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Exploiting the Kumaraswamy 
distribution in a reinforcement 
learning context

Davide Picchi* and  Sigrid Brell-Çokcan

Chair of Individualized Production, RWTH Aachen University, Aachen, Germany

Mini cranes play a pivotal role in construction due to their versatility across 
numerous scenarios. Recent advancements in Reinforcement Learning (RL) have 
enabled agents to operate cranes in virtual environments for predetermined 
tasks, paving the way for future real-world deployment. Traditionally, most 
RL agents use a squashed Gaussian distribution to select actions. In this 
study, we investigate a mini-crane scenario that could potentially be fully 
automated by AI and explore replacing the Gaussian distribution with the 
Kumaraswamy distribution, a close relative of the Beta distribution, for action 
stochastic selection. Our results indicate that the Kumaraswamy distribution 
offers computational advantages while maintaining robust performance, making 
it an attractive alternative for RL applications in continuous control applications.
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 1 Introduction

The advent of artificial intelligence (AI) has had a profound impact on the approach to 
solving automation problems, leading to a radical paradigm shift in a wide range of fields. 
In the domain of automation and engineering, Reinforcement Learning plays an important 
role in developing new concepts in which an agent is capable of controlling dynamic 
systems without the necessity of solving or modeling them with differential equations or 
similar methods. In Reinforcement Learning, an agent can control a dynamic system by 
repeating actions and receiving a reward from the environment (Sutton and Andrew, 2018). 
By maximizing the reward, an agent can efficiently learn a specific task. This approach 
opens new avenues for automating tasks even in traditionally underdigitalized sectors like 
construction. Concurrent with this development, there has been a paradigm shift in various 
fields, including the construction sector, despite its relative underdigitalization. The capacity 
to train an agent capable of controlling a construction machine through the creation of a 
dynamic simulation environment and the iteration of agent actions over multiple time steps 
is now a possibility. The dynamic programming approach, developed many decades ago, has 
undergone extensive refinement and enhancement through the integration of numerous 
novel algorithms in recent years, particularly through the extensive integration of neural 
networks as universal function approximators (Sutton and Andrew, 2018). One of the most 
interesting and efficient algorithms used in many Reinforcement Learning applications 
today is the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017). This 
algorithm is on-policy based, offering robust performance in many robotic tasks and rapid 
convergence. In a paper published by Hsu et al. (2020), the authors revisited the algorithm, 
introducing several modifications. One of these modifications was to use a Beta distribution
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instead of a Gaussian distribution for the stochastic agent. The 
authors demonstrated that the Beta distribution produced accurate 
results and, in many benchmark environments, these results were 
superior to those obtained by other algorithms (Hsu et al., 2020). 
The effort to improve performance results is exemplified in the 
research conducted by Chou et al. (2017) by incorporating the 
Beta distribution within gradient-based policies for continuous 
control in the context of deep Reinforcement Learning. The authors 
have documented higher scores and faster convergence properties 
compared to those achieved using a Gaussian distribution, across 
a range of different gradient policies (Chou et al., 2017). The 
objective of this study is to determine whether an agent has 
the capacity to acquire the skills necessary to operate a mini-
crane and subsequently transfer that knowledge to a real crane. 
Simultaneously, an evaluation of the Kumaraswamy distribution as 
a potential replacement for the Gaussian or Beta distribution is 
warranted. 

1.1 The Kumaraswamy distribution

In recent advances within the fields of Reinforcement Learning 
and control systems, the selection of probability distributions 
has emerged as a pivotal element in the effective modeling 
of action spaces. Conventionally, the utilization of squashed 
Gaussian distributions has been prevalent due to their capacity 
to model continuous variables with a defined support. However, 
this study proposes the use of the Kumaraswamy distribution 
as an alternative to the Beta distribution. The Kumaraswamy 
distribution is distinguished by its flexibility and computational 
efficiency and it is distinct from a Gaussian distribution in that 
it does not necessitate the application of non-linear functions 
to achieve bounded outputs, a process referred to as squashing. 
Instead, the Kumaraswamy distribution inherently operates within 
a defined interval, that is, (0,1). This characteristic renders it 
particularly well-suited for tasks that require bounded actions. 
Furthermore, the Kumaraswamy distribution provides augmented 
parameterization alternatives through its two shape parameters, 
akin to the Beta distribution. These parameters enable a greater 
degree of control over skewness in comparison to a single variance 
parameter in Gaussian models. This flexibility enables more precise 
fitting to task-specific data distributions encountered in crane 
operations where varying environmental conditions may require 
adaptable response strategies. From a theoretical point of view, 
these advantages contribute to improved numerical stability and 
accelerated convergence rates during the training phases. The 
reduced complexity in sampling from Kumaraswamy facilitates 
efficient exploration strategies without incurring additional 
computational costs typical of squashing mechanisms applied to 
Gaussian samples.

Despite many similarities to the Beta distribution, such as 
two coefficients α,β or a, b for controlling their shape1, the 

1 The α and β parameters are used in this study, even for the Kumaraswamy 

distribution, despite the fact, that a and b are used commonly in 

mathematics

Kumaraswamy distribution offers greater benefit, especially in 
combination with neural networks, for the following reasons:

1. It allows for a simplified form of log-probability computation, 
which is easier and faster to compute than the Beta 
distribution. This is a very important aspect, since the log-
probability computation is fundamental in any gradient policy 
algorithm.

2. It has a closed-form derivative, which makes it easier and 
numerically stable for the gradient computation compared 
to the Beta distribution. This requirement is necessary for a 
differentiable policy parameterization.

3. Its entropy computation has a closed form solution, in contrast 
to the Beta distribution, which requires numerical integration. 
Entropy calculation is a prerequisite for most contemporary 
policy gradient algorithms.

4. It supports the reparameterization trick as shown in 
the work of Wasserman and Mateos (2024).

5. It is natively bounded in the range (0,1). By constrast, the 
Gaussian is an unbounded distribution that needs to be 
squashed using the tanh function.

6. It offers greater robustness at the boundary (when: α,β < 1), 
leading to more numerically stable behavior.

Mathematically, the PDF function of the Kumaraswamy 
distribution can be expressed by the following Equation 1:

f (x;α,β) = αβxα−1(1− xα)β−1, 0 < x < 1 (1)

While its CDF (Equation 2) and its inverse function (Equation 
3) can be expressed as follows (Nalisnick and Smyth, 2016):

F (x;α,β) = 1− (1− xα)β (2)

F−1 (u;α,β) = (1− (1− u)1/β)1/α, u ∼ U (0,1) (3)

Allowing for a computationally affordable reparametrization 
trick sampling from the Uniform distribution u ∼ U(0,1):

x = F−1 (u;α,β) = [1− (1− u)1/β]1/α (4)

A linear transformation (Equation 5) is needed to map the 
bounded action range (0,1) to the more common and symmetric 
action space (−1,1):

a = 2x− 1 (5)

Leading to the following Jacobian (Equation 6) and logarithmic 
probability (Equation 7):

|dx
da
| = 1

2
(6)

log π (a) = log α+ log β+ (α− 1) log a+ (β− 1) log (1− aα) (7)

 

1.2 The reparametrization trick in the 
Gaussian distribution

A considerable proportion of continuous control Reinforcement 
Learning algorithms yield action values that are distributed 
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according to a Gaussian function. Subsequently, these values are 
processed through a tanh function (Equation 9) to align with the 
constraints of the action space (typically constrained to the interval 
(−1,1)). Thus:

y ∼N (μ,σ2) (8)

at = tanh (y) (9)

In order to facilitate the flow of the gradient through stochastic 
nodes by sampling ϵ from a Uniform distribution (Equation 8) the 
sample y can be reparameterized as Equation 10:

y = μ+ σϵ, ϵ ∼N (0,1) (10)

where μ and σ are predicted by the policy network.
The inverse transformation of the squashed Gaussian is:

y = tanh−1 (a) = 1
2

ln(1+ a
1− a
) (11)

where y in Equation 11 is the reparametrized version of y in 
Equation 8, leading to the Jacobian (Equation 12) and the resulting 
log-probability formula (Equation 13):

|
dy
da
| = 1

1− a2 (12)

log π (a) = − log σ− 1
2

log (2π) − 1
2
(

a− μ
σ
) (13)

As reported in Haarnoja et al. (2018). 

1.3 The Beta distribution

For comparison, the PDF and the CDF of the Beta distribution 
are expressed as follows (respectively: Equations 14, 15):

f (x;α,β) =
xα−1(1− x)β−1

B (α,β)
where B (α,β) =

Γ (α)Γ (β)
Γ (α+ β)

(14)

F (x,α,β) =
B (x;α,β)
B (α,β)

(15)

While there is no simple closed form for the calculation of 
the inverse CDF, which complicates sampling via reparametrization 
tricks. The logarithmic probability formula can be expressed 
as follows.

log π (a) = − log B (α,β) + (α− 1) ⁢log (a+ 1
2
)+ (β− 1)

⁢log (1−(a+ 1
2
))− log 2 (16)

where:

log B (α,β) = logΓ (α) + logΓ (β) − logΓ (α+ β) (17)

Which requires the computation of the log-gamma function 
logΓ(⋅), leading to a computational overhead.

Equations 7, 13 illustrate a logarithmic probability calculation 
that incorporates logarithmic and exponential functions. Such 
computational burdens are less onerous than that of the log-
probability computation of the Beta distributions (Equation 16), 

which implies the calculation of Equation 17. The Beta distribution 
incurs special-function evaluations (such as the log-gamma 
function), and its reparameterized sampling relies on two Gamma 
draws per action (Equations 16, 17), which are comparatively 
expensive. Conversely, the Kumaraswamy distribution avoids 
special functions entirely: its log-density and reparameterized 
sampler require only logarithms and power operations, with a closed 
form inverse CDF. Therefore, Kumaraswamy is typically considered 
computationally lighter than Beta, while remaining competitive 
with a squashed Gaussian, which is typically used in the context of 
Reinforcement Learning.

In the following Table 1 offers an overview about the different 
logarithmic probability computation formulas.

To empirically validate the theoretical advantages discussed 
earlier, this work evaluates the efficacy of the Kumaraswamy 
distribution in two different environments. Models using 
Kumaraswamy, the squashed Gaussian and the Beta distributions are 
compared under identical conditions across various performance 
metrics. To ensure that observed differences are not due to 
hyperparameter tuning or random initialization, the evaluation 
protocol includes systematic tuning, retraining with different seeds, 
and swapping hyperparameters between distributions (only between 
the Kumaraswamy and the squashed Gaussian), thereby assessing 
raw performance, robustness, and generalization.

The protocol has been applied to two different environments:

1. A simulated mini-crane tasked with navigating from one 
position to another while circumventing obstacles.

2. The standard LunarLander environment provided by the 
Farama Foundation is a well-known common framework for 
testing Reinforcement Learning algorithms. The latter was 
utilized as a testbed for the proper implementation of the PPO 
algorithm.

The protocol evaluates along two axes:

1. Distribution: Gaussian vs. Kumaraswamy vs. Beta
2. Environment: LunarLander vs. mini-crane

and consists on the following steps:

1. Tuning of hyperparameters: For each pair (environment, 
distribution) the PPO hyperparameters have been optimized 
using the tree-structured parzen estimator (TPE) for 100 trials. 
During this phase, a fixed random seed was constantly used.

2. Retraining across seeds Subsequently, the best 
hyperparameters were used to retrain each configuration from 
scratch with 10 different random seeds.

3. Evaluation: Each trained model was evaluated in 25 
independent episodes (with unseen seeds). The means and 
standard deviations across seeds were collected.

4. Swapping of hyperparameters: To test whether performance 
differences are due to distributional choice or hyperparameter 
bias, the Gaussian agents have been re-trained using the best 
Kumaraswamy hyperparameters and vice versa.

5. Repeat retraining and evaluation The swapped configurations 
were re-trained with 10 seeds and evaluated as described in 
step 2.

Because the LunarLander environment provides dense rewards 
using a different reward function than the mini-crane environment, 
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TABLE 1  Overview of the different logarithmic probability computation for three different distribution probabilities. The term a refers to the action.

Distribution Logarithmic computational formula Parameters determined by the 
policy

Gaussian log π(a) = − log σ− 1
2

log (2π) − 1
2
( a−μ

σ
) μ,σ

Kumaraswamy log π(a) = log α+ log β+ (α− 1) log a+ (β− 1) log (1− aα) α,β

Beta
log π(a) = − log B(α,β) + (α− 1) log( a+ 1

2
)+ (β− 1) log(1−( a+ 1

2
))− log 2

log B(α,β) = logΓ(α) + logΓ(β) − logΓ(α+ β)
α,β

the two cannot be compared directly on the same evaluation metric 
(in this case the average reward during the evaluation phase). For 
LunarLander only the reward-based metrics was collected, whereas 
for the mini-crane the success and collision rates. The following 
metrics were collected during the evaluation:

1. Success Rate (mini-crane only): Percentage of episodes in 
which the crane successfully reaches its objective without 
experiencing a collision. Calculated as the ratio of successful 
episodes to total evaluation episodes.

2. Collision Rate (mini-crane only): Percentage of evaluation 
episodes in which a collision occurs, defined as contact of any 
crane component with obstacles or the ground. Calculated as 
the ratio of episodes with collisions to total episodes.

3. Mean Evaluation Reward (LunarLander only): Average 
cumulative reward across all evaluation episodes.

4. Standard Deviation of Evaluation Rewards (LunarLander 
only): Variability of evaluation rewards across episodes, 
indicating stability performance of the learned policy.

5. Confidence Intervals for Mean Reward: For both 
environments, 95% confidence intervals were computed 
around the mean evaluation reward (or success rate) across 
seeds, using the standard error of the mean. This provides a 
statistical measure of reliability.

6. Area Under the Learning Curve (AUC): Computed over 
training timesteps and averaged across 10 seeds. The AUC 
aggregates learning efficiency, capturing not only the final 
performance but also the speed of convergence.

7. Completion time (mini-crane only): It represents the time 
requested by the agent to accomplish the task. The timesteps 
for every episode are limited to a maximum of 2048 steps.

8. Kullback-Leibler divergence: This metric represents the update 
of the policy gradient during the training phase.

The efficacy and numerical stability of the distributions are 
of critical importance, as they directly impact both the efficiency 
of training and the reliability of policy optimization. In contrast 
to conventional supervised learning scenarios, Reinforcement 
Learning algorithms necessitate the repeated computation of 
log-probabilities and entropy gradients during each update 
step. Consequently, distributions such as Kumaraswamy, which 
provide closed-form expressions, are particularly advantageous 
for stochastic policy parameterization in Reinforcement Learning 
agents. In addition, in continuous action spaces with bounded 
ranges, the Kumaraswamy distribution can directly model 
action probabilities without requiring costly transformations 

(e.g., tanh-squashing), which could enhance numerical stability 
and gradient estimation in policy-gradient methods. It is 
important to note that despite its interesting characteristics 
and properties, the Kumaraswamy distribution remains mostly 
under-used (Wasserman and Mateos, 2024). 

1.4 The choice of the mini-crane scenario

The underlying rationale for the utilization of a mini-crane 
environment in this study is rooted in the potential for subsequent 
real knowledge transfer into practical applications and real mini-
crane. A close examination of the current state of automation 
in the construction industry reveals that the integration of 
robotic technology into cranes is still in its nascent stages of 
development. This observation is based on extensive interactions 
with professionals in the construction sector, particularly those 
specializing in construction robotics. Therefore, the implementation 
of Reinforcement Learning in practical applications has the potential 
to enhance the automation level of construction machinery, thereby 
paving the way for future advancements in the construction sector. 
It is evident that Reinforcement Learning alone is insufficient 
to achieve and offer a comprehensive automation solution. In 
actual scenarios, the incorporation of anti-collision sensors and 
safety features is imperative if not mandatory. However, a trained 
Reinforcement Learning agent offers additional benefits and 
advantages to human operators, even if its role is initially limited 
to providing assistance without assuming complete control of the 
crane. Although full automation may require additional safety 
measures such as anti-collision sensors, which are beyond our 
current scope, the RL framework presented here lays foundational 
work toward intelligent assistance systems for crane operators. 

1.5 Scope of this study

This paper addresses the problem of analyzing computational 
efficiency and robustness in continuous action-space Reinforcement 
Learning for construction robotics by evaluating the Kumaraswamy 
distribution as an alternative to commonly used Gaussian or Beta 
policies in the aforementioned mini-crane environment. The novelty 
of this work lies in:

1. Implementing a Kumaraswamy based stochastic policy within 
PPO for mini-crane control.
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2. Providing a systematic comparison against Gaussian policies 
under identical experimental conditions.

3. Empirically analyzing performance across multiple 
metrics including implementation efficiency, stability, and 
computational costs.

4. Highlighting practical considerations for real-world 
deployment.

In the present work, the development of a stochastic agent based 
on the Kumaraswamy distribution embedded in a PPO algorithm 
has been undertaken, leading to a robust, high-efficiency stochastic 
policy capable of controlling a task where the dynamic system is 
represented by a mini-crane that picks up a load from one start 
point and moves it to a goal without hitting any obstacles and 
under joint limit constraints. This work expands the design space for 
continuous stochastic policies beyond Gaussian and Beta in robotics 
Reinforcement Learning, introducing a theoretically grounded 
yet computationally lighter alternative to the Beta distribution. 
Furthermore, it introduces an underexplored, yet theoretically 
promising, distribution to Reinforcement Learning control tasks 
where bounded actions are required. 

2 Literature review

The use of Reinforcement Learning (RL) in construction 
engineering is a subject that has been explored to some extent. 
Previous studies have investigated the application of Reinforcement 
Learning in training an agent to operate a crane in a virtual 
environment. This paper (Cho and Han, 2022) proposes the use 
of Reinforcement Learning to reduce and optimize lifting times 
using a tower crane in a virtual 3D environment. The tower 
crane is trained to perform autonomous and continuous actions 
by controlling the velocities of rotation, lifting, sliding, and other 
related processes. The authors demonstrated the efficacy of the 
agent in generating trajectories that optimize lift plans and crane 
operations, thereby avoiding collisions with obstacles. In their work, 
they benchmarked two different algorithms: an on-policy (PPO) and 
an off-policy (SAC) algorithm, by using different reward function 
combinations and tasks. The results showed that while both PPO 
and SAC agents were effective across different tasks, PPO achieved 
higher performance metrics than SAC in several scenarios (Cho and 
Han, 2022).

Another intriguing piece of research was presented by Keita et al. 
(2020), who used Reinforcement Learning to automate the 
movements of a crane and an excavator by behavior cloning. In 
their environment, they trained an agent for two distinct tasks: 
the primary task was to minimize the oscillation of a load, while 
the secondary task was to maximize the excavation of soil in 
a single operation. The study demonstrated the applicability of 
Reinforcement Learning in construction sites and the ability to train 
agents for specific tasks. A more sophisticated concept was presented 
in another study, in which Reinforcement Learning control was 
applied to a forestry crane manipulator (Andersson et al., 2021). The 
log grasping motion, combined with an energy optimization goal, 
constituted a significantly more complex task. In fact, Andersson 
et al. had to train their agent for approximately 20 million steps 
using curriculum learning. Thus, it can be concluded that the agent 

began with straightforward tasks and progressed to more intricate 
activities as its success rate increased over experience. The results 
obtained claim a success rate of 97% when using an on-policy 
algorithm, such as PPO, to train the agent. The mentioned work 
is unquestionably one of the most significant papers that provided 
the inspiration for our work.

It should also be noted that the authors were able to incentivize 
energy optimization by embedding it in the reward function 
(Andersson et al., 2021). Another paper examines the application 
of Reinforcement Learning in construction environments 
characterized by obstacles (Xiao et al., 2023). In that work, the 
authors Xiao et al. trained a PPO agent for controlling a 3D lift 
path planning of a crane during unloading and loading operations. 
The authors considered two different cases, which are recurrent in 
the aftermath of an earthquake scenario: one case without and one 
case with obstacles between the initial and final position, that could 
hinder the agent in its performance sensibly. The paper (Xiao et al., 
2023) demonstrates that appropriate training leads to an agent policy 
that can achieve scheduled goals and reduce swing load oscillations 
within time constraints.

In their work, Kai et al. (2022) proposed an approach to 
crane scheduling operation model using deep Reinforcement 
Learning, implementing a Q-learning algorithm with deep neural 
networks. The authors treated a steel fabrication process, where 
two cranes need to perform a sequence of actions along the 
process, as a scenario. Notably, the authors did not employ 
more sophisticated algorithms such as TD3, PPO, SAC, or A2C. 
Nevertheless, they successfully trained an agent that was capable 
of achieving the objectives in 11.52% less time and reducing the 
collision time of crane routes by almost 57% (Kai et al., 2022). This 
resulted in enhanced efficient scheduling management performed 
by an AI agent.

The crane scheduling process is the primary focus of this other 
paper, in which the authors implemented a dynamic environment 
that has significantly enhanced the efficiency of automated storage 
yards through the use of twin automated stacking cranes (Xin et al., 
2023). In this extensive and highly complex article, the authors 
demonstrate that an agent can learn sophisticated scheduling 
policies and concurrently generalize its problem-solving capabilities, 
thereby enabling deployment in unseen scenarios of various scales or 
distributions (Xin et al., 2023). A notable aspect of this work is the 
utilisation of the masked self-attention mechanism for training the 
agent within the framework, which has been shown to yield high-
quality policies for the given task. The self-attention mechanism 
forms the foundation of the transformer architecture (Vaswani et al., 
2023), a significant advancement in the field of AI, leading to the 
development of tools such as GPTs, image and music creation 
programs, and numerous other applications.

The following Table 2 offers a summary of the lacunae and the 
objectives pursued by the aforementioned studies.

The majority of previous works rely on Gaussian policies 
because of their mathematical convenience. However, these policies 
are deficient in their inability to address the limitations imposed 
by bounded action spaces. A limited number of studies have 
examined alternative double-bounded distributions, such as the 
Beta distribution (Hsu et al., 2020) in combination with a PPO 
policy algorithm. This alternative to a Gaussian distribution is 
of interest. However, it should be noted that the integration 
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TABLE 2  Overview of the field of publications on the topic Reinforcement Learning in construction. The following abbreviations are used: PPO, 
Proximal Policy Optimization; SAC, Soft Actor Critic; BC, Behavior Cloning; FS, Frame Skipping.

Study Application RL algorithm Stochastic 
distribution

Eval. Metrics Main 
contribution

Cho and Han (2022) Tower Crane PPO/SAC Gaussian (assumed) z-score standarization 
across different metrics

Realistic lifting time 
estimation

Keita et al. (2020) Crane and excavator PPO, BC, FS Gaussian (assumed) Success Rate Shows policy impact 
varies by machine type

Andersson et al. (2021) Forestry Crane 
Manipulator

PPO Gaussian Success Rate Explores energy policy 
effects

Xiao et al. (2023) Robotic Crane PPO Gaussian Success Rate 
(with/without obstacles)

Tests obstacle handling 
in crane control

Kai et al. (2022) Multi-crane scheduling Deep RL Gaussian (assumed) Completion time, travel 
distance

Efficient multi-crane 
scheduling framework

Xin et al. (2023) Automated Stacking 
Cranes

PPO Gaussian (assumed) Wait time, run time 
minimization

RL method for 
Automated Stacking 
Cranes scheduling

of PPO with a Beta distribution does incur a computational 
overhead that arises from log-probability calculations intrinsic 
to Beta distributions, as reported in Table 1. Moreover, the 
aforementioned study (Hsu et al., 2020) has not concentrated on 
construction robotics contexts, but rather has examined the benefits 
of the Beta distribution in a Reinforcement Learning context. 
The Kumaraswamy distribution constitutes an alternative option, 
exhibiting a similarity to the Beta distribution while avoiding the 
computational overhead characteristic of the latter. The present 
study proposes a methodology to address the aforementioned gaps 
using a systematic benchmarking process. This process involves 
the Kumaraswamy distribution being compared against established 
alternatives within a realistic mini-crane simulation environment. 

3 The environment

The present study investigates and analyzes the applicability of 
the Kumaraswamy distribution applied to a mini-crane, which is 
tasked with a fundamental yet elementary undertaking: navigating 
its hook from a designated starting point to a predetermined goal 
position, while circumventing obstacles and avoiding collisions 
with the ground (Figure 1). This elementary task has been 
replicated within the simulation program Webots2, an open source 
software mostly used in robotic applications that allows virtual 
experimentation in dynamic environments, including collisions 
between objects.

The crane possesses a total of four degrees of freedom around 
four joints: while the body is fixed to the ground, the upper part 
of the body can rotate (q0) around the azimuth axis (Figure 2). 
Furthermore, the boom can be adjusted to change its angle (q1)
and extend as a telescopic arm (q2). Finally, the hook movement 

2 https://cyberbotics.com/

FIGURE 1
Simulation of a mini-crane going from one starting to a goal position.

consists of a linear translation (q3) perpendicular to the ground 
within predefined hard limits (not above the boom tip and not 
below the ground). Thus, the coordinates of the described system 
are defined by virtual sensors and, in a real-case scenario, can be 
provided over an interface connected to sensors on the real machine. 
The joint coordinates define at the same time the observed vector 
that corresponds to the state (st = [q0,q1,q2,q3]) of the system, as 
depicted in Figure 2.

The choice of spherical coordinates is based on the physical 
configuration of standard mini-cranes, which includes the rotational 
base joint, the angle of the boom, the telescopic extension, and 
the length of the rope. Direct modeling of these actuators’ native 
domains has been shown to simplify the handling of kinematic 
constraints in comparison to the mapping of Cartesian outputs back 
into joint space. This is due to the fact that mapping Cartesian 
outputs back into joint space can result in highly nonlinear and non-
invertible behavior in the vicinity of the workspace limits. Therefore, 
the definition of both state/action spaces in native joint coordinates 
is consistent with hardware reality, such as real sensors..
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FIGURE 2
Joint positions of the mini-crane.

FIGURE 3
The LunarLander environment.

In the present study, the agent is trained in the 
following scenarios:

1. In the context of the LunarLander environment, the agent is 
tasked with the objective of landing a rocket-propelled lander 
by exercising control over two engines: a lateral engine and 
a main engine (Figure 3). The observation space comprises 
the two-dimensional coordinates of the ship, its linear and 
angular velocities, and the status of the legs’ contact with the 
ground. The action space is continuous. The reward function 
structure of the aforementioned environment consists of the 
distance to and from the landing pad, the landing speed, the tilt 

angle of the ship, the engine status, and the contact leg/ground. 
An additional positive/negative reward is granted for landing 
safely or crashing the ship on the landing pad.

2. In the context of the miniature crane environment, the 
simulation of a crane is required to execute the aforementioned 
task. The observation vector contains the joint coordinates 
and the absolute coordinates of the target, thus: st =
[q0,q1,q2,q3,xg,yg,zg]. This case is likely to be the easiest to 
implement in a future scenario involving a real mini-crane, 
as the joint positions are simply the sensor values that can 
be gathered directly from a hardware interface, given that 
hardware sensors detect the joint state. Due to the observation 
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FIGURE 4
Overview of the zones, where the start and goal position is sampled 
from at the beginning of every episode.

vector not containing all the information of the system state, 
such as the joint velocities, this simple scenario corresponds 
basically to a POMDP (Partially Observable Markov Decision 
Processes).

In both cases described above, neural networks are trained solely 
based on the reward function r from their respective environments; 
the transition matrix p is not modeled, as this work follows a model-
free approach. In the mini-crane environment, the observation 
vector is normalized and constrained to the range [−1,1] to 
prevent numerical instability or imbalances in network weights. No 
such normalization is applied to observations in the LunarLander 
environment.

For the mini-crane environment, four distinct actions define 
the action-space A: a0 for the crane rotation, a1 for the boom 
inclination, a2 for the boom extension, and a3 for the hook rope, 
and all are normalized and constrained in the range [−1,1] as 
for the state-space. Additionally, state variables are bounded to 
avoid self-collisions or physically impossible joint configurations, 
reflecting real-world constraints. For example, the coordinate q0 is 
limited to the range [−q0min,q0max], the inclination q1 is limited 
to [q1min,q1max], the extension q2 is limited to [q2min,q2max], while 
the hook height q3 must remain between the tip of the boom and 
the ground.

In order to ensure that the problem is generalized and the 
robustness of the agent is improved, it is essential to initiate each 
episode by randomly determining the starting and goal positions 
in the fixed reference frame. This randomization has been achieved 
using a uniform distribution, which means that every possible 
position within the defined space has an equal likelihood of being 
selected. In doing so, the agent is exposed to a wide variety of initial 
conditions and target destinations, which helps to develop a more 
adaptable and resilient policy. The process is illustrated in Figure 4 
which shows the areas of generation of start and target positions at 
the beginning of each episode.

For an episode to be designated as having a positive conclusion 
and to end within the time horizon, it is necessary for the mini-crane 
to move its load to a position close to the drop point (Figure 4). The 
episode ends only successfully when the Euclidean distance between 
the drop point and the load is ≤0.1. In order to achieve this condition, 
the crane is forced to maneuver the hook below the height of the wall. 

3.1 On-policy algorithm

Within the domain of Reinforcement Learning, any 
environment can be conceptualized as a Markov Decision Process 
(MDP). An environment fulfills the Markov property when the 
current state fully captures all relevant past information needed to 
take the next action. Furthermore, an MDP is characterized by the 
collection of a trajectory within a specific time horizon T comprising 
the following elements (S , A, p, r, γ, ρ), where: S  represents a set of 
possible states, A represents a set of stochastic actions a ∼ πθ(s), p =
p(st+1|s,a) is the transition probability distribution of the system, r is 
the reward function, γ is a scalar value representing the discounting 
factor (S and G, 2018). In the course of an episode, the agent has 
the ability to collect the actual state st at any given time step t
(where the system is initially in the state s0). The action at to be 
taken according to a stochastic policy πθ at any time t, resulting 
in a new state of the system st+1 ∼ p(st+1|at) and a new reward r =
r(st,at) based on the state and action taken according to the policy 
πθ. In the field of Reinforcement Learning, a prevalent approach 
involves the development of algorithms capable of generalizing 
across a range of environments. These algorithms are designed 
to consider a distribution of environments that encompasses 
diverse settings and configurations. The overarching objective of 
Reinforcement Learning is to determine the optimal policy π∗θ  that 
maximizes the expected reward of an episode, as shown in the 
following (Equation 18).

maximize
θ
 𝔼πθ
[

T

∑
t=0

γtrt] (18)

The agent is designed to learn to generalize and determine 
actions in a variety of situations, thereby improving its resilience 
to potential obstacles and other challenges. In this research, the 
primary focus is on the PPO algorithm, used to train a policy that 
determines the subsequent action to be executed following a training 
phase extending over 1.2 million timesteps within the environment. 
The total loss LPOLICY+VF+H

t  is constituted by the cumulative effect 
of loss functions, which surrogates the policy, the value, and the 
entropy functions, as delineated in the Equation 19 and explained 
in more detail in the original work of Schulman et al. (2017):

LPOLICY+VF+H
t (θ) = 𝔼t [L

POLICY
t (θ) − c1LVF

t (θ) + c2H (st;θ)] (19)

where: c1,c2 are positive coefficients treated as hyperparameters 
while H(st;θ) represents the entropy of the Kumaraswamy 
distribution and is given the following (Equation 20):

H (x;θ) = −∫
1

0
αβxα−1 ⁢(1− xα)β−1 ⁢ [log α+ log β+ (α− 1)

⁢ log x+ (β− 1) ⁢log (1− xα)] ⁢dx (20)
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FIGURE 5
Behaviour of a Kumaraswamy distribution with different coefficients.

where: α,β are the coefficients for controlling the Kumaraswamy 
distribution. As there is no simple closed-form solution to the above 
equation, there are many estimates of entropy for the Kumaraswamy 
distribution, which have been evaluated by Al-Babtain et al. in their 
work (Al-Babtain et al., 2021). One of the most important issues 
dealing with such equations is the numerical instability due to 
integral computation. For this reason, the approximation used in 
this work is expressed in the following form, (Equation 21), which 
represents the differential entropy for that distribution and was 
found to be numerically stable:

H (•;θ) = 1− β+ (1− α)(ψ(0) (β−1 + 1) + γem) − log α− log β (21)

where: ψ(0) represents the digamma function, while γem represents 
the Euler-Mascheroni constant (Wasserman and Mateos, 2024). 
Calculating the gradient in a gradient-based policy algorithm 
requires the calculation of logarithmic probability. For the 
Kumaraswamy distribution, the log-probability is given by the 
Equation 7 and represents a closed-form solution that does not 
require integration, although numerical instability may occur as the 
argument of the logarithm approaches 0. In order to compensate for 
the above issue, the implementation proposed by Wassermann et al. 
has been adopted (Wasserman and Mateos, 2024).

The parameters (α,β) are determined by the stochastic policy 
neural network that represents the agent. As previously stated, the 
Kumaraswamy distribution bears a strong resemblance to the Beta 
distribution. A comparison of the two distributions reveals that they 
are characterized by similar distributional properties and are both 
suitable for continuous probability control problems. Furthermore, 
both are controlled by two coefficients that determine the shape of 
the distribution, as depicted in the following (Figure 5).

In the event that either parameter α < 1 or β < 1, the distribution 
becomes peaked resulting in the agent’s loss of stochasticity and the 
emergence of deterministic behavior. Conversely, when both α = β =
1, the distribution degenerates into a Uniform one. For this reason, 
great attention is paid to the output of the agent’s neural network so 
that the constraint α ≥ 1 and β ≥ 1 is strictly satisfied by using the 
softplus function as the activation layer and adding 1 to its output. 
In typical circumstances, the coefficients α and β are determined by 
a learned policy, resulting in a distribution that exhibits “skewness” 
in the direction of the sampled action. Once sampled, a remapping 
of the action (0,1) → [−1,1] through a linear function is necessary 
to match the action space modeled by both environments. 

3.2 Reward and coordinate reference 
system

As stated previously, the reward depends on the state of the 
system at any given time step and on the specific policy. In this 
research, experiments with numerous dense reward functions for 
the mini-crane environment were conducted, meticulously ensuring 
that each function was differentiable and continuous in its domain. 
Defining d as the Euclidean distance between the hook and the goal 
position in space, the optimal performance was achieved through 
the implementation of the following reward function (Equation 22):

r = re + rb + rp (22)

where: c3 is a positive constant, while d is the absolute Euclidean 
distance between the hook and the goal, thus: (dt−1 − dt) is positive 
when the hook is moving toward the goal position, negative 
otherwise. Furthermore, the reward function is augmented by a 
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FIGURE 6
It is imperative to transform the hook coordinate system into the goal one, as the hook reference system is rotating with respect to the goal one.

positive bonus whenever the hook reaches the goal position within 
the aforementioned tolerance. In contrast, a negative bonus is 
appended to the reward whenever the hook or boom collides with 
a wall, reaches the joint limits, or makes contact with the ground. 
Experiments in which a time penalty was incorporated into the 
reward function did not yield superior results; thus, the time factor 
was neglected in the reward calculation.

In general, the calculation of the Euclidean distance between two 
points in space is possible even when their position is expressed in 
spherical coordinates, as depicted in general (Equation 23), under 
the assumption that two points p1,p2 have the same reference frame:

‖p1 − p2‖ = √ρ2
1 + ρ2

2 − 2ρ1ρ2 (cosθ1 cosθ2 cos(ϕ1 −ϕ2) + sinθ1 sinθ2)
(23)

In the context of the mini-crane studied in this work, a nuanced 
problem arises related to the coordinate system that is associated 
with the crane’s body. Specifically, this coordinate system undergoes 
rotational motion relative to a fixed reference coordinate system, 
which is used to define the positions of the goal and the surrounding 
walls. This means that as the crane operates, its coordinate system 
rotates, introducing complexity in how positions and movements are 
represented and calculated with respect to the stationary reference 
points of the goal and walls, as depicted in Figure 6.

This misalignment can introduce errors into distance 
computations and thus into reward assignment, unless all positions 
are transformed into a common reference frame before calculating 
Euclidean distances and lately the reward. Consequently, it is 
necessary to transform the hook position into the reference frame of 
the goal position, which is assumed to be fixed with the world. Then, 
the Euclidean distance between the two points can be calculated by 
using the Euclidean norm. The formula for distance computation 
is as follows:

d = |p1 − p2‖ = √(p1x
− p2x
)2 + (p1y

− p2y
)

2
+ (p1z
− p2z
)2 (24)

 

4 Training the agent

In the present work, the PPO algorithm (Schulman et al., 2017) 
is implemented with three different stochastic agents: one based on 
a Gaussian distribution, one on a Kumaraswamy and the last on the 
Beta distribution. This process was performed separately for both 

the LunarLander environment and the mini-crane environment. The 
parameters of each distribution (μ,σ for the Gaussian and α,β for the 
Kumaraswamy and for the Beta) were determined by two distinct 
neural networks. For the actor network, a shared base layer but 
separate output heads were used to predict either (μ,σ) or (α,β), 
depending on the chosen distribution. All implemented neural 
networks use tanh as activation function between dense layers and 
employ Adam as the optimizer.

As stated previously, the input to neural networks is the 
observation vector st, which comprises the crane joint values and 
the 3D coordinates of the target for the mini-crane environment. 
These data are concatenated into a single vector and normalized to 
the range [−1,1] before being passed to the policy network for action 
selection. For the LunarLander environment, the observation vector 
is passed unchanged from the environment to the neural networks. 
No normalization is applied, as all the distributions investigated 
in this work showed a very high degree of robustness, making a 
normalization superfluous.

The training phase began with the identification of optimal 
hyperparameters for a given distribution and environment, as 
reported in Table 3. Subsequently, the agent has undergone 
retraining with ten distinct seeds while maintaining the same 
hyperparameters. The learning curves resulting from the best 
set of hyperparameters can be found in the following Figure 7 
for performance comparison. The mini-crane and LunarLander 
environments possess different reward functions. Therefore, a direct 
comparison between the range of rewards on the y-axis of one 
environment and the other is not possible.

The configuration of the reward function constitutes a pivotal 
element within the Reinforcement Learning framework, exhibiting 
considerable variability across different environments. In the present 
study, a series of dense reward functions were examined. It was 
determined that employing the raw Euclidean distance directly or 
as a negative exponent of any positive base presented substantial 
challenges to the agent in learning an acceptable policy. Conversely, 
the absolute Euclidean distance between the hook and goal position 
lacks sufficient signal strength to facilitate the agent’s learning of 
an appropriate policy. Consequently, the disparity in Euclidean 
distance between one timestep and the subsequent one is multiplied 
by a positive factor c3, which provides a reliable learning signal 
for the agent. Incorporating a negative time-based penalty to 
enhance the learning process was introduced many times during 
the implementation. However, the temporal dimension necessitates 
appropriate scaling and introduces a new parameter into the 
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TABLE 3  Overview of the performed training phase. Every environment has been trained once with one distribution. Once the best hyperparameters 
have been found, the same environment has been re-trained using the other distribution but keeping the same optimal hyperparameters (with the only 
exception of the Beta distribution). The swap test is for ensuring robustness.

Environment Distribution Tuning Purpose Swapped distribution

LunarLander sq. Gaussian TPE Identification best hyperparameters Kumaraswamy

LunarLander Kumaraswamy TPE Identification best hyperparameters sq. Gaussian

LunarLander Beta TPE Identification best hyperparameters —

Mini-crane sq. Gaussian TPE Identification best hyperparameters Kumaraswamy

Mini-crane Kumaraswamy TPE Identification best hyperparameters sq. Gaussian

Mini-crane Beta TPE Identification best hyperparameters —

reward function, without showing any benefit to the learning signal 
strength. Consequently, the time penalty was eliminated in the final 
reward function, which has been reported in Table 4.

For agents based on Kumaraswamy and Beta distributions, a 
Softplus activation function is applied after the final dense layers 
of the actor network. Furthermore, a constant value of 1 is added 
to ensure that the coefficients α and β of both distributions do 
not approach extreme values, which could otherwise result in 
numerical instability during computation, as shown in Figure 5. For 
the optimization phase, the TPE algorithm has been utilized to 
determine the following hyperparameters: the actor learning rate, 
the critic learning rate, the scale factor for the value function c1, 
λgae, the distribution entropy coefficient c2, the discount factor γ, the 
batch size, and the network architecture for the actor and critic.

The reward function and the corresponding environments 
were kept constant throughout all phases of training, evaluation, 
and testing.

The experimental results presented in this study are the product 
of a training phase of 1.2 million timesteps. 

5 Results

As illustrated in Table 5 the performance metrics for the 
LunarLander environment are compared for agents that were 
trained with a squashed Gaussian, Kumaraswamy and Beta as a 
policy distribution, validating the functionality of the implemented 
algorithm. For each distribution, the optimal top-3 hyperparameters 
were identified through the employment of TPE followed by a 
performance evaluation across 10 distinct random seeds over 
the course of 25 episodes. To assess robustness, the optimal 
hyperparameters were then applied to the alternate distribution 
(swap test).

As reported in the Table 5, both distributions yield comparable 
mean test scores (μ) with relatively low standard deviations (σ), 
suggesting consistent performance in varying random seeds. The 
top-ranked squashed Gaussian agent attains a score analogous to its 
Kumaraswamy and Beta counterpart. The Area Under Curve (AUC) 
values, consisting of the average evaluation score over training steps, 
demonstrate comparable trends between the distributions, with a 
slightly lower mean values obtained by the Beta distribution.

In the context of the LunarLander environment, the process 
of swapping distribution and re-training the agent with an 
alternative distribution while maintaining the previously optimized 
hyperparameters does not result in a substantial degradation of 
the agent’s performance. A notable observation is the improvement 
in the mean score when transitioning from Kumaraswamy to 
squashed Gaussian. The result indicates that, under optimal 
conditions, both distributions demonstrate comparable levels of 
expressiveness for the designated task. Furthermore, the optimized 
hyperparameters exhibit a satisfactory degree of generalization 
across both distributions.

Table 6 summarizes analogous experiments conducted in 
the mini-crane environment, reporting success rates (target 
reached), collision rates, and AUCs. Agents employing the squared 
Gaussian distribution consistently outperform those based on a 
Kumaraswamy and the Beta distribution in terms of target-reaching 
success rate while maintaining minimal collision rates. The AUC 
metric further supports this trend: squashed Gaussian policies 
achieve higher values relative to their counterparts.

Swapping hyperparameters from the Kumaraswamy to the 
squashed Gaussian distribution leads to a performance drop, while 
swapping the distribution from the squashed Gaussian to the 
Kumaraswamy leads to very similar performance, improving target-
reaching rates but increasing collision frequency marginally.

These results suggest that both distributions can be effectively 
tuned to achieve competent and reliable behavior in the mini-crane 
environment. While the squashed Gaussian shows slightly higher 
success rates and marginally fewer collisions in some configurations, 
the agent based on Kumaraswamy also delivers strong performance, 
achieving high target-reaching rates with low collision frequencies. 
On the other hand, the performance delivered by the Beta and 
Kumaraswamy distributions is very similar.

One of the factors contributing to the observed performance 
decline when transitioning from the Kumaraswamy distribution 
to the squashed Gaussian distribution is the tendency of the 
TPE algorithm to identify networks with easy architecture when 
optimizing a squashed Gaussian agent. The top-ranking results for 
the squashed Gaussian demonstrate that the network capacity for the 
actor and critic is minimal, with each comprising two dense layers 
and 64 units.
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FIGURE 7
Training learning curves for the six considered scenarios. Each training was performed keeping the best hyperparameters and re-training the model 
with 10 different seeds. (a) LunarLander environment with Gaussian distribution. (b) Mini-crane environment with Gaussian distribution. (c) LunarLander 
environment with Kumaraswamy distribution. (d) Mini-crane environment withKumaraswamy distribution. (e) LunarLander environment with Beta 
distribution. (f) Mini-crane environment with Beta distribution.

TABLE 4  Overview of the reward function structure. The values: c3,c4,c5 represent constants.

Reward Description Value

re Variation of the Euclidean distance between hook and goal from the previous to the actual timestep c3 (dt−1 − dt), c3 > 0

rb Bonus when goal is reached
{{{
{{{
{

c4 > 0, if goal reached

0, otherwise

rp Penalty when collision occurs
{{{
{{{
{

c5 < 0, if collision occurs

0, otherwise
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TABLE 5  Mean and standard deviation of the results obtained by testing the LunarLander environment with 10 different random seeds over 25 
episodes, after identifying the best hyperparameters. The reported metrics in the table represent the average score during the evaluation process 
across the 10 seeds. Subsequently, the base distribution was replaced and the model retrained using the same hyperparameters. The table shows, on 
the left, the new results after swapping the distributions.

Dist Rank Test score μ± σ AUC μ± σ Swap dist New test score 
μ± σ

sq. Gauss #1 244.88± 10.929 182.31± 11.38 Kumaras 242.60± 18.96

sq. Gauss #2 236.78± 12.06 n.a Kumaras 227.71± 13.29

sq. Gauss #3 236.71± 12.06 n.a Kumaras 236.34± 13.39

Kumaras #1 240.82± 23.76 192.97± 23.04 Sq. Gauss 245.49± 18.44

Kumaras #2 228.81± 19.37 195.60± 8.60 Sq. Gauss 237.99± 17.03

Kumaras #3 233.86± 21.42 192.50± 16.04 Sq. Gauss 247.42± 15.18

Beta #1 219.79± 5.22 146.51± 51.05 No swap —

Beta #2 233.01± 14.51 118.67± 92.10 No swap —

Beta #3 220.96± 14.50 171.56± 14.2 No swap —

TABLE 6  Mean and standard deviation of the results obtained by testing the mini-crane environment with 10 different random seeds over 25 episodes, 
after identifying the best hyperparameters. The reported metrics in the table do not reflect per-episode scores; instead, they summarize the success rate 
( goal reached) and the number of collisions with the ground or walls. Subsequently, the base distribution was replaced and the model retrained using 
the same hyperparameters. The table shows, on the left, the new results after swapping the distributions.

Dist Rank Target reached 
μ± σ

Collisions
μ± σ

AUC μ± σ Swap dist Target reached 
μ± σ

Collisions μ± σ

sq. Gauss #1 0.94± 0.05 0.0± 0.0 181.24± 38.02 Kumaras 0.97± 0.04 0.01± 0.02

sq. Gauss #2 0.93± 0.05 0.02± 0.04 114.26± 14.77 Kumaras 0.93± 0.05 0.01± 0.02

sq. Gauss #3 0.99± 0.016 0.0± 0.0 141.85± 35.06 Kumaras 0.88± 0.04 0.01± 0.02

Kumaras #1 0.84± 0.10 0.004± 0.01 93.16± 3.60 sq. Gauss 0.57± 0.17 0.03± 0.05

Kumaras #2 0.82± 0.14 0.02± 0.03 92.33± 2.43 sq. Gauss 0.63± 0.17 0.02± 0.03

Kumaras #3 0.80± 0.13 0.04± 0.04 93.72± 1.65 sq. Gauss 0.65± 0.13 0.04± 0.07

Beta #1 0.78± 0.14 0.024± 0.03 94.70± 2.10 no swap — —

Beta #2 0.87± 0.07 0.004± 0.01 95.75± 1.68 no swap — —

Beta #3 0.79± 0.11 0.016± 0.03 89.07± 6.33 no swap — —

Conversely, the same TPE algorithms demonstrate a propensity 
to favor more intricate network architectures for Kumaraswamy-
based agents, characterized by two dense layers with 128 units for the 
actor and 256 or 512 units for the critic. It appears that the utilization 
of a higher capacity neural network engenders a rational decline in 
the performance of the squashed Gaussian agent.

In the context of the LunarLander environment, it has been 
observed that there is a negligible disparity in performance 
metrics when transitioning from the squashed Gaussian to 
the Kumaraswamy and vice versa. A thorough analysis of the 
optimal hyperparameters for both configurations revealed a 
striking similarity in the neural network architecture across both 

environments. The TPE algorithm identified a best configuration 
that is particularly straightforward in both cases. The actor network 
consists of two dense layers, each containing 64 units, while the 
critic network consists of two layers, with 128 units in each layer.

Even though the squashed Gaussian is more commonly used 
and easier to implement in standard Reinforcement Learning 
frameworks, the Kumaraswamy distribution is a competitive 
alternative. The swap test from one distribution to another while 
retaining optimized hyperparameters maintains a high level of 
performance, underlying the robustness of both policy types.

This observation supports greater flexibility in policy design for 
Reinforcement Learning agents: while implementation simplicity 
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may favor squashed Gaussian distributions, Kumaraswamy-
based models offer comparable effectiveness and can serve 
as an equally viable option for continuous control tasks such 
as mini-crane controlling application. For this reason, the 
Kumaraswamy distribution should be considered when exploring 
novel architectures or addressing specific application requirements.

Interestingly, an inverted variability pattern can be seen in 
the training and evaluation stages in the Tables 5, 6; Figure 7. 
During training, the Kumaraswamy policy produced smoother 
learning curves (i.e., smaller across-seed standard deviation) than 
the squashed Gaussian, suggesting more consistent update dynamics. 
However, during testing, Kumaraswamy’s policy exhibited greater 
variability in episode returns between seeds, while squashed Gaussian 
exhibited lower test-time variance. These two measures likely 
reflect different sources of randomness. Training-time variance 
quantifies differences in update trajectories (i.e., gradient/update 
stability), while test-time variance is dominated by sampling from 
the learned stochastic policy and sensitivity to initial conditions. 
The Kumaraswamy parameterization natively models bounded and 
potentially concentrated action distributions. This may yield steadier 
updates, but it also produces higher per-episode sampling variability 
(i.e., sharper modes) at evaluation time. Conversely, the squashed 
Gaussian produces smoother sampling noise at test time despite 
slightly less stable updates during training. Future work will address 
this causal analysis in more detail (gradient-variance diagnostics, LR 
ablations, and per-action histograms). 

As illustrated in Figure 7, the training curves of both the 
Kumaraswamy and Beta distributions appear to be smoother than 
those of the squashed Gaussian. This phenomenon can be attributed 
to the gradient saturation induced by the tanh squash technique 
employed by the squashed Gaussian. The Kumaraswamy and Beta 
distributions are both inherently constrained within the interval [0,1]
and require only a linear function to map the action space from [0,1]
to [−1,1]. A potential explanation for this phenomenon could be the 
differentiable inverse cumulative distribution function (CDF) of the 
Kumaraswamy distribution, as expressed by Equation 3 or Equation 4. 
This results in more stable logarithmic probability gradient updates, 
which in turn lead to smoother policy updates. 

In order to understand this behavior, the KL divergence between 
consecutive policies has been monitored and used as an indicator 
of update stability. As illustrated in the following Figure 8, where 
the Kullback-Leibler divergence for the best hyperparameters across 
10 random seeds for the mini-crane environment have been 
collected, the Beta distribution produces smoother and more stable 
KL trajectories compared to the squashed Gaussian, indicating a 
greater degree of controlled policy updates. On the other hand, the 
Kumaraswamy KL divergence appears slightly less noisy than the 
squashed Gaussian. This finding provides a potential explanation for 
the observation of smoother training curves and improved learning 
stability of the agent.

An important observation relates to the time that each agent 
requires to complete an episode. A comparison of episode durations 
indicates that agents that utilize the Kumaraswamy distribution 
require more time than those employing a squashed Gaussian 
policy, as shown in Figure 9. Conversely, agents based on the 
Beta distribution demonstrate the longest episode durations. This 
phenomenon can be attributed to the elevated computational 
complexity inherent in the calculation of logarithmic and entropy 

FIGURE 8
KL divergence of the three distributions for the mini-crane 
environment. (a) Squashed Gaussian distribution. (b) Kumaraswamy 
distribution. (c) Beta distribution.

functions for the Beta distribution, as previously discussed in the 
introduction and reported in Table 1. It is imperative to note that 
each episode is limited by a maximum of 2,048 steps. Furthermore, 
the increase in steps required by all three distributions exhibits an 
almost linear trend.

It should be noted that an agent based on the Kumaraswamy 
distribution, when trained using optimized hyperparameters for a 
squashed Gaussian, achieved a success rate nearly identical (97%) to 
that reported by Andersson et al. (2021) for their log manipulator 
task. However, Andersson et al. relied on Curriculum Learning over 
roughly 20 million training steps to reach this level of performance. 
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FIGURE 9
Episode completion time in the mini-crane environment for all three distribution types. Agents must reach the target within a maximum of 2048 steps 
per episode.

In contrast, the approach proposed in this study achieved similar 
results after only 1.2 million timesteps.

Agents employing Beta distributions exhibited significantly 
higher computational demands, requiring four-to-five times longer 
execution than those using squashed Gaussians and about twice 
as long as those with Kumaraswamy policies, which has important 
implications when considering deployment on embedded platforms 
with limited hardware resources.

Furthermore, both Kumaraswamy and Beta-based policies tend to 
produce smaller incremental changes during policy updates compared 
with squashed Gaussians, a characteristic potentially beneficial in real-
world robotics, where frequent or abrupt control actions can cause 
increased wear or mechanical stress on hardware components. Future 
research should further investigate how different policy distributions 
influence action smoothness and long-term system reliability during 
deployment in physical environments. 

6 Conclusion

This study has demonstrated the feasibility and benefits 
of employing the Kumaraswamy distribution as a policy 
parameterization in on-policy reinforcement learning algorithms 
for continuous control tasks within construction robotics. By 
training an agent to operate a simulated mini-crane using PPO 
with Kumaraswamy-based stochastic policies, this study has shown 
that this approach yields robust performance comparable to 
established squashed Gaussian and Beta distributions. Notably, the 
Kumaraswamy distribution offers practical advantages: it enables 
closed-form log-probability calculations crucial for gradient-based 
updates, admits efficient entropy approximations, and results in 

lower computational overhead during training compared to the 
Beta distribution: an important consideration for real-time or 
embedded applications. The results in the previous chapters indicate 
that the Kumaraswamy distribution is not only a theoretically 
sound alternative but also provides tangible implementation 
benefits over the Beta distribution. It achieves competitive 
task success rates while simplifying policy network design and 
reducing episode completion times (compared to the Beta
distribution).

Looking forward, several promising research directions emerge:

• Hyperparameter Search Analysis:: Future work will involve 
employing alternative hyperparameter optimization methods to 
investigate why TPE tends to suggest more complex architectures 
for agents utilizing the Kumaraswamy distribution.

• Action Magnitude Analysis: Systematically analyzing how 
different policy distributions affect action magnitudes will be 
crucial, as this directly impacts hardware wear and overall 
system stability in real-world deployments.

• Sim-to-Real Transfer: The next phase will involve deploying 
the learned framework on an actual mini-crane platform, 
where direct access to target coordinates may be unavailable. 
Integrating UWB-based distance measurement into the reward 
function will facilitate this transition.

• Safe Training and Dynamics Modeling: To mitigate risks 
associated with abrupt or unsafe actions during early-stage 
exploration of physical systems, the next study will focus 
on developing a neural network-based dynamic model of 
the crane. This model can serve as a surrogate environment 
for pre-training agents or for simulating mechanical stress
constraints.
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• Task Complexity and Recurrent Policies: Further studies may 
also extend task complexity by introducing sequential goals 
or adopting recurrent architectures (e.g., LSTM/GRU) within 
PPO to address partial observability, particularly relevant 
when full-state information (such as joint velocities) is
unavailable.

In summary, this work establishes the Kumaraswamy 
distribution as a viable and efficient alternative for continuous-
action reinforcement learning in robotics. Continued research 
along these lines will deepen our understanding of its properties 
and support safer and more adaptable deployment of RL agents in 
complex real-world environments.
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