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This paper discusses the functional advantages of the Selection-Broadcast Cycle 
structure proposed by Global Workspace Theory (GWT), inspired by human 
consciousness, particularly focusing on its applicability to artificial intelligence 
and robotics in dynamic, real-time scenarios. While previous studies often 
examined the Selection and Broadcast processes independently, this research 
emphasizes their combined cyclic structure and the resulting benefits for 
real-time cognitive systems. Specifically, the paper identifies three primary 
benefits: Dynamic Thinking Adaptation, Experience-Based Adaptation, and 
Immediate Real-Time Adaptation. This work highlights GWT’s potential as a 
cognitive architecture suitable for sophisticated decision-making and adaptive 
performance in unsupervised, dynamic environments. It suggests new directions 
for the development and implementation of robust, general-purpose AI and 
robotics systems capable of managing complex, real-world tasks.
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 1 Introduction

In recent years, a major research theme in the fields of artificial intelligence (AI), 
robotics, and cognitive science has been how to implement the advanced intelligence 
and flexible problem-solving abilities of humans and animals into systems Hassabis et al. 
(2017); Ho and Griffiths (2022). For example, large language models (LLMs) learn 
from vast amounts of text data through attention mechanisms and acquire the ability 
to respond flexibly to unknown questions Vaswani et al. (2017). This capability is 
seen as going beyond mere pattern matching and mimicking some of the human 
cognitive functions such as reasoning and knowledge integration. Similarly, in the 
field of image recognition, deep learning-based feature extraction techniques have 
made significant progress, leading to practical applications in various tasks such
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as object detection, face recognition, and scene understanding 
Edozie et al. (2025); Ni et al. (2023). While the development of 
learning and recognition technologies in individual modalities is 
remarkable, the advanced intelligence exhibited by humans and 
animals is characterized by their ability to adapt to the environment 
by integrating multiple sensory modalities rather than relying 
on a single information source. As a result, there is growing 
interest in “multimodal” and “parallel” architectures that execute 
tasks by simultaneously utilizing multiple cognitive functions 
Kotseruba and Tsotsos (2020); Ajay et al. (2023). However, the 
integration of information and complementary reasoning between 
these specialized modules (e.g., visual, linguistic, logical reasoning, 
and motor control) remain limited, and this is one of the major 
challenges in the field Liu et al. (2025).

Against this background, the Global Workspace Theory (GWT), 
which was devised by imitating human consciousness, is attracting 
attention. GWT positions “consciousness” from the perspective 
of information processing structure and proposes a framework 
in which information that has been competed for and integrated 
among numerous parallel specialized modules is temporarily 
brought “into consciousness” and then shared system-wide Baars 
(2005). Since it was first proposed by the psychologist Bernard Baars, 
GWT has been linked to many empirical findings in neuroscience 
and cognitive science Dehaene and Naccache (2001); Mashour et al. 
(2020). More recently, its advantages as an information processing 
architecture have begun to attract attention in AI research as well. 
Previous GWT research suggests that the “Selection” process, which 
integrates information among multiple parallel specialized modules, 
and the “Broadcast” process, which disseminates the selected 
information throughout the system, are expected to be effective 
as a wide range of functions, including creative thinking, transfer 
learning, top-down control, and attention allocation Mashour et al. 
(2020); Juliani et al. (2022); VanRullen and Kanai (2021).

However, there is one perspective that continues to be 
overlooked in many of these discussions. That is information 
processing with a temporal dimension, i.e., not a single process or 
static environment, but a chain of multiple information processing 
operations that require careful consideration to find an answer, 
and responses to dynamically changing environments. These 
information processing methods with a temporal dimension are 
important research topics in artificial intelligence systems that 
handle complex tasks that require learning and adaptation, and in 
robotics, where real-time processing is required Lesort et al. (2020); 
Shaheen et al. (2022); Shiwa et al. (2008); Alhaddad et al. (2020). For 
example, in unknown complex tasks, it is not possible to arrive at an 
answer with a single processing step, and it is necessary to consider 
various perspectives and organize information to derive an answer. 
Furthermore, in tasks performed in dynamic environments, sensor 
data is updated moment by moment, and task goals and external 
conditions change depending on the situation. In short, the essence 
of intelligence lies not only in single-shot input processing, but also 
in the flow of information processing that unfolds as a temporal 
chain. However, in traditional GWT research has been limited to 
mentioning the usefulness of “Selection” and “Broadcast” separately, 
i.e., in a static, single process, and the effectiveness of executing 
these two processes in parallel and intermittently (i.e., information 
processing with a temporal dimension) has not been sufficiently 
addressed.

This study focuses on the process of information exchange 
through selection and broadcast, hereinafter refers to this as the 
“Selection-Broadcast Cycle”, and aims to fill this gap. In other 
words, we position the Selection-Broadcast Cycle as an extension of 
conventional GWT that introduces a temporal dimension, thereby 
reinforcing the theoretical standing of GWT as an information 
processing architecture for specialized module integration. To this 
end, based on conceptual processing flow, we have presented 
a hypothesis regarding the functional advantages provided by 
its dynamic and cyclical structure. Specifically, we propose the 
following three hypotheses.

Dynamic Thinking Adaptation: a capacity to dynamically 
rearrange module execution order, thereby enabling flexible 
adaptation to unexpected task changes or evolving goals Experience-
Based Adaptation: an acceleration of consciousness processing by 
exploiting past experiences stored in memory modules, facilitating 
faster predictions and decision-making Immediate Real-Time 
Adaptation: a quick intervention route to consciousness processing 
allows for immediate response to real-time changes.

The contributions of this study can be summarized in the 
following two points. First, this paper introduces a temporal 
dimension that was lacking in previous GWT research and 
formalizes a new structure called the Selection-Broadcast Cycle. In 
previous frameworks, selection and broadcast were primarily treated 
as discrete events, but this study redefines them as dynamic and 
cyclical processes, providing a theoretical foundation that explains 
sequential information updates and environmental adaptation. 
Second, through conceptual processing flow, this study verified the 
functional advantages of the Selection-Broadcast Cycle in real-time 
adaptability and long-term task execution. This suggests that the 
proposed framework is not merely a theoretical concept but has 
potential utility in practical applications, including robotics and 
dialogue agents. 

2 Literature review

2.1 Overview of GWT

The Global Workspace Theory (GWT) is a cognitive science 
theory of information processing in consciousness, proposed by 
the psychologist Bernard Baars (2005). The essence of GWT is a 
framework in which information is competed and integrated among 
many specialized modules (e.g., vision, hearing, memory, language) 
that operate in parallel, and the information that eventually wins is 
then shared among all modules (Figure 1). The winning information 
is temporarily retained in a conscious form within a memory 
area called the “global workspace”. Only a limited amount of 
information can win at a time, and other competing information 
is considered to be processed unconsciously in the background. 
In this way, GWT is positioned as a framework to explain the 
interaction between a serial, limited-capacity conscious process 
and parallel, large-capacity unconscious processes. This model 
is supported by numerous experimental findings Dehaene and 
Naccache (2001); Mashour et al. (2020). For example, in brain 
imaging studies (e.g., fMRI, PET, EEG), stimuli processed under 
consciousness involve extensive regions of the brain, including 
the frontal and parietal lobes. These stimuli exhibit recurrent 
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FIGURE 1
Architecture of the global workspace theory.

signaling, whereas stimuli that do not reach conscious awareness 
(i.e., go through unconscious processing) remain confined to local, 
transient activity Dehaene et al. (2001); Gaillard et al. (2009). This 
is consistent with the mechanism proposed by GWT that once 
some piece of information wins, it is broadcast globally to the
entire system.

These demonstrate one aspect of conscious information 
processing, but many mysteries remain regarding practical 
implementation. For example, the formalization of selection criteria 
for which information is selected and shared globally remains 
insufficient. It has been suggested that the integrated weighting 
of bottom-up attention (e.g., the intensity of sensory stimuli) and 
top-down control (e.g., current task goals) may be a determining 
factor in selection Buschman and Miller (2007), but the specific 
computational mechanisms by which this is evaluated remain 
unclear. Additionally, the conditions under which these weightings 
dynamically change and the underlying control principles remain 
unexplored. For example, reward prediction errors or reinforcement 
learning feedback may adjust the criteria for what information 
is considered important. However, how such learning processes 
are integrated within the GWT framework remains unclear 
both theoretically and empirically. Furthermore, it is necessary 
to clarify what information is actually exchanged in the global 
workspace. In the current model, the unit of information is 
ambiguous, with sensory representations, semantic symbols, and 
behavioral intentions coexisting. Which granularity of information 
is suitable for global propagation, and how it is formatted (e.g., 
from sensory to linguistic) requires further experimental and 
computational investigation. At the same time, the diversity 

of information processing units that may exist as specialized 
modules and their constitutive conditions remain ambiguous. 
In GWT, the parallelism of modules is discussed abstractly, but 
the mapping to actual neural circuits, the degree of hierarchy 
and plasticity between modules, and the possibility of forming 
new modules remain undefined design principles. As such, there 
are many unknowns regarding specific implementation, and 
research attempting to implement GWT is focusing on designs that 
combine GWT with other theories and technologies Franklin et al. 
(2013); Ito et al. (2023); Dossa et al. (2024); Huang et al. (2023);
Garrido-Mercháin et al. (2022).

While the above GWT studies mainly focus on the question 
of “what information processing structures do we use,” there 
are attempts to examine GWT’s information processing from 
the question of “why did we arrive at this kind of information 
processing structure.” From the biological and evolutionary 
perspective, we can address this question by considering how such 
a structure might have provided adaptive advantages in terms 
of survival and reproduction Juliani et al. (2022). Examining 
the advantages of such information processing structures is 
an important theme that contributes to the construction of 
systems with advanced intelligence and flexible problem-solving 
abilities. In previous research, the focus has often been placed 
on the part of GWT’s information processing structure related to 
competing and integrating information among multiple specialized 
modules operating in parallel (Selection process) and on the 
part that shares the selected information with the entire system 
(Broadcast process), and the advantages and benefits of these have
been discussed. 
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2.2 Functional advantages of selection

In this paper, the process of selecting information from among 
the information processed in parallel by multiple specialized 
modules and then integrating this information in a global workspace 
is called the “Selection” process. 

2.2.1 Diverse perspectives
By comparing and examining the outputs of multiple 

specialized modules, it is thought that it will be possible to 
generate a wider variety of solutions and ideas for a given task 
Ito et al. (2023); Wiggins (2012). For instance, if both a visual 
module and a language module are operating simultaneously, 
approaches that capture a problem from a pictorial/imaginative 
viewpoint can be compared with those that capture it from a 
linguistic/logical viewpoint. This concept is akin to the notion of 
“ensemble learning” Polikar (2012): by combining multiple models 
or modules with different specializations, the combination of models 
can complement the diverse aspects that a single model alone would 
not capture, thereby producing higher predictive accuracy and
robustness overall.

Furthermore, the mechanism that integrates multiple parallel 
modules enables unexpected combinations of knowledge and 
skills from each module, which is thought to lead to creative 
thinking VanRullen and Kanai (2021); Wiggins (2012). For example, 
imagine a module responsible for visual thinking, inspired by 
metaphorical expressions provided by a language processing 
module, giving rise to a new diagram or prototype, which is 
then validated by a logical reasoning module. Alternatively, a 
module specializing in reinforcement learning might combine 
with a sensorimotor module’s proposed action strategy, leading to 
previously unanticipated solutions or task-execution procedures. 
The process of generating these incidental or divergent ideas 
and then evaluating, narrowing down, and integrating them is 
considered by many to be at the core of creative thinking Stojanov 
and Indurkhya (2013). 

2.2.2 Transfer learning
When faced with a new task, utilizing the skills already acquired 

in the specialized modules reduces the need to learn from scratch, 
and as a result, it is thought that the efficiency and speed of 
learning will improve VanRullen and Kanai (2021); Wiggins (2012). 
For instance, if there are modules that excel in visual recognition, 
language processing, or logical reasoning and each is independently 
trained, then when facing a new domain or a different task, it 
becomes possible to adapt quickly by making use of the knowledge 
and representations already accumulated in these modules. This 
is analogous to “transfer learning” Tan et al. (2018) in machine 
learning. In fact, when adapting a deep neural network learned in 
one domain (source domain) to another domain (target domain), 
reusing the lower-level feature extraction parts shortens the early 
training phase while still delivering high performance. 

2.3 Functional advantages of broadcast

In this paper, the process of sharing selected information with 
all specialized modules is called the “Broadcast” process. 

2.3.1 Shared attention
It is thought that broadcasting allows each specialized module 

to concentrate its resources on information that is deemed to 
be extremely important according to the current goals and 
environmental conditions, thereby improving the efficiency and 
accuracy of task execution Wiggins (2012); Dossa et al. (2024). 
For example, consider a robot endowed with multiple sensory 
modules for vision, hearing, and touch, which is tasked with 
detecting, identifying, and accurately grasping an object. First, 
the visual module, operating unconsciously, generates multiple 
candidates, performing tasks such as location estimation and object 
classification in parallel. Meanwhile, the hearing module tries to 
gather hints from environmental sounds or voice commands that 
could modify actions. The tactile module prepares feedback control 
for the stage at which the robot actually grasps the object. After 
the information generated by each module is integrated by the 
Selection process, if the decision “to combine accurate location 
estimation from the visual module with minor corrective commands 
from auditory instructions” wins, that information is shared with 
all modules via the Broadcast function. As a result, the robot can 
carry out the plan “move the arm toward the coordinates estimated 
visually, corrected by auditory information” in coordination across 
all modules.

This mechanism seems to be highly relevant to the “Transformer 
architecture” Vaswani et al. (2017). Transformers, which 
demonstrate extremely high performance in various tasks such 
as natural language processing and image recognition, have a core 
mechanism known as “self-attention”. In self-attention, the inputs 
(or feature vectors) compute their mutual relevance, enabling the 
network as a whole to incorporate necessary contextual information. 
This mechanism is akin to GWT’s claim of handling diverse 
information while spotlighting important items and sharing them 
throughout the system. Though the transformer was not initially 
designed with the goal of mimicking consciousness, the fact that 
it achieves such high performance in language processing, image 
recognition, and more by way of sharing of important information 
hints at the fundamental usefulness of a strategy that shares the most 
crucial elements globally in an intelligent system. 

2.3.2 Predictive coding
Among the specialized modules, there are those that receive 

data from sensors (e.g., visual, auditory, tactile). If they receive 
predictions or metacognition as broadcast information, it may 
enhance the performance of the module’s output VanRullen and 
Kanai (2021); Wiggins (2012). For example, when the visual module 
is only processing lower-level features such as raw pixel data and 
edge information, it will only output tentative recognition results 
based on local statistics and pattern recognition. However, when 
higher-level context and objectives such as “this scene is outdoors 
and there is a high possibility that there are multiple people in the 
picture” and “the task is to judge the facial expressions of specific 
people” are broadcast from the global workspace, the visual module 
will re-evaluate its output while referring to these predictions 
and hypotheses. As a result, corrections such as prioritizing the 
extraction of resolution and regions of interest that are appropriate 
for the task, or more carefully searching for clues to separate 
people and backgrounds, can be expected to improve recognition 
performance and reduce false positives. This aligns closely with 
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the concept of “predictive coding” Friston and Kiebel (2009) often 
discussed in neuroscience and cognitive science. Predictive coding 
posits that the brain or cognitive system is constantly sending top-
down predictions from higher (i.e., more advanced) modules to 
lower (i.e., more basic) modules, while the lower-level modules 
calculate and return the discrepancy (prediction error) between 
the actual sensory input and the prediction. If the discrepancy is 
large, it implies that something different from the predictions is 
likely in the scene, and this error is returned upstream so that 
the higher-level module can update or generate new predictions. If 
the discrepancy is small, it implies that the prediction and actual 
data largely match, thus increasing the likelihood that it is really 
as observed. Through repeated mutual interplay between top-down 
predictions and bottom-up prediction errors, the entire perception 
and cognition system dynamically adapts to the environment. 

2.4 Temporal dimension perspective in 
information processing

In this paper, information processing with the temporal 
dimension refers to a series of information processing operations 
that require careful consideration in order to find an answer, or that 
respond to a dynamically changing environment.

The former, a series of information processing, refers 
to focusing on the way functional processing is stacked. 
In many cases, an information processing operation can be 
decomposed into functional processing components. For example, 
an LLM is hierarchically structured with multiple functional 
processing components such as word tokenization, position 
embedding, weighting via self-attention mechanisms, and sequence 
generation, with each stage performing information transformation 
Vaswani et al. (2017). While we can describe an LLM as a 
single functional information processing system, from a temporal 
perspective, we will focus on the process of how functional 
processing steps that constitute an LLM are stacked. The focus 
on this approach of stacking functional processing has also gained 
attention in LLM research in recent years. Traditional LLM research 
has primarily focused on improving the performance of a single 
model by increasing the number of parameters or expanding the 
amount of training data, that is, an approach based on scaling 
laws, where model size is expanded to achieve more complex and 
advanced information processing capabilities Kaplan et al. (2020). 
However, in recent years, research has progressed toward designing 
the functional structure of processing in a more conscious manner 
by sequentially linking and integrating the outputs of multiple LLM 
models with distinct processing functions, rather than relying on 
a single large model for batch processing Sahoo et al. (2024). This 
study focuses on GWT and discusses what can be achieved through 
an infinite loop of selection and broadcast processing steps.

The latter refers to the ability to flexibly adjust internal 
processing strategies and outputs in response to a dynamically 
changing environment, where external conditions and demands are 
constantly changing. There are two main aspects to adapting to such 
dynamic environments. The first is the ability to adaptively change 
the next action selection or information processing policy based 
on the gradual updating of the representation of the internal state 
through continuous interaction with the environment Lesort et al. 

(2020); Shaheen et al. (2022). In this aspect, it is necessary 
to reconstruct the processing strategy in accordance with the 
current context, taking into account past experiences and the 
results of the most recent interaction. The second is the reactive 
response ability to immediately respond to sudden changes in the 
external environment and initiate appropriate processing or actions 
Shiwa et al. (2008); Alhaddad et al. (2020). This paper focuses 
not on the relationship between the required responsiveness and 
processing delays, but rather on how responsiveness is structurally 
enabled. Specifically, it examines what components and processing 
mechanisms must be combined to enable immediate responses to 
changes, and how these are realized through a division of roles 
within the overall system. 

3 Hypothesis

In this paper, in addition to the structural advantages from 
each of the traditional GWT perspectives (Selection and Broadcast), 
we newly focus on the advantage of a cycle structure in which 
information processing occurs through Selection and Broadcast 
(Selection-Broadcast Cycle). Within this cycle structure, we discuss 
the dynamic, stepwise information processing in which Selection 
and Broadcast intertwine in parallel and intermittently. Note that 
this paper does not limit specialized modules and assumes them to 
be as broad as possible. 

3.1 Dynamic thinking adaptation

The Selection-Broadcast Cycle possesses a structure that can 
realize any order of serial processing steps of specialized modules. 
The serial processing referred to here means processing that 
is carried out step by step (e.g., a chain of thought Wei et al. 
(2022), inductive and deductive reasoning Shanahan (2025). 
In contrast to parallel processing, in which multiple modules 
operate simultaneously, serial processing involves processing 
being carried out in order, with the information generated or 
selected by one module being passed on as input to the next 
module. In serial processing, the final answer is derived from 
the inferences and logical development that take place in the 
intermediate processing. This process of deriving conclusions in 
steps allows for reliable problem solving and decision making 
in various complex tasks while using only a small number of 
inferences and limited logical knowledge. For example, by simply 
memorizing the results of addition and multiplication of 0–9 and 
the methodology of longhand arithmetic, you can calculate any 
addition or multiplication of integers (e.g., 11×  2 = 10×  2 + 1×  2). 
In this way, by breaking down complex tasks into simpler sub-tasks 
(i.e., tasks that can be processed using limited memory or simple 
rules) and dealing with them in stages, it is possible to deal with a 
wide range of different tasks using relatively little memory capacity.

The Selection-Broadcast Cycle process has a space where such 
intermediate inferences and logical developments can be freely 
performed. Figure 2 shows an example of a simple Selection-
Broadcast Cycle structure with two modules (M1, M2). The 
upper part of Figure 3 shows conceptual processing flow of the 
execution procedure of modules, and the lower part shows the 
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FIGURE 2
Example of GWT-based structure with two modules: This shows a 
GWT-based structure consisting of two modules (M1 and M2). 
Information output from the M1 and M2 module is selectively 
broadcast through the global workspace.

processing flow that executes that execution procedure in the 
Selection-Broadcast Cycle. As you can see, the Selection-Broadcast 
Cycle process can execute any execution procedure using the 
modules by switching the selection well. In order to implement 
such a vast serial processing space for intermediate inferences and 
logical development as a pipeline, a large tree structure made up of a 
large number of modules is necessary. The Selection-Broadcast Cycle 
process is thought to be a structure made up of a minimum number 
of modules using looped information processing.

Furthermore, this function enables flexible and dynamic 
processing, allowing the system to try out various thought processes 
and change your thought processes in response to changes in the 
situation. This is a great advantage when dealing with situations that 
are difficult to handle with a fixed pipeline process, such as when 
the processing procedure is unclear or the goal is changed partway 
through. For example, consider the case where a robot explores a 
room based on information from multiple sensors (vision, touch, 
audio input, etc.). At the start of the search, the main objective 
was to search for and move along the shortest route, and the 
processing was set up to call the object detection module and the 
route planning module in order. However, during the search, there 
were many collisions with people in the room along the route. 
In this case, the Selection-Broadcast Cycle makes it possible to 
share the problem with the whole system, devise a solution, and 
make changes to the processing, for example, by calling a human 
detection module while planning a route. Also, if a voice instruction 
is received and the content of the instruction changes, it is possible 
to call a voice recognition module to share the analysis results 
with the whole system, and then reconfigure the execution order 
of the visual module and route planning module in response to 
the results. Thanks to this variable serial processing, the order in 
which the necessary specialized modules are called can be flexibly 
rearranged in response to changes in the situation or new goals, 

making it possible to accomplish tasks that would be difficult with 
fixed pipeline processing.

This function also makes it possible to exchange information 
between any of the modules. VanRullen and Kanai (2021) point out 
that the global workspace functions as a “hub” between specialized 
modules, and that cycle-consistency learning Zhu et al. (2017) can be 
carried out by exchanging information between the same specialized 
modules. Cycle-consistency learning is a learning method that 
imposes constraints on the model to maintain consistency when 
converting data back and forth. These constraints ensure that once 
converted data can be restored to its original state by reversing the 
conversion, and prevent the loss of content or meaning during the 
conversion process. A major advantage is that it can learn domain 
mapping even without training data. In this way, the outputs of each 
specialized module are continuously cross-checked by repeating the 
Selection-Broadcast Cycle, and the entire system has the potential to 
detect potential inconsistencies, correct errors, and gradually build 
more reliable processing results.

Dynamic Thinking Adaptation holds the potential for systems 
to flexibly switch among multiple modes of thinking depending 
on the situation, thereby enabling adaptive problem solving and 
decision making. However, this approach presents several structural 
challenges. One significant issue is that implementing dynamic 
thinking adaptation requires a sophisticated selection mechanism 
to determine which module outputs should be elevated to conscious 
processing, and such a mechanism remains a major implementation 
hurdle. In particular, under dynamically changing module sets, 
maintaining an appropriate module selection strategy becomes a 
difficult task. Another issue is that the presence of dynamic thinking 
adaptation does not necessarily guarantee optimal solutions. The 
high degree of flexibility in strategy switching can lead to a risk 
wherein the system fails to maintain a consistent behavioral policy. 
There is also the possibility of processing delays caused by excessive 
contemplation. Thus, although dynamic thinking adaptation is 
a promising function, there remain substantial challenges in 
implementing and learning the selection control mechanisms 
that enable it. 

3.2 Experience-based adaptation

As noted, in GWT, the information that is sequentially raised 
in the Global Workspace (Consciousness) through the Selection-
Broadcast Cycle is shared with all specialized modules in a stepwise 
manner. Here, we focus on the point that the serial processing 
carried out in consciousness enters each specialized module in 
chronological order. It is thought that there are specialized modules 
that record such chronological consciousness and store it as 
experience memory Franklin et al. (2005). We can further suppose 
that such experience memory can be recalled if a similar situation 
arises. If so, it would become possible to speed up or predict the 
course of serial processing.

Figure 4 shows conceptual processing flow of a Selection-
Broadcast Cycle structure with two modules (M1, M2) and 
one experience memory module (M3). Consciousness (Cycle1), 
Consciousness (Cycle2), and Consciousness (Cycle3) refer to the 
information (i.e., global workspace state) sent in each respective 
cycle. Consciousness (Cycle1), Consciousness (Cycle2), and 
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FIGURE 3
Conceptual Processing Flow of Dynamic Thinking Adaptation: This is conceptual processing flow based on the structure shown in Figure 2 for 
Dynamic Thinking Adaptation. The upper part shows an example of the module execution procedure (pipeline process), and the lower part shows the 
flow of processing to be executed in the Selection-Broadcast Cycle for the selected execution procedure. The red arrows indicate the flow of valid 
information. In Cycle1, the output from Module M1 is input into Module M2. In Cycle2, the output from Module M2 is input into both Module M1 and 
Module M2. In Cycle3, the outputs from both Module M1 and Module M2 are input into Module M1. In all cycles, the GWT-based structure enables 
information processing on the same structure by appropriately switching the selection.

Consciousness (Cycle3) are each listed in the global workspace 
in chronological order. Because these consciousnesses are broadcast 
in chronological order, they flow into the experience memory 
module as well. The experience memory module retains them as 
experiences. Then, when Consciousness (Cycle1) is broadcast again, 
the experience memory module can output Consciousness (Cycle2) 
and Consciousness (Cycle3) as recalled memories. This means that 
it is possible to reach the output of Consciousness (Cycle3) in two 
cycles, whereas it would have taken three cycles to reach it in the 
past. As described above, it is possible that the Selection-Broadcast 
Cycle will enable faster serial processing and prediction. This is 
similar to the concept of “chunking” Gobet et al. (2001) in cognitive 
science, and if learned schemas and procedures are stored as a kind 
of “chunk”, then when faced with a similar task next time, that chunk 
can be called up all at once to quickly progress with the processing.

This mechanism not only increases processing speed, but also 
promotes inference and anticipation of actions. In other words, 
while referring to past thought processes, it is possible to make 
predictions such as “there is a possibility that new information 
will be lacking at this stage” or “it would be better to activate the 
sensorimotor module before the logical inference module in the 
next step”, and it is possible to adjust the order of module calls 

and resource allocation in advance based on these predictions. As 
a result, each step in the variable serial processing is no longer a 
simple “trial and error” process, but rather a planned and efficient 
process that makes full use of past accumulated knowledge. The 
meta-cognitive decisions made during this process, such as “which 
module should be activated at what time” and “when should top-
down information be updated”, are also optimized through the 
use of overall information sharing and memory via the Selection-
Broadcast Cycle. In this way, by having a system in place that can 
record and utilize a record of serial processing, it is hoped that the 
cognitive architecture based on GWT will not only speed up, but 
also acquire advanced problem-solving capabilities that incorporate 
reasoning and prediction with an eye on the next move.

There have been several implementations of agent systems 
that apply experience memory as knowledge (e.g., reasoning and 
prediction) Laird et al. (2012); Martin et al. (2021). For instance, 
Franklin and colleagues Franklin et al. (2013) have demonstrated 
a framework called LIDA (Learning Intelligent Distribution Agent), 
which builds on GWT to incorporate conscious content into various 
cognitive modules, including an episodic memory module. In LIDA-
based implementations, information that reaches consciousness is 
not only broadcast to specialized modules but is also chronologically 

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1607190
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nakanishi et al. 10.3389/frobt.2025.1607190

FIGURE 4
Conceptual Processing Flow of Experience-Based Adaptation: This figure shows a Selection-Broadcast Cycle structure consisting of two modules (M1 
and M2) and one experience memory module (M3). The upper part shows the phase for storing information processing experiences (Memorization 
Phase), and the lower part shows the phase for outputting and utilizing the stored information processing experiences (Utilization Phase). In addition, 
the information processing flow is depicted in pipeline form on the left side and in GWT-based structure on the right side. In the memorization phase, 
information processing operations are assumed to be executed only in the M1 and M2 modules (pipeline on the upper top left). Consciousness 
(Cycle1), Consciousness (Cycle2), and Consciousness (Cycle3) refer to the information (i.e., global workspace state) sent in each respective cycle. 
Although the memorization phase consists solely of information processing operations performed by the M1 and M2 modules, consciousness 
information also reaches the M3 module, so Consciousness (Cycle1), Consciousness (Cycle2), and Consciousness (Cycle3) are sequentially stored in 
the M3 module (orange arrow in the GWT-based structure on the upper right). In the utilization phase, similar to cycle one of the memorization phase, 
when Consciousness (Cycle1) is broadcast, the M3 module outputs Consciousness (Cycle2) and Consciousness (Cycle3) as retrieved memories. This 
reaches Consciousness (Cycle3) one cycle earlier than in the memorization phase, enabling faster thinking, prediction of outcomes, or application of 
knowledge.

recorded in episodic (or experience) memory. When a similar 
situation occurs, the system recalls the sequence of recorded 
conscious events and applies them as learned knowledge.

Experience-Based Adaptation is a framework in which a 
system incrementally improves its behavior according to the 
situation by accumulating and referencing past episodes or historical 
information. Nevertheless, this approach faces challenges primarily 
in experience management and generalization in learning. First, 
there exists a trade-off between memory capacity and retrieval 
efficiency. As more experiences are accumulated, the number of 
episodes that must be referenced increases, leading to greater search 
time and complexity in memory management. In applications 
requiring fast inference, such delays can undermine practical 
usability. Second, in domains where the interpretation of experience 
is highly context-dependent, erroneous generalization becomes 
a critical issue. Strategies that were successful in the past may 
often fail in slightly different contexts, and distinguishing between 
applicable and inapplicable past knowledge requires a high degree 
of abstraction ability. 

3.3 Immediate real-time adaptation

The Selection-Broadcast Cycle enables real-time intervention 
in the results of intermediate processing based on 
external input. Figure 5 shows a simple scenario in which external 

intervention occurs in a Selection-Broadcast Cycle process 
consisting of two modules (M1 and M2). As shown in the figure, 
external inputs can affect the serial processing of the global 
workspace at any point. For example, when a specialized module 
detects external important information, this information can be 
immediately input into the global workspace through the Selection 
process and then distributed to all other modules via the Broadcast 
process. It is important to note that this immediate input is not 
necessarily blocked because other modules are executing. This is 
because the modules operate in parallel and asynchronously. In 
general pipeline processing, if a module is executing, all processing 
of any input is held until that execution is complete. In the Selection-
Broadcast Cycle, this fast path significantly reduces unnecessary 
waiting time and message transmission time, greatly improving the 
responsiveness of real-time systems.

In practical robotics scenarios, such flexible intervention 
mechanisms have notable advantages. For instance, imagine a 
robot performing an assembly task using multiple sensory modules 
(visual, tactile, auditory). Suppose the robot’s tactile sensor suddenly 
detects an unexpected slip or instability in its grip. With the 
Selection-Broadcast Cycle, this critical information is rapidly 
promoted into the global workspace, interrupting the ongoing 
processing sequence. Consequently, other modules (e.g., motor 
control, vision processing, or reinforcement learning) immediately 
receive this alert and can swiftly initiate corrective actions. This 
immediate broadcast enables the system to promptly reconsider 
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FIGURE 5
Conceptual Processing Flow of Immediate Real-Time Adaptation: This is conceptual processing flow for Immediate Real-Time Adaptation based on 
the Cycle1 shown in Figure 3. The process of Cycle1 is broken down into the execution process of the M1 module (left), the selection process of the 
output results of the M1 module (center), and the broadcasting process of the output results of the M1 module (right), with red lines highlighting these 
processes. The blue lines indicate the path taken by external inputs as they are raised to the global workspace through the processing of the M2 
module. In the left figure, external input intervenes during the execution of the M1 module. In the center figure, external input is recognized 
simultaneously with the M1 module. In the left figure, external input intervenes while the output results of the M1 module are being broadcast. The key 
point here is that external input can intervene at any stage of the Selection-Broadcast Cycle.

and revise its gripping strategy from both top-down (strategic re-
planning) and bottom-up (sensor-driven adjustments) perspectives, 
substantially improving safety, precision, and robustness in real-
time.

Immediate Real-Time Adaptation holds the potential for 
systems to instantly respond to environmental changes by 
determining and modifying behavioral policies on the fly. However, 
this mode of adaptation raises the issue of how to maintain internal 
state consistency and processing stability when new information 
interrupts ongoing processes. Specifically, systems must be designed 
to interrupt and reassess ongoing module processing in the presence 
of newly incoming high-priority information, while also managing 
priorities to avoid overreacting to low-relevance perturbations. In 
environments with frequent external inputs, repeated interruption 
and resumption may increase overhead and task-switching burdens, 
potentially leading to decreased overall efficiency. While immediate 
adaptation is inherently useful, excessive reliance on it can deprive 
the system of the opportunity to engage in sustained inference, 
thereby posing a risk of unstable performance. 

4 Discussion

4.1 Extending GWT to the temporal 
dimension

Traditional discussions of GWT’s intelligence have 
predominantly emphasized the process on static, supervised 
settings, which rely heavily on pre-labeled data sets, explicit 
instructions, and predefined tasks (e.g., ensemble learning, transfer 

learning, self-attention, predictive coding). In such scenarios, 
intelligence manifests primarily as a system’s ability to accurately 
replicate patterns and knowledge derived from historical, structured 
data. However, the real-world application of artificial intelligence 
increasingly demands a shift toward dynamic, unsupervised 
settings, where tasks, environments, and goals continuously evolve, 
often without explicit guidance or labeled examples.

In dynamic, unsupervised scenarios, intelligent systems face 
fundamentally different challenges. Rather than relying on historical 
labels or fixed benchmarks, these systems must autonomously 
discover meaningful patterns, adapt swiftly to changing contexts, 
and continuously learn from ongoing experiences. In this paper, 
we discussed the strengths of GWT in such real-time processing 
by focusing on Selection-Broadcast Cycle. We explained that this 
Selection-Broadcast Cycle realizes flexible processing, is capable 
of being accelerated, and is a mechanism that can respond 
immediately to real-time changes. Thus, by highlighting the 
advantages of the Selection-Broadcast Cycle, this paper extends 
traditional conceptions of GWT intelligence into the realm of 
dynamic, unsupervised learning, opening new pathways toward 
the development of more robust, adaptive, and autonomous 
artificial intelligence systems capable of thriving in complex 
real-time environments. Future research could further explore 
practical implementations and empirical evaluations to validate 
these theoretical insights and expand the applicability of GWT-
based architectures in diverse, real-world scenarios.

Furthermore, although GWT seems well-suited for thriving in 
the real-time world, one potential way to enhance its adaptability 
further could involve multiple consciousness (GWT) processes 
operating in parallel. This parallelization could facilitate the 
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simultaneous exploration of diverse solutions, enhance adaptability 
by rapidly responding to varied and unpredictable changes, 
and effectively distribute cognitive load, thereby potentially 
surpassing the limitations inherent to a single, centralized 
consciousness structure. Such a mechanism might represent 
the collective intelligence observed in groups of humans, 
suggesting that human societies themselves could represent natural 
exemplars of parallel consciousness networks capable of robust, 
adaptive decision-making in complex and dynamic environments. 
For example, Taniguchi (2024) is researching the dynamics of such 
group intelligence and language development. 

4.2 Limitations and future work

While the proposed Selection-Broadcast Cycle structure 
inspired by the Global Workspace Theory (GWT) provides a 
compelling theoretical framework for adaptive, real-time cognitive 
architectures, several critical limitations need to be acknowledged 
and addressed in future work.

One significant limitation of this study is the absence of 
empirical validation. The advantages of the Selection-Broadcast 
Cycle, such as dynamic thinking, experience-based acceleration, 
and immediate real-time responsiveness, remain largely theoretical. 
Currently, the paper does not present experimental results, 
simulations, or quantitative analyses to substantiate these claims. 
Therefore, readers must accept the described benefits without direct 
evidence of improved adaptability or efficiency compared to other 
existing methods. To strengthen future iterations of this research, 
practical implementations such as comparative simulations or 
robot-based experiments demonstrating fewer task failures or 
quicker adaptation would be essential.

For example, these adaptations share common challenges related 
to scalability and costs. First, there is the issue of expanding 
computational resources. In Dynamic Thinking Adaptation, the 
order space of sequential processing grows exponentially, leading to 
a sharp increase in the cost of maintaining optimal module selection. 
In Experience-Based Adaptation, the contents of consciousness at 
each cycle are continuously accumulated as experiential memory, 
which tends to cause memory bloat and delays in retrieval processes. 
In Immediate Real-Time Adaptation, frequent interruptions by 
external inputs increase overhead and task-switching costs, resulting 
in a trade-off between real-time responsiveness and overall 
efficiency. All of these problems become more severe as the number 
of modules and the complexity of tasks increase. Second, there 
is the burden of information management. In Dynamic Thinking 
Adaptation, the exploration of complex sequential patterns can 
cause unnecessary processing or the accumulation of redundant 
information. In Experience-Based Adaptation, neglecting the 
abstraction or compression of stored memories leads to “memory 
overload,” which can hinder generalization capability. In contrast, 
Immediate Real-Time Adaptation faces a heightened risk of internal 
state inconsistency due to frequent external interruptions.

Another point is that the proposed selection and broadcast 
cycle structure has not been sufficiently compared with existing 
information processing architectures. In recent years, various 
architectures with different theoretical foundations have been 
proposed, such as Recurrent Processing Theory, Computational 

Higher-Order Theories, Attention Schema Theory, and Information 
Generation Theory Butlin et al. (2023); Juliani et al. (2022). 
These theories partially realize information selection, attention 
allocation, and integration of memory and control in different forms. 
By comparing these methods with the selection-broadcast cycle 
proposed in this study, the structural characteristics, advantages, 
and limitations of the proposed approach can be clarified for 
“multimodal” and “parallel” architectures that execute tasks by 
simultaneously utilizing multiple cognitive functions. In addition, 
future work must also define concrete performance indicators 
to evaluate each of the three proposed adaptive mechanisms in 
controlled and comparative settings. 

5 Conclusion

In this paper, we explored the potential of the Global Workspace 
Theory (GWT) and, in particular, the Selection-Broadcast Cycle, 
as an information processing architecture suitable for dynamic, 
unsupervised real-time environments. Traditional approaches to 
artificial intelligence often rely heavily on structured, labeled 
data, where intelligence primarily involves replicating known 
patterns. However, real-world applications require systems that can 
continuously adapt and respond to evolving tasks, environments, 
and goals. In this context, we highlighted the Selection-Broadcast 
Cycle’s strengths: its flexibility to rearrange module execution 
order dynamically, prediction and acceleration capabilities based on 
experience, and its responsiveness to immediate real-time inputs.

Our hypothesis suggests that a cognitive architecture based 
on GWT and, specifically, the Selection-Broadcast Cycle, provides 
a robust framework for dynamic decision-making and rapid 
adaptation in complex environments. The ability to dynamically 
rearrange processing sequences, utilize experience-based memory, 
and respond quickly to changing conditions demonstrates the 
potential of GWT-based architectures to effectively address the 
challenges faced by real-time intelligence.

The practical feasibility of implementing robust and adaptive 
Selection mechanisms in real-world systems remains a critical 
unresolved question. Future research must address this challenge, 
potentially through integrating machine learning techniques and 
advanced evaluative frameworks, to further validate and extend 
the applicability of GWT-based architectures. By tackling these 
challenges, we can move closer to developing truly autonomous, 
flexible artificial intelligence systems capable of thriving in the 
complexities and uncertainties of the real-time world.
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