unfolds as a temporal
chain. However, in traditional GWT research has been limited to
mentioning the usefulness of “Selection” and “Broadcast” separately,
i.e, in a static, single process, and the effectiveness of executing
these two processes in parallel and intermittently (i.e., information
processing with a temporal dimension) has not been sufficiently
addressed.
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This study focuses on the process of information exchange
through selection and broadcast, hereinafter refers to this as the
“Selection-Broadcast Cycle”, and aims to fill this gap. In other
words, we position the Selection-Broadcast Cycle as an extension of
conventional GWT that introduces a temporal dimension, thereby
reinforcing the theoretical standing of GWT as an information
processing architecture for specialized module integration. To this
end, based on conceptual processing flow, we have presented
a hypothesis regarding the functional advantages provided by
its dynamic and cyclical structure. Specifically, we propose the
following three hypotheses.

Dynamic Thinking Adaptation: a capacity to dynamically
rearrange module execution order, thereby enabling flexible
adaptation to unexpected task changes or evolving goals Experience-
Based Adaptation: an acceleration of consciousness processing by
exploiting past experiences stored in memory modules, facilitating
faster predictions and decision-making Immediate Real-Time
Adaptation: a quick intervention route to consciousness processing
allows for immediate response to real-time changes.

The contributions of this study can be summarized in the
following two points. First, this paper introduces a temporal
dimension that was lacking in previous GWT research and
formalizes a new structure called the Selection-Broadcast Cycle. In
previous frameworks, selection and broadcast were primarily treated
as discrete events, but this study redefines them as dynamic and
cyclical processes, providing a theoretical foundation that explains
sequential information updates and environmental adaptation.
Second, through conceptual processing flow, this study verified the
functional advantages of the Selection-Broadcast Cycle in real-time
adaptability and long-term task execution. This suggests that the
proposed framework is not merely a theoretical concept but has
potential utility in practical applications, including robotics and
dialogue agents.

2 Literature review

2.1 Overview of GWT

The Global Workspace Theory (GWT) is a cognitive science
theory of information processing in consciousness, proposed by
the psychologist Bernard Baars (2005). The essence of GWT is a
framework in which information is competed and integrated among
many specialized modules (e.g., vision, hearing, memory, language)
that operate in parallel, and the information that eventually wins is
then shared among all modules (Figure 1). The winning information
is temporarily retained in a conscious form within a memory
area called the “global workspace” Only a limited amount of
information can win at a time, and other competing information
is considered to be processed unconsciously in the background.
In this way, GWT is positioned as a framework to explain the
interaction between a serial, limited-capacity conscious process
and parallel, large-capacity unconscious processes. This model
is supported by numerous experimental findings Dehaene and
Naccache (2001); Mashour et al. (2020). For example, in brain
imaging studies (e.g., fMRI, PET, EEG), stimuli processed under
consciousness involve extensive regions of the brain, including
the frontal and parietal lobes. These stimuli exhibit recurrent
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FIGURE 1
Architecture of the global workspace theory.

[ P —

Unconsciousness

7/

signaling, whereas stimuli that do not reach conscious awareness
(i.e., go through unconscious processing) remain confined to local,
transient activity Dehaene et al. (2001); Gaillard et al. (2009). This
is consistent with the mechanism proposed by GWT that once
some piece of information wins, it is broadcast globally to the
entire system.

These demonstrate one aspect of conscious information
processing, but many mysteries remain regarding practical
implementation. For example, the formalization of selection criteria
for which information is selected and shared globally remains
insufficient. It has been suggested that the integrated weighting
of bottom-up attention (e.g., the intensity of sensory stimuli) and
top-down control (e.g., current task goals) may be a determining
factor in selection Buschman and Miller (2007), but the specific
computational mechanisms by which this is evaluated remain
unclear. Additionally, the conditions under which these weightings
dynamically change and the underlying control principles remain
unexplored. For example, reward prediction errors or reinforcement
learning feedback may adjust the criteria for what information
is considered important. However, how such learning processes
are integrated within the GWT framework remains unclear
both theoretically and empirically. Furthermore, it is necessary
to clarify what information is actually exchanged in the global
workspace. In the current model, the unit of information is
ambiguous, with sensory representations, semantic symbols, and
behavioral intentions coexisting. Which granularity of information
is suitable for global propagation, and how it is formatted (e.g.,
from sensory to linguistic) requires further experimental and
computational investigation. At the same time, the diversity
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of information processing units that may exist as specialized
modules and their constitutive conditions remain ambiguous.
In GWT, the parallelism of modules is discussed abstractly, but
the mapping to actual neural circuits, the degree of hierarchy
and plasticity between modules, and the possibility of forming
new modules remain undefined design principles. As such, there
are many unknowns regarding specific implementation, and
research attempting to implement GWT is focusing on designs that
combine GWT with other theories and technologies Franklin et al.
(2013); Ito et al. (2023); Dossa et al. (2024); Huang et al. (2023);
Garrido-Merchain et al. (2022).

While the above GWT studies mainly focus on the question
of “what information processing structures do we use;” there
are attempts to examine GWT’s information processing from
the question of “why did we arrive at this kind of information
processing structure” From the biological and evolutionary
perspective, we can address this question by considering how such
a structure might have provided adaptive advantages in terms
of survival and reproduction Juliani et al. (2022). Examining
the advantages of such information processing structures is
an important theme that contributes to the construction of
systems with advanced intelligence and flexible problem-solving
abilities. In previous research, the focus has often been placed
on the part of GWT’s information processing structure related to
competing and integrating information among multiple specialized
modules operating in parallel (Selection process) and on the
part that shares the selected information with the entire system
(Broadcast process), and the advantages and benefits of these have
been discussed.
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2.2 Functional advantages of selection

In this paper, the process of selecting information from among
the information processed in parallel by multiple specialized
modules and then integrating this information in a global workspace
is called the “Selection” process.

2.2.1 Diverse perspectives

By comparing and examining the outputs of multiple
specialized modules, it is thought that it will be possible to
generate a wider variety of solutions and ideas for a given task
Ito et al. (2023); Wiggins (2012). For instance, if both a visual
module and a language module are operating simultaneously,
approaches that capture a problem from a pictorial/imaginative
viewpoint can be compared with those that capture it from a
linguistic/logical viewpoint. This concept is akin to the notion of
“ensemble learning” Polikar (2012): by combining multiple models
or modules with different specializations, the combination of models
can complement the diverse aspects that a single model alone would
not capture, thereby producing higher predictive accuracy and
robustness overall.

Furthermore, the mechanism that integrates multiple parallel
modules enables unexpected combinations of knowledge and
skills from each module, which is thought to lead to creative
thinking VanRullen and Kanai (2021); Wiggins (2012). For example,
imagine a module responsible for visual thinking, inspired by
metaphorical expressions provided by a language processing
module, giving rise to a new diagram or prototype, which is
then validated by a logical reasoning module. Alternatively, a
module specializing in reinforcement learning might combine
with a sensorimotor module’s proposed action strategy, leading to
previously unanticipated solutions or task-execution procedures.
The process of generating these incidental or divergent ideas
and then evaluating, narrowing down, and integrating them is
considered by many to be at the core of creative thinking Stojanov
and Indurkhya (2013).

2.2.2 Transfer learning

When faced with a new task, utilizing the skills already acquired
in the specialized modules reduces the need to learn from scratch,
and as a result, it is thought that the efficiency and speed of
learning will improve VanRullen and Kanai (2021); Wiggins (2012).
For instance, if there are modules that excel in visual recognition,
language processing, or logical reasoning and each is independently
trained, then when facing a new domain or a different task, it
becomes possible to adapt quickly by making use of the knowledge
and representations already accumulated in these modules. This
is analogous to “transfer learning” Tan et al. (2018) in machine
learning. In fact, when adapting a deep neural network learned in
one domain (source domain) to another domain (target domain),
reusing the lower-level feature extraction parts shortens the early
training phase while still delivering high performance.

2.3 Functional advantages of broadcast
In this paper, the process of sharing selected information with

all specialized modules is called the “Broadcast” process.
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2.3.1 Shared attention

It is thought that broadcasting allows each specialized module
to concentrate its resources on information that is deemed to
be extremely important according to the current goals and
environmental conditions, thereby improving the efficiency and
accuracy of task execution Wiggins (2012); Dossa et al. (2024).
For example, consider a robot endowed with multiple sensory
modules for vision, hearing, and touch, which is tasked with
detecting, identifying, and accurately grasping an object. First,
the visual module, operating unconsciously, generates multiple
candidates, performing tasks such as location estimation and object
classification in parallel. Meanwhile, the hearing module tries to
gather hints from environmental sounds or voice commands that
could modify actions. The tactile module prepares feedback control
for the stage at which the robot actually grasps the object. After
the information generated by each module is integrated by the
Selection process, if the decision “to combine accurate location
estimation from the visual module with minor corrective commands
from auditory instructions” wins, that information is shared with
all modules via the Broadcast function. As a result, the robot can
carry out the plan “move the arm toward the coordinates estimated
visually, corrected by auditory information” in coordination across
all modules.

This mechanism seems to be highly relevant to the “Transformer
architecture” (2017). which
demonstrate extremely high performance in various tasks such

Vaswani et al. Transformers,
as natural language processing and image recognition, have a core
mechanism known as “self-attention”. In self-attention, the inputs
(or feature vectors) compute their mutual relevance, enabling the
network as a whole to incorporate necessary contextual information.
This mechanism is akin to GWT’s claim of handling diverse
information while spotlighting important items and sharing them
throughout the system. Though the transformer was not initially
designed with the goal of mimicking consciousness, the fact that
it achieves such high performance in language processing, image
recognition, and more by way of sharing of important information
hints at the fundamental usefulness of a strategy that shares the most
crucial elements globally in an intelligent system.

2.3.2 Predictive coding

Among the specialized modules, there are those that receive
data from sensors (e.g., visual, auditory, tactile). If they receive
predictions or metacognition as broadcast information, it may
enhance the performance of the module’s output VanRullen and
Kanai (2021); Wiggins (2012). For example, when the visual module
is only processing lower-level features such as raw pixel data and
edge information, it will only output tentative recognition results
based on local statistics and pattern recognition. However, when
higher-level context and objectives such as “this scene is outdoors
and there is a high possibility that there are multiple people in the
picture” and “the task is to judge the facial expressions of specific
people” are broadcast from the global workspace, the visual module
will re-evaluate its output while referring to these predictions
and hypotheses. As a result, corrections such as prioritizing the
extraction of resolution and regions of interest that are appropriate
for the task, or more carefully searching for clues to separate
people and backgrounds, can be expected to improve recognition
performance and reduce false positives. This aligns closely with
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the concept of “predictive coding” Friston and Kiebel (2009) often
discussed in neuroscience and cognitive science. Predictive coding
posits that the brain or cognitive system is constantly sending top-
down predictions from higher (i.e., more advanced) modules to
lower (i.e., more basic) modules, while the lower-level modules
calculate and return the discrepancy (prediction error) between
the actual sensory input and the prediction. If the discrepancy is
large, it implies that something different from the predictions is
likely in the scene, and this error is returned upstream so that
the higher-level module can update or generate new predictions. If
the discrepancy is small, it implies that the prediction and actual
data largely match, thus increasing the likelihood that it is really
as observed. Through repeated mutual interplay between top-down
predictions and bottom-up prediction errors, the entire perception
and cognition system dynamically adapts to the environment.

2.4 Temporal dimension perspective in
information processing

In this paper, information processing with the temporal
dimension refers to a series of information processing operations
that require careful consideration in order to find an answer, or that
respond to a dynamically changing environment.

The former, a series of information processing, refers
to focusing on the way functional processing is stacked.
In many cases, an information processing operation can be
decomposed into functional processing components. For example,
an LLM is hierarchically structured with multiple functional
processing components such as word tokenization, position
embedding, weighting via self-attention mechanisms, and sequence
generation, with each stage performing information transformation
Vaswani et al. (2017). While we can describe an LLM as a
single functional information processing system, from a temporal
perspective, we will focus on the process of how functional
processing steps that constitute an LLM are stacked. The focus
on this approach of stacking functional processing has also gained
attention in LLM research in recent years. Traditional LLM research
has primarily focused on improving the performance of a single
model by increasing the number of parameters or expanding the
amount of training data, that is, an approach based on scaling
laws, where model size is expanded to achieve more complex and
advanced information processing capabilities Kaplan et al. (2020).
However, in recent years, research has progressed toward designing
the functional structure of processing in a more conscious manner
by sequentially linking and integrating the outputs of multiple LLM
models with distinct processing functions, rather than relying on
a single large model for batch processing Sahoo et al. (2024). This
study focuses on GWT and discusses what can be achieved through
an infinite loop of selection and broadcast processing steps.

The latter refers to the ability to flexibly adjust internal
processing strategies and outputs in response to a dynamically
changing environment, where external conditions and demands are
constantly changing. There are two main aspects to adapting to such
dynamic environments. The first is the ability to adaptively change
the next action selection or information processing policy based
on the gradual updating of the representation of the internal state
through continuous interaction with the environment Lesort et al.
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(2020); Shaheen et al. (2022). In this aspect, it is necessary
to reconstruct the processing strategy in accordance with the
current context, taking into account past experiences and the
results of the most recent interaction. The second is the reactive
response ability to immediately respond to sudden changes in the
external environment and initiate appropriate processing or actions
Shiwa et al. (2008); Alhaddad et al. (2020). This paper focuses
not on the relationship between the required responsiveness and
processing delays, but rather on how responsiveness is structurally
enabled. Specifically, it examines what components and processing
mechanisms must be combined to enable immediate responses to
changes, and how these are realized through a division of roles
within the overall system.

3 Hypothesis

In this paper, in addition to the structural advantages from
each of the traditional GWT perspectives (Selection and Broadcast),
we newly focus on the advantage of a cycle structure in which
information processing occurs through Selection and Broadcast
(Selection-Broadcast Cycle). Within this cycle structure, we discuss
the dynamic, stepwise information processing in which Selection
and Broadcast intertwine in parallel and intermittently. Note that
this paper does not limit specialized modules and assumes them to
be as broad as possible.

3.1 Dynamic thinking adaptation

The Selection-Broadcast Cycle possesses a structure that can
realize any order of serial processing steps of specialized modules.
The serial processing referred to here means processing that
is carried out step by step (e.g., a chain of thought Wei et al.
(2022), inductive and deductive reasoning Shanahan (2025).
In contrast to parallel processing, in which multiple modules
operate simultaneously, serial processing involves processing
being carried out in order, with the information generated or
selected by one module being passed on as input to the next
module. In serial processing, the final answer is derived from
the inferences and logical development that take place in the
intermediate processing. This process of deriving conclusions in
steps allows for reliable problem solving and decision making
in various complex tasks while using only a small number of
inferences and limited logical knowledge. For example, by simply
memorizing the results of addition and multiplication of 0-9 and
the methodology of longhand arithmetic, you can calculate any
addition or multiplication of integers (e.g., 11 x 2=10x 2+ 1x 2).
In this way, by breaking down complex tasks into simpler sub-tasks
(i.e., tasks that can be processed using limited memory or simple
rules) and dealing with them in stages, it is possible to deal with a
wide range of different tasks using relatively little memory capacity.

The Selection-Broadcast Cycle process has a space where such
intermediate inferences and logical developments can be freely
performed. Figure2 shows an example of a simple Selection-
Broadcast Cycle structure with two modules (M1, M2). The
upper part of Figure 3 shows conceptual processing flow of the
execution procedure of modules, and the lower part shows the
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FIGURE 2

Example of GWT-based structure with two modules: This shows a
GWT-based structure consisting of two modules (M1 and M2).
Information output from the M1 and M2 module is selectively
broadcast through the global workspace.

processing flow that executes that execution procedure in the
Selection-Broadcast Cycle. As you can see, the Selection-Broadcast
Cycle process can execute any execution procedure using the
modules by switching the selection well. In order to implement
such a vast serial processing space for intermediate inferences and
logical development as a pipeline, a large tree structure made up of a
large number of modules is necessary. The Selection-Broadcast Cycle
process is thought to be a structure made up of a minimum number
of modules using looped information processing.

Furthermore, this function enables flexible and dynamic
processing, allowing the system to try out various thought processes
and change your thought processes in response to changes in the
situation. This is a great advantage when dealing with situations that
are difficult to handle with a fixed pipeline process, such as when
the processing procedure is unclear or the goal is changed partway
through. For example, consider the case where a robot explores a
room based on information from multiple sensors (vision, touch,
audio input, etc.). At the start of the search, the main objective
was to search for and move along the shortest route, and the
processing was set up to call the object detection module and the
route planning module in order. However, during the search, there
were many collisions with people in the room along the route.
In this case, the Selection-Broadcast Cycle makes it possible to
share the problem with the whole system, devise a solution, and
make changes to the processing, for example, by calling a human
detection module while planning a route. Also, if a voice instruction
is received and the content of the instruction changes, it is possible
to call a voice recognition module to share the analysis results
with the whole system, and then reconfigure the execution order
of the visual module and route planning module in response to
the results. Thanks to this variable serial processing, the order in
which the necessary specialized modules are called can be flexibly
rearranged in response to changes in the situation or new goals,
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making it possible to accomplish tasks that would be difficult with
fixed pipeline processing.

This function also makes it possible to exchange information
between any of the modules. VanRullen and Kanai (2021) point out
that the global workspace functions as a “hub” between specialized
modules, and that cycle-consistency learning Zhu et al. (2017) can be
carried out by exchanging information between the same specialized
modules. Cycle-consistency learning is a learning method that
imposes constraints on the model to maintain consistency when
converting data back and forth. These constraints ensure that once
converted data can be restored to its original state by reversing the
conversion, and prevent the loss of content or meaning during the
conversion process. A major advantage is that it can learn domain
mapping even without training data. In this way, the outputs of each
specialized module are continuously cross-checked by repeating the
Selection-Broadcast Cycle, and the entire system has the potential to
detect potential inconsistencies, correct errors, and gradually build
more reliable processing results.

Dynamic Thinking Adaptation holds the potential for systems
to flexibly switch among multiple modes of thinking depending
on the situation, thereby enabling adaptive problem solving and
decision making. However, this approach presents several structural
challenges. One significant issue is that implementing dynamic
thinking adaptation requires a sophisticated selection mechanism
to determine which module outputs should be elevated to conscious
processing, and such a mechanism remains a major implementation
hurdle. In particular, under dynamically changing module sets,
maintaining an appropriate module selection strategy becomes a
difficult task. Another issue is that the presence of dynamic thinking
adaptation does not necessarily guarantee optimal solutions. The
high degree of flexibility in strategy switching can lead to a risk
wherein the system fails to maintain a consistent behavioral policy.
There is also the possibility of processing delays caused by excessive
contemplation. Thus, although dynamic thinking adaptation is
a promising function, there remain substantial challenges in
implementing and learning the selection control mechanisms
that enable it.

3.2 Experience-based adaptation

As noted, in GWT, the information that is sequentially raised
in the Global Workspace (Consciousness) through the Selection-
Broadcast Cycle is shared with all specialized modules in a stepwise
manner. Here, we focus on the point that the serial processing
carried out in consciousness enters each specialized module in
chronological order. It is thought that there are specialized modules
that record such chronological consciousness and store it as
experience memory Franklin et al. (2005). We can further suppose
that such experience memory can be recalled if a similar situation
arises. If so, it would become possible to speed up or predict the
course of serial processing.

Figure 4 shows conceptual processing flow of a Selection-
Broadcast Cycle structure with two modules (M1, M2) and
one experience memory module (M3). Consciousness (Cyclel),
Consciousness (Cycle2), and Consciousness (Cycle3) refer to the
information (i.e., global workspace state) sent in each respective
cycle. Consciousness (Cyclel), Consciousness (Cycle2), and
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GWT Process

Conceptual Processing Flow of Dynamic Thinking Adaptation: This is conceptual processing flow based on the structure shown in Figure 2 for
Dynamic Thinking Adaptation. The upper part shows an example of the module execution procedure (pipeline process), and the lower part shows the
flow of processing to be executed in the Selection-Broadcast Cycle for the selected execution procedure. The red arrows indicate the flow of valid
information. In Cyclel, the output from Module M1 is input into Module M2. In Cycle2, the output from Module M2 is input into both Module M1 and
Module M2. In Cycle3, the outputs from both Module M1 and Module M2 are input into Module M1. In all cycles, the GWT-based structure enables
information processing on the same structure by appropriately switching the selection.

M1 M2

Consciousness (Cycle3) are each listed in the global workspace
in chronological order. Because these consciousnesses are broadcast
in chronological order, they flow into the experience memory
module as well. The experience memory module retains them as
experiences. Then, when Consciousness (Cyclel) is broadcast again,
the experience memory module can output Consciousness (Cycle2)
and Consciousness (Cycle3) as recalled memories. This means that
it is possible to reach the output of Consciousness (Cycle3) in two
cycles, whereas it would have taken three cycles to reach it in the
past. As described above, it is possible that the Selection-Broadcast
Cycle will enable faster serial processing and prediction. This is
similar to the concept of “chunking” Gobet et al. (2001) in cognitive
science, and if learned schemas and procedures are stored as a kind
of “chunk”, then when faced with a similar task next time, that chunk
can be called up all at once to quickly progress with the processing.

This mechanism not only increases processing speed, but also
promotes inference and anticipation of actions. In other words,
while referring to past thought processes, it is possible to make
predictions such as “there is a possibility that new information
will be lacking at this stage” or “it would be better to activate the
sensorimotor module before the logical inference module in the
next step’, and it is possible to adjust the order of module calls
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and resource allocation in advance based on these predictions. As
a result, each step in the variable serial processing is no longer a
simple “trial and error” process, but rather a planned and efficient
process that makes full use of past accumulated knowledge. The
meta-cognitive decisions made during this process, such as “which
module should be activated at what time” and “when should top-
down information be updated’, are also optimized through the
use of overall information sharing and memory via the Selection-
Broadcast Cycle. In this way, by having a system in place that can
record and utilize a record of serial processing, it is hoped that the
cognitive architecture based on GWT will not only speed up, but
also acquire advanced problem-solving capabilities that incorporate
reasoning and prediction with an eye on the next move.

There have been several implementations of agent systems
that apply experience memory as knowledge (e.g., reasoning and
prediction) Laird et al. (2012); Martin et al. (2021). For instance,
Franklin and colleagues Franklin et al. (2013) have demonstrated
a framework called LIDA (Learning Intelligent Distribution Agent),
which builds on GWT to incorporate conscious content into various
cognitive modules, including an episodic memory module. In LIDA-
based implementations, information that reaches consciousness is
not only broadcast to specialized modules but is also chronologically
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FIGURE 4

Conceptual Processing Flow of Experience-Based Adaptation: This figure shows a Selection-Broadcast Cycle structure consisting of two modules (M1
and M2) and one experience memory module (M3). The upper part shows the phase for storing information processing experiences (Memorization
Phase), and the lower part shows the phase for outputting and utilizing the stored information processing experiences (Utilization Phase). In addition,
the information processing flow is depicted in pipeline form on the left side and in GWT-based structure on the right side. In the memorization phase,
information processing operations are assumed to be executed only in the M1 and M2 modules (pipeline on the upper top left). Consciousness
(Cyclel), Consciousness (Cycle2), and Consciousness (Cycle3) refer to the information (i.e., global workspace state) sent in each respective cycle.
Although the memorization phase consists solely of information processing operations performed by the M1 and M2 modules, consciousness
information also reaches the M3 module, so Consciousness (Cyclel), Consciousness (Cycle2), and Consciousness (Cycle3) are sequentially stored in
the M3 module (orange arrow in the GWT-based structure on the upper right). In the utilization phase, similar to cycle one of the memorization phase,
when Consciousness (Cyclel) is broadcast, the M3 module outputs Consciousness (Cycle2) and Consciousness (Cycle3) as retrieved memories. This
reaches Consciousness (Cycle3) one cycle earlier than in the memorization phase, enabling faster thinking, prediction of outcomes, or application of

knowledge.

recorded in episodic (or experience) memory. When a similar
situation occurs, the system recalls the sequence of recorded
conscious events and applies them as learned knowledge.

Experience-Based Adaptation is a framework in which a
system incrementally improves its behavior according to the
situation by accumulating and referencing past episodes or historical
information. Nevertheless, this approach faces challenges primarily
in experience management and generalization in learning. First,
there exists a trade-off between memory capacity and retrieval
efficiency. As more experiences are accumulated, the number of
episodes that must be referenced increases, leading to greater search
time and complexity in memory management. In applications
requiring fast inference, such delays can undermine practical
usability. Second, in domains where the interpretation of experience
is highly context-dependent, erroneous generalization becomes
a critical issue. Strategies that were successful in the past may
often fail in slightly different contexts, and distinguishing between
applicable and inapplicable past knowledge requires a high degree
of abstraction ability.

3.3 Immediate real-time adaptation

The Selection-Broadcast Cycle enables real-time intervention
the of
external input. Figure 5 shows a simple scenario in which external

in results intermediate  processing based on
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intervention occurs in a Selection-Broadcast Cycle process
consisting of two modules (M1 and M2). As shown in the figure,
external inputs can affect the serial processing of the global
workspace at any point. For example, when a specialized module
detects external important information, this information can be
immediately input into the global workspace through the Selection
process and then distributed to all other modules via the Broadcast
process. It is important to note that this immediate input is not
necessarily blocked because other modules are executing. This is
because the modules operate in parallel and asynchronously. In
general pipeline processing, if a module is executing, all processing
of any input is held until that execution is complete. In the Selection-
Broadcast Cycle, this fast path significantly reduces unnecessary
waiting time and message transmission time, greatly improving the
responsiveness of real-time systems.

In practical robotics scenarios, such flexible intervention
mechanisms have notable advantages. For instance, imagine a
robot performing an assembly task using multiple sensory modules
(visual, tactile, auditory). Suppose the robot’s tactile sensor suddenly
detects an unexpected slip or instability in its grip. With the
Selection-Broadcast Cycle, this critical information is rapidly
promoted into the global workspace, interrupting the ongoing
processing sequence. Consequently, other modules (e.g., motor
control, vision processing, or reinforcement learning) immediately
receive this alert and can swiftly initiate corrective actions. This
immediate broadcast enables the system to promptly reconsider
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FIGURE 5

M2 M1 M2
BExernal External
Input Input

Conceptual Processing Flow of Immediate Real-Time Adaptation: This is conceptual processing flow for Immediate Real-Time Adaptation based on
the Cyclel shown in Figure 3. The process of Cyclel is broken down into the execution process of the M1 module (left), the selection process of the
output results of the M1 module (center), and the broadcasting process of the output results of the M1 module (right), with red lines highlighting these
processes. The blue lines indicate the path taken by external inputs as they are raised to the global workspace through the processing of the M2
module. In the left figure, external input intervenes during the execution of the M1 module. In the center figure, external input is recognized
simultaneously with the M1 module. In the left figure, external input intervenes while the output results of the M1 module are being broadcast. The key
point here is that external input can intervene at any stage of the Selection-Broadcast Cycle.

and revise its gripping strategy from both top-down (strategic re-
planning) and bottom-up (sensor-driven adjustments) perspectives,
substantially improving safety, precision, and robustness in real-
time.

Immediate Real-Time Adaptation holds the potential for
systems to instantly respond to environmental changes by
determining and modifying behavioral policies on the fly. However,
this mode of adaptation raises the issue of how to maintain internal
state consistency and processing stability when new information
interrupts ongoing processes. Specifically, systems must be designed
to interrupt and reassess ongoing module processing in the presence
of newly incoming high-priority information, while also managing
priorities to avoid overreacting to low-relevance perturbations. In
environments with frequent external inputs, repeated interruption
and resumption may increase overhead and task-switching burdens,
potentially leading to decreased overall efficiency. While immediate
adaptation is inherently useful, excessive reliance on it can deprive
the system of the opportunity to engage in sustained inference,
thereby posing a risk of unstable performance.

4 Discussion

4.1 Extending GWT to the temporal
dimension

of GWT’s
predominantly emphasized the process on static, supervised

Traditional ~ discussions intelligence  have
settings, which rely heavily on pre-labeled data sets, explicit

instructions, and predefined tasks (e.g., ensemble learning, transfer
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learning, self-attention, predictive coding). In such scenarios,
intelligence manifests primarily as a system’s ability to accurately
replicate patterns and knowledge derived from historical, structured
data. However, the real-world application of artificial intelligence
increasingly demands a shift toward dynamic, unsupervised
settings, where tasks, environments, and goals continuously evolve,
often without explicit guidance or labeled examples.

In dynamic, unsupervised scenarios, intelligent systems face
fundamentally different challenges. Rather than relying on historical
labels or fixed benchmarks, these systems must autonomously
discover meaningful patterns, adapt swiftly to changing contexts,
and continuously learn from ongoing experiences. In this paper,
we discussed the strengths of GWT in such real-time processing
by focusing on Selection-Broadcast Cycle. We explained that this
Selection-Broadcast Cycle realizes flexible processing, is capable
of being accelerated, and is a mechanism that can respond
immediately to real-time changes. Thus, by highlighting the
advantages of the Selection-Broadcast Cycle, this paper extends
traditional conceptions of GWT intelligence into the realm of
dynamic, unsupervised learning, opening new pathways toward
the development of more robust, adaptive, and autonomous
artificial intelligence systems capable of thriving in complex
real-time environments. Future research could further explore
practical implementations and empirical evaluations to validate
these theoretical insights and expand the applicability of GWT-
based architectures in diverse, real-world scenarios.

Furthermore, although GWT seems well-suited for thriving in
the real-time world, one potential way to enhance its adaptability
further could involve multiple consciousness (GWT) processes
operating in parallel. This parallelization could facilitate the
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simultaneous exploration of diverse solutions, enhance adaptability
by rapidly responding to varied and unpredictable changes,
and effectively distribute cognitive load, thereby potentially
surpassing the limitations inherent to a single, centralized
consciousness structure. Such a mechanism might represent
the collective intelligence observed in groups of humans,
suggesting that human societies themselves could represent natural
exemplars of parallel consciousness networks capable of robust,
adaptive decision-making in complex and dynamic environments.
For example, Taniguchi (2024) is researching the dynamics of such
group intelligence and language development.

4.2 Limitations and future work

While the proposed Selection-Broadcast Cycle structure
inspired by the Global Workspace Theory (GWT) provides a
compelling theoretical framework for adaptive, real-time cognitive
architectures, several critical limitations need to be acknowledged
and addressed in future work.

One significant limitation of this study is the absence of
empirical validation. The advantages of the Selection-Broadcast
Cycle, such as dynamic thinking, experience-based acceleration,
and immediate real-time responsiveness, remain largely theoretical.
Currently, the paper does not present experimental results,
simulations, or quantitative analyses to substantiate these claims.
Therefore, readers must accept the described benefits without direct
evidence of improved adaptability or efficiency compared to other
existing methods. To strengthen future iterations of this research,
practical implementations such as comparative simulations or
robot-based experiments demonstrating fewer task failures or
quicker adaptation would be essential.

For example, these adaptations share common challenges related
to scalability and costs. First, there is the issue of expanding
computational resources. In Dynamic Thinking Adaptation, the
order space of sequential processing grows exponentially, leading to
asharp increase in the cost of maintaining optimal module selection.
In Experience-Based Adaptation, the contents of consciousness at
each cycle are continuously accumulated as experiential memory,
which tends to cause memory bloat and delays in retrieval processes.
In Immediate Real-Time Adaptation, frequent interruptions by
external inputs increase overhead and task-switching costs, resulting
in a trade-off between real-time responsiveness and overall
efficiency. All of these problems become more severe as the number
of modules and the complexity of tasks increase. Second, there
is the burden of information management. In Dynamic Thinking
Adaptation, the exploration of complex sequential patterns can
cause unnecessary processing or the accumulation of redundant
information. In Experience-Based Adaptation, neglecting the
abstraction or compression of stored memories leads to “memory
overload,” which can hinder generalization capability. In contrast,
Immediate Real-Time Adaptation faces a heightened risk of internal
state inconsistency due to frequent external interruptions.

Another point is that the proposed selection and broadcast
cycle structure has not been sufficiently compared with existing
information processing architectures. In recent years, various
architectures with different theoretical foundations have been
proposed, such as Recurrent Processing Theory, Computational
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Higher-Order Theories, Attention Schema Theory, and Information
Generation Theory Butlin et al. (2023); Juliani et al. (2022).
These theories partially realize information selection, attention
allocation, and integration of memory and control in different forms.
By comparing these methods with the selection-broadcast cycle
proposed in this study, the structural characteristics, advantages,
and limitations of the proposed approach can be clarified for
“multimodal” and “parallel” architectures that execute tasks by
simultaneously utilizing multiple cognitive functions. In addition,
future work must also define concrete performance indicators
to evaluate each of the three proposed adaptive mechanisms in
controlled and comparative settings.

5 Conclusion

In this paper, we explored the potential of the Global Workspace
Theory (GWT) and, in particular, the Selection-Broadcast Cycle,
as an information processing architecture suitable for dynamic,
unsupervised real-time environments. Traditional approaches to
artificial intelligence often rely heavily on structured, labeled
data, where intelligence primarily involves replicating known
patterns. However, real-world applications require systems that can
continuously adapt and respond to evolving tasks, environments,
and goals. In this context, we highlighted the Selection-Broadcast
Cycles strengths: its flexibility to rearrange module execution
order dynamically, prediction and acceleration capabilities based on
experience, and its responsiveness to immediate real-time inputs.

Our hypothesis suggests that a cognitive architecture based
on GWT and, specifically, the Selection-Broadcast Cycle, provides
a robust framework for dynamic decision-making and rapid
adaptation in complex environments. The ability to dynamically
rearrange processing sequences, utilize experience-based memory,
and respond quickly to changing conditions demonstrates the
potential of GWT-based architectures to effectively address the
challenges faced by real-time intelligence.

The practical feasibility of implementing robust and adaptive
Selection mechanisms in real-world systems remains a critical
unresolved question. Future research must address this challenge,
potentially through integrating machine learning techniques and
advanced evaluative frameworks, to further validate and extend
the applicability of GWT-based architectures. By tackling these
challenges, we can move closer to developing truly autonomous,
flexible artificial intelligence systems capable of thriving in the
complexities and uncertainties of the real-time world.
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