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Cleaning PV (photovoltaic) panels is essential for a PV station, as dirt or dust
reduces the effective irradiation of solar energy and weakens the efficiency of
converting solar energy into free electrons. The inconsistent (cleaning efficacy)
and unsafe (summarized voltage and current) manual method is a challenge for
a PV station. Therefore, this paper develops a cleaning robot with PV detection,
path planning, and action control. Firstly, a lightweight Mobile-VIT (Mobile Vision
Transformer) model with a Self-Attention mechanism was used to improve
YOLOv8 (You Only Look Once v8), resulting in an accuracy of 91.08% and
a processing speed of 215 fps (frames per second). Secondly, an A* and a
DWA (DynamicWindow Approach) path planning algorithmwere improved. The
simulation result shows that the time consumption decreased from 1.19 to 0.66
s and the Turn Number decreased from 23 to 10 p (places). Finally, the robot was
evaluated and calibrated in both indoor and outdoor environments. The results
showed that the algorithm can successfully clean PV arrays without manual
control, with the rate increasing by 23% after its implementation. This study
supports the maintenance of PV stations and serves as a reference for technical
applications of deep learning, computer vision, and robot navigation.

KEYWORDS

cleaning robot, photovoltaic station management, lightweight YOLO v8, deep learning
enhancement, path planning

Highlights

1. YOLO v8 has been lightweighted with the Mobile-ViT for the cleaning robot.
2. The localizing and path planning algorithms were improved and validated in a

computer environment.
3. Autonomous navigation and operation of robot prototypes in real-world

environments.

1 Introduction

Cleaning photovoltaic (PV) panels for a PV station (solar power station) is a
crucial prerequisite for achieving high efficiency and ensuring long-term, stable power
generation (Azouzoute et al., 2021). Periodically cleaned at PV stations to prevent dust
on the silicon crystal surface from blocking light or affecting the panel’s performance
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(Azouzoute et al., 2021). However, the traditional manual
cleaning method is inefficient (time cost), variable (energy supply
balance), and unsafe (voltage and current summation) for health
(Mohd Nizam Ong et al., 2022). Automatic cleaning equipment
and algorithms are likely to become a crucial means of replacing
manual work and a key trend in future research (Şevik and
Aktaş, 2022). In recent years, many PV cleaning studies have
focused on the mechanisms of dust deposition (Patil et al., 2017;
Hu et al., 2025), equipment development (Bergametti et al., 2014;
Mariraj Mohan, 2016; Liu et al., 2021), and algorithm improvement
(Sarode et al., 2023; Patil et al., 2017).

The dust deposition mechanism provides a comprehensive
understanding of the movement, accumulation, and retention
characteristics, which can provide a mathematical basis for effective
cleaning. For example, Hu et al. (2025) used the correlation
graph method to establish an adaptive relationship between the
influencing factors and the deposition type for dust deposition
on a PV panel. It developed an adaptive deposition model that
accounts for capillary force, temperature, and humidity, resulting
in a 39.5% reduction in error. Osmani et al. (2020) verified that
the dust deposition mechanism is linked to the particle collision-
adhesion mechanism and the environmental humidity through
mechanical equilibrium and the adhesion law of energy. In a
controllable particle size range and wind speed, properly increasing
the inclination angle of photovoltaic panels can reduce dust
accumulation. Mainstream studies on the dust particle deposition
law by gravity (Bergametti et al., 2014; Mariraj Mohan, 2016),
PV electrostatic adsorption of dust particles (Liu et al., 2021),
the effect of airflow stress and flow velocity on dust deposition
(Gao and Li, 2012; Qin et al., 2024), and dust accumulation
by surface chemisorption (Hossain et al., 2022). For a power
station, improvements in engineering techniques and systematic
applications are also necessary.

A dust cleaning equipment for PV panels focuses on engineering
effectiveness and technical applications (Osmani et al., 2020). For
example, Habib et al. (2021) developed an auto-removing dust
accumulation system on PV panels using an Arduino controller,
a fan, and a soft cloth wiper, achieving 87% cleaning efficiency
with no water usage. Chen Y. et al. (2023) developed an intelligent
embedded hybrid system for cleaning PV panels using Linear
Piezoelectric Actuators and Support Vector Machines, achieving
10%–30% recovery of dust and energy management parameters
(error <5%). The hybrid system was evaluated in India’s tropical
climate, achieving a steady 15%–28% increase in efficiency, along
with a 40% reduction in operations and maintenance costs.
Compared to stationary cleaning equipment, ground mobile robots
(Antonelli et al., 2020; Li and Li, 2022) or aerial cleaning robots
(Huang et al., 2025;Milidonis et al., 2023) offer higher flexibility, and
a singlemachine can cover service work inmultiple areas with better
equipment and attachment economics. Aerial robots also need to
consider the safety of low-altitude flight, the speed of single cleaning,
and the necessary parameters, such as counterweight.

Whether a cleaning equipment is stationary or movable, on
the ground or in the air, the application of intelligent algorithms
has seen a trend and an integral part (Licardo et al., 2024). For
example, Kshetrimayum et al. (2023) proposed a UAV (Unmanned
Aerial Vehicle) for detecting, locating, and cleaning bird droppings
in a PV station using an improved YOLO v7 (You Only Look

Once), which calculates the dust distance and guides the cleaning
equipment to clean efficiently. Chen B. R. et al. (2023) improved the
fuzzy motion, rolling, and steering control for intelligent balance
control and trajectory tracking, and found that the underdrive one-
wheeled system can effectively pass various experimental scenarios,
such as slope traversal and load disturbance. Yuan et al. (2024) noted
that intelligent aerial robots have a broad range of applications in
multiple fields, including bothmilitary and civilian contexts.The use
of intelligent algorithms, such as deep learning, is of great benefit to
the accuracy and work effectiveness of equipment robots.

Although many studies have discussed surface dust deposition
patterns, the design and development of cleaning equipment, and
detection methods for contaminated objects in PV station cleaning,
there is a notable lack of reports on detecting PV panels through
deep learning, planning paths through optimization algorithms, and
building a robot to automate the cleaning of PV panels. This study
enhanced the YOLO v8 network model to accurately detect PV
panels, refined theDWAalgorithm for path planning, and developed
a robot system to implement the algorithm and perform PV station
cleaning tasks.

2 Materials

2.1 Image dataset and data enhancement

Processes such as training and testing of deep learning are
performed on a ground-based image dataset (P-Pose, position and
orientation). A typical PV station with multiple rows, pitted ground,
and complex sunlight reflections was selected as the data acquisition
site. During the data acquisition process, the robot was simulated
with various shooting angles, oblique lateral, frontal views, high
poses, backlight, and front light, and at different distances on 7
June 2023, as shown in Figure 1. The acquisition method is manual
shooting acquisition, and the acquisition tool is a smartphone
(Redmi K40S, Shenzhen, China, Xiaomi Technology Co., Ltd.),
with a resolution of 4,000 × 1800. A total of 116 PV images
were obtained as the original dataset, and the field dataset was
constructed.

The calibration process of the P-Pose dataset involves
transforming the PV panel position and category information in the
image into a computer-readable digital form. The complete dataset
trained by the deep learning model for PV panel pose contains the
PV pose category and the RoI (region of interest), which is used to
obtain the coordinate position of the label to be recognized within
the entire image. The labelled dataset in this folder is divided into
one-to-one correspondences in the PV pose images. The dataset is
labelled with the LabelMe app, which provides the “Create Rect-
Box” rectangular shape. For a robot to start the cleaning, the labels
are classified into “front” and “side”, as shown in Figure 2, simulating
the front and oblique side positions from the corresponding
machine viewpoints. Labels of the same type will be automatically
assigned the same colour when the next labelling operation is
performed. Due to the compact arrangement in the PV station
and the characteristics of multiple PV panels visible from the same
viewpoint, the same position is repeatedly labelled to enhance
robustness. The parameters include classid, x, y, w, and h, where the
classid denotes the class number of the target object. When classid =
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FIGURE 1
Partial image of the original dataset.

FIGURE 2
Data labeling results of two random images in the dataset.

0, the labeled was denoted “side”, and classid = 1 denoted “front”.The
x, and y are the horizontal and vertical offsets of the coordinates of
the upper-left corner in the image. Then the w and h represent the
width and height of the target label box.The four values are obtained
after normalisation, i.e., the original data are mapped to the range
of [0, 1] through a linear transformation for improved training
and prediction.

To improve its generalization ability and robustness, data
augmentation techniques were employed to enhance the training
data in this study. Firstly, the data is lossless compressed and
normalized to the following format: resolution 950 × 428, RGB
(Red/Green/Blue channels), and JPG (Joint Photographic Experts

Group) file type. Then, the (0) no noise adding, (1) the Gaussian
noise adding, (2) the Pepper noise adding, (3) the horizontal
flipping, (4) the image blurring, (5) the luminance transformation,
(6) the scaling, (7) the image translation, (8) and the rotation
transformation were used to process all image in the dataset. All
image examples were expanded to six times transformation (3–8)
and three times noise levels (0, 1, 2) to obtain a 2,088-image dataset
(6 × 3 × 116 = 2,088), as shown in Figure 3. To ensure the robustness
and generalization ability of the model, all dataset samples are
randomly divided into three sets, with a ratio of 8:1:1, resulting in
1,670 training set samples, 209 validation set samples, and 209 test
set samples.
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FIGURE 3
Examples of data augmentation. (a) A random RGB image data. (b) Pepper noise added to the a image. (c) Horizontal flip of the a image. (d) Gaussian
noise added to the a image. (e) Brighten augmentation of the a image. (F) Dimed for the a image.

2.2 YOLO v8 structure and the
performance evaluation parameters

YOLO v8, developed by Ultralights, enhances efficiency and
accuracy by building upon YOLO v6 and YOLO v7, which are
primarily applied to tasks such as image classification, object
detection, and instance segmentation. In this paper, we focus on the
task of object detection. YOLO v8 consists of five models, including
YOLO v8n, YOLO v8s, YOLO v8m, YOLO v8l, and YOLO v8x
(Gamani et al., 2024). Considering the effect of model size, the
YOLO v8n network model, which is compact yet highly accurate,
is chosen in this paper. As shown in Figure 4, the YOLO v8nmodel’s
detection network is primarily composed of four key components:
Input, Backbone, Neck, and Head.

The Input part is the data preprocessing component of the
model, which includes multi-scale detection and normalization of
pixel values to the range of [0, 1]. It helps improve the model’s ability

to manage different image brightnesses and contrasts better. Batch
processing enables the Backbone model to process multiple images
simultaneously. The Backbone contains the Conv, C2f (Cross Stage
Partial Network 2 with Focus), and SPPF (Spatial Pyramid Pooling-
Fast) modules (Liu and Zhou, 2024). The Conv module is primarily
used for convolution and combines Batch Normalization (BN) and
Sigmoid Linear Unit (SiLU) activation functions to process the
input image. In addition, the SPPF structure converts an arbitrarily
sized feature mapping into a fixed-size feature vector. The neck
structure combines different layers of feature mapping to enhance
detection performance, thereby constructing a feature pyramid. It
helps the model to process multi-scale information more efficiently
and perform learning and inference (Liu et al., 2018). The Head
is the detection part of the target detection model, which employs
strategies such as multi-stage prediction and cross-feature-graph
linking to fuse multiple feature mapping outputs from the neck
according to specific rules, thus obtaining a global feature vector
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FIGURE 4
The YOLO v8 network model structure.

box. Loss is a technique used to compute the position of the BBR
in target detection and the size regression loss, which consists of
complete IoU (Intersection over Union) Loss andDistribution Focal
Loss. Complete IoU Loss, as the BBR loss function, considers the
position, size, aspect ratio, and angle information of the box to
measure the similarity between the predicted box and the real
box more comprehensively. On the other hand, Distribution Focal
Loss is used to suppress positional regression inaccuracies, which
causes the model to pay more attention to samples that are difficult
to regress, thereby effectively improving the positional BBR. The
output Complete IoU is obtained by weighing the location and
size difference factors, which in turn calculate the regression loss
by measuring the difference in Complete IoU values between the
predicted and real boxes.

The model was constructed on computer workstations in the
on-campus laboratory, the experimental environment, with 64-
bit Windows 10 operating system for training and validation,
the computer hardware system configuration includes: the central
processor is an Intel of Xeon ® Silver 4210R CPU @ 2.40 GHz;
the graphics card is an NVIDIA GeForce RTX 3060Ti; and 64 GB
of operating memory. The programming and deployment of the

YOLO v8 algorithmwere conducted on the PyCharm 2023 platform
using Python 3.8.17 as the programming language. The training
was accelerated by using CUDA 11.8, and the network framework
training was also conducted based on the deep learning framework
PyTorch 2.0.0.

For the evaluation of the results models, the confusion matrix,
precision (P), recall (R), mean average precision (mAP), F1 score
(F1), number of floating-point operations (GFLOPs), and Frame Per
Second, (FPS, unit fps) were used as evaluation metrics for the PV
panel position detection model. In this case, the confusion matrix is
used to evaluate the performance of the binary classification model,
comparing the model’s prediction results with the actual results to
produce quantitative statistics for the four cases. The predicted and
the actual results are categorized as positive andnegative cases.These
predictions can be represented in a confusion matrix (Figure 5).

The confusion matrix in (1) True Positives (TP): the samples
number in which the model correctly predicts positive cases as
positive; (2) True Negatives (TN): the samples number in which
the model correctly predicts negative cases as negative; (3) False
Positives (FP): the samples number in which the model incorrectly
predicts negative cases as positive cases; (4) False Negatives (FN):
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FIGURE 5
The confusion matrix.

the samples number inwhich themodel incorrectly predicts positive
cases as negative cases. Additionally, the P refers to the proportion of
positive samples that are predicted correctly, as shown in Equation 1.

Precision = TP
TP+ FP

(1)

The R can be calculated as the proportion of all targets correctly
predicted, as in Equation 2.

Recall = FP
TP+ FN

(2)

The mAP evaluates the performance in the target detection
task by drawing the P-R curve and calculating the area under the
curve. This study also used the mAP to assess the result, which is a
balance between P and R, as the evaluation index for the detection
model. ThemAP can more accurately assess the performance of the
model by considering the sorting effect of the model on distinct
categories in the target detection. mAP is directly proportional to
the performance of the algorithm model, and it can reflect the
model’s performance more comprehensively and objectively. The m
denotes the average, and the number after denotes the threshold for
determining whether a sample is positive or negative in terms of
IoU. ThemAP is the average accuracy of the n categories, calculated
as shown in Equation 3.

mAP = 1
n

1

∑
i=1
∫
1

0
Precision(Recall)d(Recall) (3)

The F1 is the reconciled average of the detection rate and R, so
the F1 curve is usually used to compare the performance of different
models. The F1 can range from [0,1], and the larger, the better
performance of the model, as shown in Equation 4.

F1 = 2× Precision×Recall
Precision+Recall

(4)

The GFLOPs measures the complexity of the model; higher
values typically indicate that themodel requiresmore computational
resources for inference, resulting in longer inference times. On
the contrary, a lower value indicates that the model is less
computationally intensive and can complete the reasoning process
faster. The detection frame rate refers to the FPS at which the
processed image is displayed. A higher FPS means that the system
can process images or videos faster, resulting in a smoother display
or faster detection.The FPS is affected by both the algorithmweights
and the hardware configuration of the experimental equipment.

2.3 The design of the robot

The overall structure of the robot was designed independently,
as shown in Figure 6, including the power supply structure,
robot chassis (Bunker mini), mechanical arm (JAKA C4), control
mechanism, motion mechanism, communication mechanism,
camera, and working mechanism (water box, pumps and nozzles).
Among them, the Li battery (24 V/10,000 mA h) and power
management module of the power supply mechanism provide
voltage to the entire robot. The emergency button is directly
connected to the battery, and the PV panel serves as an additional
power source for charging the battery. The host computer and input
devices, such as display outputs and keyboards, forman independent
control mechanism that is connected to other mechanisms to
send control signals and execute task control processes. The robot
motion mechanism serves as an independent motion control
centre with the Robot Operating System (ROS 2 Foxy Fitzroy)
and is connected to the host computer via communication. This
independent control centre receives point cloud signals from
the LiDAR (Light Detection and Ranging) and outputs control
signals for the motion to the chassis mechanism, enabling the
entire robot to move. The chassis is the skeleton, bearing, motor,
and tire parts that provide the structural force to achieve the
movement of the whole robot.The working mechanism comprises a
robotic arm, an RGB-D (RGB-Depth) camera (Astra+ with Orbbec
SDK), and a nozzle part. The camera acquires image information
in real-time, and the nozzle outputs high water pressure (90
± 10 kPa), allowing the robotic arm to adjust the position and
angle of the output. The communication mechanism prepares
the entire robot for networking with other robots and the whole
cleaning task.

3 Methods

3.1 YOLO v8 structure and cost function
improvement approach

To further improve the accuracy and efficiency of YOLO
v8, the box cost function has been optimized to enhance
the training and testing of the network, enabling the PV
panels cleaning robot to identify variable PVs in the mobile
view. Among them, Mobile-ViT is further optimized based
on the efficient and lightweight visual ViT model and
Transformer model (Mehta et al., 2021), which is commonly used
in computing resource and storage space-constrained recognition
and detection environments for outdoor deployments of movable
equipment.

Figure 7 provides a schematic of the improved Mobile-ViT
model, including its detailed components: Mobile-ViT block,
Transformer, MV2, and feature fusion. Each Block in the Mobile-
ViT module consists of MHSA (Multi-Head Self-Attention)
layers and FFNN (Feed-Forward Neural Networks) layers stacked
alternately. The feature mapping is generated by a convolutional
module of size n × n for local feature modeling, followed by a
convolutional layer with a 1 × 1 convolutional kernel to adjust the
channel number. This is then followed by global feature modelling
through the Unfold, Transformer, and Fold structures, in that order.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1606774
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Luo et al. 10.3389/frobt.2025.1606774

FIGURE 6
Primary structure of the robot. (a) The design of the robot. (b) The structural diagram of the robot.

Then, a convolutional layer with a 1 × 1 convolutional kernel size
is used to adjust the channel size to the original size, followed
by shortcut branching with the original input feature mappings
spliced by the channel concept. Finally, a convolutional layer with a
convolutional kernel size of n × n is used for feature fusion to obtain
the final output, as shown in Equation 5.

XT(p) = Transforme(XU(p)),p ∈ [1,p] (5)

Where the N is the number of spreading picture blocks, the
p is the size of the picture blocks; the W and H are the width
and height of the spreading picture blocks. In the Transformer
module, Self-Attention is used to learn the correlation between
various locations in the image, thereby fully understanding the
inner structure of the image features. Self-Attention calculates each

token by considering the correlation with all other tokens using the
formula, as shown in Equation 6.

Attention(Q,K,V) = so ftmax(QK
T

√dk
)V (6)

Where T denotes the length of the sequence, dk denotes the
dimension of K (dq, and dv are for Q, and V). Before calculating
SoftMax, the weight matrix is multiplied by the dk = -0.5. After
completing the calculation of XXT, the variance of the elements
in the matrix becomes large, causing the SoftMax distribution to
become extremely steep, which affects the stable calculation of the
gradient, as Equation 7. The previously computed similarity can
be normalized, and the variance can be adjusted to 1/N, which
decouples the steepness of the SoftMax distribution from d. Before
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FIGURE 7
Mobile-ViT network structure.

TABLE 1 Comparative experiments of different algorithmic models.

Model P (%) R (%) mAP@0.5 (%) F1 (%) GFLOPs (t) mAP@0.5:0.95 (%) FPS (fps)

YOLO v5s 90.31 81.64 88.07 88 15.8 80.87 76

YOLO v7 89.13 82.24 85.93 87 11.6 82.65 87

YOLO v8s 90.37 82.31 88.22 86 28.3 87.63 157

YOLO v8n 91.43 83.33 88.95 87 8.2 86.63 126

YOLO v8n-PP 94.88 89.11 93.36 93 6.1 91.08 215

Note: Bolded data are optimal values.

training and testing, the class weight was set as an inverse proportion
of the example to the classes balance, as Chen Y. et al. (2023)
reported. Therefore, the stability of the gradient can be maintained
during the training process, allowing the Self-Attention mechanism
to be implemented and the Self-Attention feature extraction to be
completed.

Y = so ftmax(XXT)X (7)

Finally, the contextual dependencies between local and global
blocks are established through the channel fusion and recovery
operations, as shown in Equation 8.

XG = ξ(XN,XU) (8)

Where the XN denotes the input local feature block, XU denotes
the expanded local feature block,XG denotes the fused feature block,
and ξ denotes the feature-weighted fusion operation. The feature
reduction of the channel is performedusingmulti-scale convolution,
and the extraction of positional features for PV panels is achieved
through a feature fusion structure.

In addition, considering that YOLO relies on theBBR (Bounding
Box Regression) module to determine the location of objects
(Girshick et al., 2015), during the training process. The BBR loss

function is design as MPDIoU.The core design idea of the MPDIoU
is to define two metrics, the centroid distance discrepancy metric
(MD) and the target box width-height discrepancy metric (PD).
In this case, the MD is calculated by determining the Euclidean
distance (ED) between the centroids of the two target boxes and then
normalising it to the range of [0, 1], as shown in Equation 9.

MD =
||c1 − c2||2

√w2
1 + h

2
1 +w

2
2 + h

2
2

(9)

Where the c1 and c2 denote the coordinates of the centre points
of the two target boxes.Thew1 and h1 denote the width and height of
the first target box. And thew2 and h2 denote thewidth and height of
the second target box, by the sum of the ED between the coordinates
of the upper left and lower right corners of the two target frames and
normalizing this distance to [0,1], as Equation 10.

PD =
||p1tl − p

2
tl||2 + ||p

1
br − p

2
br||2

√w2
1 + h

2
1 +w

2
2 + h

2
2

(10)

Where the p1tl and p2tl denote the coordinates of the upper
left corner of the two target frames. The p1br and p2br denote the
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FIGURE 8
Comparison results of different algorithms. (a) Output of YOLO v5s. (b) Output of YOLO v7. (c) Output of YOLO v8s. (d) Output of YOLO v8n. (e) Output
of YOLO v8n-PP (this paper).

FIGURE 9
The training result of the YOLO v8n and YOLO v8n-PP. (a) The training P, Loss of the YOLO v8n and YOLO v8n-PP. (b) The training mPA@50:90 of the
YOLO v8n and YOLO v8n-PP.
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TABLE 2 Results of YOLO v8 ablation-style experiment.

Model Mobile-ViT MPD
IoU

P (%) R (%) mAP@0.5 (%) F1 (%) GFLOPs (t) mAP@0.5:0.95
(%)

FPS

YOLO v8n − − 91.43 83.33 88.95 87 8.2 86.63 126

YOLO v8n-M √ − 92.95 92.23 92.92 92 5.8 90.77 239

YOLO v8n-MPD − √ 92.19 84.61 90.06 88 8.7 86.07 122

YOLO v8n-PP √ √ 94.88 89.11 93.36 93 6.1 91.08 215

Note: Bolded data are optimal values. And the “√” means the network improvement method.

coordinates of the lower right corner of the two target frames,
as shown in Equation 11.

MPD =max(MD,PD) (11)

The overlap metric MPD and traditional IoU are weighted and
fused to obtain theMPDIoU, as shown in Equation 12.

MPDIoU = IoU+ α ·MPD (12)

where α is a hyperparameter used to control the weighting between
the two metrics. Define the BBR loss function LMPDIoU based on
MPDIoU according to the definition of MPDIoU, as Equation 13.

LMPDIoU = 1−MPDIoU (13)

Replacing class Bbox Loss and class YOLO v8 Detection Loss
in the detection HEAD module with class LMPDIoU similarity
comparisons between the target boxes make it more applicable
to overlapping BBR, improving the speed of convergence and the
accuracy of the regression results. The method comprehensively
considers the centroid distance difference and width-height
difference between PV positional, thus providing a more
comprehensive and accurate result.

3.2 Algorithm improvement and simulation
for robot path planning

The previous deep learning target recognition results also need
to be integrated with the path planning algorithm to determine the
working path, enabling the robot to achieve continuous automatic
operation. The iterative process of the A∗ algorithm is enhanced
by self-regulated search and path smoothing rules, and local
optimization is applied to optimize the real-time performance of
the A∗ algorithm (Li and Zhang, 2023). Its core principle is to
find the optimal heuristic choice by comparing the relationship
between the heuristic cost and the global cost, as expressed
in Equation 14.

f(n) = g(n) + h(n) (14)

Where the n denotes the identification of the current scene-
searching locus. The f(n) denotes the minimum surrogate value
from the robot’s initial locus to the target locus. The g(n) denotes

the actual minimum cost for the robot to travel from the initial
locus to the current locus n. And the h(n) is a heuristic function
representing the expected cost for the robot to travel from the
current locus n to the target locus. The unobstructed travelling
path of two points at the current and target loci in the Cartesian
coordinate system.

h(n) = √(x1 − x2)2 + (y1 − y2)
2 (15)

The improved A∗ algorithm used in this paper is capable of
automatically adjusting the weighting coefficients of the heuristic
function h(n), during the path planning process. Equation 15 is
based on the addition of the self-adjusting weighting coefficient
formula, denoted as Equation 16.

f(n) = g(n) +w(n) · h(n) (16)

where w(n) denotes the self-adjustment weight coefficient and
w(n) ≥ 1.

Considering that the PV panel cleaning robot utilises a
tracked mobile chassis, the steering process requires multiple
speed adjustments, which increases the difficulty of controlling
the chassis movement and reduces the robot’s efficiency.
The improved A∗ algorithm in this paper also requires
further smoothing and optimization using Bessel curves, as
shown in Equation 17.

B(t) =
n

∑
i=0
(n
i
)(1− t)n−1tiPi (17)

Where the n
i
denotes the binomial coefficients. The t denotes a

parameter and satisfies, where t ≥ 0. The Pi denotes a control locus.
The n is proportional to the degree of smoothing of the path. And
the P0,P1,…,Pn denote the control points, and the planning result
of the path that passes through the locus P0 and to Pn.

Furthermore, considering that the robot’s operating
environment duringmotion is dynamic, it is necessary to investigate
the need for localized consideration of real-time obstacle avoidance
in the capability process. Therefore, the dynamic window of the
robot was enhanced by its dynamics and inertia, and feasible arc
trajectories were generated by selecting appropriate velocities.
Various constraints can be added as needed. Assuming that
the robot’s traveling trajectory can be considered a straight line
during a very short sampling interval, the increment of the
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FIGURE 10
Comparison between before and after heuristic improvement. (a) 30 × 30 map results before improvement, (b) 30 × 30 map results after improvement.
(c) 60 × 60 map results before improvement, (d) 60 × 60 map results after improvement. Those black pixels denote obstacles, while white denotes
open space. The green plum dots in the lower left corner indicate the starting point, and the yellow dots in the upper right corner denote the goal
point. Colored paths denote the area involved in path planning during movement. The distance from the starting point corresponds to the transition
between warm and cold colours.

TABLE 3 Compared the results of heuristic functions under different specifications of raster maps.

Map size (m2) Method Path length (m) Search time (s)

30 × 30
original A∗ algorithm 58 4.51

Heuristic optimization 62 1.19

60 × 60
original A∗ algorithm 98 8.60

Heuristic optimization 112 1.78
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TABLE 4 Comparison results of corner smoothing optimization under different specifications of raster maps.

Map size (m2) Smoothing method Path length (m) Search time (s) CN (p)

30 × 30
Without smoothing 62 1.19 23

Corner smoothing 60 0.66 10

60 × 60
Without smoothing 112 1.78 40

Corner smoothing 100 1.44 18

FIGURE 11
Corner smoothing optimization before and after. (a) 30 × 30 map results before improvement, (b) 30 × 30 map results after improvement. (c) 60 × 60
map results before improvement, (d) 60 × 60 map results after improvement. Those black pixels denote obstacles, while white denotes open space.
The green plum dots in the lower left corner indicate the starting point, and the yellow dots in the upper right corner denote the goal point. Colored
paths denote the area involved in path planning during movement. The distance from the starting point corresponds to the transition between warm
and cold colours.
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FIGURE 12
Simulation result of the local DWA path planning algorithm in MATLAB. (a–d) four key process of the optimised path planning method in this paper.

robot’s displacement in the global coordinate system is now ∆t,
as shown in Equation 18.

{{{{
{{{{
{

x(t) = x(t) · v(t) · ∆t · cosθ

y(t) = y(t) · v(t) · ∆t · sinθ

θ(t) = θ(t) +ω(t) · ∆t

(18)

Where the x(t) is the position component in the X direction
of the world XOY axis, and the y(t) is the position component in
the Y direction. The θ(t) is the direction angle. The v(t) is the line
velocity. And the ω (t) is the angular velocity. Therefore, based on
the limitation of the robot acceleration, the sampling space of the
velocity at this time is given by Equation 19.

Va =(v,ω),v ∈ [vc − avmax∆t,vc + avmin∆t],

ω ∈ [ωc − aωmax∆t,ωc + aωmin∆t] (19)

Where the vc and ωc denote the linear and angular velocities of
the robot at the current moment, as shown in Equation 20.

Vz = {(v,ω)|v ≤ √2d(v,ω) · aωmax,ω ≤ √2d(v,ω) · aωmax} (20)

Where the aωmax and aωmin denote the maximum and
minimum values of the linear acceleration of the robot. The aωmax
and aωmin denote the maximum and minimum values of the
angular acceleration. The d(v,ω) denotes the distance between
the robot and the nearest obstacle in the map, and only when
the condition is satisfied will the robot not collide with the
obstacle. The sampling speed of the robot must collectively satisfy
the above constraints, i.e., the velocities of the robot, shown
as Equation 21.

V = Vl ∩Va ∩Vz (21)

After calculating the robot’s traveling paths at different
operational velocities, it is necessary to select the optimal
one from these paths. The trajectory evaluation function
evaluates all the predicted paths under the velocity sampling
space. Then it chooses the velocity corresponding to the
scored optimal travel path as the next velocity state. The
mathematical formulation of the trajectory evaluation function is
as Equation 22.

F(v,w) = σ(α · heading(v,ω) + β · dist(v,ω) + γ · velocity(v,ω)) (22)
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FIGURE 13
Calibration process and results in world coordinates. (a) the image data used for the calibration, (b) the error statistics during the calibration process. (c)
is the camera-centered calibration of the viewpoints. (d) Calibration panel for the center calibration view.

Where α, β, γ denote theweight coefficients of the corresponding
functions, respectively. The heading(v,ω) denotes that the robot
reaches the end of the travelling path with the currently set sampling
speed (v,ω), and the angle Δθ between the robot’s facing and the
target at this moment, and the degree of this angle is inversely
proportional to the scoring. The dist(v,ω) denotes that the robot’s
facing is the same as the nearest robot on the current traveling path.
The dist(v,ω) represents the distance Δl between the robot and the
nearest obstacle in the current travelling path, which is proportional
to the score, and is set to a constant value assuming that there is
no obstacle in this travelling path. The velocity(v,ω) represents the
running linear velocity vc of the robot, and this value is proportional
to the score.

3.3 Mapping and localization of robots in
outdoor environments

Although the robot’s work path functions were discussed in
the previous section under simulated conditions, actual robot
work requires a detailed consideration of the entire process,
including localization, spatial transformations, and testing of
the actual work effect. Therefore, the Gmapping algorithm
(Cuenca et al., 2023; Grisetti et al., 2005) is used, which
has been improved for map construction, and the improved
AMCL (Adaptive Monte Carlo Localization) algorithm, which
primarily involves initialization, particle weight sampling, weight
computation, resampling, and map updating. Among them,
initializing particles means setting the weight of each particle to the
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FIGURE 14
Calibration process and results for speed and direction.

average weight (w), as shown in Equation 23, so that N particles are
initialized.

w(i)0 = 1/N (23)

Particle weight sampling refers to relying on the data model
acquired by the sensors to approximate the actual state of the mobile
robot. Weight computation refers to the calculation of weights
using Bayesian probability formulas in the traditional application
of the RBPF algorithm. In this paper, the sensor observation data
Zs is integrated into the proposed distribution, which focuses the
sampling process on the region with the highest likelihood of
observation, thereby improving sampling efficiency and accuracy,
as shown in Equation 24.

w(i)s ≈ w
(i)
s−1 ·

k

∑
j=1

P(Zs|m
(i)
s−1,Xj)P(Xj|X

(i)
s−1,Us−1) = w

(i)
s−1 · η
(i) (24)

Resampling: scanning the surroundings through the
sensors, scenarios with sparse localization features and high
similarity may be encountered, which can skew the particle
weights towards homogenization, resulting in most particles
deviating from the actual state. In the actual calculation
process, the particle weight dispersion metric Neff can be
Equation 25.

Ne f f =
1

∑N
i=1
(w(i)s )

2 (25)

Where the N denotes the number, and the
N
∑
i=1
(w(i)s )

2
denotes

the particle weight gap. At this point, resampling is required to
replace the previously sampled particles. This strategy enhances the
positioning accuracy of the particles, resulting in more accurately
generated maps. Map update: The optimal particles are selected
based on the particle weight sizes in the particle set X(I)s , which
determines the best trajectory for the mobile robot. Then, the
map is updated in real-time based on this trajectory using
sensor observations from LiDAR, and the constructed map is

stored, thus completing the entire SLAM map-building process as
described in Equation 26.

P(X1∶s,m|Z1∶s,U1∶s−1) = P(m|X1∶s,Z1∶s) × P(X1∶s|Z1∶s,U1∶s−1) (26)

Where P(X1∶s|Z1∶s,U1∶s−1) denotes the joint estimation of
the robot’s motion position, i.e., the robot’s localization, using
the odometer control information and the sensor observation
information, and P(m|X1∶s,Z1∶s) denotes the computation of the
robot’s motion position in combination with the observation
information for the computation and updating of the environment
feature map.

Since then, the localization technique used has been AMCL,
based on the PFA (Particle Filter Algorithm) [63]. In the process
of calculating the particle weights, two additional data points
need to be tracked, i.e., the mean value of the long-term
change of the particle weights wslow and the mean value of
the short-term change of the particle weights w fast, as shown
in Equation 27.

{
{
{

w fast = w fast +w fast(wavg −w fast)

wslow = wslow +wslow(wavg −wslow)
(27)

In the particle resampling phase, the algorithm performs
random sampling of arbitrary particles to increase the number of
random particles. The cleaning robot can accurately localize when
the short-term variation mean w fast is equal to or greater than
the long-term variation means wslow, when the particle population
tends to converge. However, suppose the average measurement
probability of each particle in the particle set decreases. In that
case, the robot may encounter localisation problems, at which
point random particles need to be added to resolve the issue,
as shown in Equation 28.

max{0,1−w fast/wslow} (28)

To optimize the computational speed of the algorithm,
AMCL employs KLD (Kullback-Leibler Divergence) sampling.
This sampling method determines the size of the particle
ensemble by calculating the distance between the approximation
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FIGURE 15
Test results of the robot in an indoor environment. (a) The map construction is for autonomous movement. (b) The map construction and path of (a).
(c) The path planning during autonomous movement. (d) The map construction and path of (c). (e) The result of obstacle avoidance. (f) The map
construction and path of the (e).

of the particle filter and the actual probability distribution, as
in Equation 29.

MT = (k−
1
2α
)(1− 1

9(k− 1)
+√ 2

9(k− 1)β
)

3

(29)

Where the MT is the particle set size; k is the extent to
which the particle subset covers the global map; α is the error
threshold between the approximate probability distribution and
the proper distribution; and β is the points on the normal
distribution.

4 Result

4.1 YOLO v8 improvement results for PV
panel detection

Table 1 presents the results of training and comparing the
improved YOLO v8n-PP with 5 other similar deep learning models,
including YOLO v5s, YOLO v7, YOLO v8s, and YOLO v8n, under
the same datasets and training conditions. Under the condition of
keeping the PV panels positional dataset, model hyperparameters,
and training parameters consistent, it can be seen from the table that
the YOLO v8n-PP model performs best in all performance metrics,
and its seven algorithmic model evaluation metrics are significantly
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FIGURE 16
Results of PV panel cleaning in real-world environments.

better than those of the other algorithms.On the contrary, the YOLO
v5s model performs worse in all performance metrics, due to its
use of a shallower feature extraction network. As a result, most
performance evaluationmetrics show lower levels.The results of this
experiment demonstrate the superiority of the YOLO v8n-PPmodel
in detecting the positional attitude of the PV panels.

To compare the recognition effect of different algorithmmodels
on PV panel orientation more graphically, the optimal training
weight file for each algorithmmodel is used to visualise and analyse
the test set. The visualization results are shown in Figure 8. In
this experiment, pictures with overlapping PV backgrounds and
containing two types of orientations are selected as the objects of
comparison. The comparative analysis reveals that the recognition
accuracy of YOLO v8n surpasses that of the previous three
algorithms. However, when dealing with PV panels positioned in
overlapping backgrounds, the algorithmmay appear to recognise PV
targets that are heavily occluded, resulting in cluttered recognition
target frames. It may also appear to recognize overlapping back-row
PV panels. This phenomenon may cause serious interference with
the robot, potentially preventing it from conducting the cleaning
operation correctly. The YOLO v8n-PP further enhances the
comprehensive performance of target detection and simultaneously
enables accurate detection of the current PV panels to be cleaned
under an overlapping background. This allows the cleaning robot
to accurately adjust the path command during the autonomous
navigation stage, ensuring smooth operation.

To evaluate the performance of the improved algorithm more
intuitively, the P, R, and mAP@0.5 of the YOLO v8n and YOLO
v8n-PP models are shown in Figure 9 during the training process
for comparison. Figure 9 shows the visual comparison of P between
YOLO v8n and YOLO v8n-PP models during the training process.
According to the analysis of the experimental data, the YOLO v8n
algorithm has a low initial P in the first 100 rounds of deep learning.

It fluctuates with the increase in the number of rounds in deep
learning. It is only after the 100th round that the P stabilizes and
remains above 90%.However, until the end of training, the curve still
exhibits significant fluctuations, indicating that the P is not stable
enough. In contrast, the YOLO v8n-PP algorithm has an initial P
about 10% higher relative to YOLO v8n in the first 100 rounds
of deep learning, and the P grows more smoothly as the number
of deep learning rounds increases. Before the 100th round, the P
has reached a steady state, which persists until the end of training,
and the P curve remains stable, consistently higher than that
of YOLO v8n.

Demonstrates the YOLO v8n and YOLO v8n-PP models in
the training process of mAP@0.5 visual comparison. According
to the analysis of the experimental data, YOLO v8n′s mAP@0.5
remains volatile and has not yet reached a stable state at the end
of training. Still, YOLO v8n-PP of mAP@0.5 is larger than YOLO
v8n and shows a smoother curve, which flattens out at the late stage
of training. From the visualization results, the superiority of the
YOLO v8n-PP model extends beyond numerical level advantages;
the stability of its recognition ability is also crucial. The stability of
its recognition ability is excellent in both the training and testing
phases, consistently providing high-quality recognition results.
This stability enables the model to remain efficient and accurate
when managing complex tasks. Due to this, the YOLO v8n-PP
model demonstrates excellent applicability when performing PV
position recognition tasks on physical devices. Its stable recognition
capability and excellent numerical performance enable the model
to effectively cope with a variety of complex environments and
conditions, thus providing great convenience in practical operations.

To verify the effectiveness of the improvement algorithm,
three improvement YOLO v8n models were built for ablation-style
experiments, including YOLO v8n-M, YOLO v8n-MPD, and YOLO
v8n-PP. Among them, YOLO v8n-M is a lightweight model suitable
for mobile devices, replacing Mobile-ViT as the Backbone. YOLO
v8n-MPD is to replace class Bbox-Loss and class v8 detection loss
in the detection HEAD module with the BBR loss function class
LMPD-IoU-Loss. finally, YOLO v8n-PP is to replace class LMPD-
IoU-Loss with class LMPD-IoU-Loss (this study model). Position
recognition is a crucial visual task, and the original YOLO v8n has
demonstrated strong reliability in this field. By analyzing the results
of the ablation-style experiments in Table 2, the original YOLO v8n
shows strong reliability in PV panel bit-position recognition. The
initial deep learning using the unimproved YOLO v8n achieved
91.43%, 83.33%, 88.95%, 87%, and 126 fps for P, R, mAP@0.5, F1,
and FPS, respectively. The excellent performance of these evaluated
metrics highlights the potential of the YOLO v8n algorithm for PV
bit-posture recognition. However, the algorithm still suffers from
problems in the evaluation of detection metrics, such as low F1,
mAP@0.5:0.95, and GFLOPs. Despite the model’s overall superior
performance, there is still room for improvement in the algorithm’s
metric performance in the field of target detection. Therefore, there
is a need to continue exploring and optimizing YOLO v8n to
enhance its performance in tasks such as PV position recognition.

Improvements to the algorithm include the optimization of
the YOLO v8n model using a more efficient neural network
structure, resulting in a significant reduction in computational
effort while improving target detection accuracy and increasing
the computational speed of the network model, with a maximum
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TABLE 5 Contrasts with several similar studies.

Method Target detection
method

Path planning
algorithm

Cleaning method PV panel condition

Ma method (Ma et al., 2022) YOLO-PX - - All

Prabhakaran method
(Prabhakaran et al., 2022)

RMVDM - - All

Grando robot (Grando et al.,
2019)

- - Nozzles and water With rail

Jin robot (Jin et al., 2024) - ACO algorithm Both dry or with water With rail

Yang robot (Yang et al., 2023) - - Dry with brushes Tilted and grounded

Riawan robot (Riawan et al.,
2018)

- - Nozzles and water Horizontal off-ground

Introduced robot YOLO-v8n-PP Location DWA Nozzles and water Tilted and grounded

detection FPS of 239 fps. Compared to the unimproved YOLO v8n,
the P, R, mAP@0.5, F1, mAP@0.5: 0.95, and FPS of YOLO v8n-M
were raised by 1.52%, 8.9%, 3.97%, 5%, 4.14%, and 113 fps, and the
GFLOPs was reduced by 2.4 t. It means that replacing Mobile-ViT
for the network backbone can lead to a significant improvement in
comprehensive network performance. After replacing the MPDIoU,
the P, R, mAP@0.5, and F1 of YOLO v8n-MPD were improved by
0.76%, 1.28%, 1.11%, and 1%, but the GFLOPs was also increased
by 0.5 t, and itsmAP@0.5:0.95, and the FPS decreased by 0.56% and
4 fps. The P, R, mAP@0.5, F1, mAP@0.5: 0.95, and FPS of YOLO
v8n-PP were increased by 3.45%, 5.78%, 4.41%, 6%, 4.45%, and
89 fps, and the GFLOPs was decreased to 2.1 t.

By comparing the results of the ablation-style experiments, the
seven evaluation metrics of the YOLO v8n-PP exhibit excellent
performance in identifying the PV panel’s positional attitude. The
four evaluation metrics P, R, mAP@0.5, F1, mAP@0.5: 0.95, and
FPS reach their optimal values in this experiment, while the
three evaluation metrics of R, GFLOPs, and FPS also demonstrate
an elevated level of performance. The results of this ablation-
style experiment fully validate the comprehensive performance
advantages of the YOLO v8n-PP target detection model in PV panel
position recognition.

4.2 Computer simulation results of path
planning algorithms

To compare the visualization results and running data more
intuitively, this simulation experiment utilizes the MATLAB
software. On the raster maps of two sizes, 30 × 30 and 60 × 60,
the control variable method is used to unify the green circle marks
on the left side as the starting point and the green circle mark on
the right side as the endpoint. The starting point and end point
positions are the same under the exact raster map specification.
The number of obstacles generated accounts for 20% of the total
number of squares, and the layout of obstacles remains unchanged.
Simulation experiments of path planning are conducted for the
heuristic functions before and after optimization, respectively, and

the experimental results of the two cases are compared. The
simulation results are shown in Figure 10.

Table 3 shows the results of the simulation experiments are as
follows: under the 30 × 30 raster map, the optimized algorithm with
heuristic function increases the length of the travelling path by 6.9%,
but shortens the search time by 73.61%; under the 60× 60 rastermap,
the optimized algorithm increases the length of the travelling path by
14.29%, but shortens the search time by 79.3%. These experimental
results demonstrate that the A∗ algorithm optimised by the
heuristic function aligns with the changing characteristics of path
planning when the heuristic function h(n) is taken into account.
Although it may not be the shortest traveling path, the path length
increases slightly. The search time is significantly reduced, which
verifies the validity of the heuristic function optimization in the
A∗ algorithm.

Table 4 shows the results of the simulation experiments are as
follows: in a 30 × 30 raster map, the optimized algorithm with
corner smoothing reduces the length of the travelling path by
3.23%, the search time by 44.54% and corners by 56.52%; in a 60
× 60 raster map, the optimized algorithm reduces the length of
the travelling path by 10.71%, the search time by 19.1% and the
Turn Number (CN, Corner Number, units places or p) by 55%.
These experimental results show that the A∗ algorithm optimized
by corner smoothing has reduced the path length. In contrast, the
search time and the CN have been significantly reduced, which
verifies the effectiveness of corner smoothing optimization for the
A∗ algorithm shown in Figure 11.

This simulation experiment is also based on the MATLAB, set
the simulation range of 60 m × 60 m, the starting point and the end
point are set as diagonal state to increase the path length, to more
intuitively show the effect of the local path planning, the priority
of the obstacle position is arranged in the vicinity of the diagonal
straight line, and the simulation parameters are adjusted according
to the speed setting of the robot: the maximum line speed is 5 m/s,
the line acceleration is 0.2 m/s2, the maximum rotational speed is
20 rad/s, and the rotational acceleration is 50 rad/s2.The parameters
of the evaluation function are set as follows: α = 0.05, β = 0.1, γ = 0.1.
The simulation process is shown in Figure 12.
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In the illustration, the red rectangular boxes represent
obstacles, while the blue lines indicate the simulated robots’
traveling trajectories. The green ray beams illustrate the
local path planning results simulated for various speed
combinations. From Figure 12, the DWA (Dynamic Window
Approach) algorithm effectively completes local path planning in
the map, demonstrating the usefulness of DWA in the obstacle
avoidance function.

4.3 Results of PV cleaning robots in a real
environment

Camera calibration is performed through MATLAB’s Camera
Calibrator App to achieve the calibration of the robot’s coordinates
to the world coordinates, to facilitate the effect of the simulation
results in section 4.2, and the localization pathfinding results
in section 3.3, to better understand the effects of the camera
calibration and the cleaning of the robot. As shown in Figure 13,
the image data of subfigure a was used for calibration, and after
counting the error distribution of subfigure b, 40 groups of 0.5
pixel error data were all in the camera calibration error, and the
corrective coordinate transformationwas solved to obtain the robot’s

internal reference matrix as
[[[[

[

477.6700 0 334.2009

0 478.0829 238.3404

0 0 1

]]]]

]
The effective focal length is fx = 477.67, fy = 478.0829, The
coordinates of the main focal point are [334.2009 238.3404]. The
radial distortion coefficient is [−0.0406 0.0727]. The tangential
distortion coefficient is [0 0], with an average reprojection error
of 0.2214 pixels.

Thereafter, the robot’s reference angle and reference speed
must also be calibrated. The calibration principle is proportional
calibration, which involves measuring the speed and reference
coordinate direction, as shown in Figure 14. The initial position in
the x-direction of the world coordinates is preset in the laboratory.
The cleaning robot is allowed to start from the starting position
by random forward movement and left rotation commands. It then
returns to the original position and direction, stopping for the first
time after 15 min.After this, the total distance S and the total amount
of converted angle θ were counted. The measured movement
deviation s and angular deviation ω are taken as the corrected data,
which are then input into the angular velocity calibration program
for error correction. Measure the moving deviation s and angular
deviation ω for correction data and input them into the program for
error correction,where s

S
= 6

100
is the velocity proportional deviation

and ω
θ
= 11

360
is the angular proportional deviation.

Figure 15 illustrates the map construction and path planning
process in the indoor laboratory environment, which evaluates the
previously described map construction and path planning process.
The a1 and a2 represent the map construction for autonomous
movement, and b1 and b2 represent the path planning during
autonomous movement. The c1 and c2 show the results of
the obstacle avoidance process. As Figures 15a,b show, the path
planning aims to obtain a straight line that avoids obstacles, rotates
as little as possible, and moves efficiently, which is highly time-
efficient. b to c shows that the process of obstacle avoidance

can be conducted in both simulation (section 4.3) and laboratory
environments. As the PV cleaning robot plans its path of travel
and begins to move, dynamic obstacles quickly appear. When a
dynamic obstacle appears in the local cost map, the PV panels
cleaning robot quickly steers towards the PV panels to avoid
colliding with the obstacle. It automatically enables local path
planning, allowing the PV cleaning robot to replan its travel path
to the target location and safely bypass obstacles. The calibration
process and the calibration process above have a certain degree
of accuracy.

The same setup and correction results were applied to the
PV station cleaning test in the field environment. The test
results are presented in Figure 16, demonstrating that the machine
development in this paper has a specific cleaning effect and provides
a reference value. Among them, the location DWA algorithm was
modified to clean the front and back of the same rowof 24 PVpanels,
resulting in an actual increase in cleaning speed of 23%. The results
and the previous simulation test have a certain difference. Still, this
difference is not contradictory to the point, because the algorithm
improves the pathfinding process, specifically by completing the
previous cleaning before moving on to the next cleaning target at
the start of the process. The actual cleaning time also includes the
operating time of the robotic arm, so the difference is also within
reasonable limits.

Table 5 presents the results of a comparison between this study
and several existing studies, including target detection methods, path
planning algorithms, cleaning methods, and PV panel conditions.
Among them, the Target detection method is used to indicate the
detection method used in the implementation process, reflecting the
functional accuracy and intelligence. The path planning algorithm
reflects the automation in the execution of the work. The cleaning
method refers to the practical approach used to clean, emphasising
the efficiency of the work. PV panel condition is the universality
of the method. The method described by Ma and Prabhakaran can
achieve the detection of pollutants and is more universal in terms
of the conditions of realisation; however, the subsequent cleaning
process is not described. Jin and Yang can achieve cleaning without
applying water, which is richer and better than the method in this
paper, and Jin’s method is better than Yang and Riawan methods in
terms of automation, although it uses the ACO algorithm to find the
way. However, the Jin, Yang, and Riawan method does not identify
the target of the work and is less accurate and intelligent than this
paper’s method; however, the work is less automated than this paper’s
method. Overall, in terms of functional accuracy, intelligence, and
automation, this paper has certain advantages; however, subsequent
research can be further strengthened in terms of cleaning and the
universality of work conditions.

5 Conclusion

Cleaning with an auto-robot is essential and a further trend for
a PV station. This study enhanced the YOLO v8 network model
to accurately detect objects, refined the DWA algorithm to plan
paths, and developed a robot system for cleaning purposes.Themain
conclusions are as follows:

(1) A lightweight Mobile-ViT model incorporating a Self-
Attention mechanism is utilized to enhance YOLO v8,
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yielding an accuracy of 91.08% and a processing speed
of 215 fps.

(2) A∗ global path planning algorithm and DWA local path
planning algorithm are improved, and the results in the
simulation environment show that the time consumption
decreases from 1.19 s to 0.66 s and the CN decreases from
23 to 10 p.

(3) The robot was debugged and calibrated in the PV station
environment, and results showed that the robot could build a
work map and clean without manual control, showing the rate
increased by 23% after the improved algorithm.

The robot provided a reference for the engineering applications
of deep learning, computer vision, and robot navigation. However,
the robot in this paper requires further field tests and development
to validate its effectiveness and advantages, such as multi-copter
cooperation and collaboration with other entities (e.g., UAVs). For
the detection of pollutants, further research can also identify their
types, quantities, and locations, which would improve cleaning
efficiency and energy utilisation rates.
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