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This paper presents a robust vision-based motion planning framework for
dual-arm manipulators that introduces a novel three-way force equilibrium
with velocity-dependent stabilization. The framework combines an improved
Artificial Potential Field (iAPF) for linear velocity control with a Proportional-
Derivative (PD) controller for angular velocity, creating a hybrid twist command
for precise manipulation. A priority-based state machine enables human-
like asymmetric dual-arm manipulation. Lyapunov stability analysis proves the
asymptotic convergence to desired configurations. The method introduces
a computationally efficient continuous distance calculation between links
based on line segment configurations, enabling real-time collision monitoring.
Experimental validation integrates a real-time vision system using YOLOv8 OBB
that achieves 20 frames per second with 0.99/0.97 detection accuracy for
bolts/nuts. Comparative tests against traditional APF methods demonstrate that
the proposed approach provides stabilized motion planning with smoother
trajectories and optimized spatial separation, effectively preventing inter-arm
collisions during industrial component sorting.

collision avoidance, motion planning, improved artificial potential field, dual-arm
manipulators, industrial automation

1 Introduction

The increasing demand for industrial automation is driven by the need to enhance
production speed, accuracy, and efficiency. Robots are increasingly replacing human
workers to address challenges like fatigue and maintain consistent performance over
extended periods (Liu et al., 2022). Despite challenges with human workers, bi-manual
operations offer significant value through component recognition and manipulation.
Humans instinctively understand unfamiliar objects by material, shape, size, and color,
enabling effective planning for separation or assembly tasks. Integrating these capabilities
into robotics is crucial for upgrading industrial automation through: i) HRC - Human
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robot collaboration where humans and robots collaboratively
enhance process efficiency ii) robots with capabilities that mimic
human intelligence and dexterity. A dual-arm system with efficient
inter-arm collision avoidance and vision perception provides a
robust solution matching human-like manipulations, essential
for industrial component handling in warehouse management,
assembly lines, and manufacturing.

In general, dual-arm manipulators offer improved dexterity
and faster task completion compared to single arm manipulators.
However, these advantages require careful consideration of
movements to avoid inter-arm collisions while maintaining
efficiency (Smith et al., 2012). Categories of dual-arm manipulators
the i)
where manipulators move independently executing different

include following: non-coordinated manipulations,
tasks, and ii) coordinated manipulations, involving combined
movements with spatial and temporal synchronization in shared
further divide

symmetric (mirror movements with equal force distribution)

workspace. Coordinated manipulations into
and asymmetric (complementary movements with different
force distributions) (Makris, 2021). Although more challenging,
asymmetric manipulations enable a wider range of complex tasks
that require coordinated actions. Integration with real-time vision
and inter-arm collision awareness enhances robustness for industrial
manufacturing assembly and warehouse management applications.

The planning of dual-arm movements addresses coordination
through two primary approaches: path planning and motion
planning. Path planning generates geometric trajectories avoiding
obstacles and self-collisions, prioritizing spatial relationships
without timing information. Motion planning extends this by
incorporating velocity profiles, acceleration constraints, and
dynamic considerations, creating time-parametrized trajectories
(Abbas et al, 2023). The selection between these approaches
depends on application requirements, with industrial manipulation
tasks often benefiting from motion planning’s ability to manage
the temporal aspects of coordination between manipulators. In
addition Tang et al. (2012) provides a comprehensive review of
robot motion planning approaches, categorizing and analyzing
the research evolution from 1980 to 2010. They systematically
compared conventional approaches like Bug Algorithms Lumelsky
and Stepanov (1987), Roadmap Asano et al. (1985); Aurenhammer
(1991); Canny (1989), Cell Decomposition, Potential Fields Khatib,
(1986), and Mathematical Programming with heuristic methods
(Neural Networks, Genetic Algorithms, Fuzzy Logic, etc.),
demonstrating the field’s evolution from conventional methods
in the 1980s to predominantly heuristic approaches by the 2000s.
Their analysis includes quantitative comparisons of implementation
frequency for each approach and identifies future research directions
for integrating perception, sensing, and motion planning system
provides useful insights for research directions.

2 Related work

Numerous studies enhanced dual-arm motion planning for
industrial manipulation. Robust inter-arm collision avoidance
improved collaborative motion by enabling safe execution of
coordinated tasks. This capability required continuous awareness
of relative link configurations, maintaining safe distances while
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maximizing shared workspace utilization. Real-time collision
monitoring provided the foundation for effective dual-arm
coordination in dynamic environments.

This literature review categorizes dual-arm manipulation
research into three key areas: (i) collision detection methodologies
(ii)

potential field methods (ranging from classical formulations to

(both geometric and alternative approaches), artificial
specialized variants), and (iii) temporal coordination strategies. This
organization traces the field’s evolution while revealing challenges
in real-time adaptation and asymmetric manipulation challenges
that suggest the potential value of extending APF approaches with
improved force equilibrium mechanisms.

Effective dual-arm manipulation requires robust collision
detection to prevent inter-arm collisions while maintaining
operational efficiency. Researchers have developed various
approaches, from geometric primitives to advanced mathematical
frameworks, to address this fundamental challenge. Lumelsky
(1985) introduced a parameter-based algorithm for minimum
distance calculation between line segments in n-dimensional
space. Using parameters t and u (range [0,1] for points inside
segments), they established a framework handling all geometric
configurations. The method first calculates minimum distance
between infinite lines by minimizing a quadratic function, then
verifies if these points lie within actual segments. By using
parameter values to identify relevant endpoints, computational
complexity reduces to 5n+12 multiplications and 8n+1 additions.
However, it provides only discrete collision detection without
continuous distance metrics, limiting its application in modern
control approaches requiring gradient information for smooth
motion planning. Furthermore, Chang et al. (1990) proposed
collision detection approach uses minimum distance functions
defined by Euclidean norms to determine collision risk between
robot arms. Their method modeled robot links as cylinders with
hemispheres and end-effector as spheres, then calculates distances
between these primitives in three scenarios: line segment to line
segment, line segment to point, and point to point. Lee and
Moradi (2001) proposed a hierarchical geometric collision detection
algorithm for dual-arms using: bounding boxes, joint-joint distance
thresholds, perpendicular distance calculations, and cross-product
methods. Despite a 30% computational improvement, it used
simplified primitives, lacked mathematical formalism for complex
configurations, and provided only discrete binary detection without
continuous metrics for smooth planning. The approach showed
reduced accuracy with near-parallel links and increased complexity
in 3-D without addressing degenerate cases or providing control
gradient information. Ketchel and Larochelle (2008) presented a
dual-stage collision detection algorithm for spatial closed chains
first uses dual vector algebra and Pliicker coordinates (Miller,
2005) to quickly check for possible collisions between infinite
cylinders. If potential collisions are detected, a second stage
performs precise testing between finite cylinders using detailed
geometric calculations. While mathematically elegant, this approach
may not provide the continuous distance metrics needed by modern
control systems for obstacle avoidance. The method formulates
collision detection as a constrained nonlinear minimization
problem, which introduces complexity for real-time applications,
requiring conjugate gradient methods with barrier functions to
solve. Larsen et al. (2000) presented an RSS-based proximity
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algorithm that combines rectangles with uniform sphere expansion
to create efficient bounding volumes. It builds hierarchical trees
using covariance analysis and geometric “slab” properties for
fast distance calculations. Performance improvements come
from priority-directed search and triangle caching that leverages
frame-to-frame coherence. While outperforming sphere-based
hierarchies, the approach struggles with non-convex geometry
(requiring decomposition into multiple parts) and can experience
numerical instabilities in near-intersection cases, sometimes
producing overly conservative distance estimates that reduce query
efficiency. Rescsanski et al. (2025) provide insights into collaborative
robotics for industrial additive manufacturing, highlighting
effective collision detection methods using geometric approaches
and real-time mechanisms for multi-arm systems. It analyzes
motion planning strategies for cooperative robotic systems where
coordination between arms is crucial for manufacturing quality
and efficiency. The research presents a framework for cooperative
robotic arm additive manufacturing (C-RAAM) configurations
based on build volume overlap, enabling applications from large-
scale homogeneous printing to specialized heterogeneous tooling. It
demonstrates how inter-arm coordination and collision avoidance
can be achieved through either preventative scheduling or real-time
sensing and feedback.

Apart from the geometric approaches, researchers explored
alternative methods for collision detection for dual-arm
collaboration. Feng et al. (2020) introduced a graph-based
network approach for multi-robot collision detection where robots
are represented as vertices with edges connecting interacting
robots. It focuses on maintaining network connectivity through
local and global edge management methods, using algebraic
connectivity measures and market-based algorithms. Limitations
include computational demands from continuous -eigenvalue
calculation, potential delays in link decisions, and the focus on
network connectivity potentially overlooking actual collisions,
which may compromise safety. Jamisola and Roberts (2015);
Jamisola et al. (2015) presented a transformation-based approach
to multi-manipulator kinematics that focuses on relative motion
between end-effectors while providing a mathematical framework
for coordinate transformations relevant to absolute motion
control. They express individual manipulator Jacobians with
rotation and wrench transformation matrices to ensure coordinate
consistency across the system. Their analysis shows that positional
errors increase significantly at higher angular velocities when
transformation matrices are incomplete, emphasizing the need for
rigorous mathematical formulations when multiple manipulators
share a workspace. This approach complements geometric collision
detection by providing insight into how manipulator kinematics
must be properly transformed between reference frames for
accurate motion planning. Fei et al. (2004) presented a dual-
arm collision avoidance approach using configuration space (C-
Space) representation. The methodology identifies collision regions
through reachable manifold and contact manifold concepts, then
applies the A=xalgorithm on discretized grids to find optimal
paths. Path optimization is incorporated through scan rules. While
innovative for its time, the approach has limitations: it relies on
static geometric planning rather than continuous adaptation, uses
discretized boundaries that may limit motion smoothness, and lacks
mechanisms for maintaining optimal arm configurations during

Frontiers in Robotics and Al

03

10.3389/frobt.2025.1604506

complex movements. Schmidt and Wang (2014) implemented
collision avoidance using Kinect depth sensors that process
images by removing backgrounds and converting obstacles to 3-
D point clouds with efficient bounding box representation. Their
system calculates minimum distances between robot and obstacles,
enabling three strategies: warnings, stops, or path modification
through vector decomposition. This methodology provided valuable
insights for our vision perception conceptualization, particularly
in how sensor data can be transformed into actionable spatial
information for real-time goal attraction with collision avoidance in
robot-robot collaborative environments.

Physics-inspired potential field approaches offer an intuitive
framework for robot motion planning by simulating attractive
and repulsive forces. Beginning with Khatibs foundational work
Khatib (1986), these methods have evolved to address limitations
like local minima while accommodating increasingly complex
manipulation tasks. Khatib (1986) pioneered the Artificial Potential
Field (APF) method, transforming discrete path planning into a
continuous optimization problem. The robot is treated as a particle
moving in a force field where an attractive force proportional to
goal distance pulls the robot toward the target, while repulsive
forces decaying quadratically with proximity push it away from
obstacles. The robot follows the negative gradient of this composite
potential function, implementing steepest descent optimization in
configuration space. A key limitation is that APF can suffer from
local minima in cluttered environments due to the superposition
of attractive and repulsive forces. Subsequent research by Volpe
and Khosla (1987), Volpe and Khosla (1990) refined the original
APF concept, by introducing n-ellipse representation that varies
with distance. The n-elliptical iso-potential contours address the
fundamental limitations in obstacle avoidance. Their innovative
approach seamlessly transitioned from rectangular contours near
obstacles (n — 00) to circular fields at greater distances (n — 1),
effectively eliminating local minima through geometric adaptation.
While this method significantly improved single-arm manipulation,
its computational complexity in calculating elliptical potentials
limited real-time applications. Furthermore, Chuang et al. (2006)
proposed a dual-arm coordination strategy employing APF was
proposed. This approach uses an alternating master-slave paradigm.
Initially, one arm (the master) plans its trajectory while treating the
other arm as a static obstacle. Subsequently, the roles are reversed,
with the previously slave arm now planning its trajectory while the
other arm remains static. This alternating priority scheme continues
until all objects reach their respective goals. The workspace is
modeled using charged surfaces that generate repulsive forces
to ensure avoidance of collisions between robots and obstacles.
Byrne et al. (2015) and Byrne et al. (2013) enhanced APF by
integrating configuration sampling and sub-goal selection within a
master-slave architecture and cooperative goal sampling framework.
This approach achieved a 95.2% success rate, demonstrating
its effectiveness in handling more complex coordinated tasks.
However, it comes at the cost of increased computational overhead
and slower convergence rates (9.14s vs. 4.65s) compared to the
original APF (Khatib, 1986). Additionally, its application is limited
to planar 2D manipulation scenarios.

Furthermore, enhanced APF with specialized variants, such as
D-APF(Dynamic Artificial Potential Field) Jayaweera and Hanoun
(2020) for UAV path planning using exponential attractive and
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repulsive potential fields for moving target tracking and obstacle
avoidance. It prioritizes vertical over horizontal motion, favoring
altitude changes for obstacle avoidance. Combined forces generate
smooth trajectories converted to velocity waypoints for PX4
autopilot, with separate PD-based orientation control. The force
separation into vertical/horizontal components adds complexity
and may cause oscillations during rapid directional changes, and
the approach struggles with complex or closely spaced obstacles
where vertical avoidance is insufficient. D-APF demonstrates
potential field method evolution for aerial navigation, though dual-
arm manipulation presents unique challenges requiring careful
force field design. Sun et al. (2022) used APF in a hybrid
approach with their mobile dual-arm system combined with RRT
(Rapidly Exploring Random Tree)-based motion planning for base
navigation along with integrated vision and impedance control.
Wang et al. (2018) developed an optimized APF with velocity
feedforward and simplified collision detection for redundant
manipulators. Li et al. (2024a) and Li et al. (2024b) introduced an
attractive potential field rotation method for local minima avoidance
and develop a smooth attractive function o(d) to address Goals Non-
Reachable with Obstacles Nearby (GNRON) issues. While effective
for single-robot navigation, the approach is limited to navigation
rather than manipulation scenarios. Despite mathematical elegance,
it faces constraints when extended to multi-robot coordination
and precision control in healthcare environments. Their rotation-
based solution introduces computational considerations that must
be balanced against real-time performance requirements in practical
applications. Lin et al. (2025) proposed a 3-D APF approach for
robotic arms that integrates force sensing with rotating repulsive
fields to navigate narrow spaces. Their method treats the tool
as a vector rather than a point and modifies repulsive force
direction to prevent local minima. While their approach addressed
single-arm collision avoidance, our method extends APF to dual-
arm coordination through a novel three-way force equilibrium
with exponential home-seeking forces and priority-based state
transitions that enable asymmetric dual-arm manipulation with
proven stability.

Beyond spatial collision avoidance, successful dual-arm
manipulation demands sophisticated temporal coordination to
synchronize movements and optimize task execution. Researchers
have developed various frameworks to address this critical
dimension of collaborative robotic systems. Montafio and Sudrez
(2016) proposed a temporal coordination approach for multiple
robots using Discretized Coordination Space (DCS) where
robots adjust timing along fixed paths. It builds a Collision-free
Coordination Curve using state diagrams with wall-follower or
impact heuristics to select motion directions. The computational
complexity increases exponentially with robot numbers (3" -1
motion directions), lack of flexibility for dynamic environments
since paths cannot be modified, and frequent robot idle periods
when coordination points cannot be generated quickly enough,
reducing system efficiency compared to reactive approaches like
iAPE. Malvido Fresnillo et al. (2023) developed an automatic
tool change system integrated with Movelt’s scene management,
allowing robots to exchange end effectors by manipulating collision
objects and communicating with hardware interfaces. For dual-
arm coordination, they created synchronization methods that
merge individual arm trajectories using various timing policies,
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enabling coordinated manipulation through time-adjusted motion
plans or master-slave relationships. However, this planning-
based approach has inherent limitations, it requires complete
environment knowledge beforehand, and it lacks the reactivity
needed for dynamic obstacle avoidance or real-time adaptation
to changing conditions. Shin and Bien (1989) presented a collision-
free trajectory planning approach for two robotic arms sharing a
workspace by transforming obstacles into a virtual coordination
space (VCS). Their method allows links of one robot to grow
while shrinking the other to a point, visualizing all collision-
free coordinations as curves in the VCS. Although innovative for
dual-arm coordination, their approach requires explicit modeling
of virtual obstacles and lacks the dynamic adaptability of our
three-way force equilibrium system that maintains optimal arm
configurations throughout the workspace. Basile et al. (2012)
proposed a task-oriented motion planning framework that enables
programming at the workpiece level through a cooperative planner
handling task-space trajectories and kinematic transformations,
while separate arm planners compute inverse kinematics for each
robot. Despite efficient coordination through their taxonomy-based
approach (distinguishing positioners and workers) and extended
programming language with high-level instructions, their method
suffers from limited real-time adaptability, as it requires complete
task specification beforehand and cannot dynamically respond to
unexpected obstacles or environmental changes, unlike our iAPF
method, which continuously recalculates forces to generate reactive
behaviors that smoothly adapt to changing conditions without
extensive reprogramming.

Furthermore, for effective object handling in real-time
operation, precise detection of required components is an important
aspect. Object detection has evolved from traditional computer
vision techniques like SIFT, SURF, and BRIEF -which require
manual feature extraction and parameter tuning O’Mahony et al.
(2019) to more advanced CNN methods that automatically
learn relevant features (Alzubaidi et al, 2021). For handling
industrial components, an accurate pose estimation is crucial.
K etal. (2024) presented a classical approach for bolt handling
using k-mean clustering and chamfer matching, offering simple
implementation without training data but limited by sensor quality
and lighting conditions. S. K etal. (2024) employed DeeplabV3P
with classical techniques for estimating and sorting bolt size.
Instance segmentation provides both classification and precise
localization with clean edge masks (Sharma et al, 2022). Mask
R-CNN He et al. (2017), built on Faster R-CNN Ren (2015)
which uses region proposal networks instead of selective search
Girshick (2015); Girshick et al. (2014) adds a parallel branch for
segmentation masks. Detectron2 Wu et al. (2019), successor to
Detectron Girshick et al. (2018) and maskrcnn-benchmark Massa
and Girshick (2018), incorporates Mask R-CNN and RetinaNet with
focal loss. For real-time inference on CPU machines, Ultralytics’
YOLOv8 and YOLOvI11 Jocher et al. (2023); Jocher and Qiu
(2024) offer faster performance through single-pass architecture,
lightweight backbones, anchor-free detection, and efficient feature
pyramids. YOLOV8’s oriented bounding boxes capability avoids
computationally expensive instance segmentation.

Our improved Artificial Potential Field (iAPF) approach
addresses key limitations identified across existing methodologies
as shown Table 1. While geometric approaches like Lumelsky
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TABLE 1 Comparative analysis of the proposed iAPF with traditional and existing APF variants for industrial dual-arm manipulation.

Method Force field Stability Real-time Industrial Key industrial
components guarantee performance suitability limitations
Traditional APF (Khatib, Attractive + Repulsive None Moderate Low Local minima in
1986) cluttered workspaces
Enhanced APF Attractive + Repulsive + Statistical (95.2%) Slow (9.14s) Moderate High computational
(Byrne et al., 2015) Sampling overhead
D-APF (Jayaweera and Exponential + Vertical None Moderate Low Limited to UAV
Hanoun, 2020) Priority applications
Rotating APF (Lin et al., Attractive + Rotating Mathematical Moderate Low Single arm only, no
2025) Repulsive coordination
iAPF (Proposed) Attractive + Repulsive + Lyapunov Proven Fast (10 Hz) High Dynamic obstacle
Home-seeking adaptation

(1985) and Chang et al. (1990) provide precise collision detection,
they lack continuous distance metrics for smooth motion
planning. Traditional APF methods by Khatib (1986) offer
intuitive frameworks but suffer from local minima, particularly
in cluttered environments. Prior coordination strategies like
Montano and Sudrez (2016), discretized coordination space and
Malvido Fresnillo et al. (2023), master-slave paradigm lack dynamic
adaptability to changing environments. iAPF overcomes these
limitations through a novel three-way force equilibrium that
balances goal attraction, obstacle repulsion, and home-seeking
behavior. Unlike Byrne et al. (2015) and Byrne et al. (2013) approach,
which showed slower convergence despite higher success rates,
our method achieves real-time performance without sacrificing
stability. Where Li et al. (2024a) and Li et al. (2024b) rotating
repulsive fields work well for single arms, our approach extends
to dual-arm coordination with a priority-based state transition
mechanism that enables truly asymmetric dual-arm manipulation
without oscillations or deadlocks. By addressing the need for
continuous adaptation rather than pre-planned trajectories, iAPF
motion planning along with real-time 20 frames per second (FPS)
inference provides a robust solution for collaborative robot tasks
in dynamic industrial environments like manufacturing, warehouse
management and assembly line fields. Our novel iAPF methodology
addresses these limitations through the following key contributions.

1. Case-Specific Analytical Inter-Arm Distance - Algorithm
employing closed-form vector solutions for parallel,
intersecting, and skew link configurations with epsilon-based
numerical stability handling.

2. Hybrid Linear-Angular Control Framework - iAPF-derived
linear velocity control coupled with independent PD
(Proportional Derivative)-regulated angular velocity, creating
a dual-control system with proven Lyapunov stability for
exponential (O(e?)) attractive and inverse power-law (O(d"*?))
repulsive force integration.

3. 4-DoF Vision-Based Pose Estimation - Real-time component
detection (20 FPS) with oriented bounding box analysis
providing position and yaw for precise grasp planning.

Frontiers in Robotics and Al

4. State-Conditional Kinodynamic Control - Velocity damping
coefficients and task-specific z-axis constraints adaptively
modulated based on operational phase (targeting, gripping,
transport).

5. Priority-Based Dual-Arm Task Allocation - Hierarchical state
machine with comparative-distance-based resource locking
for deadlock-free simultaneous manipulation in shared
workspaces.

This paper is organized as follows: Section 1l introduces
the motivation and significance of asymmetric bi-manual
manipulations in industrial automation. Section2 provides a
systematic review of relevant literature, highlighting the advantages
of our proposed method. Section3 presents the proposed
methodology for establishing inter-arm collision avoidance in
dual-arm motion planning, incorporating real-time vision and
providing theoretical proofs for the potential field formulations.
Section 4 describes the experimental setup, including the hardware
used and the required transformation of frames. Section 5
presents a comparative analysis between the proposed iAPF and
traditional APF methods, highlighting the advantages of our
approach, and showcases the deep learning model’s performance
metrics. Finally, Section6 summarizes the key findings,
presents the conclusions, and discusses potential future research
directions.

3 Methodology

The proposed overall methodology as shown in Figure 1
integrates four key components: (1) minimum distance calculation
between inter-arm links using geometric classification, (2)
vision-based pose estimation for industrial components, (3)
three-way force equilibrium combining attractive, repulsive,
and home-seeking forces with velocity-dependent stabilization
and (4) state-based asymmetric coordination for dual-arm
manipulation with priority locking. Together, these components
enable collision-free, coordinated manipulation in shared
workspaces.
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FIGURE 1
The Proposed Overall Methodology of iAPF framework for Asymmetric Dual-Arm Manipulation with Real-Time Inter-Arm Collision Avoidance.

4. Asymmetric Dual-Arm Manipulation
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3.1 Minimum distance calculation between
inter-arm links using geometric
classification

‘We modeled each robotic arm link as a line segment in 3-D space
using Equation 1 and Equation 2 as given in Equation 3 using D-H
parameters shown in Figure 2 enabling efficient minimum distance
calculation between inter-arm links through geometric classification
as parallel, intersecting, or skew configurations.

cos(0;) —cos(w;)sin(6;) sin(a;)sin(6;)  a; cos(6;)
- sin(6;)  cos(a;)cos(0;) —sin(a;)cos(8;) a;sin(6;)
* = 0 sin (a;) cos(a;) d;
0 0 0 1
(1)
R pil
i— k ik
T;,kl = )
0 1
Sik =Py ()
T(t)ool,k = T(lJ,k ’ T;,k ’ Tg,k ) Ti,k ’ T;,k ’ Tg,k ’ Tfool,k 4)

Where i=1...6 represents the joint number, tool represents
the end-effector frame, k denotes the identifier
(right/left arm), Ri’kl € R¥3 is the rotation matrix, and pﬁ,’kl €
IR? is the position vector.

arm
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Theorem 1: (Segment Properties). Every line segment S
convexity: Vx,y € S,Ax+(1-NyeS for Ae]0,1],
compactness of S is closed and bounded, connectedness of S is
path-connected (Munkres, 2000).
The segment between two bounding points p,,p, is S[p;.p,],
d

direction vector d = p, — p,, unit directiond = IR and normal space

is N={v € R®| v-d = 0}. The normal space N is a two-dimensional
subspace of R* (O'neill, 2006).
For segments S,,S, with direction vectors d;,d,, then the angle

0 =arccos| ——=—
Id; ld,

Theorem 2: (Angle Invariance). The angle 6 between segments

possesses,

between them is:

is invariant under rigid body transformations, such as translation
and rotation (Gallier, 2011).

Theorem 3: (Configuration Completeness). Every pair of line
segments falls exactly into one of:

1. Intersecting
2. Parallel
3. Skew

(Pottmann et al., 2001).

Theorem 4: (Metric Space Properties). The function d satisfies,
positive definiteness d(x,y) 20, d(x,y) =0 when x=y, symmetry

frontiersin.org


https://doi.org/10.3389/frobt.2025.1604506
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Surya Prakash et al.

FIGURE 2

10.3389/frobt.2025.1604506

i ;i a; d; 0;

1 /2 0 243.3 01

2 s 280 30 02+ /2
3 /2 0 20 03 + /2
4 /2 0 245 04+ m/2
5 /2 0 57 05 +m
6 0 0 235 06 + /2

Kinova Gen3 lite with link frames with modified DH parameters for forward kinematics computation.

d(x,y) =d(y,x) and triangle inequality d(x,z) <d(x,y)+d(y,z).
Furthermore, (R, d) is a complete metric space.

The distance function d is continuous in both arguments if
and only if.

Foralle > 0, there existsa§ > 0 such thatif |x; — x,|| < §and [y, -
1l <8, then |d(x,,y,) — d(x,,y,)| <€

The distance between a line segment on the left arm S;.; and a

line segment on the right arm S, is defined as:

iright
d(sileft’ Siright) =min "x —}’|| (5)

where, X € S ¥ € Sipigne € R®.

The minimum distance between any pair of links in the dual-
arm system is determined based on their geometric configuration,
one of three cases: parallel, intersecting, or skew as in Figure 3.
The method of distance calculation varies depending on the specific
geometric configuration. A systematic formulation for finding the
minimum distance between dual-arm links in 3-D space has
been developed. Further the proposed method for calculating
minimum distance is verified as shown in Figure 4. Example
Distance Calculation between various cases of line segments are
shown in Supplementary Material in Supplementary Figure S9.

3.2 Vision-based pose estimation of
industrial components

Real-time asymmetric dual-arm manipulation requires rapid
inference of object information within the system’s workspace.
Prioritizing inference speed for effective real-time object handling,
we selected the YOLOv8 OBB model for object detection, which
achieved 20 frames per second on our hardware configuration while
maintaining high detection accuracy. The systematic evaluation of
various models used on our custom data as shown in Table 2.

Frontiers in Robotics and Al

3.2.1 Data collection and labeling

Data collection and data labeling as shown in Figure 5, are
crucial steps in preparing meaningful information to train deep
learning models. We carefully prepared our dataset, incorporating
diverse real-world conditions, including varying backgrounds
(cluttered workspaces, different table surfaces), lighting, and object
ages (new and old). To enhance the model’s robustness against false
positives, we employed a strategic negative mining technique by
adding a background/reference class. This class included objects
visually similar to the target objects (bolts, nuts) and images
of the empty workspace on the table. Our dataset, comprising
1,230 images, divided into training, validation, and testing sets of
1120, 80, and 30 images, respectively. Furthermore, we used data
augmentation techniques of the Ultralytics training framework,
increasing the dataset size tenfold. As a result, we achieved a
prediction rate of 20 frames per second during model deployment,
crucial for real-time applications. The system operates under
controlled workspace assumptions where only target components
are present, eliminating occlusion challenges typical in structured
industrial sorting environments.

After detecting objects (nuts and bolts) globally from an RGB-
D camera, further inferred object centroids (c,, cy) and yaw (6)
along with dimensions of bounding box (h, w) using YOLOv8 OBB
inference, as illustrated in Figure 6. Furthermore, this information is
transformed into real-world coordinates from the image coordinates
using projective transformations using camera intrinsic properties
(fo f» Co C,) shown below. Considering an object detected in the
globally fixed camera frame, using predictions from our model is
as shown in Equation 7.

f. 0 C, 602.063 0 317.316
[Kl=1|0 fy Cy = 0 602.063 243.314 (6)
0 0 1 0 0 1
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A
| Return distance = 0
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FIGURE 3
Procedure to compute minimum distance between inter-arm robot links modeled as line segments in 3-D space according to geometric
configurations.

F, =[c,c,,0,h,w]. (7)  depth camera. The transformation from image coordinates (c,, c,)
to 3-D real world coordinates follows the projective transformation
as shown in Equation 8.

Where [K] is camera intrinsic parameter matrix of Intel Realsense2

D415, F, is information of features of the objects in pixels. The depth P depth(c,.c,) xo &= G 7 y= 5-G Z. (8
value Z for respective object’s (c,, c,) is obtained from the aligned y ’ fi ’ 1
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distance).

Visualization of real-time minimum distance(m) calculation for Dual-Arm Links (block with more bright and red dotted lines indicates the minimum

TABLE 2 Systematic evaluation of models on our custom dataset (nut/bolt) for suitable selection of model.

S.No ‘ Model name Model size (MB) Inference
1 Detectron2 Instance Segmentation 351.1 0.51
2 YOLO V8 Instance Segmentation 20.0 15
3 YOLO V11 Instance Segmentation 6.0 13
4 YOLO V8 OBB 59 20

y is scaling factor, (C,, C,) is the principal point of the camera
in pixels, f,, f, are the focal lengths in pixels, and Z is depth
value in meters.

We further estimate its size using the width h of its oriented
bounding box (in pixels) and angle 6, as illustrated in Equation 6
using Equation 9 and Equation 10.

size = (% -7Z)-y. 9)

X

angle = 6. (10)

The final feature information of industrial components (nut/bolt) in
real world coordinates are:

Ernutpporr = XY, Z, 0, size] (11)
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3.3 Improved artificial potential field (iAPF)
framework for dual-arm motion
planning

Considering the robot position r, goal position g, other
arm’s end-effector position o, and d is minimum distance
between inter-arms as in Equation 5, the force fields are defined

as follows:
fun®) =k, (exp(lg-rl) - 1) 2— (12)
r,g) =k, (ex -rh)-1) =——
at\>8) = Kg - (eXpUig lg—rl
where, k, is attractive force gain constant.
2 1 o—r
f.,(r,0,d;,) =k - —- 13
60, di) =k 5 (13)
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FIGURE 5

Data Collection (top row) and (b) Data Labeling of nuts (blue border) and bolts (red border) (bottom row).

FIGURE 6
YOLOVS8 Oriented bounding box predictions around the

detected object.

where k, is the repulsive force gain constant, # is the decay exponent,
o is the obstacle position (other arm’s end-effector position), and
dmin
the geometric classification method described in Section 3.1.

is the minimum distance between arm links calculated using

The home-seeking force represents a novel integration to
traditional APF, providing exponential attraction towards the home
position of the manipulator.

h-r

f h) =k, - herlD—1)-
home (1, 1) = Ky, - (exp (|lh —r|)) )||h—r||

(14)

where, k;, is the home force gain constant, h is home position
defined as the predetermined starting state and safe configuration
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where each manipulator returns when no target objects are
detected, ensuring collision-free states and optimal workspace
coverage.

Egamp(V) = —ky- ¥ (15)
where, k; is damping coeflicient and ¥ is current velocity.

The carefully designed force fields are crucial for achieving
successful asymmetric bi-manual manipulation. The exponential
goal attraction force field Equation 12, significantly enhances
convergence speed and facilitates smooth transitions near the
goal, essential for achieving precise pick-and-place operations.
The inverse-distance repulsive force Equation 13, effectively
prevents collisions between manipulators by exerting a repulsive
force that scales inversely with the distance between them,
ensuring robust collision avoidance while minimizing unnecessary
interference. The exponential home-seeking force Equation 14,
counteracts excessive arm extension, particularly in scenarios
where strong repulsive forces arise due to near-goal conflicts. By
encouraging the arms to return to a more neutral position, it
maintains system stability and facilitates balanced convergence.
Furthermore, the velocity-dependent damping force Equation 15,
plays a crucial role in stabilizing the system by dissipating
energy, effectively reducing the oscillatory behaviors that may
arise during arm interactions, ensuring smooth and controlled
trajectories.

The resultant force with damping is given by Equation 16:

-

f

resultant:fatt+frep+fhome_kd'?/ (16)
From the visual perception module described in Section 3.2,
the feature information obtained in Cartesian coordinates, as
defined in Equation 11, provides the position and orientation

of the goal.
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FIGURE 7

Overall states for dual-arm manipulators from picking to positioning the components.

3.3.1 iAPF based linear velocities

Considering the position of objects obtained from the vision
module Equation 11, the generation of force fields is initiated to
guide the manipulators to their respective target positions. In the
absence of object detection, the target position for each manipulator
defaults to its home position. The linear velocities of manipulators
are determined as follows:

(fresultant)k

= ——————

S

(17)

<!

where, s is a scaling factor and k is left/right. The stability analysis
for velocity based on iAPF, as defined in Equation 17, is crucial due
to the non-linear nature of the potential functions. It is essential
to ensure convergence to the desired position while maintaining
bounded velocities. Lyapunov stability analysis shows that the
superposition of attractive, repulsive, and home-seeking potentials,
combined with velocity damping and state machine based priority
mechanism as shown in Figures 7, 8, results in stable robot motion
to the target objects.
Considering the manipulator’s end-effector position as x € R?,

x=vv= kv ' fresultant(x)

Frontiers in Robotics and Al

() = =VV, () — kv

fresultan otal

The gradient VV,,;(x) points the direction of steepest increase of the
potential field, negative sense of this term, directs the point towards
lower potential, away from obstacle and near to goal, the damping
force kv is subtracted from this total potential, to oppose motion
proportional to velocity direction.

Viotal (%) = Vi (%) + Vrep(x) + Viome (X)s
where,
Vi (50) = Ky (exp (I = gy 1) — 1,
k

-
T
dobs

Vi) =

Vhome(x) = kh (CXP (”.X - xhome") - 1) .

In the pre-priority state, when robots start to move towards goal, the
Lyapunov function is selected as:

Li(x)= Viotal (),

where L, (x) > 0 for all x, and L, (x) is continuously differentiable.
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FIGURE 8
Priority mechanism and critical states for asymmetric dual-arm manipulation.

The time trajectory of L, (x) is given by: At the pick-lock state (x = X psition)-

Making obstacle charge c,,, and home charge ¢;,,,. as zero to

Ly(%) = Vi (0%, enable asymmetric bi-manual manipulation.
frep + fhome =0.

Li (X) = VVtotal (X) v,
Substituting these conditions, we get:

Li(x) = VV, (%) [kv(fatt + frep +fhome —ka- v)] . Ly (yransition) = V Ve (0 [y (e — kg - v)] -
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The time trajectory at X,.ion indicates potential for
further movement.

L (Xansition) = V Vare () [k, (=V Ve (%) = 2k - v)] -
Simplifying, we have:

Ly (Xiransition) = —k IV Vo (01 = 2k, KV Vi () - v.
For k; > 0 and k, > 0, the following holds:

Li('xtransition) <0 forallx# xgoal’

Ll(xtransition) =0 forx= Xgoal-

The stability analysis demonstrates, dual-arm iAPF control achieves
coordinated manipulation through two key phases. Initially, both
manipulators move under complete force set (attractive, repulsive,
home-seeking) with Lyapunov function L;(x) ensuring stable
concurrent motion. When priority is assigned based on goal
distance, the system transitions to a reduced force set (attractive
and damping only) for the prioritized arm, with L, (x) guaranteeing
asymptotic stability to the goal position. The non-zero L;(x)
at transition points enables sequential task completion while
maintaining collision avoidance, validating the proposed approach’s
theoretical stability and practical effectiveness for industrial
manipulation tasks.

3.3.2 PD controller based angular velocities

Considering the orientation of objects obtained from the vision
module, the current end-effector orientation for each manipulator
is obtained through real-time forward kinematics of the dual-arm
system, providing the basis for orientation control.

The current orientation of the end-effector is given by:

0.=1[6.6,,0..] € SO(3)
The desired orientation, obtained from visual perception given by:
0, = [644,04,0,.] € SO(3)
The corresponding rotation matrix is represented as:
R(9) = R.(6)R,(6,)R,(6,)
The error rotation matrix is given by:
R, =R R.' € SO(3)

The error rotation matrix R, can be expressed in the axis-angle

representation, parameterized by angle 0 and axis k = [k,, k. k_].
The PD control law for orientation control of
manipulator given by:
w, =K, -0-k+K -i(G-k) (18)
k= ™p d dt

Where K, € R** is the proportional gain matrix, K; € R**? is the
derivative gain matrix, w € R® is angular velocity vector and 8 € R is
the rotation angle error derived from the error rotation matrix R,.
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4 Experimental setup
The experimental setup for demonstrating asymmetric
dual-arm manipulation is established with reference frames
as shown in Figure 9. The system comprises two 6-DOF Kinova
Gen3 Lite arms mounted on a fixed table, with an overhead
Realsense2 D415 camera providing a global view of the workspace.
Processing is handled by an Intel Nuc9I7Qnx with 32 GB RAM,
which connects to the manipulators via TCP/IP sockets using
a specific communication protocol, while the camera interfaces
through USB. The Kinova-Kortex Python API is used for
manipulator control, and the ROS-Noetic framework facilitates
publishing and subscribing to the vision module’s inference data.
Individual forward kinematics, as given by Equation 4, provide
the position and orientation of each manipulator’s end-effector with
respect to its respective base frame. Furthermore, T7. represents the
transformation of the camera in the right arm’s base frame, while
T denotes the transformation of the right arm in the left arm’s

base frame.
1 0 0 0.251 -1 0 0 L
0 -1 0 -0.211 0O -1 0 0.0
T - I-
0o 0 -1 0.75 0 0 1 00
0 0 0 1.0 0 0O 0 1.0

The further pose from Equation 11, is transformed to the left
arm’s base as Equation 19:

p; = T17p; (19)
where py is given by:
el vz w0
The rotation angle 0, is computed as:
6.-6, .18
Lo
The gripper angle 6., for the arm is given by Equation 20:
ngipperk =270- 61’ (20)

This ensures proper alignment between the gripper and nut/bolt
for grasping.
Both linear velocities (from iAPF) and angular velocities (from
PD control) for both arms are initially calculated in left base frame
using Equation 17 and Equation 18. Subsequently, the right arm
velocities (both linear and angular) are transformed from left base
frame to right base frame using Tl' rotation matrix, while left arm
velocities remain in left base frame as shown in Equation 21.
vV, = R; : (Vr)ﬁ w, = er : (wr)ﬁ (21)

Vi=V; W=

Where i represents the nut/bolt, k denotes the right/left arm, RI’ is
rotation matrix of Tj, (v,),, (w,), are linear and angular velocities of
right arm in left base and v,,w, are transformed velocities in right
base frame.
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FIGURE 9
Experiment setup to demonstrate the iAPF based motion planning for dul-arm asymmetric manipulations.
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FIGURE 10

Dual-arm end effectors’ trajectories with exponential attraction, inverse distance and exponential home-seeking attraction force fields. [Both arms
initiate movement from their home positions towards their respective target locations. Due to distance priority, the right arm reaches its target first,
picks up the object, and then retreats to its designated drop point. While the right arm is performing these actions, the left arm remains at the transition
point. Once the right arm has move away by picking the object, the left arm begins its movement towards its target. The second plot illustrates the
complete trajectories of both arms].

5 Results and discussion of exponential attractive home-seeking forces in maintaining stable
coordination during sorting tasks.
To validate the proposed system for asymmetric dual-arm The performance metrics for the bolt and nut detection

manipulation framework for sorting industrial components, created ~ classes demonstrate superior discrimination capabilities compared
challenging scenarios by placing nuts and bolts in close proximity,  to the reference class. Bolts achieve 0.99 detection accuracy and
deliberately inducing goal conflicts between the manipulators.  nuts achieve 0.97 detection accuracy, with minimal inter-class
This setup rigorously tests the frameworK’s collision avoidance  confusion of 0.02. The F1 score reaches 0.89at a confidence
capabilities, priority-based state transitions, and the effectiveness  threshold of 0.120, while precision achieves 1.00 at 0.808. Recall
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Dual-arm end effectors’ trajectories with exponential attraction, inverse distance repulsion without exponential home-seeking attraction force fields.
[Both arms initiate movement from their home positions towards their respective target locations. Due to distance priority, the left arm reaches its target
first, picks up the object, and then retreats to its designated drop point. While right arm remains at the transition point. Once the left arm has move
away by picking the object, the right arm begins its movement towards it target. The second plot illustrates the complete trajectories of both arms].

maintains 1.00 at low confidence thresholds, indicating robust
detection even under varying conditions. These metrics validate
the model’s effectiveness in discriminating between nuts and bolts
while successfully handling the reference class for false positive
reduction. The final deployment results are as shown in Deep
Learning Model Metrics and Real-Time Vision Update Experiment
Figures are shown in Supplementary Figures S1-S8.

The proposed iAPE incorporating three distinct force
fields, effectively addressed near-goal conflict scenarios, as
demonstrated in Figure 10. The implementation of three force fields:
exponential goal attraction, inverse-distance other-arm repulsion,
and home exponential attraction, demonstrates superior control
over dual-arm trajectories, effectively mitigating inter-arm collision.
The transition point shows deliberate stop and stable movement of
the arms during collision possible scenarios and maintains better
spatial separation throughout their movements. The exponential
home attraction force acts as a regulator, preventing excessive
arm extension in scenarios where near-goal conflicts result in
strong repulsive forces. The establishment of a three-way force
equilibrium results in more predictable and controlled motion
paths. The home force establishes natural boundaries for arm
movements, maintaining optimal manipulator poses and preventing
over-extension. Particularly, how the trajectories exhibit smoother
curves with minimal oscillations, as the arms move toward goals,
the exponential home attraction scales with distance, providing
graduated control that keeps configurations within safe operating
ranges. This makes the system more robust against kinematic
singularities while ensuring efficient task completion.

In traditional attractive-repulsive APF, as shown in Figure 11
without home attraction, the system exhibits inherent instabilities
near goal regions. While the arms successfully navigate to their target
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locations, the trajectories demonstrate less controlled movements
with larger sweeping motions and more aggressive approaches.
The fundamental issue lies in the force imbalance - as both arms
approach their respective goals simultaneously, the attractive forces
dominate while the inter-arm distance decreases, causing a sudden
spike in repulsive forces. This force antagonism leads to oscillatory
behaviors and potential over-extension of the arms. Without a
stabilizing home force, the arms can reach configurations near
kinematic singularities with no natural mechanism to recover
optimal poses. The problem is particularly pronounced when both
arms operate in close proximity, where the rapid transition between
attraction-dominated and repulsion-dominated states can lead to
unstable motion patterns.

Observing Figures 12a, 13a, 10, represents attractive and
repulsive force trends for our iAPF which represents three-way
force equilibrium: Both arms exhibit controlled convergence to
home positions with initial attractive forces of =900 (left) and =700
(right) stabilizing to =50 baseline, demonstrating effective home-
seeking behavior before vision activation. Upon target detection at
t = 248, right arms =2400, left arm’s <2100 attractive and =1500
oscillating repulsive forces until t = 330 show initial target approach
with active collision avoidance. Right arm then dominates with
~2300 attractive peak at t = 350 while left arm maintains oscillating
pattern around =1600 before dropping to =0 at t = 388, indicating
priority-based sequential execution. The left arm’s subsequent
=~2000 spike at t = 420 and final =500 adjustment before =50
convergence, combined with right arm’s ~2400-to-zero repulsive
transition and =700 adjustment spike, demonstrate the three-
way force equilibrium effectively managing collision avoidance,
target acquisition, and stability maintenance. These coordinated
force patterns enable safe dual-arm manipulation through balanced
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FIGURE 12
Convergence of attractive forces for both cases (a) with exponential home (b) without exponential home.

home-seeking, exponential attraction, and inverse-square repulsion,
validated by smooth transitions, predictable force scaling, and clear
trajectory-force correlations.

Observing Figures 12b, 13b, 11, analyzing the second row
sub-plots represents attractive and repulsive force trends for
traditional attractive-repulsive APF which represents two-way force
equilibrium: Both arms show initial convergence to home position
with =550 (left) and =700 (right) attractive force stabilizing to
248, showing weaker position holding
without home-seeking force. After target detection from vision,

=200 until around t =
simultaneous high-magnitude attractive forces emerge (<2300 right,
=2100 left) with =1900 repulsive force oscillations, indicating
uncontrolled collision avoidance. Both arms exhibit competing
behavior during t = 300-350, with right arm’s 1600 attractive spike
concurrent with left arm’s <2000 peak, leading to unstable spatial
competition. The force equilibrium deteriorates with sharp =2000
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repulsive spikes and minimal damping, causing wide trajectory
deviations visible in the path curves. Final phase shows multiple
high-magnitude force oscillations before eventual convergence to
200 baseline, demonstrating poor stability without home-seeking
influence. The trajectory plot validates these issues through excessive
path curvature, wider sweeping motions during collision avoidance,
and less direct approaches to targets, confirming the necessity of
home-seeking force for stable dual-arm coordination.

The convergence behaviors depicted in Figures 14, 15, illustrate
the interplay of two parallel control systems. Position trajectories
are governed by the APF framework, while orientation trajectories
are controlled by a PD controller. Figure 14 demonstrates smooth
convergence, attributed to the inclusion of the three-way force
equilibrium that effectively mitigates oscillations and prevents
excessive arm extension. Notably, orientation convergence is
independently controlled and effectively synchronized with position
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convergence. But in Figure 15 shows that without home attraction,
position trajectories oscillate due to force antagonism between pure
attraction-repulsion, while orientation still achieves convergence
with PD control but experiences coupling effects from less stable
positional behavior. This separation of position and orientation
control allows for independent tuning of linear and angular
responses while maintaining overall system stability. The sequential
illustration of experiments for explaining two cases are shown in
Figures 16, 17.

6 Conclusion

In this paper, we presented a comprehensive framework
for dual-arm asymmetric manipulation with inter-arm collision
avoidance for handling industrial components. Our approach
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introduces a computationally efficient collision detection method
that represents manipulator links as line segments in 3-D space,
enabling real-time distance monitoring through analytical solutions
for parallel, intersecting, and skew configurations. The integration
of YOLOv8 OBB-based object detection achieves robust real-time
perception at 20 frames per second with oriented bounding boxes,
demonstrating high accuracy of 0.99 and 0.97 for bolt and nut
detection respectively along with components size estimation. The
improved Artificial Potential Field (1APF) framework implements
a novel three-way force equilibrium through exponential attractive,
inverse-square repulsive, and exponential home-seeking forces,
significantly enhancing trajectory stability and reducing oscillations
compared to traditional APF approaches. Our hybrid twist
control scheme combines iAPF-generated linear velocities with
PD-controlled angular velocities, with proven stability through
Lyapunov analysis and enabling precise asymmetric manipulation
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Position and orientation convergence in exponential goal attraction, without exponential home attraction and inverse distance repulsion.

through a priority-based state machine. Experimental validation
demonstrates the framework’s effectiveness in handling challenging
scenarios, including close-proximity object sorting and goal
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conflicts between manipulators, while maintaining safe separation
distances. This integrated approach provides a promising foundation
for deploying collaborative dual-arm systems in industrial settings
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FIGURE 16

Sequential lllustration of Asymmetric Dual-Arm Manipulation at Near Goal Conflict situation with Clear Spatial Separation between Arms [at t = 6.25 left
arm gets priority due to the proximity, t = 8.33 left arm picking the object while right arm waiting at safe transition point, t = 15.66 right arm picks the
object and t = 16.32 left arm drops the object and right arm at t = 22.50.] - With Three-way Force Equilibrium.

FIGURE 17
Sequential Illustration of Asymmetric Dual-Arm Manipulation at Near Goal Conflict situation with Close Proximity Movement of Dual-Arm [at t = 7.33
left arm gets priority due proximity with goal, while right arm move far away from left arm due to spike in repulsion, t = 14 arms are near collision

situation.] - Without Three-Way Force Equilibrium.

where reliable, efficient, and safe manipulation of industrial
components is essential. The proposed framework assumes a
controlled workspace free from external dynamic obstacles,
focusing primarily on inter-arm collision avoidance. The vision
system is currently limited to pre-trained component classes
(nuts/bolts), though it remains adaptable through retraining for new
object types.

Future work will extend the present framework to handle
external dynamic environments through: i) real-time external
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obstacle detection using RGB-D depth sensing to detect
unknown objects in the workspace, ii) adaptive repulsive
force field generation that incorporates external obstacles into
the existing iAPF framework. This progression will enable
deployment in unstructured manufacturing environments while
maintaining the proven stability and collision avoidance capabilities
demonstrated in this work. Potential applications include
automated assembly of industrial components, transitioning from

absolute motion to relative motion control during assembly
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phase, with integrated size matching and precise alignment
capabilities.
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