:' frontiers ‘ Frontiers in Robotics and Al

‘ @ Check for updates

OPEN ACCESS

Aysegul Ucar,
Firat University, Turkiye

Muhammad Igbal,

National University of Sciences and
Technology, Pakistan

Nadeem Javaid,

National Yunlin University of Science and
Technology, Taiwan

Davide Picchi,
picchi@ip.rwth-aachen.de

06 March 2025
22 September 2025
30 October 2025

Picchi D and Brell-Cokcan S (2025) Exploiting
the Kumaraswamy distribution in a
reinforcement learning context.

Front. Robot. Al 12:1589025.

doi: 10.3389/frobt.2025.1589025

© 2025 Picchi and Brell-Cokcan. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Robotics and Al

Methods
30 October 2025
10.3389/frobt.2025.1589025

Exploiting the Kumaraswamy
distribution in a reinforcement
learning context

Davide Picchi* and Sigrid Brell-Cokcan

Chair of Individualized Production, RWTH Aachen University, Aachen, Germany

Mini cranes play a pivotal role in construction due to their versatility across
numerous scenarios. Recent advancements in Reinforcement Learning (RL) have
enabled agents to operate cranes in virtual environments for predetermined
tasks, paving the way for future real-world deployment. Traditionally, most
RL agents use a squashed Gaussian distribution to select actions. In this
study, we investigate a mini-crane scenario that could potentially be fully
automated by Al and explore replacing the Gaussian distribution with the
Kumaraswamy distribution, a close relative of the Beta distribution, for action
stochastic selection. Our results indicate that the Kumaraswamy distribution
offers computational advantages while maintaining robust performance, making
it an attractive alternative for RL applications in continuous control applications.

machine learning, crane, construction, reinforcement learning, Kumaraswamy
distribution

1 Introduction

The advent of artificial intelligence (AI) has had a profound impact on the approach to
solving automation problems, leading to a radical paradigm shift in a wide range of fields.
In the domain of automation and engineering, Reinforcement Learning plays an important
role in developing new concepts in which an agent is capable of controlling dynamic
systems without the necessity of solving or modeling them with differential equations or
similar methods. In Reinforcement Learning, an agent can control a dynamic system by
repeating actions and receiving a reward from the environment (Sutton and Andrew, 2018).
By maximizing the reward, an agent can efficiently learn a specific task. This approach
opens new avenues for automating tasks even in traditionally underdigitalized sectors like
construction. Concurrent with this development, there has been a paradigm shift in various
fields, including the construction sector, despite its relative underdigitalization. The capacity
to train an agent capable of controlling a construction machine through the creation of a
dynamic simulation environment and the iteration of agent actions over multiple time steps
is now a possibility. The dynamic programming approach, developed many decades ago, has
undergone extensive refinement and enhancement through the integration of numerous
novel algorithms in recent years, particularly through the extensive integration of neural
networks as universal function approximators (Sutton and Andrew, 2018). One of the most
interesting and efficient algorithms used in many Reinforcement Learning applications
today is the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017). This
algorithm is on-policy based, offering robust performance in many robotic tasks and rapid
convergence. In a paper published by Hsu et al. (2020), the authors revisited the algorithm,
introducing several modifications. One of these modifications was to use a Beta distribution

01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1589025
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1589025&domain=pdf&date_stamp=
2025-10-27
mailto:picchi@ip.rwth-aachen.de
mailto:picchi@ip.rwth-aachen.de
https://doi.org/10.3389/frobt.2025.1589025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1589025/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1589025/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1589025/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

instead of a Gaussian distribution for the stochastic agent. The
authors demonstrated that the Beta distribution produced accurate
results and, in many benchmark environments, these results were
superior to those obtained by other algorithms (Hsu et al., 2020).
The effort to improve performance results is exemplified in the
research conducted by Chou et al. (2017) by incorporating the
Beta distribution within gradient-based policies for continuous
control in the context of deep Reinforcement Learning. The authors
have documented higher scores and faster convergence properties
compared to those achieved using a Gaussian distribution, across
a range of different gradient policies (Chou et al., 2017). The
objective of this study is to determine whether an agent has
the capacity to acquire the skills necessary to operate a mini-
crane and subsequently transfer that knowledge to a real crane.
Simultaneously, an evaluation of the Kumaraswamy distribution as
a potential replacement for the Gaussian or Beta distribution is
warranted.

1.1 The Kumaraswamy distribution

In recent advances within the fields of Reinforcement Learning
and control systems, the selection of probability distributions
has emerged as a pivotal element in the effective modeling
of action spaces. Conventionally, the utilization of squashed
Gaussian distributions has been prevalent due to their capacity
to model continuous variables with a defined support. However,
this study proposes the use of the Kumaraswamy distribution
as an alternative to the Beta distribution. The Kumaraswamy
distribution is distinguished by its flexibility and computational
efficiency and it is distinct from a Gaussian distribution in that
it does not necessitate the application of non-linear functions
to achieve bounded outputs, a process referred to as squashing.
Instead, the Kumaraswamy distribution inherently operates within
a defined interval, that is, (0,1). This characteristic renders it
particularly well-suited for tasks that require bounded actions.
Furthermore, the Kumaraswamy distribution provides augmented
parameterization alternatives through its two shape parameters,
akin to the Beta distribution. These parameters enable a greater
degree of control over skewness in comparison to a single variance
parameter in Gaussian models. This flexibility enables more precise
fitting to task-specific data distributions encountered in crane
operations where varying environmental conditions may require
adaptable response strategies. From a theoretical point of view,
these advantages contribute to improved numerical stability and
accelerated convergence rates during the training phases. The
reduced complexity in sampling from Kumaraswamy facilitates
efficient exploration strategies without incurring additional
computational costs typical of squashing mechanisms applied to
Gaussian samples.

Despite many similarities to the Beta distribution, such as
two coefficients «,f3 or a, b for controlling their shapel, the

1 The aand parameters are used in this study, even for the Kumaraswamy
distribution, despite the fact, that a and b are used commonly in

mathematics

Frontiers in Robotics and Al

02

10.3389/frobt.2025.1589025

Kumaraswamy distribution offers greater benefit, especially in
combination with neural networks, for the following reasons:

1. It allows for a simplified form of log-probability computation,
which is easier and faster to compute than the Beta
distribution. This is a very important aspect, since the log-
probability computation is fundamental in any gradient policy
algorithm.

. It has a closed-form derivative, which makes it easier and
numerically stable for the gradient computation compared
to the Beta distribution. This requirement is necessary for a
differentiable policy parameterization.

. Its entropy computation has a closed form solution, in contrast
to the Beta distribution, which requires numerical integration.
Entropy calculation is a prerequisite for most contemporary
policy gradient algorithms.

. It supports the reparameterization trick as shown in
the work of Wasserman and Mateos (2024).

. It is natively bounded in the range (0,1). By constrast, the
Gaussian is an unbounded distribution that needs to be
squashed using the tanh function.

. It offers greater robustness at the boundary (when: a,f < 1),
leading to more numerically stable behavior.

Mathematically, the PDF function of the Kumaraswamy
distribution can be expressed by the following Equation 1:

flxaB) = afx! (1 - x4, 1

O<x<1

While its CDF (Equation 2) and its inverse function (Equation
3) can be expressed as follows (Nalisnick and Smyth, 2016):

Flxa,p)=1-(1-x%F)

Fluwap) =(1-1-u)$)" u~u1) 3)

Allowing for a computationally affordable reparametrization
trick sampling from the Uniform distribution u ~ 24(0,1):

1/«

x=F'(wap)=[1-1-u"F (4)

A linear transformation (Equation 5) is needed to map the
bounded action range (0,1) to the more common and symmetric
action space (—1,1):

()

a=2x-1
Leading to the following Jacobian (Equation 6) and logarithmic
probability (Equation 7):

dx
da

1

)

(6)
log 7(a) =log a+log B+ («—1)loga+ (B—1)log(1-a%) (7)

1.2 The reparametrization trick in the
Gaussian distribution

A considerable proportion of continuous control Reinforcement
Learning algorithms yield action values that are distributed

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

according to a Gaussian function. Subsequently, these values are
processed through a tanh function (Equation 9) to align with the
constraints of the action space (typically constrained to the interval
(-1,1)). Thus:

y~N(u0) (8)

a, = tanh (y))

In order to facilitate the flow of the gradient through stochastic
nodes by sampling ¢ from a Uniform distribution (Equation 8) the
sample y can be reparameterized as Equation 10:

y=u+o6 e~N(0,1) (10)

where y and o are predicted by the policy network.
The inverse transformation of the squashed Gaussian is:

yztanh’l(a):%ln(it—zl) (11)

where y in Equation 11 is the reparametrized version of y in
Equation 8, leading to the Jacobian (Equation 12) and the resulting
log-probability formula (Equation 13):

dy 1
dal| 1-da° (12
logn(a):—logo—%log(Zﬂ)—%(?) (13)

As reported in Haarnoja et al. (2018).

1.3 The Beta distribution

For comparison, the PDF and the CDF of the Beta distribution
are expressed as follows (respectively: Equations 14, 15):

-t _T(@T(B)
f(x, (X,ﬁ) = T,/}) where B(rx,ﬂ) = r(a—+/3) (14)
_ B(xa,p)
F(x,oc,ﬂ) = W (15)

While there is no simple closed form for the calculation of
the inverse CDFE, which complicates sampling via reparametrization
tricks. The logarithmic probability formula can be expressed
as follows.

log 7 (a) = —log B (a, B) + (« — 1) log (%1>+(ﬂ— 1)
log(l—(%ﬂ))—logZ (16)

where:
log B(a,8) =logT (a) +logT (B) —logI' (a+) (17)

Which requires the computation of the log-gamma function
logT'(), leading to a computational overhead.

Equations 7, 13 illustrate a logarithmic probability calculation
that incorporates logarithmic and exponential functions. Such
computational burdens are less onerous than that of the log-
probability computation of the Beta distributions (Equation 16),

Frontiers in Robotics and Al

10.3389/frobt.2025.1589025

which implies the calculation of Equation 17. The Beta distribution
incurs special-function evaluations (such as the log-gamma
function), and its reparameterized sampling relies on two Gamma
draws per action (Equations 16, 17), which are comparatively
expensive. Conversely, the Kumaraswamy distribution avoids
special functions entirely: its log-density and reparameterized
sampler require only logarithms and power operations, with a closed
form inverse CDE Therefore, Kumaraswamy is typically considered
computationally lighter than Beta, while remaining competitive
with a squashed Gaussian, which is typically used in the context of
Reinforcement Learning.

In the following Table 1 offers an overview about the different
logarithmic probability computation formulas.

To empirically validate the theoretical advantages discussed
earlier, this work evaluates the efficacy of the Kumaraswamy
Models
Kumaraswamy, the squashed Gaussian and the Beta distributions are

distribution in two different environments. using
compared under identical conditions across various performance
metrics. To ensure that observed differences are not due to
hyperparameter tuning or random initialization, the evaluation
protocol includes systematic tuning, retraining with different seeds,
and swapping hyperparameters between distributions (only between
the Kumaraswamy and the squashed Gaussian), thereby assessing
raw performance, robustness, and generalization.
The protocol has been applied to two different environments:

1. A simulated mini-crane tasked with navigating from one
position to another while circumventing obstacles.

2. The standard LunarLander environment provided by the
Farama Foundation is a well-known common framework for
testing Reinforcement Learning algorithms. The latter was
utilized as a testbed for the proper implementation of the PPO
algorithm.

The protocol evaluates along two axes:

1. Distribution: Gaussian vs. Kumaraswamy vs. Beta
2. Environment: LunarLander vs. mini-crane

and consists on the following steps:

1. Tuning of hyperparameters: For each pair (environment,
distribution) the PPO hyperparameters have been optimized
using the tree-structured parzen estimator (TPE) for 100 trials.
During this phase, a fixed random seed was constantly used.

2. Retraining across seeds Subsequently, the best

hyperparameters were used to retrain each configuration from

scratch with 10 different random seeds.

in 25

independent episodes (with unseen seeds). The means and

3. Evaluation: Each trained model was evaluated

standard deviations across seeds were collected.

4. Swapping of hyperparameters: To test whether performance
differences are due to distributional choice or hyperparameter
bias, the Gaussian agents have been re-trained using the best
Kumaraswamy hyperparameters and vice versa.

5. Repeat retraining and evaluation The swapped configurations
were re-trained with 10 seeds and evaluated as described in
step 2.

Because the LunarLander environment provides dense rewards
using a different reward function than the mini-crane environment,

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

10.3389/frobt.2025.1589025

TABLE 1 Overview of the different logarithmic probability computation for three different distribution probabilities. The term a refers to the action.

Distribution Logarithmic computational formula Parameters determined by the
policy
Gaussian log n(a) = —log o — %log(Zﬂ) - % (%) wo
Kumaraswamy log 71(a) = log & +1og f + (a — 1)log a + (B —1)1log (1 - a%) a,f
__ _ a+1 - (et
. log 7(a) = —log B(a,f) + (a 1)10g< :)+(ﬁ 1)10g<1 (:)) log 2 o
log B(, 8) = logT'(«) +logI'(8) —logI'(ax + B)

the two cannot be compared directly on the same evaluation metric
(in this case the average reward during the evaluation phase). For
LunarLander only the reward-based metrics was collected, whereas
for the mini-crane the success and collision rates. The following
metrics were collected during the evaluation:

1. Success Rate (mini-crane only): Percentage of episodes in
which the crane successfully reaches its objective without
experiencing a collision. Calculated as the ratio of successful
episodes to total evaluation episodes.

. Collision Rate (mini-crane only): Percentage of evaluation
episodes in which a collision occurs, defined as contact of any
crane component with obstacles or the ground. Calculated as
the ratio of episodes with collisions to total episodes.

. Mean Evaluation Reward (LunarLander only): Average
cumulative reward across all evaluation episodes.

. Standard Deviation of Evaluation Rewards (LunarLander
only): Variability of evaluation rewards across episodes,
indicating stability performance of the learned policy.

both

environments, 95% confidence intervals were computed

. Confidence Intervals for Mean Reward: For
around the mean evaluation reward (or success rate) across
seeds, using the standard error of the mean. This provides a
statistical measure of reliability.

. Area Under the Learning Curve (AUC): Computed over
training timesteps and averaged across 10 seeds. The AUC
aggregates learning efficiency, capturing not only the final
performance but also the speed of convergence.

. Completion time (mini-crane only): It represents the time
requested by the agent to accomplish the task. The timesteps
for every episode are limited to a maximum of 2048 steps.

. Kullback-Leibler divergence: This metric represents the update

of the policy gradient during the training phase.

The efficacy and numerical stability of the distributions are
of critical importance, as they directly impact both the efficiency
of training and the reliability of policy optimization. In contrast
to conventional supervised learning scenarios, Reinforcement
Learning algorithms necessitate the repeated computation of
log-probabilities and entropy gradients during each update
step. Consequently, distributions such as Kumaraswamy, which
provide closed-form expressions, are particularly advantageous
for stochastic policy parameterization in Reinforcement Learning
agents. In addition, in continuous action spaces with bounded
ranges, the Kumaraswamy distribution can directly model
action probabilities without requiring costly transformations

Frontiers in Robotics and Al

04

(e.g., tanh-squashing), which could enhance numerical stability
and gradient estimation in policy-gradient methods. It is
important to note that despite its interesting characteristics
and properties, the Kumaraswamy distribution remains mostly
under-used (Wasserman and Mateos, 2024).

1.4 The choice of the mini-crane scenario

The underlying rationale for the utilization of a mini-crane
environment in this study is rooted in the potential for subsequent
real knowledge transfer into practical applications and real mini-
crane. A close examination of the current state of automation
in the construction industry reveals that the integration of
robotic technology into cranes is still in its nascent stages of
development. This observation is based on extensive interactions
with professionals in the construction sector, particularly those
specializing in construction robotics. Therefore, the implementation
of Reinforcement Learning in practical applications has the potential
to enhance the automation level of construction machinery, thereby
paving the way for future advancements in the construction sector.
It is evident that Reinforcement Learning alone is insufficient
to achieve and offer a comprehensive automation solution. In
actual scenarios, the incorporation of anti-collision sensors and
safety features is imperative if not mandatory. However, a trained
Reinforcement Learning agent offers additional benefits and
advantages to human operators, even if its role is initially limited
to providing assistance without assuming complete control of the
crane. Although full automation may require additional safety
measures such as anti-collision sensors, which are beyond our
current scope, the RL framework presented here lays foundational
work toward intelligent assistance systems for crane operators.

1.5 Scope of this study

This paper addresses the problem of analyzing computational
efficiency and robustness in continuous action-space Reinforcement
Learning for construction robotics by evaluating the Kumaraswamy
distribution as an alternative to commonly used Gaussian or Beta
policies in the aforementioned mini-crane environment. The novelty
of this work lies in:

1. Implementing a Kumaraswamy based stochastic policy within
PPO for mini-crane control.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

2. Providing a systematic comparison against Gaussian policies
under identical experimental conditions.

3. Empirically analyzing performance across multiple
metrics including implementation efficiency, stability, and
computational costs.

4. Highlighting practical considerations for real-world

deployment.

In the present work, the development of a stochastic agent based
on the Kumaraswamy distribution embedded in a PPO algorithm
has been undertaken, leading to a robust, high-efficiency stochastic
policy capable of controlling a task where the dynamic system is
represented by a mini-crane that picks up a load from one start
point and moves it to a goal without hitting any obstacles and
under joint limit constraints. This work expands the design space for
continuous stochastic policies beyond Gaussian and Beta in robotics
Reinforcement Learning, introducing a theoretically grounded
yet computationally lighter alternative to the Beta distribution.
Furthermore, it introduces an underexplored, yet theoretically
promising, distribution to Reinforcement Learning control tasks
where bounded actions are required.

2 Literature review

The use of Reinforcement Learning (RL) in construction
engineering is a subject that has been explored to some extent.
Previous studies have investigated the application of Reinforcement
Learning in training an agent to operate a crane in a virtual
environment. This paper (Cho and Han, 2022) proposes the use
of Reinforcement Learning to reduce and optimize lifting times
using a tower crane in a virtual 3D environment. The tower
crane is trained to perform autonomous and continuous actions
by controlling the velocities of rotation, lifting, sliding, and other
related processes. The authors demonstrated the efficacy of the
agent in generating trajectories that optimize lift plans and crane
operations, thereby avoiding collisions with obstacles. In their work,
they benchmarked two different algorithms: an on-policy (PPO) and
an off-policy (SAC) algorithm, by using different reward function
combinations and tasks. The results showed that while both PPO
and SAC agents were effective across different tasks, PPO achieved
higher performance metrics than SAC in several scenarios (Cho and
Han, 2022).

Another intriguing piece of research was presented by Keita et al.
(2020), who used Reinforcement Learning to automate the
movements of a crane and an excavator by behavior cloning. In
their environment, they trained an agent for two distinct tasks:
the primary task was to minimize the oscillation of a load, while
the secondary task was to maximize the excavation of soil in
a single operation. The study demonstrated the applicability of
Reinforcement Learning in construction sites and the ability to train
agents for specific tasks. A more sophisticated concept was presented
in another study, in which Reinforcement Learning control was
applied to a forestry crane manipulator (Andersson et al., 2021). The
log grasping motion, combined with an energy optimization goal,
constituted a significantly more complex task. In fact, Andersson
etal. had to train their agent for approximately 20 million steps
using curriculum learning. Thus, it can be concluded that the agent

Frontiers in Robotics and Al

05

10.3389/frobt.2025.1589025

began with straightforward tasks and progressed to more intricate
activities as its success rate increased over experience. The results
obtained claim a success rate of 97% when using an on-policy
algorithm, such as PPO, to train the agent. The mentioned work
is unquestionably one of the most significant papers that provided
the inspiration for our work.

It should also be noted that the authors were able to incentivize
energy optimization by embedding it in the reward function
(Andersson et al., 2021). Another paper examines the application
of Reinforcement Learning in construction environments
characterized by obstacles (Xiao et al., 2023). In that work, the
authors Xiao etal. trained a PPO agent for controlling a 3D lift
path planning of a crane during unloading and loading operations.
The authors considered two different cases, which are recurrent in
the aftermath of an earthquake scenario: one case without and one
case with obstacles between the initial and final position, that could
hinder the agent in its performance sensibly. The paper (Xiao et al.,
2023) demonstrates that appropriate training leads to an agent policy
that can achieve scheduled goals and reduce swing load oscillations
within time constraints.

In their work, Kai et al. (2022) proposed an approach to
crane scheduling operation model using deep Reinforcement
Learning, implementing a Q-learning algorithm with deep neural
networks. The authors treated a steel fabrication process, where
two cranes need to perform a sequence of actions along the
process, as a scenario. Notably, the authors did not employ
more sophisticated algorithms such as TD3, PPO, SAC, or A2C.
Nevertheless, they successfully trained an agent that was capable
of achieving the objectives in 11.52% less time and reducing the
collision time of crane routes by almost 57% (Kai et al., 2022). This
resulted in enhanced efficient scheduling management performed
by an Al agent.

The crane scheduling process is the primary focus of this other
paper, in which the authors implemented a dynamic environment
that has significantly enhanced the efficiency of automated storage
yards through the use of twin automated stacking cranes (Xin et al.,
2023). In this extensive and highly complex article, the authors
demonstrate that an agent can learn sophisticated scheduling
policies and concurrently generalize its problem-solving capabilities,
thereby enabling deployment in unseen scenarios of various scales or
distributions (Xin et al., 2023). A notable aspect of this work is the
utilisation of the masked self-attention mechanism for training the
agent within the framework, which has been shown to yield high-
quality policies for the given task. The self-attention mechanism
forms the foundation of the transformer architecture (Vaswani et al.,
2023), a significant advancement in the field of Al, leading to the
development of tools such as GPTs, image and music creation
programs, and numerous other applications.

The following Table 2 offers a summary of the lacunae and the
objectives pursued by the aforementioned studies.

The majority of previous works rely on Gaussian policies
because of their mathematical convenience. However, these policies
are deficient in their inability to address the limitations imposed
by bounded action spaces. A limited number of studies have
examined alternative double-bounded distributions, such as the
Beta distribution (Hsu et al., 2020) in combination with a PPO
policy algorithm. This alternative to a Gaussian distribution is
of interest. However, it should be noted that the integration

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

10.3389/frobt.2025.1589025

TABLE 2 Overview of the field of publications on the topic Reinforcement Learning in construction. The following abbreviations are used: PPO,
Proximal Policy Optimization; SAC, Soft Actor Critic; BC, Behavior Cloning; FS, Frame Skipping.

Application RL algorithm Stochastic Eval. Metrics Main
distribution contribution
Cho and Han (2022) Tower Crane PPO/SAC Gaussian (assumed) z-score standarization Realistic lifting time
across different metrics estimation
Keita et al. (2020) Crane and excavator PPO, BC, FS Gaussian (assumed) Success Rate Shows policy impact
varies by machine type
Andersson et al. (2021) Forestry Crane PPO Gaussian Success Rate Explores energy policy
Manipulator effects
Xiao et al. (2023) Robotic Crane PPO Gaussian Success Rate Tests obstacle handling
(with/without obstacles) in crane control
Kai et al. (2022) Multi-crane scheduling Deep RL Gaussian (assumed) Completion time, travel Efficient multi-crane
distance scheduling framework
Xin et al. (2023) Automated Stacking PPO Gaussian (assumed) ‘Wait time, run time RL method for
Cranes minimization Automated Stacking
Cranes scheduling

of PPO with a Beta distribution does incur a computational
overhead that arises from log-probability calculations intrinsic
to Beta distributions, as reported in Table I. Moreover, the
aforementioned study (Hsu et al., 2020) has not concentrated on
construction robotics contexts, but rather has examined the benefits
of the Beta distribution in a Reinforcement Learning context.
The Kumaraswamy distribution constitutes an alternative option,
exhibiting a similarity to the Beta distribution while avoiding the
computational overhead characteristic of the latter. The present
study proposes a methodology to address the aforementioned gaps
using a systematic benchmarking process. This process involves
the Kumaraswamy distribution being compared against established
alternatives within a realistic mini-crane simulation environment.

3 The environment

The present study investigates and analyzes the applicability of
the Kumaraswamy distribution applied to a mini-crane, which is
tasked with a fundamental yet elementary undertaking: navigating
its hook from a designated starting point to a predetermined goal
position, while circumventing obstacles and avoiding collisions
with the ground (Figurel). This elementary task has been
replicated within the simulation program Webots?, an open source
software mostly used in robotic applications that allows virtual
experimentation in dynamic environments, including collisions
between objects.

The crane possesses a total of four degrees of freedom around
four joints: while the body is fixed to the ground, the upper part
of the body can rotate (q,) around the azimuth axis (Figure 2).
Furthermore, the boom can be adjusted to change its angle (g,)
and extend as a telescopic arm (gq,). Finally, the hook movement

2 https://cyberbotics.com/

Frontiers in Robotics and Al

FIGURE 1
Simulation of a mini-crane going from one starting to a goal position.

consists of a linear translation (q;) perpendicular to the ground
within predefined hard limits (not above the boom tip and not
below the ground). Thus, the coordinates of the described system
are defined by virtual sensors and, in a real-case scenario, can be
provided over an interface connected to sensors on the real machine.
The joint coordinates define at the same time the observed vector
that corresponds to the state (s, = [¢,,4;,9,,q;]) of the system, as
depicted in Figure 2.

The choice of spherical coordinates is based on the physical
configuration of standard mini-cranes, which includes the rotational
base joint, the angle of the boom, the telescopic extension, and
the length of the rope. Direct modeling of these actuators’ native
domains has been shown to simplify the handling of kinematic
constraints in comparison to the mapping of Cartesian outputs back
into joint space. This is due to the fact that mapping Cartesian
outputs back into joint space can result in highly nonlinear and non-
invertible behavior in the vicinity of the workspace limits. Therefore,
the definition of both state/action spaces in native joint coordinates
is consistent with hardware reality, such as real sensors..

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://cyberbotics.com/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

FIGURE 2
Joint positions of the mini-crane

10.3389/frobt.2025.1589025

FIGURE 3
The LunarLander environment

trained in the

In the present study, the agent is

following scenarios:

1. In the context of the LunarLander environment, the agent is
tasked with the objective of landing a rocket-propelled lander
by exercising control over two engines: a lateral engine and
a main engine (Figure 3). The observation space comprises
the two-dimensional coordinates of the ship, its linear and
angular velocities, and the status of the legs’ contact with the
ground. The action space is continuous. The reward function
structure of the aforementioned environment consists of the
distance to and from the landing pad, the landing speed, the tilt

Frontiers in Robotics and Al

07

angle of the ship, the engine status, and the contact leg/ground.
An additional positive/negative reward is granted for landing
safely or crashing the ship on the landing pad.

. In the context of the miniature crane environment, the

simulation of a crane is required to execute the aforementioned
task. The observation vector contains the joint coordinates
and the absolute coordinates of the target, thus: s,=
(40> 91> 92> 43- % Y 2. This case is likely to be the easiest to
implement in a future scenario involving a real mini-crane,
as the joint positions are simply the sensor values that can
be gathered directly from a hardware interface, given that
hardware sensors detect the joint state. Due to the observation

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

B
\\ \

Z

_

FIGURE 4
Overview of the zones, where the start and goal position is sampled
from at the beginning of every episode.

vector not containing all the information of the system state,
such as the joint velocities, this simple scenario corresponds
basically to a POMDP (Partially Observable Markov Decision
Processes).

In both cases described above, neural networks are trained solely
based on the reward function r from their respective environments;
the transition matrix p is not modeled, as this work follows a model-
free approach. In the mini-crane environment, the observation
vector is normalized and constrained to the range [-1,1] to
prevent numerical instability or imbalances in network weights. No
such normalization is applied to observations in the LunarLander
environment.

For the mini-crane environment, four distinct actions define
the action-space A: g, for the crane rotation, a, for the boom
inclination, a, for the boom extension, and a5 for the hook rope,
and all are normalized and constrained in the range [-1,1] as
for the state-space. Additionally, state variables are bounded to
avoid self-collisions or physically impossible joint configurations,
reflecting real-world constraints. For example, the coordinate g, is
limited to the range [~qy,,.»q0,uq,)> the inclination q, is limited
t0 (G, 91 mar)> the extension g, is limited to [q,,,;,q5,,,,)» While
the hook height g, must remain between the tip of the boom and
the ground.

In order to ensure that the problem is generalized and the
robustness of the agent is improved, it is essential to initiate each
episode by randomly determining the starting and goal positions
in the fixed reference frame. This randomization has been achieved
using a uniform distribution, which means that every possible
position within the defined space has an equal likelihood of being
selected. In doing so, the agent is exposed to a wide variety of initial
conditions and target destinations, which helps to develop a more
adaptable and resilient policy. The process is illustrated in Figure 4
which shows the areas of generation of start and target positions at
the beginning of each episode.

Frontiers in Robotics and Al

10.3389/frobt.2025.1589025

For an episode to be designated as having a positive conclusion
and to end within the time horizon, it is necessary for the mini-crane
to move its load to a position close to the drop point (Figure 4). The
episode ends only successfully when the Euclidean distance between
the drop point and the load is <0.1. In order to achieve this condition,
the crane is forced to maneuver the hook below the height of the wall.

3.1 On-policy algorithm

Within the domain of Reinforcement

environment can be conceptualized as a Markov Decision Process

Learning, any

(MDP). An environment fulfills the Markov property when the
current state fully captures all relevant past information needed to
take the next action. Furthermore, an MDP is characterized by the
collection of a trajectory within a specific time horizon T comprising
the following elements (S, A, p, 1, y, p), where: S represents a set of
possible states, A represents a set of stochastic actions a ~ 7y(s), p =
(8,118, a) is the transition probability distribution of the system, r is
the reward function, y is a scalar value representing the discounting
factor (S and G, 2018). In the course of an episode, the agent has
the ability to collect the actual state s, at any given time step t
(where the system is initially in the state s,). The action a, to be
taken according to a stochastic policy my at any time f, resulting
in a new state of the system s,,; ~ p(s,,;|a,) and a new reward r =
r(s;,a,) based on the state and action taken according to the policy
mp. In the field of Reinforcement Learning, a prevalent approach
involves the development of algorithms capable of generalizing
across a range of environments. These algorithms are designed
to consider a distribution of environments that encompasses
diverse settings and configurations. The overarching objective of
Reinforcement Learning is to determine the optimal policy 7 that
maximizes the expected reward of an episode, as shown in the
following (Equation 18).

maximize [,
9 0

T
Zytrt] (18)
=0

The agent is designed to learn to generalize and determine
actions in a variety of situations, thereby improving its resilience
to potential obstacles and other challenges. In this research, the
primary focus is on the PPO algorithm, used to train a policy that
determines the subsequent action to be executed following a training
phase extending over 1.2 million timesteps within the environment.
The total loss LYOHCY*VEFH jg constituted by the cumulative effect
of loss functions, which surrogates the policy, the value, and the
entropy functions, as delineated in the Equation 19 and explained
in more detail in the original work of Schulman et al. (2017):

LfOLICY+VF+H (9) — Et [LtPOL[CY(e) _ ClLtVF(e) + CZH (St; 9)] (19)
where: ¢;,c, are positive coeflicients treated as hyperparameters

while H(s;0) represents the entropy of the Kumaraswamy
distribution and is given the following (Equation 20):

H (x;6) = —Jlaﬁxa_l(l —x%)F-1 [loga+log f+ (a—1)
0
logx+(B—1)log (1 —x%)]dx (20)

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

10.3389/frobt.2025.1589025

. Kumaraswamy Distribution PDF
— a=1.0, B=1.0
—— a=4.0, p=0.2
5 — a=0.2, p=4.0
— a=1.5, B=7.0
s —— a=8.0, p=1.2
2 41
>
[T
2
k)
G 31
[a)]
2
E
g21
e
a
1 .
o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
FIGURE 5
Behaviour of a Kumaraswamy distribution with different coefficients.

where: a,f are the coeflicients for controlling the Kumaraswamy
distribution. As there is no simple closed-form solution to the above
equation, there are many estimates of entropy for the Kumaraswamy
distribution, which have been evaluated by Al-Babtain et al. in their
work (Al-Babtain et al., 2021). One of the most important issues
dealing with such equations is the numerical instability due to
integral computation. For this reason, the approximation used in
this work is expressed in the following form, (Equation 21), which
represents the differential entropy for that distribution and was
found to be numerically stable:

H(e;0)=1-p+(1-a) (1;/(0) B+ 1)+yem)—logo¢—log/3 (21)

where: y(©) represents the digamma function, while y,,, represents
the Euler-Mascheroni constant (Wasserman and Mateos, 2024).
Calculating the gradient in a gradient-based policy algorithm
requires the calculation of logarithmic probability. For the
Kumaraswamy distribution, the log-probability is given by the
Equation 7 and represents a closed-form solution that does not
require integration, although numerical instability may occur as the
argument of the logarithm approaches 0. In order to compensate for
the above issue, the implementation proposed by Wassermann et al.
has been adopted (Wasserman and Mateos, 2024).

The parameters (a,f3) are determined by the stochastic policy
neural network that represents the agent. As previously stated, the
Kumaraswamy distribution bears a strong resemblance to the Beta
distribution. A comparison of the two distributions reveals that they
are characterized by similar distributional properties and are both
suitable for continuous probability control problems. Furthermore,
both are controlled by two coeflicients that determine the shape of
the distribution, as depicted in the following (Figure 5).

Frontiers in Robotics and Al

In the event that either parameter & < 1 or 8 < 1, the distribution
becomes peaked resulting in the agent’s loss of stochasticity and the
emergence of deterministic behavior. Conversely, when both & = § =
1, the distribution degenerates into a Uniform one. For this reason,
great attention is paid to the output of the agent’s neural network so
that the constraint « > 1 and > 1 is strictly satisfied by using the
softplus function as the activation layer and adding 1 to its output.
In typical circumstances, the coefficients « and f§ are determined by
a learned policy, resulting in a distribution that exhibits “skewness”
in the direction of the sampled action. Once sampled, a remapping
of the action (0,1) — [-1,1] through a linear function is necessary
to match the action space modeled by both environments.

3.2 Reward and coordinate reference
system

As stated previously, the reward depends on the state of the
system at any given time step and on the specific policy. In this
research, experiments with numerous dense reward functions for
the mini-crane environment were conducted, meticulously ensuring
that each function was differentiable and continuous in its domain.
Defining d as the Euclidean distance between the hook and the goal
position in space, the optimal performance was achieved through
the implementation of the following reward function (Equation 22):

T=Tr, 4T+, (22)

P

where: ¢; is a positive constant, while d is the absolute Euclidean
distance between the hook and the goal, thus: (d,_, — d,) is positive
when the hook is moving toward the goal position, negative
otherwise. Furthermore, the reward function is augmented by a

09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

10.3389/frobt.2025.1589025

FIGURE 6

It is imperative to transform the hook coordinate system into the goal one, as the hook reference system is rotating with respect to the goal one.

positive bonus whenever the hook reaches the goal position within
the aforementioned tolerance. In contrast, a negative bonus is
appended to the reward whenever the hook or boom collides with
a wall, reaches the joint limits, or makes contact with the ground.
Experiments in which a time penalty was incorporated into the
reward function did not yield superior results; thus, the time factor
was neglected in the reward calculation.

In general, the calculation of the Euclidean distance between two
points in space is possible even when their position is expressed in
spherical coordinates, as depicted in general (Equation 23), under
the assumption that two points p,, p, have the same reference frame:

lpy —p,ll = \/pf +p%=2p,p, (cosb cosB, cos(¢; — ¢,)+sinb, sin6,)
(23)

In the context of the mini-crane studied in this work, a nuanced
problem arises related to the coordinate system that is associated
with the crané’s body. Specifically, this coordinate system undergoes
rotational motion relative to a fixed reference coordinate system,
which is used to define the positions of the goal and the surrounding
walls. This means that as the crane operates, its coordinate system
rotates, introducing complexity in how positions and movements are
represented and calculated with respect to the stationary reference
points of the goal and walls, as depicted in Figure 6.

This
computations and thus into reward assignment, unless all positions

misalignment can introduce errors into distance
are transformed into a common reference frame before calculating
Euclidean distances and lately the reward. Consequently, it is
necessary to transform the hook position into the reference frame of
the goal position, which is assumed to be fixed with the world. Then,
the Euclidean distance between the two points can be calculated by
using the Euclidean norm. The formula for distance computation

is as follows:

d=1p, - p,l= \/(plx -2,)+ (o -p,) (0 -2) 9

4 Training the agent

In the present work, the PPO algorithm (Schulman et al., 2017)
is implemented with three different stochastic agents: one based on
a Gaussian distribution, one on a Kumaraswamy and the last on the
Beta distribution. This process was performed separately for both

Frontiers in Robotics and Al

10

the LunarLander environment and the mini-crane environment. The
parameters of each distribution (y, o for the Gaussian and a, 8 for the
Kumaraswamy and for the Beta) were determined by two distinct
neural networks. For the actor network, a shared base layer but
separate output heads were used to predict either (y,0) or (a,f),
depending on the chosen distribution. All implemented neural
networks use tanh as activation function between dense layers and
employ Adam as the optimizer.

As stated previously, the input to neural networks is the
observation vector s,, which comprises the crane joint values and
the 3D coordinates of the target for the mini-crane environment.
These data are concatenated into a single vector and normalized to
the range [—1, 1] before being passed to the policy network for action
selection. For the LunarLander environment, the observation vector
is passed unchanged from the environment to the neural networks.
No normalization is applied, as all the distributions investigated
in this work showed a very high degree of robustness, making a
normalization superfluous.

The training phase began with the identification of optimal
hyperparameters for a given distribution and environment, as
reported in Table 3. Subsequently, the agent has undergone
retraining with ten distinct seeds while maintaining the same
hyperparameters. The learning curves resulting from the best
set of hyperparameters can be found in the following Figure 7
for performance comparison. The mini-crane and LunarLander
environments possess different reward functions. Therefore, a direct
comparison between the range of rewards on the y-axis of one
environment and the other is not possible.

The configuration of the reward function constitutes a pivotal
element within the Reinforcement Learning framework, exhibiting
considerable variability across different environments. In the present
study, a series of dense reward functions were examined. It was
determined that employing the raw Euclidean distance directly or
as a negative exponent of any positive base presented substantial
challenges to the agent in learning an acceptable policy. Conversely,
the absolute Euclidean distance between the hook and goal position
lacks sufficient signal strength to facilitate the agent’s learning of
an appropriate policy. Consequently, the disparity in Euclidean
distance between one timestep and the subsequent one is multiplied
by a positive factor c;, which provides a reliable learning signal
for the agent. Incorporating a negative time-based penalty to
enhance the learning process was introduced many times during
the implementation. However, the temporal dimension necessitates
appropriate scaling and introduces a new parameter into the

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

10.3389/frobt.2025.1589025

TABLE 3 Overview of the performed training phase. Every environment has been trained once with one distribution. Once the best hyperparameters
have been found, the same environment has been re-trained using the other distribution but keeping the same optimal hyperparameters (with the only
exception of the Beta distribution). The swap test is for ensuring robustness.

Environment Distribution Purpose Swapped distribution
LunarLander sq. Gaussian TPE Identification best hyperparameters Kumaraswamy

LunarLander Kumaraswamy TPE Identification best hyperparameters sq. Gaussian

LunarLander Beta TPE Identification best hyperparameters —

Mini-crane sq. Gaussian TPE Identification best hyperparameters Kumaraswamy

Mini-crane Kumaraswamy TPE Identification best hyperparameters sq. Gaussian

Mini-crane Beta TPE Identification best hyperparameters —

reward function, without showing any benefit to the learning signal
strength. Consequently, the time penalty was eliminated in the final
reward function, which has been reported in Table 4.

For agents based on Kumaraswamy and Beta distributions, a
Softplus activation function is applied after the final dense layers
of the actor network. Furthermore, a constant value of 1 is added
to ensure that the coefficients « and S of both distributions do
not approach extreme values, which could otherwise result in
numerical instability during computation, as shown in Figure 5. For
the optimization phase, the TPE algorithm has been utilized to
determine the following hyperparameters: the actor learning rate,
the critic learning rate, the scale factor for the value function ¢,
/\gae’
batch size, and the network architecture for the actor and critic.

the distribution entropy coeflicient c,, the discount factor y, the

The reward function and the corresponding environments
were kept constant throughout all phases of training, evaluation,
and testing.

The experimental results presented in this study are the product
of a training phase of 1.2 million timesteps.

5 Results

As illustrated in Table 5 the performance metrics for the
LunarLander environment are compared for agents that were
trained with a squashed Gaussian, Kumaraswamy and Beta as a
policy distribution, validating the functionality of the implemented
algorithm. For each distribution, the optimal top-3 hyperparameters
were identified through the employment of TPE followed by a
performance evaluation across 10 distinct random seeds over
the course of 25 episodes. To assess robustness, the optimal
hyperparameters were then applied to the alternate distribution
(swap test).

As reported in the Table 5, both distributions yield comparable
mean test scores (y) with relatively low standard deviations (o),
suggesting consistent performance in varying random seeds. The
top-ranked squashed Gaussian agent attains a score analogous to its
Kumaraswamy and Beta counterpart. The Area Under Curve (AUC)
values, consisting of the average evaluation score over training steps,
demonstrate comparable trends between the distributions, with a
slightly lower mean values obtained by the Beta distribution.

Frontiers in Robotics and Al

In the context of the LunarLander environment, the process
of swapping distribution and re-training the agent with an
alternative distribution while maintaining the previously optimized
hyperparameters does not result in a substantial degradation of
the agent’s performance. A notable observation is the improvement
in the mean score when transitioning from Kumaraswamy to
squashed Gaussian. The result indicates that, under optimal
conditions, both distributions demonstrate comparable levels of
expressiveness for the designated task. Furthermore, the optimized
hyperparameters exhibit a satisfactory degree of generalization
across both distributions.

Table 6 summarizes analogous experiments conducted in
the mini-crane environment, reporting success rates (target
reached), collision rates, and AUCs. Agents employing the squared
Gaussian distribution consistently outperform those based on a
Kumaraswamy and the Beta distribution in terms of target-reaching
success rate while maintaining minimal collision rates. The AUC
metric further supports this trend: squashed Gaussian policies
achieve higher values relative to their counterparts.

Swapping hyperparameters from the Kumaraswamy to the
squashed Gaussian distribution leads to a performance drop, while
swapping the distribution from the squashed Gaussian to the
Kumaraswamy leads to very similar performance, improving target-
reaching rates but increasing collision frequency marginally.

These results suggest that both distributions can be effectively
tuned to achieve competent and reliable behavior in the mini-crane
environment. While the squashed Gaussian shows slightly higher
success rates and marginally fewer collisions in some configurations,
the agent based on Kumaraswamy also delivers strong performance,
achieving high target-reaching rates with low collision frequencies.
On the other hand, the performance delivered by the Beta and
Kumaraswamy distributions is very similar.

One of the factors contributing to the observed performance
decline when transitioning from the Kumaraswamy distribution
to the squashed Gaussian distribution is the tendency of the
TPE algorithm to identify networks with easy architecture when
optimizing a squashed Gaussian agent. The top-ranking results for
the squashed Gaussian demonstrate that the network capacity for the
actor and critic is minimal, with each comprising two dense layers
and 64 units.

11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan 10.3389/frobt.2025.1589025

LunarLander Gaussian Mini-crane Gaussian
= Mean (across seeds)
T Mean & st . . - 70
b P et ".Tf\'__;jh"‘. =
100 100
B 1
F B
g—\on g o0
z &
=l ¥ &0
=300 20
Mean = std
00 02 o4 06 o8 10 12 00 02 o4 06 08 10 12
Environment steps la6 Environment stegs le6
a b
LunarLander Kumaraswamy Mini-crane Kumaraswamy
o ,9;1-.;:--_ —d} 120
I 100
: g
¥ ¥
: i~
& & .
w0
o "
10 12 oo 02 o4 06 08 e 12
1s6 Environment steps. leé
C d
LunarLander Beta Mini-crane Beta
300 4 = Mean {across seeds) + + — . — 120 4 = Mean (across seeds)
| i | Mean + std
200 100
B0
£ o0 5
3]
H g @
2 L} =
& & .
=100
20
~200
o
00 o2 04 06 08 10 12 oo 02 o4 06 08 e 12
Environment steps 1s6 Environment steps 1e6
e f
FIGURE 7
Training learning curves for the six considered scenarios. Each training was performed keeping the best hyperparameters and re-training the model
with 10 different seeds. (a) LunarLander environment with Gaussian distribution. (b) Mini-crane environment with Gaussian distribution. (c) LunarLander
environment with Kumaraswamy distribution. (d) Mini-crane environment withKumaraswamy distribution. (e) LunarLander environment with Beta
distribution. (f) Mini-crane environment with Beta distribution.

TABLE 4 Overview of the reward function structure. The values: c3,¢,,c5 represent constants.

Reward Description Value
T, Variation of the Euclidean distance between hook and goal from the previous to the actual timestep c;(d_y—d), >0

¢, >0, ifgoalreached
7, Bonus when goal is reached

0, otherwise

<0, if collision occurs
Penalty when collision occurs

0, otherwise

Frontiers in Robotics and Al 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan 10.3389/frobt.2025.1589025

TABLE 5 Mean and standard deviation of the results obtained by testing the LunarLander environment with 10 different random seeds over 25
episodes, after identifying the best hyperparameters. The reported metrics in the table represent the average score during the evaluation process
across the 10 seeds. Subsequently, the base distribution was replaced and the model retrained using the same hyperparameters. The table shows, on

the left, the new results after swapping the distributions.

Test score yu+o AUCputo Swap dist New test score
uxo
sq. Gauss #1 244.88 +10.929 182.31+11.38 Kumaras 242.60 +18.96
sq. Gauss #2 236.78 +12.06 n.a Kumaras 227.71+13.29
sq. Gauss #3 236.71 +£12.06 n.a Kumaras 236.34+13.39
Kumaras #1 240.82 +23.76 192.97 +23.04 Sq. Gauss 24549 +18.44
Kumaras #2 228.81+19.37 195.60 + 8.60 Sq. Gauss 237.99+17.03
Kumaras #3 233.86+21.42 192.50 +16.04 Sq. Gauss 247.42+15.18
Beta #1 219.79+£5.22 146.51 +51.05 No swap —
Beta #2 233.01+14.51 118.67 +£92.10 No swap —
Beta #3 220.96 +14.50 171.56 + 14.2 No swap —

TABLE 6 Mean and standard deviation of the results obtained by testing the mini-crane environment with 10 different random seeds over 25 episodes,
after identifying the best hyperparameters. The reported metrics in the table do not reflect per-episode scores; instead, they summarize the success rate
(goal reached) and the number of collisions with the ground or walls. Subsequently, the base distribution was replaced and the model retrained using

the same hyperparameters. The table shows, on the left, the new results after swapping the distributions.

Dist Rank Target reached Collisions AUC u+o | Swap dist Target reached Collisions y+ o
pto pto uto

sq. Gauss #1 0.94+0.05 0.0+0.0 181.24+38.02 | Kumaras 0.97 +0.04 0.01+0.02
sq. Gauss #2 0.93+0.05 0.02+0.04 114.26+14.77 | Kumaras 0.93+0.05 0.01+0.02
sq. Gauss #3 0.99+0.016 0.00.0 141.85+3506 | Kumaras 0.88+0.04 0.01+0.02
Kumaras #1 0.84£0.10 0.004 +0.01 93.16 +3.60 sq. Gauss 0.57+0.17 0.03 £0.05
Kumaras #2 0.82+0.14 0.02+0.03 92.33+2.43 sq. Gauss 0.63+0.17 0.02+0.03
Kumaras #3 0.80+0.13 0.04+0.04 93.72+1.65 sq. Gauss 0.65+0.13 0.04+0.07
Beta #1 0.78+0.14 0.024+0.03 94.70+2.10 no swap — —

Beta #2 0.87+0.07 0.004 +0.01 95.75+1.68 no swap — —

Beta #3 0.79+0.11 0.016+0.03 89.07+6.33 no swap — —

Conversely, the same TPE algorithms demonstrate a propensity
to favor more intricate network architectures for Kumaraswamy-
based agents, characterized by two dense layers with 128 units for the
actor and 256 or 512 units for the critic. It appears that the utilization
of a higher capacity neural network engenders a rational decline in

the performance of the squashed Gaussian agent.

In the context of the LunarLander environment, it has been
observed that there is a negligible disparity in performance
metrics when transitioning from the squashed Gaussian to
the Kumaraswamy and vice versa. A thorough analysis of the
optimal hyperparameters for both configurations revealed a
striking similarity in the neural network architecture across both

Frontiers in Robotics and Al

13

environments. The TPE algorithm identified a best configuration
that is particularly straightforward in both cases. The actor network
consists of two dense layers, each containing 64 units, while the
critic network consists of two layers, with 128 units in each layer.

Even though the squashed Gaussian is more commonly used
and easier to implement in standard Reinforcement Learning
frameworks, the Kumaraswamy distribution is a competitive
alternative. The swap test from one distribution to another while
retaining optimized hyperparameters maintains a high level of
performance, underlying the robustness of both policy types.

This observation supports greater flexibility in policy design for
Reinforcement Learning agents: while implementation simplicity

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

may favor squashed Gaussian distributions, Kumaraswamy-
based models offer comparable effectiveness and can serve
as an equally viable option for continuous control tasks such
as mini-crane controlling application. For this reason, the
Kumaraswamy distribution should be considered when exploring
novel architectures or addressing specific application requirements.

Interestingly, an inverted variability pattern can be seen in
the training and evaluation stages in the Tables5, 6; Figure 7.
During training, the Kumaraswamy policy produced smoother
learning curves (i.e., smaller across-seed standard deviation) than
the squashed Gaussian, suggesting more consistent update dynamics.
However, during testing, Kumaraswamy’s policy exhibited greater
variability in episode returns between seeds, while squashed Gaussian
exhibited lower test-time variance. These two measures likely
reflect different sources of randomness. Training-time variance
quantifies differences in update trajectories (ie., gradient/update
stability), while test-time variance is dominated by sampling from
the learned stochastic policy and sensitivity to initial conditions.
The Kumaraswamy parameterization natively models bounded and
potentially concentrated action distributions. This may yield steadier
updates, but it also produces higher per-episode sampling variability
(i.e., sharper modes) at evaluation time. Conversely, the squashed
Gaussian produces smoother sampling noise at test time despite
slightly less stable updates during training. Future work will address
this causal analysis in more detail (gradient-variance diagnostics, LR
ablations, and per-action histograms).

As illustrated in Figure 7, the training curves of both the
Kumaraswamy and Beta distributions appear to be smoother than
those of the squashed Gaussian. This phenomenon can be attributed
to the gradient saturation induced by the tanh squash technique
employed by the squashed Gaussian. The Kumaraswamy and Beta
distributions are both inherently constrained within the interval [0, 1]
and require only a linear function to map the action space from [0, 1]
to [—1,1]. A potential explanation for this phenomenon could be the
differentiable inverse cumulative distribution function (CDF) of the
Kumaraswamy distribution, as expressed by Equation 3 or Equation 4.
This results in more stable logarithmic probability gradient updates,
which in turn lead to smoother policy updates.

In order to understand this behavior, the KL divergence between
consecutive policies has been monitored and used as an indicator
of update stability. As illustrated in the following Figure 8, where
the Kullback-Leibler divergence for the best hyperparameters across
10 random seeds for the mini-crane environment have been
collected, the Beta distribution produces smoother and more stable
KL trajectories compared to the squashed Gaussian, indicating a
greater degree of controlled policy updates. On the other hand, the
Kumaraswamy KL divergence appears slightly less noisy than the
squashed Gaussian. This finding provides a potential explanation for
the observation of smoother training curves and improved learning
stability of the agent.

An important observation relates to the time that each agent
requires to complete an episode. A comparison of episode durations
indicates that agents that utilize the Kumaraswamy distribution
require more time than those employing a squashed Gaussian
policy, as shown in Figure 9. Conversely, agents based on the
Beta distribution demonstrate the longest episode durations. This
phenomenon can be attributed to the elevated computational
complexity inherent in the calculation of logarithmic and entropy

Frontiers in Robotics and Al

14

10.3389/frobt.2025.1589025

PPO KL divergence gauss

— Mean KL

KL divergence

o
4

0.02

0.00

04

o6 o8
Environmant steps

a

PPO KL divergence kuma

— Mean KL

KL divergence

0.00 .
04

02

0.0
Environmant steps

b

PPO KL divergence beta

— Mean KL

KL divergence

o
4

0.02

0.00

0.0 04 o6

Environmant steps

C

FIGURE 8
KL divergence of the three distributions for the mini-crane

environment. (a) Squashed Gaussian distribution. (b) Kumaraswamy
distribution. (c) Beta distribution.

functions for the Beta distribution, as previously discussed in the
introduction and reported in Table 1. It is imperative to note that
each episode is limited by a maximum of 2,048 steps. Furthermore,
the increase in steps required by all three distributions exhibits an
almost linear trend.

It should be noted that an agent based on the Kumaraswamy
distribution, when trained using optimized hyperparameters for a
squashed Gaussian, achieved a success rate nearly identical (97%) to
that reported by Andersson et al. (2021) for their log manipulator
task. However, Andersson et al. relied on Curriculum Learning over
roughly 20 million training steps to reach this level of performance.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

10.3389/frobt.2025.1589025

Task completion times across distributions

900 4

800 1

700 1

600 4

500 4

400 4

Task completion time

300 1

200 1

Jr T % 3
100 s

T
sq. Gaussian

;
Kumaraswamy

Beta

Distribution type

FIGURE 9

Episode completion time in the mini-crane environment for all three distribution types. Agents must reach the target within a maximum of 2048 steps

per episode.

In contrast, the approach proposed in this study achieved similar
results after only 1.2 million timesteps.

Agents employing Beta distributions exhibited significantly
higher computational demands, requiring four-to-five times longer
execution than those using squashed Gaussians and about twice
as long as those with Kumaraswamy policies, which has important
implications when considering deployment on embedded platforms
with limited hardware resources.

Furthermore, both Kumaraswamy and Beta-based policies tend to
produce smaller incremental changes during policy updates compared
with squashed Gaussians, a characteristic potentially beneficial in real-
world robotics, where frequent or abrupt control actions can cause
increased wear or mechanical stress on hardware components. Future
research should further investigate how different policy distributions
influence action smoothness and long-term system reliability during
deployment in physical environments.

6 Conclusion

This study has demonstrated the feasibility and benefits
of employing the Kumaraswamy distribution as a policy
parameterization in on-policy reinforcement learning algorithms
for continuous control tasks within construction robotics. By
training an agent to operate a simulated mini-crane using PPO
with Kumaraswamy-based stochastic policies, this study has shown
that this approach yields robust performance comparable to
established squashed Gaussian and Beta distributions. Notably, the
Kumaraswamy distribution offers practical advantages: it enables
closed-form log-probability calculations crucial for gradient-based
updates, admits efficient entropy approximations, and results in

Frontiers in Robotics and Al

15

lower computational overhead during training compared to the
Beta distribution: an important consideration for real-time or
embedded applications. The results in the previous chapters indicate
that the Kumaraswamy distribution is not only a theoretically
sound alternative but also provides tangible implementation
benefits over the Beta distribution. It achieves competitive
task success rates while simplifying policy network design and
reducing episode completion times (compared to the Beta
distribution).

Looking forward, several promising research directions emerge:

« Hyperparameter Search Analysis:: Future work will involve
employing alternative hyperparameter optimization methods to
investigate why TPE tends to suggest more complex architectures
for agents utilizing the Kumaraswamy distribution.

o Action Magnitude Analysis: Systematically analyzing how
different policy distributions affect action magnitudes will be
crucial, as this directly impacts hardware wear and overall
system stability in real-world deployments.

 Sim-to-Real Transfer: The next phase will involve deploying
the learned framework on an actual mini-crane platform,
where direct access to target coordinates may be unavailable.
Integrating UWB-based distance measurement into the reward
function will facilitate this transition.

 Safe Training and Dynamics Modeling: To mitigate risks
associated with abrupt or unsafe actions during early-stage
exploration of physical systems, the next study will focus
on developing a neural network-based dynamic model of
the crane. This model can serve as a surrogate environment
for pre-training agents or for simulating mechanical stress
constraints.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Picchi and Brell-Cokcan

» Task Complexity and Recurrent Policies: Further studies may
also extend task complexity by introducing sequential goals
or adopting recurrent architectures (e.g., LSTM/GRU) within
PPO to address partial observability, particularly relevant
when full-state information (such as joint velocities) is
unavailable.

this work establishes the

distribution as a viable and efficient alternative for continuous-

In summary, Kumaraswamy
action reinforcement learning in robotics. Continued research
along these lines will deepen our understanding of its properties
and support safer and more adaptable deployment of RL agents in

complex real-world environments.

Data availability statement

The datasets presented in this article are not readily available
because It is a reinforcement learning environment. The data are
generated on the go. Requests to access the datasets should be
directed to Davide Picchi, picchi@ip.rwth-aachen.de.

Author contributions

DP: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology,
administration, Resources, Software, Supervision, Validation,

Project

Visualization, Writing — original draft, Writing - review and editing.
SB-C: Project administration, Resources, Supervision, Writing -
review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

References

Al-Babtain, A. A, Elbatal, I., Chesneau, C., and Elgarhy, M. (2021). Estimation
of different types of entropies for the Kumaraswamy distribution. PLOS ONE 16,
€0249027-21. doi:10.1371/journal.pone.0249027

Andersson, J., Bodin, K., Lindmark, D., Servin, M., and Wallin, E. (2021).
Reinforcement learning control of a forestry crane manipulator. arXiv:2103.02315.
doi:10.48550/ARXIV.2103.02315

Cho, S., and Han, S. (2022). Reinforcement learning-based simulation and
automation for tower crane 3D lift planning. Automation Constr. 144, 104620.
doi:10.1016/j.autcon.2022.104620

Chou, P-W, Maturana, D., and Scherer, S. (2017). “Improving stochastic Policy
gradients in continuous control with deep reinforcement learning using the beta
distribution,” in Proceedings of the 34th international conference on machine learning.
(PMLR), vol. 70 of proceedings of machine learning research. Editors D. Precup, and Y.
W. Teh, 834-843.

Haarnoja, T., Zhou, A., Abbeel, P, and Levine, S. (2018). Soft Actor-Critic:
Off-Policy maximum entropy deep reinforcement learning with a stochastic actor.
doi:10.48550/ARXIV.1801.01290

Hsu, C. C.-Y,, Mendler-Diinner, C., and Hardt, M. (2020). Revisiting design choices
in proximal Policy optimization. arXiv:2009.10897. doi:10.48550/ ARXIV.2009.10897

Kai, E, Lingzhi, Y., Dongfeng, H., Shijing, L., and Buxin, S. (2022). A study on deep
reinforcement learning-based crane scheduling model for uncertainty tasks. High Temp.
Mater. Process. 41, 469-481. doi:10.1515/htmp-2022-0040

Frontiers in Robotics and Al

16

10.3389/frobt.2025.1589025

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,

the editors and the reviewers. Any product that may be

affiliated organizations, or

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The this
found online at: https://www.frontiersin.org/articles/10.3389/
frobt.2025.1589025/full#supplementary-material

Supplementary Material for article can be

Keita, M., Atsushi, Y., Takahiro, O., Masahiro, Y., Satoru, H., Michitaka, 1., et al.
(2020). “Simulation-based reinforcement learning approach towards construction
machine automation,” in Proceedings of the 37th international symposium on automation
and robotics in construction (ISARC). Furuya hiroshi” (Kitakyushu, Japan: international
Association for automation and robotics in construction (IAARC)). Editor T. K. Osumi
Hisashi, 457-464. doi:10.22260/ISARC2020/0064

Nalisnick, E., and Smyth, P. (2016). Stick-Breaking variational autoencoders.
doi:10.48550/ARXIV.1605.06197

Schulman, J., Wolski, E, Dhariwal, P, Radford, A., and Klimov, O. (2017). Proximal
Policy optimization algorithms. arXiv:1707.06347. doi:10.48550/ ARXIV.1707.06347

Sutton, R. S., and Andrew, G. B. (2018). Reinforcement learning: an introduction.
second edn. The MIT Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2023). Attention is all you need. arXiv:1706.03762. doi:10.48550/ARXIV.1706.03762

Wasserman, M., and Mateos, G. (2024). Stabilizing the kumaraswamy distribution

Xiao, Y., Yang, T. Y., Pan, X,, Xie, F, and Chen, Z. (2023). A reinforcement learning
based construction material supply strategy using robotic crane and computer vision
for building reconstruction after an earthquake [Dataset].

Xin, J., Nan, M., Wen, S., and Qigiang, L. (2023). Deep reinforcement learning for
dynamic twin automated stacking cranes scheduling problem. Electronics 12, 3288.
doi:10.3390/electronics12153288

frontiersin.org

https://doi.org/10.3389/frobt.2025.1589025
mailto:picchi@ip.rwth-aachen.de
https://www.frontiersin.org/articles/10.3389/frobt.2025.1589025/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2025.1589025/full#supplementary-material
https://doi.org/10.1371/journal.pone.0249027
https://doi.org/10.48550/ARXIV.2103.02315
https://doi.org/10.1016/j.autcon.2022.104620
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.48550/ARXIV.2009.10897
https://doi.org/10.1515/htmp-2022-0040
https://doi.org/10.22260/ISARC2020/0064
https://doi.org/10.48550/ARXIV.1605.06197
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.3390/electronics12153288
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 The Kumaraswamy distribution
	1.2 The reparametrization trick in the Gaussian distribution
	1.3 The Beta distribution
	1.4 The choice of the mini-crane scenario
	1.5 Scope of this study

	2 Literature review
	3 The environment
	3.1 On-policy algorithm
	3.2 Reward and coordinate reference system

	4 Training the agent
	5 Results
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

