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This paper presents a robust vision-based motion planning framework for 
dual-arm manipulators that introduces a novel three-way force equilibrium 
with velocity-dependent stabilization. The framework combines an improved 
Artificial Potential Field (iAPF) for linear velocity control with a Proportional-
Derivative (PD) controller for angular velocity, creating a hybrid twist command 
for precise manipulation. A priority-based state machine enables human-
like asymmetric dual-arm manipulation. Lyapunov stability analysis proves the 
asymptotic convergence to desired configurations. The method introduces 
a computationally efficient continuous distance calculation between links 
based on line segment configurations, enabling real-time collision monitoring. 
Experimental validation integrates a real-time vision system using YOLOv8 OBB 
that achieves 20 frames per second with 0.99/0.97 detection accuracy for 
bolts/nuts. Comparative tests against traditional APF methods demonstrate that 
the proposed approach provides stabilized motion planning with smoother 
trajectories and optimized spatial separation, effectively preventing inter-arm 
collisions during industrial component sorting.

KEYWORDS

collision avoidance, motion planning, improved artificial potential field, dual-arm 
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 1 Introduction

The increasing demand for industrial automation is driven by the need to enhance 
production speed, accuracy, and efficiency. Robots are increasingly replacing human 
workers to address challenges like fatigue and maintain consistent performance over 
extended periods (Liu et al., 2022). Despite challenges with human workers, bi-manual 
operations offer significant value through component recognition and manipulation. 
Humans instinctively understand unfamiliar objects by material, shape, size, and color, 
enabling effective planning for separation or assembly tasks. Integrating these capabilities 
into robotics is crucial for upgrading industrial automation through: i) HRC - Human
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robot collaboration where humans and robots collaboratively 
enhance process efficiency ii) robots with capabilities that mimic 
human intelligence and dexterity. A dual-arm system with efficient 
inter-arm collision avoidance and vision perception provides a 
robust solution matching human-like manipulations, essential 
for industrial component handling in warehouse management, 
assembly lines, and manufacturing.

In general, dual-arm manipulators offer improved dexterity 
and faster task completion compared to single arm manipulators. 
However, these advantages require careful consideration of 
movements to avoid inter-arm collisions while maintaining 
efficiency (Smith et al., 2012). Categories of dual-arm manipulators 
include the following: i) non-coordinated manipulations, 
where manipulators move independently executing different 
tasks, and ii) coordinated manipulations, involving combined 
movements with spatial and temporal synchronization in shared 
workspace. Coordinated manipulations further divide into 
symmetric (mirror movements with equal force distribution) 
and asymmetric (complementary movements with different 
force distributions) (Makris, 2021). Although more challenging, 
asymmetric manipulations enable a wider range of complex tasks 
that require coordinated actions. Integration with real-time vision 
and inter-arm collision awareness enhances robustness for industrial 
manufacturing assembly and warehouse management applications.

The planning of dual-arm movements addresses coordination 
through two primary approaches: path planning and motion 
planning. Path planning generates geometric trajectories avoiding 
obstacles and self-collisions, prioritizing spatial relationships 
without timing information. Motion planning extends this by 
incorporating velocity profiles, acceleration constraints, and 
dynamic considerations, creating time-parametrized trajectories 
(Abbas et al., 2023). The selection between these approaches 
depends on application requirements, with industrial manipulation 
tasks often benefiting from motion planning’s ability to manage 
the temporal aspects of coordination between manipulators. In 
addition Tang et al. (2012) provides a comprehensive review of 
robot motion planning approaches, categorizing and analyzing 
the research evolution from 1980 to 2010. They systematically 
compared conventional approaches like Bug Algorithms Lumelsky 
and Stepanov (1987), Roadmap Asano et al. (1985); Aurenhammer 
(1991); Canny (1989), Cell Decomposition, Potential Fields Khatib, 
(1986), and Mathematical Programming with heuristic methods 
(Neural Networks, Genetic Algorithms, Fuzzy Logic, etc.), 
demonstrating the field’s evolution from conventional methods 
in the 1980s to predominantly heuristic approaches by the 2000s. 
Their analysis includes quantitative comparisons of implementation 
frequency for each approach and identifies future research directions 
for integrating perception, sensing, and motion planning system 
provides useful insights for research directions. 

2 Related work

Numerous studies enhanced dual-arm motion planning for 
industrial manipulation. Robust inter-arm collision avoidance 
improved collaborative motion by enabling safe execution of 
coordinated tasks. This capability required continuous awareness 
of relative link configurations, maintaining safe distances while 

maximizing shared workspace utilization. Real-time collision 
monitoring provided the foundation for effective dual-arm 
coordination in dynamic environments.

This literature review categorizes dual-arm manipulation 
research into three key areas: (i) collision detection methodologies 
(both geometric and alternative approaches), (ii) artificial 
potential field methods (ranging from classical formulations to 
specialized variants), and (iii) temporal coordination strategies. This 
organization traces the field’s evolution while revealing challenges 
in real-time adaptation and asymmetric manipulation challenges 
that suggest the potential value of extending APF approaches with 
improved force equilibrium mechanisms.

Effective dual-arm manipulation requires robust collision 
detection to prevent inter-arm collisions while maintaining 
operational efficiency. Researchers have developed various 
approaches, from geometric primitives to advanced mathematical 
frameworks, to address this fundamental challenge. Lumelsky 
(1985) introduced a parameter-based algorithm for minimum 
distance calculation between line segments in n-dimensional 
space. Using parameters t and u (range [0,1] for points inside 
segments), they established a framework handling all geometric 
configurations. The method first calculates minimum distance 
between infinite lines by minimizing a quadratic function, then 
verifies if these points lie within actual segments. By using 
parameter values to identify relevant endpoints, computational 
complexity reduces to 5n+12 multiplications and 8n+1 additions. 
However, it provides only discrete collision detection without 
continuous distance metrics, limiting its application in modern 
control approaches requiring gradient information for smooth 
motion planning. Furthermore, Chang et al. (1990) proposed 
collision detection approach uses minimum distance functions 
defined by Euclidean norms to determine collision risk between 
robot arms. Their method modeled robot links as cylinders with 
hemispheres and end-effector as spheres, then calculates distances 
between these primitives in three scenarios: line segment to line 
segment, line segment to point, and point to point. Lee and 
Moradi (2001) proposed a hierarchical geometric collision detection 
algorithm for dual-arms using: bounding boxes, joint-joint distance 
thresholds, perpendicular distance calculations, and cross-product 
methods. Despite a 30% computational improvement, it used 
simplified primitives, lacked mathematical formalism for complex 
configurations, and provided only discrete binary detection without 
continuous metrics for smooth planning. The approach showed 
reduced accuracy with near-parallel links and increased complexity 
in 3-D without addressing degenerate cases or providing control 
gradient information. Ketchel and Larochelle (2008) presented a 
dual-stage collision detection algorithm for spatial closed chains 
first uses dual vector algebra and Plücker coordinates (Miller, 
2005) to quickly check for possible collisions between infinite 
cylinders. If potential collisions are detected, a second stage 
performs precise testing between finite cylinders using detailed 
geometric calculations. While mathematically elegant, this approach 
may not provide the continuous distance metrics needed by modern 
control systems for obstacle avoidance. The method formulates 
collision detection as a constrained nonlinear minimization 
problem, which introduces complexity for real-time applications, 
requiring conjugate gradient methods with barrier functions to 
solve. Larsen et al. (2000) presented an RSS-based proximity 
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algorithm that combines rectangles with uniform sphere expansion 
to create efficient bounding volumes. It builds hierarchical trees 
using covariance analysis and geometric “slab” properties for 
fast distance calculations. Performance improvements come 
from priority-directed search and triangle caching that leverages 
frame-to-frame coherence. While outperforming sphere-based 
hierarchies, the approach struggles with non-convex geometry 
(requiring decomposition into multiple parts) and can experience 
numerical instabilities in near-intersection cases, sometimes 
producing overly conservative distance estimates that reduce query 
efficiency. Rescsanski et al. (2025) provide insights into collaborative 
robotics for industrial additive manufacturing, highlighting 
effective collision detection methods using geometric approaches 
and real-time mechanisms for multi-arm systems. It analyzes 
motion planning strategies for cooperative robotic systems where 
coordination between arms is crucial for manufacturing quality 
and efficiency. The research presents a framework for cooperative 
robotic arm additive manufacturing (C-RAAM) configurations 
based on build volume overlap, enabling applications from large-
scale homogeneous printing to specialized heterogeneous tooling. It 
demonstrates how inter-arm coordination and collision avoidance 
can be achieved through either preventative scheduling or real-time 
sensing and feedback.

Apart from the geometric approaches, researchers explored 
alternative methods for collision detection for dual-arm 
collaboration. Feng et al. (2020) introduced a graph-based 
network approach for multi-robot collision detection where robots 
are represented as vertices with edges connecting interacting 
robots. It focuses on maintaining network connectivity through 
local and global edge management methods, using algebraic 
connectivity measures and market-based algorithms. Limitations 
include computational demands from continuous eigenvalue 
calculation, potential delays in link decisions, and the focus on 
network connectivity potentially overlooking actual collisions, 
which may compromise safety. Jamisola and Roberts (2015); 
Jamisola et al. (2015) presented a transformation-based approach 
to multi-manipulator kinematics that focuses on relative motion 
between end-effectors while providing a mathematical framework 
for coordinate transformations relevant to absolute motion 
control. They express individual manipulator Jacobians with 
rotation and wrench transformation matrices to ensure coordinate 
consistency across the system. Their analysis shows that positional 
errors increase significantly at higher angular velocities when 
transformation matrices are incomplete, emphasizing the need for 
rigorous mathematical formulations when multiple manipulators 
share a workspace. This approach complements geometric collision 
detection by providing insight into how manipulator kinematics 
must be properly transformed between reference frames for 
accurate motion planning. Fei et al. (2004) presented a dual-
arm collision avoidance approach using configuration space (C-
Space) representation. The methodology identifies collision regions 
through reachable manifold and contact manifold concepts, then 
applies the A∗algorithm on discretized grids to find optimal 
paths. Path optimization is incorporated through scan rules. While 
innovative for its time, the approach has limitations: it relies on 
static geometric planning rather than continuous adaptation, uses 
discretized boundaries that may limit motion smoothness, and lacks 
mechanisms for maintaining optimal arm configurations during 

complex movements. Schmidt and Wang (2014) implemented 
collision avoidance using Kinect depth sensors that process 
images by removing backgrounds and converting obstacles to 3-
D point clouds with efficient bounding box representation. Their 
system calculates minimum distances between robot and obstacles, 
enabling three strategies: warnings, stops, or path modification 
through vector decomposition. This methodology provided valuable 
insights for our vision perception conceptualization, particularly 
in how sensor data can be transformed into actionable spatial 
information for real-time goal attraction with collision avoidance in 
robot-robot collaborative environments.

Physics-inspired potential field approaches offer an intuitive 
framework for robot motion planning by simulating attractive 
and repulsive forces. Beginning with Khatib’s foundational work 
Khatib (1986), these methods have evolved to address limitations 
like local minima while accommodating increasingly complex 
manipulation tasks. Khatib (1986) pioneered the Artificial Potential 
Field (APF) method, transforming discrete path planning into a 
continuous optimization problem. The robot is treated as a particle 
moving in a force field where an attractive force proportional to 
goal distance pulls the robot toward the target, while repulsive 
forces decaying quadratically with proximity push it away from 
obstacles. The robot follows the negative gradient of this composite 
potential function, implementing steepest descent optimization in 
configuration space. A key limitation is that APF can suffer from 
local minima in cluttered environments due to the superposition 
of attractive and repulsive forces. Subsequent research by Volpe 
and Khosla (1987), Volpe and Khosla (1990) refined the original 
APF concept, by introducing n-ellipse representation that varies 
with distance. The n-elliptical iso-potential contours address the 
fundamental limitations in obstacle avoidance. Their innovative 
approach seamlessly transitioned from rectangular contours near 
obstacles (n→∞) to circular fields at greater distances (n→ 1), 
effectively eliminating local minima through geometric adaptation. 
While this method significantly improved single-arm manipulation, 
its computational complexity in calculating elliptical potentials 
limited real-time applications. Furthermore, Chuang et al. (2006) 
proposed a dual-arm coordination strategy employing APF was 
proposed. This approach uses an alternating master-slave paradigm. 
Initially, one arm (the master) plans its trajectory while treating the 
other arm as a static obstacle. Subsequently, the roles are reversed, 
with the previously slave arm now planning its trajectory while the 
other arm remains static. This alternating priority scheme continues 
until all objects reach their respective goals. The workspace is 
modeled using charged surfaces that generate repulsive forces 
to ensure avoidance of collisions between robots and obstacles. 
Byrne et al. (2015) and Byrne et al. (2013) enhanced APF by 
integrating configuration sampling and sub-goal selection within a 
master-slave architecture and cooperative goal sampling framework. 
This approach achieved a 95.2% success rate, demonstrating 
its effectiveness in handling more complex coordinated tasks. 
However, it comes at the cost of increased computational overhead 
and slower convergence rates (9.14s vs. 4.65s) compared to the 
original APF (Khatib, 1986). Additionally, its application is limited 
to planar 2D manipulation scenarios.

Furthermore, enhanced APF with specialized variants, such as 
D-APF(Dynamic Artificial Potential Field) Jayaweera and Hanoun 
(2020) for UAV path planning using exponential attractive and 
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repulsive potential fields for moving target tracking and obstacle 
avoidance. It prioritizes vertical over horizontal motion, favoring 
altitude changes for obstacle avoidance. Combined forces generate 
smooth trajectories converted to velocity waypoints for PX4 
autopilot, with separate PD-based orientation control. The force 
separation into vertical/horizontal components adds complexity 
and may cause oscillations during rapid directional changes, and 
the approach struggles with complex or closely spaced obstacles 
where vertical avoidance is insufficient. D-APF demonstrates 
potential field method evolution for aerial navigation, though dual-
arm manipulation presents unique challenges requiring careful 
force field design. Sun et al. (2022) used APF in a hybrid 
approach with their mobile dual-arm system combined with RRT 
(Rapidly Exploring Random Tree)-based motion planning for base 
navigation along with integrated vision and impedance control. 
Wang et al. (2018) developed an optimized APF with velocity 
feedforward and simplified collision detection for redundant 
manipulators. Li et al. (2024a) and Li et al. (2024b) introduced an 
attractive potential field rotation method for local minima avoidance 
and develop a smooth attractive function σ(d) to address Goals Non-
Reachable with Obstacles Nearby (GNRON) issues. While effective 
for single-robot navigation, the approach is limited to navigation 
rather than manipulation scenarios. Despite mathematical elegance, 
it faces constraints when extended to multi-robot coordination 
and precision control in healthcare environments. Their rotation-
based solution introduces computational considerations that must 
be balanced against real-time performance requirements in practical 
applications. Lin et al. (2025) proposed a 3-D APF approach for 
robotic arms that integrates force sensing with rotating repulsive 
fields to navigate narrow spaces. Their method treats the tool 
as a vector rather than a point and modifies repulsive force 
direction to prevent local minima. While their approach addressed 
single-arm collision avoidance, our method extends APF to dual-
arm coordination through a novel three-way force equilibrium 
with exponential home-seeking forces and priority-based state 
transitions that enable asymmetric dual-arm manipulation with 
proven stability.

Beyond spatial collision avoidance, successful dual-arm 
manipulation demands sophisticated temporal coordination to 
synchronize movements and optimize task execution. Researchers 
have developed various frameworks to address this critical 
dimension of collaborative robotic systems. Montaño and Suárez 
(2016) proposed a temporal coordination approach for multiple 
robots using Discretized Coordination Space (DCS) where 
robots adjust timing along fixed paths. It builds a Collision-free 
Coordination Curve using state diagrams with wall-follower or 
impact heuristics to select motion directions. The computational 
complexity increases exponentially with robot numbers (3n − 1
motion directions), lack of flexibility for dynamic environments 
since paths cannot be modified, and frequent robot idle periods 
when coordination points cannot be generated quickly enough, 
reducing system efficiency compared to reactive approaches like 
iAPF. Malvido Fresnillo et al. (2023) developed an automatic 
tool change system integrated with MoveIt’s scene management, 
allowing robots to exchange end effectors by manipulating collision 
objects and communicating with hardware interfaces. For dual-
arm coordination, they created synchronization methods that 
merge individual arm trajectories using various timing policies, 

enabling coordinated manipulation through time-adjusted motion 
plans or master-slave relationships. However, this planning-
based approach has inherent limitations, it requires complete 
environment knowledge beforehand, and it lacks the reactivity 
needed for dynamic obstacle avoidance or real-time adaptation 
to changing conditions. Shin and Bien (1989) presented a collision-
free trajectory planning approach for two robotic arms sharing a 
workspace by transforming obstacles into a virtual coordination 
space (VCS). Their method allows links of one robot to grow 
while shrinking the other to a point, visualizing all collision-
free coordinations as curves in the VCS. Although innovative for 
dual-arm coordination, their approach requires explicit modeling 
of virtual obstacles and lacks the dynamic adaptability of our 
three-way force equilibrium system that maintains optimal arm 
configurations throughout the workspace. Basile et al. (2012) 
proposed a task-oriented motion planning framework that enables 
programming at the workpiece level through a cooperative planner 
handling task-space trajectories and kinematic transformations, 
while separate arm planners compute inverse kinematics for each 
robot. Despite efficient coordination through their taxonomy-based 
approach (distinguishing positioners and workers) and extended 
programming language with high-level instructions, their method 
suffers from limited real-time adaptability, as it requires complete 
task specification beforehand and cannot dynamically respond to 
unexpected obstacles or environmental changes, unlike our iAPF 
method, which continuously recalculates forces to generate reactive 
behaviors that smoothly adapt to changing conditions without 
extensive reprogramming.

Furthermore, for effective object handling in real-time 
operation, precise detection of required components is an important 
aspect. Object detection has evolved from traditional computer 
vision techniques like SIFT, SURF, and BRIEF -which require 
manual feature extraction and parameter tuning O’Mahony et al. 
(2019) to more advanced CNN methods that automatically 
learn relevant features (Alzubaidi et al., 2021). For handling 
industrial components, an accurate pose estimation is crucial. 
K et al. (2024) presented a classical approach for bolt handling 
using k-mean clustering and chamfer matching, offering simple 
implementation without training data but limited by sensor quality 
and lighting conditions. S. K et al. (2024) employed DeeplabV3P 
with classical techniques for estimating and sorting bolt size. 
Instance segmentation provides both classification and precise 
localization with clean edge masks (Sharma et al., 2022). Mask 
R-CNN He et al. (2017), built on Faster R-CNN Ren (2015) 
which uses region proposal networks instead of selective search 
Girshick (2015); Girshick et al. (2014) adds a parallel branch for 
segmentation masks. Detectron2 Wu et al. (2019), successor to 
Detectron Girshick et al. (2018) and maskrcnn-benchmark Massa 
and Girshick (2018), incorporates Mask R-CNN and RetinaNet with 
focal loss. For real-time inference on CPU machines, Ultralytics’ 
YOLOv8 and YOLOv11 Jocher et al. (2023); Jocher and Qiu 
(2024) offer faster performance through single-pass architecture, 
lightweight backbones, anchor-free detection, and efficient feature 
pyramids. YOLOv8’s oriented bounding boxes capability avoids 
computationally expensive instance segmentation.

Our improved Artificial Potential Field (iAPF) approach 
addresses key limitations identified across existing methodologies 
as shown Table 1. While geometric approaches like Lumelsky 
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TABLE 1  Comparative analysis of the proposed iAPF with traditional and existing APF variants for industrial dual-arm manipulation.

Method Force field 
components

Stability 
guarantee

Real-time 
performance

Industrial 
suitability

Key industrial 
limitations

Traditional APF (Khatib, 
1986)

Attractive + Repulsive None Moderate Low Local minima in 
cluttered workspaces

Enhanced APF 
(Byrne et al., 2015)

Attractive + Repulsive + 
Sampling

Statistical (95.2%) Slow (9.14s) Moderate High computational 
overhead

D-APF (Jayaweera and 
Hanoun, 2020)

Exponential + Vertical 
Priority

None Moderate Low Limited to UAV 
applications

Rotating APF (Lin et al., 
2025)

Attractive + Rotating 
Repulsive

Mathematical Moderate Low Single arm only, no 
coordination

iAPF (Proposed) Attractive + Repulsive + 
Home-seeking

Lyapunov Proven Fast (10 Hz) High Dynamic obstacle 
adaptation

(1985) and Chang et al. (1990) provide precise collision detection, 
they lack continuous distance metrics for smooth motion 
planning. Traditional APF methods by Khatib (1986) offer 
intuitive frameworks but suffer from local minima, particularly 
in cluttered environments. Prior coordination strategies like 
Montaño and Suárez (2016), discretized coordination space and 
Malvido Fresnillo et al. (2023), master-slave paradigm lack dynamic 
adaptability to changing environments. iAPF overcomes these 
limitations through a novel three-way force equilibrium that 
balances goal attraction, obstacle repulsion, and home-seeking 
behavior. Unlike Byrne et al. (2015) and Byrne et al. (2013) approach, 
which showed slower convergence despite higher success rates, 
our method achieves real-time performance without sacrificing 
stability. Where Li et al. (2024a) and Li et al. (2024b) rotating 
repulsive fields work well for single arms, our approach extends 
to dual-arm coordination with a priority-based state transition 
mechanism that enables truly asymmetric dual-arm manipulation 
without oscillations or deadlocks. By addressing the need for 
continuous adaptation rather than pre-planned trajectories, iAPF 
motion planning along with real-time 20 frames per second (FPS) 
inference provides a robust solution for collaborative robot tasks 
in dynamic industrial environments like manufacturing, warehouse 
management and assembly line fields. Our novel iAPF methodology 
addresses these limitations through the following key contributions. 

1. Case-Specific Analytical Inter-Arm Distance - Algorithm 
employing closed-form vector solutions for parallel, 
intersecting, and skew link configurations with epsilon-based 
numerical stability handling.

2. Hybrid Linear-Angular Control Framework - iAPF-derived 
linear velocity control coupled with independent PD 
(Proportional Derivative)-regulated angular velocity, creating 
a dual-control system with proven Lyapunov stability for 
exponential (O(ed)) attractive and inverse power-law (O(d−2.3))
repulsive force integration.

3. 4-DoF Vision-Based Pose Estimation - Real-time component 
detection (20 FPS) with oriented bounding box analysis 
providing position and yaw for precise grasp planning.

4. State-Conditional Kinodynamic Control - Velocity damping 
coefficients and task-specific z-axis constraints adaptively 
modulated based on operational phase (targeting, gripping, 
transport).

5. Priority-Based Dual-Arm Task Allocation - Hierarchical state 
machine with comparative-distance-based resource locking 
for deadlock-free simultaneous manipulation in shared 
workspaces.

This paper is organized as follows: Section 1 introduces 
the motivation and significance of asymmetric bi-manual 
manipulations in industrial automation. Section 2 provides a 
systematic review of relevant literature, highlighting the advantages 
of our proposed method. Section 3 presents the proposed 
methodology for establishing inter-arm collision avoidance in 
dual-arm motion planning, incorporating real-time vision and 
providing theoretical proofs for the potential field formulations. 
Section 4 describes the experimental setup, including the hardware 
used and the required transformation of frames. Section 5 
presents a comparative analysis between the proposed iAPF and 
traditional APF methods, highlighting the advantages of our 
approach, and showcases the deep learning model’s performance 
metrics. Finally, Section 6 summarizes the key findings, 
presents the conclusions, and discusses potential future research
directions. 

3 Methodology

The proposed overall methodology as shown in Figure 1 
integrates four key components: (1) minimum distance calculation 
between inter-arm links using geometric classification, (2) 
vision-based pose estimation for industrial components, (3) 
three-way force equilibrium combining attractive, repulsive, 
and home-seeking forces with velocity-dependent stabilization 
and (4) state-based asymmetric coordination for dual-arm 
manipulation with priority locking. Together, these components 
enable collision-free, coordinated manipulation in shared
workspaces.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1604506
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Surya Prakash et al. 10.3389/frobt.2025.1604506

FIGURE 1
The Proposed Overall Methodology of iAPF framework for Asymmetric Dual-Arm Manipulation with Real-Time Inter-Arm Collision Avoidance.

3.1 Minimum distance calculation between 
inter-arm links using geometric 
classification

We modeled each robotic arm link as a line segment in 3-D space 
using Equation 1 and Equation 2 as given in Equation 3 using D-H 
parameters shown in Figure 2 enabling efficient minimum distance 
calculation between inter-arm links through geometric classification 
as parallel, intersecting, or skew configurations.

Ti−1
i,k =

[[[[[[[

[

cos (θi) −cos (αi) sin (θi) sin (αi) sin (θi) ai cos (θi)

sin (θi) cos (αi)cos (θi) − sin (αi)cos (θi) ai sin (θi)

0 sin (αi) cos (αi) di

0 0 0 1

]]]]]]]

]
(1)

Ti−1
i,k = [

[

Ri−1
i,k pi−1

i,k

0 1
]

]
(2)

Si,k = pi−1
i,k (3)

T0
tool,k = T0

1,k ⋅T
1
2,k ⋅T

2
3,k ⋅T

3
4,k ⋅T

4
5,k ⋅T

5
6,k ⋅T

6
tool,k (4)

Where i = 1…6 represents the joint number, tool represents 
the end-effector frame, k denotes the arm identifier 
(right/left arm), Ri−1

i,k ∈ ℝ
3×3 is the rotation matrix, and pi−1

i,k ∈
ℝ3 is the position vector.

Theorem 1: (Segment Properties). Every line segment S
possesses, convexity: ∀x,y ∈ S,λx+ (1− λ)y ∈ S for λ ∈ [0,1], 
compactness of  S is closed and bounded, connectedness of  S is 
path-connected (Munkres, 2000). 

The segment between two bounding points p1,p2 is S[p1,p2], 
direction vector d⃗ = p2 − p1, unit direction d̂ = d⃗

‖d⃗‖
, and normal space 

is N = {v ∈ ℝ3 ∣ v ⋅ d̂ = 0}. The normal space N is a two-dimensional 
subspace of ℝ3 (O’neill, 2006).

For segments S1,S2 with direction vectors ⃗d1, ⃗d2, then the angle 
between them is:

θ = arccos(
⃗d1 ⋅ ⃗d2

‖ ⃗d1‖‖ ⃗d2‖
)

Theorem 2: (Angle Invariance). The angle θ between segments 
is invariant under rigid body transformations, such as translation 
and rotation (Gallier, 2011). 

Theorem 3: (Configuration Completeness). Every pair of line 
segments falls exactly into one of: 

1. Intersecting
2. Parallel
3. Skew

(Pottmann et al., 2001). 

Theorem 4: (Metric Space Properties). The function d satisfies, 
positive definiteness d(x,y) ≥ 0, d(x,y) = 0 when x = y, symmetry
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FIGURE 2
Kinova Gen3 lite with link frames with modified DH parameters for forward kinematics computation.

d(x,y) = d(y,x) and triangle inequality d(x,z) ≤ d(x,y) + d(y,z). 
Furthermore, (ℝ3,d) is a complete metric space. 

The distance function d is continuous in both arguments if 
and only if.

For all ϵ > 0, there exists a δ > 0 such that if ‖x1 − x2‖ < δ and ‖y1 −
y2‖ < δ, then |d(x1,y1) − d(x2,y2)| < ϵ.

The distance between a line segment on the left arm Sileft and a 
line segment on the right arm Siright is defined as:

d(Sileft,Siright) =min‖x− y‖ (5)

where, x ∈ Sileft, y ∈ Siright ∈ ℝ3.
The minimum distance between any pair of links in the dual-

arm system is determined based on their geometric configuration, 
one of three cases: parallel, intersecting, or skew as in Figure 3. 
The method of distance calculation varies depending on the specific 
geometric configuration. A systematic formulation for finding the 
minimum distance between dual-arm links in 3-D space has 
been developed. Further the proposed method for calculating 
minimum distance is verified as shown in Figure 4. Example 
Distance Calculation between various cases of line segments are 
shown in Supplementary Material in Supplementary Figure S9.

3.2 Vision-based pose estimation of 
industrial components

Real-time asymmetric dual-arm manipulation requires rapid 
inference of object information within the system’s workspace. 
Prioritizing inference speed for effective real-time object handling, 
we selected the YOLOv8 OBB model for object detection, which 
achieved 20 frames per second on our hardware configuration while 
maintaining high detection accuracy. The systematic evaluation of 
various models used on our custom data as shown in Table 2.

3.2.1 Data collection and labeling
Data collection and data labeling as shown in Figure 5, are 

crucial steps in preparing meaningful information to train deep 
learning models. We carefully prepared our dataset, incorporating 
diverse real-world conditions, including varying backgrounds 
(cluttered workspaces, different table surfaces), lighting, and object 
ages (new and old). To enhance the model’s robustness against false 
positives, we employed a strategic negative mining technique by 
adding a background/reference class. This class included objects 
visually similar to the target objects (bolts, nuts) and images 
of the empty workspace on the table. Our dataset, comprising 
1,230 images, divided into training, validation, and testing sets of 
1120, 80, and 30 images, respectively. Furthermore, we used data 
augmentation techniques of the Ultralytics training framework, 
increasing the dataset size tenfold. As a result, we achieved a 
prediction rate of 20 frames per second during model deployment, 
crucial for real-time applications. The system operates under 
controlled workspace assumptions where only target components 
are present, eliminating occlusion challenges typical in structured 
industrial sorting environments.

After detecting objects (nuts and bolts) globally from an RGB-
D camera, further inferred object centroids (cx, cy) and yaw (θ) 
along with dimensions of bounding box (h, w) using YOLOv8 OBB 
inference, as illustrated in Figure 6. Furthermore, this information is 
transformed into real-world coordinates from the image coordinates 
using projective transformations using camera intrinsic properties 
( fx, fy, Cx, Cy) shown below. Considering an object detected in the 
globally fixed camera frame, using predictions from our model is 
as shown in Equation 7.

[K] =
[[[[

[

fx 0 Cx

0 fy Cy

0 0 1

]]]]

]

=
[[[[

[

602.063 0 317.316

0 602.063 243.314

0 0 1

]]]]

]

(6)
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FIGURE 3
Procedure to compute minimum distance between inter-arm robot links modeled as line segments in 3-D space according to geometric 
configurations.

Fp = [cx,cy,θ,h,w]. (7)

Where [K] is camera intrinsic parameter matrix of Intel Realsense2 
D415, Fp is information of features of the objects in pixels. The depth 
value Z for respective object’s (cx, cy) is obtained from the aligned 

depth camera. The transformation from image coordinates (cx, cy) 
to 3-D real world coordinates follows the projective transformation 
as shown in Equation 8.

Z =
depth(cx,cy)

γ
, X =

cx −Cx

fx
⋅Z, Y =

cy −Cy

fy
⋅Z. (8)
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FIGURE 4
Visualization of real-time minimum distance(m) calculation for Dual-Arm Links (block with more bright and red dotted lines indicates the minimum 
distance).

TABLE 2  Systematic evaluation of models on our custom dataset (nut/bolt) for suitable selection of model.

S.No Model name Model size (MB) Inference

1 Detectron2 Instance Segmentation 351.1 0.51

2 YOLO V8 Instance Segmentation 20.0 15

3 YOLO V11 Instance Segmentation 6.0 13

4 YOLO V8 OBB 5.9 20

γ is scaling factor, (Cx, Cy) is the principal point of the camera 
in pixels, fx, fy are the focal lengths in pixels, and Z is depth 
value in meters.

We further estimate its size using the width h of its oriented 
bounding box (in pixels) and angle θ, as illustrated in Equation 6 
using Equation 9 and Equation 10.

size = ( h
fx
⋅Z) ⋅ γ. (9)

angle = θ. (10)

The final feature information of industrial components (nut/bolt) in 
real world coordinates are:

Fmnut/bolt = [X,Y,Z,θ, size] (11)
 

3.3 Improved artificial potential field (iAPF) 
framework for dual-arm motion
planning

Considering the robot position r, goal position g, other 
arm’s end-effector position o, and d is minimum distance 
between inter-arms as in Equation 5, the force fields are defined
as follows:

⃗fatt(r,g) = ka ⋅ (exp (‖g− r‖) − 1) ⋅
g− r
‖g− r‖

(12)

where, ka is attractive force gain constant.

⃗frep(r,o,dmin) = kr ⋅
1

dη
min

⋅ o− r
‖o− r‖

(13)
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FIGURE 5
Data Collection (top row) and (b) Data Labeling of nuts (blue border) and bolts (red border) (bottom row).

FIGURE 6
YOLOV8 Oriented bounding box predictions around the 
detected object.

where kr is the repulsive force gain constant, η is the decay exponent, 
o is the obstacle position (other arm’s end-effector position), and 
dmin is the minimum distance between arm links calculated using 
the geometric classification method described in Section 3.1.

The home-seeking force represents a novel integration to 
traditional APF, providing exponential attraction towards the home 
position of the manipulator.

⃗fhome(r,h) = kh ⋅ (exp (‖h− r‖) − 1) ⋅ h− r
‖h− r‖

(14)

where, kh is the home force gain constant, h is home position 
defined as the predetermined starting state and safe configuration 

where each manipulator returns when no target objects are 
detected, ensuring collision-free states and optimal workspace
coverage.

⃗fdamp(v) = −kd ⋅ v⃗ (15)

where, kd is damping coefficient and v⃗ is current velocity.
The carefully designed force fields are crucial for achieving 

successful asymmetric bi-manual manipulation. The exponential 
goal attraction force field Equation 12, significantly enhances 
convergence speed and facilitates smooth transitions near the 
goal, essential for achieving precise pick-and-place operations. 
The inverse-distance repulsive force Equation 13, effectively 
prevents collisions between manipulators by exerting a repulsive 
force that scales inversely with the distance between them, 
ensuring robust collision avoidance while minimizing unnecessary 
interference. The exponential home-seeking force Equation 14, 
counteracts excessive arm extension, particularly in scenarios 
where strong repulsive forces arise due to near-goal conflicts. By 
encouraging the arms to return to a more neutral position, it 
maintains system stability and facilitates balanced convergence. 
Furthermore, the velocity-dependent damping force Equation 15, 
plays a crucial role in stabilizing the system by dissipating 
energy, effectively reducing the oscillatory behaviors that may 
arise during arm interactions, ensuring smooth and controlled
trajectories.

The resultant force with damping is given by Equation 16:

⃗fresultant = ⃗fatt + ⃗frep + ⃗fhome − kd ⋅ v⃗ (16)

From the visual perception module described in Section 3.2, 
the feature information obtained in Cartesian coordinates, as 
defined in Equation 11, provides the position and orientation 
of the goal. 
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FIGURE 7
Overall states for dual-arm manipulators from picking to positioning the components.

3.3.1 iAPF based linear velocities

Considering the position of objects obtained from the vision 
module Equation 11, the generation of force fields is initiated to 
guide the manipulators to their respective target positions. In the 
absence of object detection, the target position for each manipulator 
defaults to its home position. The linear velocities of manipulators 
are determined as follows:

v⃗k =
( ⃗fresultant)k

s
(17)

where, s is a scaling factor and k is left/right. The stability analysis 
for velocity based on iAPF, as defined in Equation 17, is crucial due 
to the non-linear nature of the potential functions. It is essential 
to ensure convergence to the desired position while maintaining 
bounded velocities. Lyapunov stability analysis shows that the 
superposition of attractive, repulsive, and home-seeking potentials, 
combined with velocity damping and state machine based priority 
mechanism as shown in Figures 7, 8, results in stable robot motion 
to the target objects.

Considering the manipulator’s end-effector position as x ∈ R3,

ẋ = v,v = kv ⋅ fresultant(x)

fresultant(x) = −∇Vtotal(x) − kdv.

The gradient ∇Vtotal(x) points the direction of steepest increase of the 
potential field, negative sense of this term, directs the point towards 
lower potential, away from obstacle and near to goal, the damping 
force kdv is subtracted from this total potential, to oppose motion 
proportional to velocity direction.

Vtotal(x) = Vatt(x) +Vrep(x) +Vhome(x),

where,

Vatt(x) = ka(exp (‖x− xgoal‖) − 1),

Vrep(x) =
kr

dη
obs

,

Vhome(x) = kh (exp (‖x− xhome‖) − 1) .

In the pre-priority state, when robots start to move towards goal, the 
Lyapunov function is selected as:

L1(x) = Vtotal(x),

where L1(x) > 0 for all x, and L1(x) is continuously differentiable.
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FIGURE 8
Priority mechanism and critical states for asymmetric dual-arm manipulation.

The time trajectory of L1(x) is given by:

̇L1(x) = ∇Vtotal(x)ẋ,

̇L1(x) = ∇Vtotal(x)v,

̇L1(x) = ∇Vtotal(x)[kv(fatt + frep + fhome − kd ⋅ v)] .

At the pick-lock state (x = xtransition).
Making obstacle charge cobs and home charge chome as zero to 

enable asymmetric bi-manual manipulation.

frep + fhome = 0.

Substituting these conditions, we get:

̇L1(xtransition) = ∇Vatt(x) [kv(fatt − kd ⋅ v)] .
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The time trajectory at xtransition indicates potential for 
further movement.

̇L1(xtransition) = ∇Vatt(x) [kv(−∇Vatt(x) − 2kd ⋅ v)] .

Simplifying, we have:

̇L1(xtransition) = −kv‖∇Vatt(x)‖2 − 2kvkd∇Vatt(x) ⋅ v.

For kd > 0 and kv > 0, the following holds:

̇L1(xtransition) < 0 for all x ≠ xgoal,

̇L1(xtransition) = 0 for x = xgoal.

The stability analysis demonstrates, dual-arm iAPF control achieves 
coordinated manipulation through two key phases. Initially, both 
manipulators move under complete force set (attractive, repulsive, 
home-seeking) with Lyapunov function L1(x) ensuring stable 
concurrent motion. When priority is assigned based on goal 
distance, the system transitions to a reduced force set (attractive 
and damping only) for the prioritized arm, with L1(x) guaranteeing 
asymptotic stability to the goal position. The non-zero ̇L1(x)
at transition points enables sequential task completion while 
maintaining collision avoidance, validating the proposed approach’s 
theoretical stability and practical effectiveness for industrial 
manipulation tasks. 

3.3.2 PD controller based angular velocities

Considering the orientation of objects obtained from the vision 
module, the current end-effector orientation for each manipulator 
is obtained through real-time forward kinematics of the dual-arm 
system, providing the basis for orientation control.

The current orientation of the end-effector is given by:

θc = [θcx,θcy,θcz] ∈ SO(3)

The desired orientation, obtained from visual perception given by:

θd = [θdx,θdy,θdz] ∈ SO(3)

The corresponding rotation matrix is represented as:

R(θ) = Rz(θz)Ry(θy)Rx(θx)

The error rotation matrix is given by:

Re = RdR−1c ∈ SO(3)

The error rotation matrix Re can be expressed in the axis-angle 
representation, parameterized by angle θ and axis k = [kx,ky,kz].

The PD control law for orientation control of 
manipulator given by:

ωk = Kp ⋅ θ ⋅ k +Kd ⋅
d
dt
(θ ⋅ k) (18)

Where Kp ∈ ℝ3×3 is the proportional gain matrix, Kd ∈ ℝ3×3 is the 
derivative gain matrix, ω ∈ ℝ3 is angular velocity vector and θ ∈ ℝ is 
the rotation angle error derived from the error rotation matrix Re. 

4 Experimental setup

The experimental setup for demonstrating asymmetric 
dual-arm manipulation is established with reference frames 
as shown in Figure 9. The system comprises two 6-DOF Kinova 
Gen3 Lite arms mounted on a fixed table, with an overhead 
Realsense2 D415 camera providing a global view of the workspace. 
Processing is handled by an Intel Nuc9I7Qnx with 32 GB RAM, 
which connects to the manipulators via TCP/IP sockets using 
a specific communication protocol, while the camera interfaces 
through USB. The Kinova-Kortex Python API is used for 
manipulator control, and the ROS-Noetic framework facilitates 
publishing and subscribing to the vision module’s inference data.

Individual forward kinematics, as given by Equation 4, provide 
the position and orientation of each manipulator’s end-effector with 
respect to its respective base frame. Furthermore, Tr

c represents the 
transformation of the camera in the right arm’s base frame, while 
Tl

r denotes the transformation of the right arm in the left arm’s 
base frame.

Tr
c =

[[[[[[[

[

1 0 0 0.251

0 −1 0 −0.211

0 0 −1 0.75

0 0 0 1.0

]]]]]]]

]

Tl
r =

[[[[[[[

[

−1 0 0 L

0 −1 0 0.0

0 0 1 0.0

0 0 0 1.0

]]]]]]]

]

The further pose from Equation 11, is transformed to the left 
arm’s base as Equation 19:

pl
i = Tl

rT
r
cpc

i (19)

where pc
i  is given by:

pc
i = [X

c
i Yc

i Zc
i 1.0]T

The rotation angle θi is computed as:

θi = θci
⋅ 180

π

The gripper angle θgripperk
 for the arm is given by Equation 20:

θgripperk
= 270− θi (20)

This ensures proper alignment between the gripper and nut/bolt 
for grasping.

Both linear velocities (from iAPF) and angular velocities (from 
PD control) for both arms are initially calculated in left base frame 
using Equation 17 and Equation 18. Subsequently, the right arm 
velocities (both linear and angular) are transformed from left base 
frame to right base frame using Tr

l  rotation matrix, while left arm 
velocities remain in left base frame as shown in Equation 21.

vr = Rr
l ⋅ (vr)l; ωr = Rr

l ⋅ (ωr)l; vl = vl; ωl = ωl. (21)

Where i represents the nut/bolt, k denotes the right/left arm, Rr
l  is 

rotation matrix of Tr
l , (vr)l, (ωr)l are linear and angular velocities of 

right arm in left base and vr,ωr are transformed velocities in right 
base frame. 
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FIGURE 9
Experiment setup to demonstrate the iAPF based motion planning for dul-arm asymmetric manipulations.

FIGURE 10
Dual-arm end effectors’ trajectories with exponential attraction, inverse distance and exponential home-seeking attraction force fields. [Both arms 
initiate movement from their home positions towards their respective target locations. Due to distance priority, the right arm reaches its target first, 
picks up the object, and then retreats to its designated drop point. While the right arm is performing these actions, the left arm remains at the transition 
point. Once the right arm has move away by picking the object, the left arm begins its movement towards its target. The second plot illustrates the 
complete trajectories of both arms].

5 Results and discussion

To validate the proposed system for asymmetric dual-arm 
manipulation framework for sorting industrial components, created 
challenging scenarios by placing nuts and bolts in close proximity, 
deliberately inducing goal conflicts between the manipulators. 
This setup rigorously tests the framework’s collision avoidance 
capabilities, priority-based state transitions, and the effectiveness 

of exponential attractive home-seeking forces in maintaining stable 
coordination during sorting tasks.

The performance metrics for the bolt and nut detection 
classes demonstrate superior discrimination capabilities compared 
to the reference class. Bolts achieve 0.99 detection accuracy and 
nuts achieve 0.97 detection accuracy, with minimal inter-class 
confusion of 0.02. The F1 score reaches 0.89 at a confidence 
threshold of 0.120, while precision achieves 1.00 at 0.808. Recall 
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FIGURE 11
Dual-arm end effectors’ trajectories with exponential attraction, inverse distance repulsion without exponential home-seeking attraction force fields. 
[Both arms initiate movement from their home positions towards their respective target locations. Due to distance priority, the left arm reaches its target 
first, picks up the object, and then retreats to its designated drop point. While right arm remains at the transition point. Once the left arm has move 
away by picking the object, the right arm begins its movement towards it target. The second plot illustrates the complete trajectories of both arms].

maintains 1.00 at low confidence thresholds, indicating robust 
detection even under varying conditions. These metrics validate 
the model’s effectiveness in discriminating between nuts and bolts 
while successfully handling the reference class for false positive 
reduction. The final deployment results are as shown in Deep 
Learning Model Metrics and Real-Time Vision Update Experiment 
Figures are shown in Supplementary Figures S1-S8.

The proposed iAPF, incorporating three distinct force 
fields, effectively addressed near-goal conflict scenarios, as 
demonstrated in Figure 10. The implementation of three force fields: 
exponential goal attraction, inverse-distance other-arm repulsion, 
and home exponential attraction, demonstrates superior control 
over dual-arm trajectories, effectively mitigating inter-arm collision. 
The transition point shows deliberate stop and stable movement of 
the arms during collision possible scenarios and maintains better 
spatial separation throughout their movements. The exponential 
home attraction force acts as a regulator, preventing excessive 
arm extension in scenarios where near-goal conflicts result in 
strong repulsive forces. The establishment of a three-way force 
equilibrium results in more predictable and controlled motion 
paths. The home force establishes natural boundaries for arm 
movements, maintaining optimal manipulator poses and preventing 
over-extension. Particularly, how the trajectories exhibit smoother 
curves with minimal oscillations, as the arms move toward goals, 
the exponential home attraction scales with distance, providing 
graduated control that keeps configurations within safe operating 
ranges. This makes the system more robust against kinematic 
singularities while ensuring efficient task completion.

In traditional attractive-repulsive APF, as shown in Figure 11 
without home attraction, the system exhibits inherent instabilities 
near goal regions. While the arms successfully navigate to their target 

locations, the trajectories demonstrate less controlled movements 
with larger sweeping motions and more aggressive approaches. 
The fundamental issue lies in the force imbalance - as both arms 
approach their respective goals simultaneously, the attractive forces 
dominate while the inter-arm distance decreases, causing a sudden 
spike in repulsive forces. This force antagonism leads to oscillatory 
behaviors and potential over-extension of the arms. Without a 
stabilizing home force, the arms can reach configurations near 
kinematic singularities with no natural mechanism to recover 
optimal poses. The problem is particularly pronounced when both 
arms operate in close proximity, where the rapid transition between 
attraction-dominated and repulsion-dominated states can lead to 
unstable motion patterns.

Observing Figures 12a, 13a, 10, represents attractive and 
repulsive force trends for our iAPF which represents three-way 
force equilibrium: Both arms exhibit controlled convergence to 
home positions with initial attractive forces of ≈900 (left) and ≈700 
(right) stabilizing to ≈50 baseline, demonstrating effective home-
seeking behavior before vision activation. Upon target detection at 
t = 248, right arm’s ≈2400, left arm’s ≈2100 attractive and ≈1500 
oscillating repulsive forces until t = 330 show initial target approach 
with active collision avoidance. Right arm then dominates with 
≈2300 attractive peak at t = 350 while left arm maintains oscillating 
pattern around ≈1600 before dropping to ≈0 at t = 388, indicating 
priority-based sequential execution. The left arm’s subsequent 
≈2000 spike at t = 420 and final ≈500 adjustment before ≈50 
convergence, combined with right arm’s ≈2400-to-zero repulsive 
transition and ≈700 adjustment spike, demonstrate the three-
way force equilibrium effectively managing collision avoidance, 
target acquisition, and stability maintenance. These coordinated 
force patterns enable safe dual-arm manipulation through balanced 
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FIGURE 12
Convergence of attractive forces for both cases (a) with exponential home (b) without exponential home.

home-seeking, exponential attraction, and inverse-square repulsion, 
validated by smooth transitions, predictable force scaling, and clear 
trajectory-force correlations.

Observing Figures 12b, 13b, 11, analyzing the second row 
sub-plots represents attractive and repulsive force trends for 
traditional attractive-repulsive APF which represents two-way force 
equilibrium: Both arms show initial convergence to home position 
with ≈550 (left) and ≈700 (right) attractive force stabilizing to 
≈200 until around t = 248, showing weaker position holding 
without home-seeking force. After target detection from vision, 
simultaneous high-magnitude attractive forces emerge (≈2300 right, 
≈2100 left) with ≈1900 repulsive force oscillations, indicating 
uncontrolled collision avoidance. Both arms exhibit competing 
behavior during t = 300–350, with right arm’s ≈1600 attractive spike 
concurrent with left arm’s ≈2000 peak, leading to unstable spatial 
competition. The force equilibrium deteriorates with sharp ≈2000 

repulsive spikes and minimal damping, causing wide trajectory 
deviations visible in the path curves. Final phase shows multiple 
high-magnitude force oscillations before eventual convergence to 
200 baseline, demonstrating poor stability without home-seeking 
influence. The trajectory plot validates these issues through excessive 
path curvature, wider sweeping motions during collision avoidance, 
and less direct approaches to targets, confirming the necessity of 
home-seeking force for stable dual-arm coordination.

The convergence behaviors depicted in Figures 14, 15, illustrate 
the interplay of two parallel control systems. Position trajectories 
are governed by the APF framework, while orientation trajectories 
are controlled by a PD controller. Figure 14 demonstrates smooth 
convergence, attributed to the inclusion of the three-way force 
equilibrium that effectively mitigates oscillations and prevents 
excessive arm extension. Notably, orientation convergence is 
independently controlled and effectively synchronized with position 

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2025.1604506
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Surya Prakash et al. 10.3389/frobt.2025.1604506

FIGURE 13
Convergence of Repulsive forces for both cases Forces (a) with exponential home (b) without exponential home.

convergence. But in Figure 15 shows that without home attraction, 
position trajectories oscillate due to force antagonism between pure 
attraction-repulsion, while orientation still achieves convergence 
with PD control but experiences coupling effects from less stable 
positional behavior. This separation of position and orientation 
control allows for independent tuning of linear and angular 
responses while maintaining overall system stability. The sequential 
illustration of experiments for explaining two cases are shown in 
Figures 16, 17. 

6 Conclusion

In this paper, we presented a comprehensive framework 
for dual-arm asymmetric manipulation with inter-arm collision 
avoidance for handling industrial components. Our approach 

introduces a computationally efficient collision detection method 
that represents manipulator links as line segments in 3-D space, 
enabling real-time distance monitoring through analytical solutions 
for parallel, intersecting, and skew configurations. The integration 
of YOLOv8 OBB-based object detection achieves robust real-time 
perception at 20 frames per second with oriented bounding boxes, 
demonstrating high accuracy of 0.99 and 0.97 for bolt and nut 
detection respectively along with components size estimation. The 
improved Artificial Potential Field (iAPF) framework implements 
a novel three-way force equilibrium through exponential attractive, 
inverse-square repulsive, and exponential home-seeking forces, 
significantly enhancing trajectory stability and reducing oscillations 
compared to traditional APF approaches. Our hybrid twist 
control scheme combines iAPF-generated linear velocities with 
PD-controlled angular velocities, with proven stability through 
Lyapunov analysis and enabling precise asymmetric manipulation 
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FIGURE 14
Position and orientation convergence in exponential goal attraction, exponential home attraction and inverse distance repulsion.

FIGURE 15
Position and orientation convergence in exponential goal attraction, without exponential home attraction and inverse distance repulsion.

through a priority-based state machine. Experimental validation 
demonstrates the framework’s effectiveness in handling challenging 
scenarios, including close-proximity object sorting and goal 

conflicts between manipulators, while maintaining safe separation 
distances. This integrated approach provides a promising foundation 
for deploying collaborative dual-arm systems in industrial settings 
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FIGURE 16
Sequential Illustration of Asymmetric Dual-Arm Manipulation at Near Goal Conflict situation with Clear Spatial Separation between Arms [at t = 6.25 left 
arm gets priority due to the proximity, t = 8.33 left arm picking the object while right arm waiting at safe transition point, t = 15.66 right arm picks the 
object and t = 16.32 left arm drops the object and right arm at t = 22.50.] - With Three-way Force Equilibrium.

FIGURE 17
Sequential Illustration of Asymmetric Dual-Arm Manipulation at Near Goal Conflict situation with Close Proximity Movement of Dual-Arm [at t = 7.33 
left arm gets priority due proximity with goal, while right arm move far away from left arm due to spike in repulsion, t = 14 arms are near collision 
situation.] - Without Three-Way Force Equilibrium.

where reliable, efficient, and safe manipulation of industrial 
components is essential. The proposed framework assumes a 
controlled workspace free from external dynamic obstacles, 
focusing primarily on inter-arm collision avoidance. The vision 
system is currently limited to pre-trained component classes 
(nuts/bolts), though it remains adaptable through retraining for new
object types.

Future work will extend the present framework to handle 
external dynamic environments through: i) real-time external 

obstacle detection using RGB-D depth sensing to detect 
unknown objects in the workspace, ii) adaptive repulsive 
force field generation that incorporates external obstacles into 
the existing iAPF framework. This progression will enable 
deployment in unstructured manufacturing environments while 
maintaining the proven stability and collision avoidance capabilities 
demonstrated in this work. Potential applications include 
automated assembly of industrial components, transitioning from 
absolute motion to relative motion control during assembly
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phase, with integrated size matching and precise alignment
capabilities.
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