
 

TYPE Original Research
PUBLISHED 14 November 2025
DOI 10.3389/frobt.2025.1567211

OPEN ACCESS

EDITED BY

Giovanni Iacca,
University of Trento, Italy

REVIEWED BY

Dler Salih Hasan,
Salahaddin University, Iraq
Lara Toledo Cordeiro Ottoni,
Federal Institute of Minas Gerais, Brazil
Flabio Mirelez-Delgado,
Unidad Profesional Interdisciplinaria de 
Ingeniería Zacatecas (IPN), Mexico

*CORRESPONDENCE

Mohammad Al Homsi,
 mohammad.alhomsi@unipa.it

RECEIVED 26 January 2025
REVISED 20 September 2025
ACCEPTED 24 September 2025
PUBLISHED 14 November 2025

CITATION

Al Homsi M, Trumić M, Fagiolini A and 
Cirrincione G (2025) Comparative analysis of 
deep Q-learning algorithms for object 
throwing using a robot manipulator.
Front. Robot. AI 12:1567211.
doi: 10.3389/frobt.2025.1567211

COPYRIGHT

© 2025 Al Homsi, Trumić, Fagiolini and 
Cirrincione. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

Comparative analysis of deep 
Q-learning algorithms for object 
throwing using a robot 
manipulator

Mohammad Al Homsi1*, Maja Trumić2, Adriano Fagiolini1 and 
Giansalvo Cirrincione3

1Mobile and Intelligent Robots @ Panormus Laboratory (MIRPALab), Department of Engineering, 
University of Palermo, Palermo, Italy, 2School of Electrical Engineering, University of Belgrade, 
Belgrade, Serbia, 3Université de Picardie Jules Verne, Amiens, France

Recent advances in artificial intelligence (AI) have attracted significant attention 
due to AI’s ability to solve complex problems and the rapid development of 
learning algorithms and computational power. Among the many AI techniques, 
transformers stand out for their flexible architectures and high computational 
capacity. Unlike traditional neural networks, transformers use mechanisms such 
as self-attention with positional encoding, which enable them to effectively 
capture long-range dependencies in sequential and spatial data. This paper 
presents a comparison of various deep Q-learning algorithms and proposes 
two original techniques that use self-attention into deep Q-learning. The first 
technique is structured self-attention with deep Q-learning, and the second uses 
multi-head attention with deep Q-learning. These methods are compared with 
different types of deep Q-learning and other temporal techniques in uncertain 
tasks, such as throwing objects to unknown targets. The performance of these 
algorithms is evaluated in a simplified environment, where the task involves 
throwing a ball using a robotic arm manipulator. This setup provides a controlled 
scenario to analyze the algorithms’ efficiency and effectiveness in solving 
dynamic control problems. Additional constraints are introduced to evaluate 
performance under more complex conditions, such as a joint lock or the 
presence of obstacles like a wall near the robot or the target. The output of the 
algorithm includes the correct joint configurations and trajectories for throwing 
to unknown target positions. The use of multi-head attention has enhanced 
the robot’s ability to prioritize and interact with critical environmental features. 
The paper also includes a comparison of temporal difference algorithms to 
address constraints on the robot’s joints. These algorithms are capable of finding 
solutions within the limitations of existing hardware, enabling robots to interact 
intelligently and autonomously with their environment.

KEYWORDS

artificial intelligence, deep learning, reinforcement learning, deep Q-learning, robotic 
manipulation, object throwing, robotics, self-attention mechanism 

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1567211
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1567211&domain=pdf&date_stamp=
2025-11-11
mailto:mohammad.alhomsi@unipa.it
mailto:mohammad.alhomsi@unipa.it
https://doi.org/10.3389/frobt.2025.1567211
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

 

1 Introduction

In recent years, rapid developments in processor hardware have 
enabled artificial intelligence (AI) to significantly transform the 
field of robotics. AI facilitates the transition from preprogrammed 
automation to adaptive learning, allowing robotic systems to 
operate more effectively in complex and dynamic environments. 
In this context, the success of deep Q-learning network (DQN1) 
in mastering control policies at a human level across various 
Atari games (Mnih et al., 2015) has inspired many AI researchers 
to explore enhancements to DeepMind’s original algorithm 
(Hausknecht and Stone, 2015; Nair et al., 2015; van Hasselt et al., 
2015). DQN has since led to significant advancements in multiple 
domains, particularly in robotics.

DQN is based on traditional Q-learning, which aims to 
determine the optimal action an agent should take in a given 
state to maximize cumulative rewards. However, traditional Q-
learning becomes impractical in high-dimensional or complex 
environments, such as those often encountered in robotics. 
To address this, DQN uses deep neural networks (DNNs) to 
approximate Q-values for all states and possible actions, enabling 
scalable and efficient learning (Lapan, 2018). Originally introduced 
by researchers at DeepMind in 2013, DQN demonstrated superior 
performance in Atari games, surpassing human-level play through 
a trial-and-error learning process (Mnih et al., 2015). This success 
in gaming applications has encouraged researchers to apply DQN 
across a wide range of fields, including robotics.

In robotic applications, DQN enables robots to learn complex 
tasks such as navigation, manipulation, and interaction with 
dynamic environments (Lapan, 2018). Numerous advancements 
and innovations have been made within DQN, including the 
introduction of target networks and experience replay, both of which 
improve the algorithm’s stability and performance. Experience 
replay enhances learning efficiency by allowing the agent to learn 
from a diverse set of past experiences rather than relying solely on 
recent interactions. The use of a target network provides a stable 
reference for updating Q-values, helping mitigate issues related to 
the non-stationary nature of learning (Lapan, 2018). As research 
in deep reinforcement learning (DRL) for robotics continue to 
advance, DQN offers a promising approach for developing more 
intelligent and autonomous robotic systems capable of adapting to 
their environments and performing complex tasks with minimal 
human intervention.

The demand for robotic solutions in the logistics industry 
has increased significantly in recent years, driven by the rapid 
expansion of e-commerce and the challenges it presents. For 
example, online shopping services exert increasing pressure on 
logistics operations to handle packages efficiently. Although human 
workers possess a high degree of adaptability, they are increasingly 
struggling to meet the increasing demand for package handling, 
particularly as product volumes continue to grow sharply (Britt, 
2020; Mims, 2020; Raptopoulos et al., 2020; Bombile and Billard, 
2022). Robotic systems, however, offer promising adaptability to 
address these challenges. For instance, robotic throwing can provide 
a substantial advantage in scenarios where speed and precision 

1 The list of acronyms used in this paper is provided in Table 1.

TABLE 1  List of acronyms.

Acronym Meaning

AI Artificial intelligence

ML Machine learning

NN Neural network

RL Reinforcement learning

DQN Deep Q-learning

DNN Deep neural network

DRL Deep reinforcement learning

DH parameters Denavit–Hartenberg parameters

PPO Proximal policy optimization

SAC Soft actor-critic

SARSA State–action–reward–state–action

DQN-N Deep Q-learning with noisy network

DDQN Double deep Q-learning

PER-DQN Prioritized experience replay deep Q-learning

DDQN-N Double deep Q-learning with noisy networks

PER-DDQN Prioritized experience replay double deep Q-learning

DQN-SA Structured self-attention-based deep Q-learning

DQN-MHA Deep Q-network with multi-head attention

DDQN-SA Structured self-attention-based double deep Q-learning

PER-DDQN-SA Prioritized experience replay and structured 
self-attention-based double deep Q-learning

TAR Total average return

DM Dynamic model

DDPG Deep deterministic policy gradient

are critical as it extends a robot’s effective working range beyond 
its physical and hardware limitations (Frank et al., 2006). This 
capability is particularly valuable in robotic pick-and-place tasks, 
as demonstrated in autonomous bi-manual robots such as Delta 
robots, which have proven especially effective in applications like 
waste sorting (Raptopoulos et al., 2020; Hassan et al., 2022).

Controlling the trajectory of an object using a robotic system 
is a complex task; however, it is essential for performing tasks 
in dynamic environments. In such scenarios, the robot must 
continuously adapt and adjust the position and velocity of the 
end-effector to ensure the ball lands accurately in the basket. 
Two main challenges arise under these conditions. First, the robot 
must compute a valid solution or determine the correct trajectory 

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

configuration to successfully throw the ball into the target. Second, it 
must accurately adapt its throwing parameters in real time, including 
the release position and velocity, to overcome environmental 
constraints (Bombile and Billard, 2023).

Controlling the trajectory of an object with a robotic system 
seems a complex task, however, it is essential when dealing with 
tasks in dynamic environments. In these scenarios, the robot must 
continuously adapt and adjust its parameters such as the end-
effector’s position to ensure the ball lands accurately in the basket 
position. There are two main challenges in these scenarios. First, 
the robot must determine a solution or the correct configuration 
for the robot’s trajectory movement to throw the ball into the target. 
Second, it must accurately adapt its throwing parameters–including 
release position, joint values, and direction in real-time to overcome 
constraints in the environment (7). 

1.1 Related work

The challenge of dynamic object manipulation has received 
increasing attention in recent years. The problem of robotic catching 
is often framed as an interception task, similar to traditional robotic 
catching scenarios (Burridge et al., 1995; Lynch and Mason, 1999; 
Schill and Buss, 2018; Dong et al., 2020; Satici et al., 2022). While 
catching involves intercepting an object moving toward the robot, 
throwing requires greater control over the robot’s trajectory. In this 
case, the trajectory depends on several factors, including the initial 
and final positions of the joints, their velocities, and environmental 
constraints.

Robotic throwing (Mason and Lynch, 1993; Raptopoulos et al., 
2020; Bombile and Billard, 2022) offers significant advantages in 
terms of time and energy efficiency compared to static pick-
and-place approaches. In such cases, advanced vision systems are 
employed to track and guide thrown objects with high precision 
(Frank et al., 2006). Other researchers have used hybrid learning 
and optimization methods to determine the parameters required for 
accurate object throwing (Bombile and Billard, 2023).

Various robotic platforms have been used for object throwing, 
including 1-DoF and 2-DoF systems (Frank et al., 2006; Mason 
and Lynch, 1993), industrial robots (Raptopoulos et al., 2020; 
August et al., 2010; Zhang et al., 2012), and humanoid robots 
(Kim et al., 2008; Satici et al., 2016). For instance, the KUKA KR-
16 robot has been shown to throw objects to targets 2.5 m away 
(August et al., 2010). The UR5 robot has been adapted to throw 
objects of different shapes and sizes (Zeng et al., 2020). More 
recently, the Franka Emika Panda robot demonstrated adaptive 
throwing capabilities, adjusting its behavior in response to dynamic 
conditions (Liu et al., 2022). These developments reflect the growing 
interest and potential of robotic throwing applications using deep 
learning models, laying the groundwork for future innovations 
across various industries.

Artificial intelligence enhances the performance of robotic 
systems but still requires retraining to adapt to sudden 
environmental changes or newly introduced constraints in robotic 
manipulators. When new manipulators are deployed, updated 
datasets are often necessary for retraining. However, current 
algorithms face several challenges in adapting to such changes. 
First, many adaptation algorithms rely heavily on human expertise 

to identify and address constraints, often requiring carefully 
planned strategies. Undetected constraints or malfunctions can 
cause the robot’s task to fail. Moreover, some AI algorithms cannot 
compensate for constraints in real time.

Researchers have explored various approaches to improve 
robotic adaptability and mitigate these limitations. For instance, 
neural networks have been used to estimate new workspaces for 
robotic arms with locked joints, although these methods often fall 
short in providing real-time compensation (Sivasamy et al., 2019). 
Other research uses acoustic filtering to identify constraints using 
sound sensors (Hu et al., 2019). Deep learning algorithms have 
also been applied to improve fault diagnosis in robotic systems 
under harsh conditions, with a primarily focus on fault identification 
(Zhang et al., 2019; Costa et al., 2019). These algorithms have 
been primarily used for fault identification, leaving a research gap 
regarding their performing under such conditions.

In the context of robotic throwing, researchers have explored 
ways to significantly enhance robot capabilities by enabling 
them to throw objects into a moving basket while avoiding 
obstacles—offering an advantage over manual object placement 
using algorithms such as soft actor-critic (SAC) and deep 
deterministic policy gradient (DDPG) (Kasaei and Kasaei, 2024). 
Other studies have combined several AI models, including 
deep convolutional encoder–decoder architectures for image 
segmentation, stochastic neural networks for physics simulation, 
and reinforcement learning (Zeng et al., 2020).

In one approach, a reinforcement learning agent is used to 
generate forward-phase actuation, while a dynamic model (DM) 
predicts the landing position. Both the agent and the DM are 
implemented as neural networks with a single hidden layer 
(Bianchi et al., 2023). It could be observed that the robot’s dynamics 
significantly influence the learning process. Other AI approaches 
include the use of dual neural networks to predict ping-pong ball 
trajectories (Lin et al., 2020) and more advanced architectures such 
as autoencoders (Gonzalez, 2020).

Previous studies have highlighted key challenges in this 
domain, related to limited training data, prediction errors, and 
insufficient accuracy in throwing tasks. Moreover, there is a lack 
of comprehensive analysis addressing scenarios where the robot 
encounters both environmental constraints and hardware failures 
during the throwing process. 

1.2 Contributions

This paper compares the performance of various DQN 
algorithms applied to the task of object throwing using an 
articulated serial robot manipulator. In particular, one of the 
paper’s contributions is two novel algorithms that integrate attention 
mechanisms into the DQN framework. The effectiveness of these 
attention-based algorithms is evaluated against standard DQN 
algorithms, with and without attention layers, through a detailed 
performance analysis. By incorporating attention mechanisms into 
DQN, the robot manipulator’s ability to capture relevant information 
is improved, enabling more efficient decision-making during the 
throwing process.

This research further tackles real-world limitations such 
as hardware faults (e.g., joint restrictions) and environmental 

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 2  Positioning of proposed research within the related work of throwing an object using a robot manipulator.

Paper Approach Environmental 
constraint/hardware 
failure

Learning model

Zeng et al. (2020) Deep learning residual physics Neither is considered Convolutional residual network

August et al. (2010) Ballistic-trajectory-based motion 
planning. An illustrative result

Neither is considered Not ML-based

Liu et al. (2022) Adaptive throwing using trajectory 
planning. The approach requires 
accurate trajectory tracking

The robot is disturbed using an external 
interaction force

ML is used to build the object’s inverted 
flying dynamics

Kim et al. (2008) and Satici et al. (2016) Feasibility of humanoid throwing. The 
focus is on physical execution, not 
learning

Neither is considered Not used

Bianchi et al. (2023) Throwing an object using a soft 
manipulator

Neither is considered NN + RL

Kasaei and Kasaei (2024) Throwing an object with obstacle 
avoidance

There is an obstacle near the target. SAC and DDPG

This paper Deep Q-learning approaches We consider three cases: 1) obstacle 
near the target, blocking the ball’s 
trajectory; 2) obstacle near the robot, 
constraining its motion; and 3) failure 
in the robot’s joint

DQN, Noisy DQN, DDQN, PER, and 
SA variants

obstacles (e.g., nearby walls or target obstacles), demonstrating 
how these challenges can be effectively addressed through reward 
shaping within the Q-learning framework. To the best of our 
knowledge, this is the first study to evaluate the performance of 
learning algorithms for robotic throwing under such conditions, as 
summarized in Table 2.

Finally, an extensive comparative analysis is presented, 
examining the performance of standard and attention-augmented 
DQN variants across a range of constrained and unconstrained 
scenarios, highlighting their potential for improved performance in 
unstructured environments. 

2 Methods and solution

To solve throwing or pick-and-place tasks using Q-learning and 
deep reinforcement learning algorithms, it is necessary to define the 
action and state spaces the algorithm operates in, along with several 
key design decisions, as outlined below: 

1. Actions: The actions correspond to joint adjustments, which 
vary across experiments. Each adjustment value is computed as 
a function of the difference between the basket’s center position 
and the predicted landing point.

2. States: The states include the starting state, working state, and 
end state. An additional modification has been introduced: 
every new position of the end-effector corresponds to 
a new state.

3. Reward function: The reward is based on the error distance, 
defined as the distance between the basket’s center and the 
landing point from the most recent throw.

4. Denavit–Hartenberg (DH) parameters: These parameters are 
defined for each of the robots used.

2.1 Reinforcement learning approach

An agent is defined as an entity that interacts with the 
environment by performing actions, collecting information 
(observations or states), and receiving rewards (positive or negative) 
(Lapan, 2018). In reinforcement learning, there are two main types 
of actions an agent can perform:

• Policy-based actions: The agent learns a policy, which 
is a mapping of states to actions. This policy can be 
stochastic—where action–state pairs are based on probabilities 
for different actions, as observed in algorithms such as DQN 
during exploration or proximal policy optimization (PPO)—or 
deterministic, where each state maps to a single specific action
(Lapan, 2018).

• Value-based actions: Here, the agent estimates the value of 
each action–state pair and selects actions based on these values 
(e.g., by choosing the action with the maximum value). For 
example, in Q-learning, the Q-function estimates the expected 
reward in a Q-table, and the agent selects the action with the 
highest Q-value (Lapan, 2018; Van Hasselt et al., 2016; Sutton 
and Barto, 2018).

The epsilon-greedy strategy in Q-learning is used to encourage 
exploration of the environment. When the agent encounters a new 
state with unknown Q-values, it needs to explore different actions 

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 1
Neural network-based policy approximation for a discrete action space (adapted from Lapan (2018)).

to estimate their rewards since there is no prior knowledge. This 
strategy prevents the agent from sticking to a suboptimal policy and 
ensures it does not miss better actions or paths (Van Hasselt et al., 
2016; Sutton and Barto, 2018). In contrast, algorithms such as PPO 
or SAC perform exploration automatically. Because these algorithms 
initialize network weights randomly during training, the output 
initially follows a uniform probability distribution, resulting in 
random agent behavior (Lapan, 2018).

A DRL policy is the decision-making mechanism in RL 
that guides the agent’s actions based on observations from the 
environment. Traditional temporal difference algorithms such as Q-
learning, state–action–reward–state–action (SARSA), and expected 
SARSA define policies by estimating state values mapped to each 
action, selecting the action with the highest expected return (Lapan, 
2018). When the environment has a small, discrete action set, Q-
learning can efficiently approximate the value of each state–action 
pair and select the best action.

However, when the action set is large, directly calculating Q-
values for every action becomes inefficient. In such cases, neural 
networks (NNs) are used to approximate Q-values (Lapan, 2018). In 
DQNs, the NN outputs the expected reward values for actions given 
a specific state, represented as scalar values.

There are multiple ways to implement this output:

• The NN outputs identifiers for all possible actions in an array 
(representing a discrete set of actions). Although this is a 
simple approach, it may not be the most effective way to handle 
discrete action sets (Lapan, 2018).

• The NN outputs a probability distribution over the agent’s 
actions, as illustrated in Figure 1 (Lapan, 2018).

The pieces of information or knowledge collected by the agent 
from the environment at a specific time and state are called the 
RL state. The state captures various aspects, including the agent’s 
location, the surrounding environment, and sometimes information 
on previous states, actions taken, and rewards received.

The activities performed by the agent in DRL are called actions. 
Actions can be discrete, continuous, or a combination of both. 
Discrete actions represent fixed behaviors, such as moving left or 
right in a grid, moving up or down, or pressing and releasing buttons. 
Continuous actions specify variable values related to the agent, such 
as the angle position of a steering wheel or the angular velocity 

of robot joints. Some environments require multiple simultaneous 
actions, like adjusting an angle by a discrete increment while 
setting a continuous angular speed (Lapan, 2018). In this paper, the 
actions in DQN or Q-learning are described as varying between 
experiments. Importantly, the joint positions in all experiments 
respect the physical constraints and limitations of the robot arm.

The RL reward is a scalar value obtained from the environment 
that indicates the degree to which the agent’s previous action was 
beneficial or detrimental. Rewards can be positive or negative and 
large or small. The timing of reward delivery depends on the 
experiment: rewards can be given continuously at every interaction 
or only once during the agent’s lifetime (Lapan, 2018). When 
rewards are sparse—given only once—other reward signals are 0 
until the final reward is received. The reward reflects the success 
or failure of the agent’s previous actions. However, receiving a 
high reward for certain actions does not guarantee the absence 
of negative consequences from earlier decisions. For example, a 
risky policy might yield a high immediate reward but lead to poor 
outcomes overall (Lapan, 2018). 

2.2 Q-learning approach

Q-learning is a model-free, off-policy algorithm that uses a 
lookup table to learn the optimal action-value function (Q-function) 
for a given state. In the context of throwing balls using a robot 
arm, the Q-function represents the expected reward for taking a 
particular action (e.g., adjusting the arm’s angle or the throwing 
velocity) in a specific state (e.g., the current position of the ball or 
the robot arm). However, learning the optimal policy through Q-
learning requires extensive trial-and-error exploration, which can be 
time-consuming and inefficient (Van Hasselt et al., 2016).

Additionally, Q-learning may struggle with continuous action 
spaces, posing limitations for tasks such as robotic ball throwing that 
demand precise control over continuous variables (Sutton and Barto, 
2018). Q-learning is classified as an off-policy algorithm because 
it learns and improves a policy that is different from the policy 
currently being executed by the agent. This contrasts with on-policy 
algorithms, in which the agent learns and improves the policy it is 
actively following (Van Hasselt et al., 2016). 

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 2
Tabular representation of state–action values (Q-table) in the Q-learning algorithm.

2.2.1 Q-learning choice of hyperparameters
The Q-learning algorithm aims to find the optimal policy—a 

sequence of actions—that maximizes the expected cumulative 
reward over time. This is achieved by updating Q-values using 
the Bellman equation, which relates the Q-value of a current 
state–action pair to the Q-values of the next state–action pairs, as 
illustrated in Figure 2.

The Q-function, or Q-learning update rule, is expressed using 
the Bellman equation as follows:

Q (s,a)⟵ Q (s,a) + α[r+ γmax
a′

Q(s′,a′) −Q (s,a)] .

• α is the learning rate, a value between 0 and 1 that determines 
how much new information overrides old estimates. A higher 
α places more weight on recent rewards.

• Q(s,a) is the estimated cumulative reward for taking action a
in state s.

• r is the immediate reward received after executing action a in 
state s.

• γ is the discount factor, also between 0 and 1, which 
determines the importance of future rewards compared to 
immediate rewards.

• maxa′Q(s′,a′) represents the maximum Q-value over all 
possible actions a′ in the next state s′. Q-learning selects 
actions by considering both the immediate and the maximum 
future reward.

• ϵ represents the exploration–exploitation trade-off. A higher 
ϵ encourages exploration (trying new actions), while a 
lower ϵ favors exploitation (choosing the best-known action). 
A decaying ϵ schedule is commonly used, starting with 
high exploration that decreases over time (Sutton and 
Barto, 2018; Van Hasselt et al., 2016).

This approach allows the agent to first explore its environment 
through random actions and then use the gained experience 
to select the most appropriate actions for making an optimal 

policy (Sutton and Barto, 2018; Watkins, 1989; Mnih et al., 2013; 
Mnih et al., 2015; Van Hasselt et al., 2016). The Q-learning update 
rule is applied iteratively as the agent interacts with the environment, 
enabling it to learn the optimal policy for choosing actions across 
different states to maximize cumulative rewards over time. SARSA, 
an on-policy reinforcement learning algorithm, differs from Q-
learning by replacing the term maxa′Q(s′,a′) with Q(s′,a′) in the 
update rule:

Q (s,a)⟵ Q (s,a) + α[r+ γQ(s′,a′) −Q (s,a)] .

The agent in the SARSA algorithm updates its Q-values based 
on the actions it actually takes. This characteristic indicates that the 
learned policy is tightly coupled with the exploration strategy used 
during training. As a result, SARSA often yields more conservative 
behavior, making it more robust to the agent’s exploration decisions. 
In contrast, expected SARSA is an off-policy reinforcement learning 
algorithm that improves upon standard SARSA. Instead of relying 
on the single action taken by the agent, it uses the expected value over 
all possible next actions in the policy’s distribution. This provides a 
smoother and often more stable learning process. The update rule 
for expected SARSA is provided as follows:

Q(st,at) ← Q(st,at)

+ α[rt+1 + γ𝔼at+1∼π [Q(st+1,at+1)] −Q(st,at)] .

Here,

• Q(st,at) is the current estimate of the action-value function for 
state st and action at.

• α is the learning rate, determining the step size of the Q-
value update.

• rt+1 is the reward received after taking action at in state st.
• γ is the discount factor, controlling the weight of future rewards 

relative to immediate rewards.
• 𝔼at+1∼π[Q(st+1,at+1)] denotes the expected value of Q(st+1,at+1)

over all possible actions at+1 that may be taken in the next state 
st+1 under policy π.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 3
Different functional mappings from distance dt to joint adjustments in 
Q-learning.

This approach aims to reduce variance and improve both 
learning efficiency and stability. One of the key hyperparameters 
in Q-learning is the exploration–exploitation strategy. As is well 
known, this strategy balances two competing objectives: selecting 
the best-known action based on current knowledge (exploitation) 
and exploring new actions that might yield better long-term rewards 
(exploration) (Wikipedia, 2023; AI-ML, 2023).

The immediate reward R(s,a) is designed to encourage 
actions that move the throwing result closer to the basket. It is 
defined as follows:

R = 1− 0.5 ⋅ (dt+1 − dt) +
{
{
{

−20, if dt+1 ≥ dt

+0.3, if dt+1 < dt,

where dt is the distance– i.e., the straight-line distance from the 
landing point to the center of the basket in throw t, and dt+1 is the 
corresponding distance in the next throw.

In experiments, an additional reward of +0.3 is added if 
dt+1 < dt. Conversely, a penalty of −20 is imposed if the error 
increases. This adjustment helps the agent distinguish between joints 
with constraints and those without. For instance, if a joint with 
constraints is repeatedly selected, its Q-value will decrease due to 
poor performance, making it less likely to be chosen in future 
iterations. A numerical example illustrating this behavior is provided 
later in the paper.

Moreover, Q-learning easily allows mapping the joint 
adjustment values to the error distance dt. When dt is large, the 
algorithm tends to apply larger joint adjustments. Conversely, 
when dt is small, finer adjustments are made to refine the 
trajectory (Figure 3). Although adjusting the joint weights may 
influence the results, the same weight is consistently used across all 
experiments.

2.2.2 Q-learning states and actions
A Q-learning state encompasses the information available to 

an agent about its environment at a specific moment in time. 

This includes various aspects such as the agent’s current location, 
surrounding objects, and the history of previous states, actions 
taken, and rewards received. As illustrated in Figure 2, the Q-
learning algorithm relies on a Q-table, typically represented as an 
array of Q-values where each row corresponds to a state and each 
column corresponds to an action. The generic entry ai,j in the Q-
table represents the value Q(si,aj) (Sutton and Barto, 2018). At the 
start of the algorithm, all entries in the Q-table are initialized to 0. 
The agent begins to explore the environment, and the Q-function 
iteratively updates these values based on interactions. Over time, this 
iterative process yields improved approximations of the optimal Q-
values.

The typical Q-learning update loop is as follows: 

1. Parameters: step size ain (0, 1], ϵ > 0
2. Initialize Q(s,a), for all s ∈ Sand a ∈ A(s), arbitrarily except 

Q(terminal, ⋅) = 0
3. Loop for each episode:

a. Initialize s
b. Loop for each step of the episode: 

1. Choose a from s using policy derived from Q (e.g., ϵ-
greedy).

2. Take action a and observe R and s′.
3. Calculate the new reward using the Q-function.
4. s = s′

c. until s is terminal

The ϵ-greedy policy is defined as follows (Li, 2023):

π (a|s) =
{{
{{
{

ϵ
|A (s) |
+ (1− ϵ) ifa = argmaxa′Q(s,a

′)

ϵ
|A (s) |

otherwise.

Here,

• π(a|s) is the probability of taking action a in state s.
• ϵ is the exploration rate (a small positive constant, typically 

between 0 and 1).
• |A(s)| is the number of possible actions in state s.
• Q(s,a) is the action-value function.

In this paper, the initial state is defined as the starting 
configuration of the system, while the ending state corresponds 
to a configuration in which Q-learning identifies a successful 
throwing solution. A key modification introduced in this work is 
the assignment of a unique state to every new position of the end-
effector. This results in a significantly larger number of working 
states compared to previous implementations that used a single state 
representation, thereby enhancing performance.

A comparison is conducted between two scenarios: (i) Q-
learning with a limited number of discrete states and (ii) Q-learning 
with an expanded state space that includes a greater number of end-
effector positions. This comparison is illustrated in Figures 15–17. 
By using a finer state discretization, the algorithm is less reliant on 
pure exploitation. This is important as excessive exploitation can 
cause the algorithm to overlook alternative promising trajectories. 
The broader state space increases the diversity of solutions available 
for the throwing task, often allowing the algorithm to converge 
more quickly. However, this also introduces a risk of over-
exploration, where the agent continually explores new actions 

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 3  DH parameters for PhantomX Pincher robot (standard 
convention).

Joint i θi (variable) di (m) ai (m) αi (rad)

1 θ1 0.05 0 π/2

2 θ2 0 0.105 0

3 θ3 0 0.105 0

4 θ4 0 0.075 0

FIGURE 4
Admissible configuration of a two-link planar arm (Siciliano, 2008).

TABLE 4  DH parameters for a two-link planar robot (standard 
convention).

Joint i θi (variable) di (m) ai (m) αi (rad)

1 θ1 0 L1 0

2 θ2 0 L2 0

without sufficiently exploiting learned policies. To mitigate this 
issue, the Q-learning algorithm is further modified: if an action 
results in a negative reward, the agent returns to the previous 
state. This simple yet effective modification ensures consistent 
convergence by discouraging the repetition of poor actions and 
reinforcing successful behaviors.

The actions in Q-learning are defined as joint adjustments, and 
they vary depending on the experiment, as described below: 

1. For the PhantomX Pincher Robot Manipulator (Figure 10, DH 
parameters provided in Table 3), used in pick-and-place tasks, 
the defined actions for each joint are as follows:

• Increasing or decreasing the joint angle θk by w times the 
adjustment value, where k ∈ {1,2,3,4} and w ∈ {1,2,3}.

FIGURE 5
Franka Emika Panda robot whose simulated model is used in the 
robotic throwing task (Albu-Schäffer et al., 2016).

2. For the two-link planar arm (Figure 4, DH 
parameters provided in Table 4), used in the throwing 
task, the defined actions for both joints are as
follows:

• Increasing or decreasing the joint angle θk by a fixed 
adjustment value, where k ∈ {1,2}.

• Increasing or decreasing the throwing angle
by 0.1.

3. For the Franka Emika Panda robot (Figure 5, DH parameters 
provided in Table 5), also used in the throwing task, the defined 
actions are as follows:

• Increasing or decreasing the joint angle θk by a fixed 
adjustment value, where k ∈ {1,2,3,4,5,6,7}.

• Increasing or decreasing the throwing angle by 0.1.

The adjustment value is computed based on the Euclidean 
distance between the position of the target (basket) center and the 
landing point of the most recent throw as follows:

Adj_value = w1 dt,

where dt denotes the distance between the two points and w1 is a 
scaling factor. The updated joint values are constrained to remain 
within their predefined ranges and must satisfy all joint-specific 
constraints. 

2.2.3 Constraint compensation using Q-learning
Q-learning is employed to update the joint positions, resulting 

in new coordinates for the end-effector. These coordinates are 
calculated using the DH parameters, which describe the kinematics 
of the robotic arm. Various approaches exist for computing the 
correct end-effector coordinates required for the throwing task. 

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 5  DH parameters for Franka Emika Panda (standard convention).

Joint i θi (variable) di (m) ai (m) αi (rad)

1 θ1 0.333 0 0

2 θ2 0 0 −π/2

3 θ3 0.316 0 π/2

4 θ4 0 0.0825 π/2

5 θ5 0.384 −0.0825 −π/2

6 θ6 0 0 π/2

7 θ7 0.107 0 0

Once these coordinates are determined, inverse kinematics (IK) 
can be applied to derive the corresponding joint values. Techniques 
such as the Jacobian inverse method and numerical optimization are 
commonly used to solve IK problems. These methods account for the 
arm’s specific kinematic structure and any joint faults or constraints 
(Group, 2024; Learning, 2025).

However, traditional IK solutions are often slow and struggle to 
handle multiple joint failures. The Q-learning algorithm overcomes 
these limitations by adapting to environmental changes and 
predefined policies. The Q-function is shaped to assign higher 
rewards to actions that result in throws closer to the basket. 
If an action violates a joint constraint, the associated reward is 
reduced, guiding the algorithm to select alternative actions involving 
unconstrained joints in subsequent iterations. Thus, Q-learning 
provides a more adaptive and fault-tolerant solution for dynamically 
updating joint positions during the throwing task. 

2.3 Approaches using DQNs

Deep reinforcement learning combines neural networks 
with RL techniques to address high-dimensional decision-
making problems. This integration enables interactive learning in 
complex and dynamic environments. A key reason behind the 
growing adoption of deep RL is its demonstrated effectiveness 
across diverse applications and its compatibility with modern 
computational platforms (Figure 6). Several types of DQNs have 
been developed to enhance performance in various settings 
(Lapan, 2018; Sorokin et al., 2015). These include standard DQN, 
double DQN, N-step DQN, noisy networks, and prioritized 
experience replay (PER) DQN, along with attention-based 
extensions.

This paper explores several advanced DQN variants:

• Noisy networks (DQN-N): they enhance exploration efficiency 
by injecting noise into the network weights.

• Double DQNs (DDQNs): they mitigate overestimation 
by decoupling action selection and evaluation through 
two separate networks and improving stability and 
accuracy—especially useful in tasks requiring precision, such 
as robotic throwing.

• Prioritized replay DQNs (PER-DQNs): they increase learning 
efficiency by prioritizing more informative experiences 
during training.

• Noisy double DQNs (DDQN-Ns): they combine the benefits 
of DQN-Ns and DDQNs for robust exploration and 
stable learning.

• PER with double DQNs (PER-DDQNs): they integrate the 
strengths of PER-DQNs and DDQNs to enhance both 
sampling efficiency and Q-value estimation.

• Self-attention-based DQNs (DQN-SA, DQN-MHA): they 
incorporate attention mechanisms to help the model focus on 
critical input features, improving learning in high-dimensional 
environments such as throwing tasks.

• Structured self-attention double DQNs (DDQN-SA): they 
combine DDQNs with structured self-attention to further 
refine decision making.

• PER-DDQN-SA: it integrates PER, DDQN, and self-attention 
to leverage the advantages of all three approaches.

Recently, deep reinforcement learning studies have investigated 
the robustness of policies. A robust policy is desirable because it 
should not be sensitive to random seeds or hyperparameters. In 
some cases, such as when a validation environment is unavailable, 
off-policy evaluation can be used to estimate policy performance 
using only pre-collected data. This method allows RL agents to 
predict the effectiveness of new policies without deploying them in 
the real world (Li, 2023).

In this paper, the following metrics are used to evaluate the 
performance of different DQN algorithms:

• Policy performance: the total average return (TAR) is the most 
common measure of policy performance (Li, 2023):

TAR = 𝔼s0∼ds
[ 1

N

N

∑
i=1

Ri],

where

• TAR is the total average return,
• 𝔼s0∼ds

 is the expectation over initial states s0 sampled from 
distribution ds,

• N is the number of episodes or samples, and
• Ri is the return in the ith episode.

This equation expresses the expected average return computed 
over N episodes, with the initial states drawn from a given 
distribution.

• Learning speed: this refers to the rate at which an RL agent 
improves its performance over time through training and 
interactions with the environment (Li, 2023).

• Learning accuracy: this metric assesses how closely 
a learned policy or value function approximates the 
optimal one (Li, 2023).

2.3.1 DQN with self-attention
This novel approach applies two different self-attention 

mechanisms within DQN. Self-attention mechanisms selectively 

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 6
Structure of the deep Q-network, illustrating the flow from input state representation to Q-value outputs for each discrete action.

FIGURE 7
Visualization of scaled dot-product attention (left) and multi-head 
attention (right) (Vaswani et al., 2017).

focus on the most relevant parts of the input data, enhancing the 
neural network’s capacity to process large inputs.

The key concepts of attention mechanisms are as follows:

• Self-attention computes relationships between different parts 
of the input to generate context-aware representations. It maps 
a query and a set of key-value pairs to an output, as shown in 
Figure 7. The output is a weighted sum of the values, where 
weights are computed using a compatibility function. This 
function measures the alignment between the query and each 
corresponding key (Vaswani et al., 2017).

• Scaled dot-product attention calculates attention scores by 
taking the dot products of queries and keys, scaling by √dk, 
and applying a softmax function to obtain attention weights 
(Vaswani et al., 2017). The inputs are queries and keys (each of 
dimension dk) and values (dimension dv), arranged in matrices 
Q, K, and V, respectively (Figure 7). The attention output is 
computed as follows (Ba et al., 2016):

Attention (Q,K,V) = softmax(QK⊤

√dk

)V.

• Multi-head attention uses multiple attention heads to capture 
different aspects of relationships within the data (Figure 7).

Incorporating self-attention mechanisms into DQNs enhances 
the agent’s ability to focus on the most relevant features. This leads 
to improved decision-making and increased learning efficiency. Self-
attention can be integrated into a DQN as follows:

• The representation of the state uses attention mechanisms 
to process and encode state information. For example, the 
state vector in a throwing task with a robot manipulator is 
processed using self-attention to extract crucial features. This 
allows the network to prioritize the most significant parts of 
the input data.

• Self-attention-based DQNs incorporate self-attention layers 
within the network architecture. In this paper, self-attention 
layers are added to the network except for the final fully 
connected layers. This modification significantly improves the 
network’s ability to handle complex state representations and 
enhances learning performance.

Integrating attention mechanisms into DQN improves the 
identification and prioritization of critical information from input 
data. By focusing on important features, the learning process 
becomes more efficient, reducing the number of episodes required 
to achieve good performance and accelerating training. Moreover, 
attention mechanisms enhance the agent’s ability to generalize. This 
facilitates better performance in unseen or complex environments 
and allows the agent to adapt more effectively to new scenarios and 
challenges. 

2.3.2 Multi-head attention in DQNs
Integrating multi-head attention into a DQN can enhance the 

agent’s ability to learn more complex policies. This improvement is 
achieved by enabling the agent to simultaneously focus on multiple 
aspects of the state representation. The architecture of the DQN with 

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

multi-head attention (DQN-MHA) used in this paper is shown in 
Figure 8 and includes the following components.

• A state input layer that receives a sequence representing 
the environment’s current and previous states as a vector, 
illustrated in Figure 8. The input sequence consists of the latest 
eight states.

• An attention layer that applies a self-attention mechanism 
to the input state, allowing the model to focus on the most 
relevant parts. Each attention head processes the same input 
sequence but from a different perspective. The outputs of 
the heads are concatenated to form the multi-head attention 
output. This approach mimics the [query, value] format by 
passing the same input twice. Following Keras (2023), the 
value is also used as a key. In this work, 12 attention heads 
are employed (Vaswani et al., 2017).

• Normalization and residual layers are applied to the multi-
head attention output. The residual connection allows the 
input to bypass sub-layers and be added directly to the 
output. Layer normalization is applied after the residual 
connection to stabilize learning and improve convergence. 
The normalization layer uses ϵ = 1× 10−6. Its output type is a
KerasTensor with shape (1,No.Neurons).

• A flatten layer reshapes the multi-dimensional tensor 
(1,No.Neurons) into a one-dimensional tensor of the same 
shape. This facilitates the transition from attention layers to 
fully connected dense layers, without altering the data values 
or structure.

• A DQN consisting of fully connected dense layers applies 
linear transformations followed by ReLU activations. This 
enables the learning of complex patterns from the integrated 
attention outputs.

• A final dense output layer produces q-values for each possible 
action. These Q-values estimate the expected future rewards 
for actions given the current state and are used for decision-
making in reinforcement learning.

Within the DQN-MHA model, each attention head receives 
the same input sequence, processes it independently using distinct 
(q,k) weight matrices, and generates an output that reflects 
a unique perspective. This design implements horizontal self-
attention, enabling the model to extract diverse features from the 
same input, which enhances information abstraction.

The output of each attention head i is defined as follows:

Attentioni (S) = softmax(
SWQ

i (SW
K
i )
⊤

√dk

)(SWV
i ) .

The outputs from all heads are concatenated and projected:

MHA (S) = Concat(Attention1 (S) ,…,Attentionh (S))WO.

A residual connection followed by layer normalization is applied:

Z2 = LayerNorm (S+MHA (S)) .

The output is then flattened and passed through two fully 
connected layers with ReLU activations:

z = Flatten (Z2) ,

FIGURE 8
Overview of the DQN-MHA architecture, which integrates multi-head 
attention into the deep Q-network framework.

h1 = ReLU (W1z+ b1) ,

h2 = ReLU (W2h1 + b2) .

The final Q-value is computed as follows:

Q(st,a) =W3h2 + b3.

Notations:

• st ∈ ℝn: current state vector
• S = [st−7,…,st] ∈ ℝ8×n: sequence of the last eight states
• Q(s,a): Q-value for state s and action a
• A: number of actions
• h: number of attention heads
• dk, dv: dimensions of keys/queries and values
• WQ

i ,W
K
i ,W

V
i : weight matrices for query, key, and value in head 

i
• WO: output projection matrix for the multi-head attention
• Z2: output after residual connection and LayerNorm
• z: flattened vector of Z2
• W1,W2,W3: weight matrices for the fully connected layers
• b1,b2,b3: bias terms for the fully connected layers
• h1,h2: hidden layer outputs in the feedforward network

2.3.3 Structured self-attention in DQNs
Integrating scaled dot-product attention with a DQN can 

improve the agent’s ability to learn more complex policies. 

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 9
Overview of the DQN-SA architecture integrating self-attention layers 
within the deep Q-network.

This is achieved by enabling the agent to focus on different 
aspects of the state representation simultaneously. The DQN-
SA architecture proposed in this work (Figure 9) consists of the 
following components:

• State input layer: it receives a sequence of states, identical to 
the input used in the DQN with MHA architecture.

• Self-attention layer 1: it applies a scaled dot-product attention 
mechanism to the input sequence, offering a first perspective 
(“point of view”) on the state.

• Self-attention layer 2: it processes the original state input again, 
now incorporating the output of the first self-attention layer.

• Self-attention layer 3: it takes the result from the second layer 
and combines it with the first layer’s output to form a refined 
third-level perspective.

• Concatenation layer: it merges the outputs of all three self-
attention layers into a single vector. This integration step 
allows the network to combine multiple attention-derived 
representations of the state.

• DQN module: it comprises a series of fully connected dense 
layers, identical to the architecture used in the MHA-based 
DQN, which processes the concatenated output.

• Q-values output layer: It is a final dense layer that computes 
the Q-values for each possible action.

This architecture processes the input state through successive 
self-attention layers, with each layer forming its own representation 

based on the output of the previous layer. As a result, the network 
creates a vertical self-attention hierarchy. This layered structure 
enables the model to extract increasingly abstract features during 
training. However, there is a risk of losing certain low-level details. 
To mitigate this, outputs from all attention layers are concatenated, 
ensuring that essential information is retained.

For DQN-SA, let Z0 = S. For each attention layer l = 1,2,3,

Ql = Zl−1W
Q
l , Kl = Zl−1WK

l , Vl = Zl−1W
V
l ,

Attentionl = softmax(
QlK⊤l

√dk

)Vl,

Zl = Attentionl.

After computing the outputs of the attention layers, 
they are concatenated and passed through a fully connected 
feedforward network:

Zconcat = Concat(Z1,Z2,Z3) , z = Flatten(Zconcat) ,

h1 = ReLU (W1z+ b1) , h2 = ReLU (W2h1 + b2) ,

Q(st,a) =W3h2 + b3,

where

• S ∈ ℝn: input state sequence vector.
• Z0 = S: initial input to the first attention layer.
• WQ

l ,W
K
l ,W

V
l : query, key, and value weight matrices for layer l, 

respectively.
• dk: dimensionality of the keys and queries.
• Ql,Kl,Vl: transformed input matrices in layer l.
• Attentionl: output of the scaled dot-product attention for layer 

l.
• Zl: output of attention layer l.
• Zconcat: concatenated outputs from all attention layers.
• z: flattened version of Zconcat.
• W1,W2,W3: weight matrices of the dense layers.
• b1,b2,b3: bias vectors for the dense layers.
• h1,h2: intermediate activations from the fully connected layers.
• Q(st,a): predicted Q-value for taking action a in state st.

2.3.4 Comparison analysis of DQNs based on 
self-attention

The primary distinction between the two architectures lies in the 
direction of self-attention: DQN-SA employs vertical self-attention, 
while DQN-MHA uses horizontal self-attention. In DQN-MHA, 
multiple attention heads operate in parallel on the same input 
but produce different outputs due to variations in their query–key 
weight matrices. Each head captures a distinct perspective of the 
input, enabling the network to extract diverse features relevant for 
solving deep reinforcement learning problems.

In contrast, DQN-SA generates each layer’s output based on 
the preceding self-attention layer, forming a hierarchical abstraction 
of the input. This vertical stacking enhances the model’s capacity 
for abstraction but may lead to a loss of finer details. To mitigate 
this, the input vector of each self-attention layer is fused with the 

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

original state input. Although DQN-SA shares structural similarities 
with DQN-MHA, it functions in a sequential (vertical) manner. 
Considering the complexity of the throwing task, additional self-
attention layers or multi-head attention in DQN-SA may not be 
necessary. 

3 Result

This section describes the application of the above techniques 
to different robots performing various tasks when limited by 
physical boundaries or affected by failures. These scenarios are 
addressed using different reinforcement learning algorithms. The 
corresponding code can be found on GitHub2. 

3.1 Q-learning for robot throwing

3.1.1 Q-learning for pick-and-place tasks
To evaluate the performance of the Q-learning algorithm 

in the presence of physical constraints (e.g., hardware failures 
or environmental boundaries), two experiments were conducted 
for pick-and-place tasks (Wiki, 2024). The robot used is the 
PhantomX Pincher, shown in Figure 10, with its DH parameters 
provided in Table 3.

• Experiment #1: The robot is tasked with moving from an initial 
position to point A (0.1698,0.0272,−0.2081) and subsequently 
to point B (0.2313,−0.0401,−0.1333) in Cartesian space. 
After reaching point A, two simultaneous failures occur: one 
restricts the motion of the second joint, while the other 
completely locks the fourth joint. Despite these failures, the 
Q-learning algorithm is able to adapt and find alternative 
solutions, avoiding reliance on the faulty joints. The robot 
reaches near point A with a position error of 0.8778 cm and 
near point B with an error of 0.3817 cm. The total execution 
time is 10.25 s.

• Experiment #2: To assess the algorithm’s behavior under 
multiple joint failures, the robot must sequentially 
reach three target points in Cartesian space: A =
(0.1698,0.0272,−0.2081), B = (0.2313,−0.0401,−0.1333), and 
C = (−0.0436,0.2610,−0.182). After reaching point A, a failure 
affects the first joint, limiting its motion. Upon reaching point 
B, two additional failures occur: the second joint becomes fully 
blocked, and the third joint’s range is severely restricted. The 
Q-learning algorithm successfully guides the robot to all three 
points despite the joint limitations, achieving position errors 
of 0.7176 cm, 0.7921 cm, and 0.9853 cm for points A, B, and 
C, respectively. The total time taken is 18.83 s.

3.1.2 Constraint compensation using reward 
function

Reward function design, also known as reward function 
engineering, is among the most challenging aspects of reinforcement 

2 https://github.com/MhdNur9/DQN_Types

FIGURE 10
PhantomX Pincher robotic manipulator.

learning, particularly when addressing robotic constraints such as joint 
range limits and torque saturation. To ensure that the agent operates 
within its physical limitations, penalty terms can be introduced into the 
reward function, e.g., for actions that violate joint constraints. Properly 
tuning these penalty weights not only encourages physically feasible 
behavior but also accelerates the learning process by guiding the agent 
toward safer and more effective solutions. 

Although numerous types of constraints are relevant in robotic 
systems, we focus now solely on total joint failures. The reward 
function is modified accordingly to enable efficient task execution 
while respecting these constraints.

R = 1− 0.5 ⋅ (dt+1 − dt) +
{
{
{

−20, if dt+1 ≥ dt

+0.3, if dt+1 < dt

.

The above reward function incorporates a distance-based 
shaping term and a discrete bonus/penalty mechanism. The 
additional reward values (+0.3 and −20) were selected empirically 
through systematic experimentation, evaluating various alternatives 
to identify those that produced optimal learning performance and 
stable agent behavior.

The reward is computed based on the distance, defined as the 
Euclidean distance between the landing point and the center of the 
basket. The center of the basket is taken as the coordinate origin 
(0,0). A positive bonus of +0.3 is applied whenever the distance 
decreases, whereas a large negative penalty of −20 is applied when 
the distance increases or remains the same as in the previous attempt. 
This design encourages the agent to perform actions that improve 
task success while simultaneously adhering to joint constraints.

• Analysis without sudden constrains.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://github.com/MhdNur9/DQN_Types
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 11
Example of state transition in Q-learning based on action outcomes.

As illustrated in Figure 11, selecting action 2 from state 2 leads 
to a negative reward because the distance dt increases. Consequently, 
the algorithm does not transition to state 3 but instead remains in 
state 2, and the negative reward is recorded for action 2. In the 
following iteration, the algorithm selects a different action—either 
by exploiting prior knowledge or through random exploration—and 
chooses action 3. Since this action results in a smaller dt, it yields a 
positive reward and transitions the agent to state 4.

If a valid solution—or multiple solutions—exists, the Q-
learning algorithm consistently converges toward it as it favors joint 
adjustment values that minimize the error distance. In cases where 
no exact solution is possible due to joint failures or constraints, the 
algorithm outputs a set of joint values and a throwing angle that 
results in the object being thrown to the position closest to the 
basket.

• Analysis with sudden constraints.

There are two possible sub-cases in this scenario: 

1. Unconstrained action dominance: The reward associated with 
the unconstrained joint is higher, and the agent consistently 
selects actions unrelated to constraints. In this case, the 
algorithm proceeds toward the solution.

2. Constraint-induced deviation (worst case): The agent may 
choose an action involving a constrained joint either during 
exploration or due to exploitation, where the constrained joint 
previously had the highest Q-value. This situation worsens if a 
sudden constraint (e.g., joint failure) is introduced.

Consider the worst-case scenario where the agent previously 
selected an action with the highest reward, and the resulting landing 
point was very close to the basket but not inside it. Suppose a fault 

occurs in a specific joint, rendering it immobile. Let the following 
parameters apply:

• dt = dt+1 = 0.02 m (distance to target remains the same),
• Q(s,a) = 0.5 (previous Q-value),
• Q(s′,a) = 0 (assuming next state’s value is 0 for simplicity),
• learning rate α = 0.5, and
• discount factor γ = 0.5.

The immediate reward, without any additional reward or 
penalty, is calculated as follows:

R = 1− 0.5(dt+1 − dt) = 1− 0.5 (0.02− 0.02) = 1.

The Q-value is updated as follows:

Q (s,a) = 0.5+ 0.5 (1+ 0.5 ⋅ 0− 0.5) = 0.75.

The increase in Q(s,a) incorrectly indicates that choosing the 
same action brings the throwing point closer to the target, which 
is misleading due to the joint fault.

Reward shaping: To address this issue, additional penalties and 
rewards are introduced in the reward function:

• If dt+1 ≥ dt, a large penalty of −20 is applied to discourage 
moving away from the target.

• If dt+1 < dt, a positive bonus of +0.3 is awarded to encourage a 
reduction in distance.

With the penalty applied, the new immediate reward becomes

R = 1− 0.5 (0.02− 0.02) − 20 = −19.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 12
Learning process using Q-learning-based throwing using the two-link 
planar robot. The figure shows how the robot refines its throwing 
strategy: the green line denotes the initial attempt, and the blue line 
reflects improvement in the subsequent throw.

The updated Q-value is

Q (s,a) = 0.5+ 0.5 (−19+ 0.5 ⋅ 0− 0.5) = −9.25.

Compared to the unmodified case, this significantly lower Q-
value ensures that the agent avoids selecting the same faulty action 
in future iterations. Similarly, the positive additional reward helps 
reinforce beneficial behavior when the distance decreases.

These reward modifications must be carefully tuned to ensure a 
balance between exploration and exploitation during training. 

3.1.3 Q-learning for throwing tasks
The performance of the Q-learning algorithm is evaluated for 

throwing tasks using a two-link planar arm (Figure 4) and the 
Franka Emika robot (Figure 5). The experiments are conducted 
under different scenarios, both with and without boundary 
constraints.

• Experiment #3: The target basket is placed at varying positions 
to evaluate the algorithm’s learning capability. A two-link 
planar manipulator with rotational joints is used, with its DH 
parameters given in Table 4.

As shown in Figure 12, after the initial throw, the algorithm 
quickly adapts the manipulator’s joint configuration to bring the 
ball closer to the basket, using information obtained from the 
previous throw. The number of iterations is 2, and the elapsed time 
is 0.010830 s.

In the scenario illustrated in Figure 13, the algorithm executes 
six actions as follows: 

1. Decrease θ1, negative reward, “randomly.”
2. Increase θ1, positive reward, “exploit.”
3. Increase θ1, positive reward, “randomly.”
4. Increase θ1 and θ2, positive reward, “randomly.”
5. Increase θ1, positive reward, “exploit.”
6. Increase θ1, positive reward, “exploit.”

FIGURE 13
Learning process using Q-learning-based throwing using the two-link 
planar robot. The figure illustrates the evolution of the learned policy 
across six training steps, highlighting how the agent progressively 
improves its decision-making.

The total elapsed time is 0.143417 s, and the final distance is 
0.92 cm.

• Experiment #4: The basket is placed at position (0,0), close to 
the robot’s base, to evaluate Q-learning behavior under more 
constrained spatial configurations.

As shown in Figure 14, the algorithm finds a valid solution by 
adjusting the throwing angle. However, it requires a large number 
of iterations (1183), resulting in a total execution time of 2.248 s 
(Homsi et al., 2023). This is primarily due to the limited number of 
states managed by the algorithm.

• Experiment #5: This experiment explores performance in three 
scenarios: (i) a limited number of states (Figure 15), (ii) an 
expanded state set (Figure 16), and (iii) expanded states with 
a hardware failure in joint 2 (Figure 17).

These setups assess the algorithm’s adaptability to changes 
in the state space and the reliability of the hardware. 
With a limited state space, the algorithm converges in 51 
iterations. When the number of states is increased, convergence 
improves significantly to just nine iterations. However, in 
the presence of a hardware fault (immobile second joint), 
convergence requires 12 iterations. This comparison illustrates 
that expanding the state space enhances learning efficiency, while 
hardware failures introduce additional complexity that delays
convergence.

• Experiment 6: The algorithm was evaluated under physical 
constraints, such as the presence of a wall or a nearby person. 
In certain test scenarios, the algorithm operated without 
explicitly detecting these constraints, relying solely on the 
distance between the landing point and the basket, as shown 
in Figures 18–20.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 14
Learning process using Q-learning as the agent progressively 
improves its actions to reach the target position at (0,0).

FIGURE 15
Learning process using Q-learning shows how the agent learns to 
perform the throwing motion despite being constrained to a limited 
number of states.

The algorithm demonstrated notable robustness under the 
following challenging conditions.

• With a wall near the basket, a successful throw was achieved 
within 10 iterations.

• In the presence of a hardware failure (immobile second joint) 
and a nearby wall, the robot successfully adapted, requiring 
nine iterations.

• When only a wall was present near the robot, the algorithm 
needed just seven iterations to reach the goal.

These outcomes highlight the adaptability and efficiency of 
the Q-learning algorithm in environments constrained by physical 
obstacles and hardware limitations.

FIGURE 16
Learning process using Q-learning illustrates improved throwing 
behavior enabled by incorporating a larger number of states.

FIGURE 17
Learning process using Q-learning with more states considered and 
the fully constrained second joint.

• Experiment 7: To further test the adaptability of Q-learning, 
experiments were conducted using the Franka Emika robot 
to optimize object throwing into a basket. The robot 
learned through iterative trials, adjusting its joint parameters 
to minimize the distance between the landing point and 
the basket.

The learning process, illustrated in Figure 21, demonstrates the 
robot’s improved performance over time. The resulting trajectory of 
a successful throw is shown in Figure 22. Remarkably, the algorithm 
required only five iterations to discover an effective solution using 
the Franka Emika platform.

Although Q-learning exhibits clear benefits in terms of 
robustness and rapid convergence, it is important to recognize its 
limitations in scenarios involving high-dimensional or continuous 
action spaces. In such cases, deep reinforcement learning methods 

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 18
Learning process using Q-learning when a wall presents a 
nearby boundary.

FIGURE 19
Learning process using Q-learning when there is a wall as a nearby 
boundary and one joint is completely fixed (nine iterations).

such as DQNs are typically employed to extend Q-learning’s 
capabilities (Sutton and Barto, 2018; Watkins, 1989). 

3.2 Throwing a ball using deep RL

3.2.1 Compatibility with deep learning
Integration with deep neural networks through techniques such 

as DQNs expands the capabilities of Q-learning (Mnih et al., 2013; 
Mnih et al., 2015). This combination, often referred to as deep 
RL, enables Q-learning to handle high-dimensional input spaces, 
including images, thereby broadening its applicability across diverse 
domains (Sutton and Barto, 2018; Watkins, 1989).

FIGURE 20
Learning process using Q-learning when a wall presents a boundary 
that is near the target basket (10 iterations).

FIGURE 21
Learning process using Q-learning for the throwing task using the 
Franka Emika Panda robot (five iterations).

DQN enhances conventional Q-learning by effectively 
managing complex and high-dimensional state spaces, which 
are difficult to represent using tabular methods (Mnih et al., 
2013; Mnih et al., 2015). It is a powerful AI technique capable 
of learning hierarchical features directly from raw input data, 
eliminating the need for manual feature engineering (Sutton and 
Barto, 2018; Watkins, 1989).

Despite these advantages, DQNs present several challenges. As 
an extension of Q-learning, DQN approximates the Q-function 
using a deep neural network instead of a Q-table. The network 
takes the environment’s state as input and outputs expected 
rewards for each possible action. It is trained by minimizing a 
loss function defined as the difference between predicted and 
target Q-values. However, DQN involves high computational 
complexity, requires careful hyperparameter tuning, and may 
experience instability during training. Additionally, its effectiveness 

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 22
Trajectory of the solution for the throwing task found by Q-learning 
using the Franka Emika Panda robot.

FIGURE 23
Comparison between DQN, Q-learning, expected SARSA, and SARSA 
in terms of TAR.

depends on the specific problem characteristics (Sutton and 
Barto, 2018; Watkins, 1989). 

3.2.2 Comparison between DQN and other RL 
algorithms

The same experiments were conducted using the standard DQN, 
and a comparison was made between SARSA, expected SARSA, 
and Q-learning for the task of throwing a ball into a basket using a 
two-arm robot manipulator. Upon comparison, DQN demonstrated 
superior performance over the other algorithms in terms of total 
average return, as shown in Figure 23.

3.2.3 Comparison between different types of 
DQNs

When comparing different types of DQNs for a robot 
manipulator tasked with throwing balls, several key factors 

FIGURE 24
Comparison between different types of DQN in terms of total average 
return for 100 episodes.

are considered. All types of DQNs succeed in the throwing 
task; however, DQNs with multi-head attention (DQN-
MHA) outperform others in terms of total average return, 
as shown in Figure 24.

The performance comparison between different DQNs is based 
on key performance indicators (KPIs) related to policy performance, 
learning speed, and learning accuracy. 

1. Total average return (TAR): this parameter provides an overall 
measure of the agent’s performance by calculating the mean 
reward across multiple episodes.

2. Standard deviation (SD): this parameter measures the 
variability in the reward curve, indicating the consistency 
of the agent’s performance:

• Lower SD values indicate more consistent rewards, 
implying stable agent performance.

• Higher SD values suggest greater variability in rewards, 
generally indicating instability or inconsistency in 
performance.

3. Learning speed: this parameter indicates how quickly the agent 
improves its performance, how rapidly it converges to an 
optimal or near-optimal policy, and how effectively it balances 
exploration and exploitation.

4. Trend slope (TS) of the reward: this parameter reflects the 
general direction of the agent’s performance over time:

• Positive TS values indicate increasing rewards, 
suggesting that the agent is learning and improving, 
which is desirable.

• Negative TS values indicate decreasing rewards, implying 
deterioration in performance, which is generally 
undesirable.

• Zero or near-zero TS indicates stable rewards over time, 
which may indicate a learning plateau.

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 6  Comparison between different DQNs. The first column lists the 
considered DQNs. The second column reports the standard deviation of 
the return, the third column shows the trend slope of the return during 
training, and the final column indicates the learning speed through the 
number of episodes required to reach 75%, 90%, and 95% of the 
final return.

DQN type SD [105] TS [104] 75% 90% 95%

DQN-MHA 2.25 0.766 86 95 98

DQN-SA 1.435 0.4625 84 94 97

DQN-N 0.793 0.288 79 92 96

PER-DDQN-SA 2.126 0.733 86 95 98

DDQN-SA 1.6 0.546 85 95 98

DDQN-N 1.745 0.595 88 96 98

DDQN 1.727 0.572 91 97 99

PER-DDQN 1.973 0.636 84 94 97

PER-DQN 1.883 0.647 89 96 98

Standard-DQN 0.664 0.227 89 97 99

5. Mean loss: this parameter measures average error; lower values 
indicate better model performance accuracy.

Based on these KPIs, performance improves as the TAR 
increases. As shown in Figure 24, DQN-MHA achieves the highest 
rewards (TAR = 415,505), while the standard DQN has the 
lowest performance (TAR = 100,147). Regarding SD and TS, 
algorithms with lower SD and higher TS are considered superior. As 
presented in Table 6, DQN-MHA and PER-DDQN-SA outperform 
other variants in terms of TS. Conversely, standard DQN and 
DQN-N exhibit the best performance concerning SD. Other DQN 
types demonstrate intermediate results across KPIs, neither excelling 
nor significantly underperforming. While they do not lead in 
all metrics, they maintain competitive performance compared to 
other methods.

Another crucial metric is learning speed, which indicates how 
rapidly an agent improves its performance during training. It is 
typically measured by the rate at which cumulative reward or average 
reward per episode increases over time. Common measurements 
include the number of episodes needed to reach 75%, 90%, and 95%
of the total reward. Learning speed generally depends on factors 
such as the neural network architecture, the quality of the training 
data, and the effectiveness of the exploration–exploitation strategy 
(Li, 2023; Lapan, 2018). The results from the previous experiment 
are summarized in Table 6. Based on the mean loss KPI, the results 
demonstrate a significant reduction in mean loss from the standard 
DQN (242.2) to the enhanced variants. DDQN-based models 
demonstrate significantly lower losses, with DDQN-N achieving 
the lowest among standard variants (0.26). PER-enhanced methods 
further improve performance by several orders of magnitude, with 
PER-DQN reaching as low as 7.367× 10−12, indicating more stability 
and learning efficiency, as summarized in Table 7.

TABLE 7  Mean loss values for different DQNs. The mean is computed as 
μ = 1

n
∑ni=1xi.

Algorithm Mean loss(μ)

DQN 242.2

DQN-MHA 211.05

DQN-N 142

DQN-SA 104.36

DDQN 6.6

DDQN-SA 0.34

DDQN-N 0.26

PER-DQN 7.367× 10−12

PER-DDQN 7.5458230× 10−8

PER-DDQN-SA 1.22712× 10−10

FIGURE 25
Throwing task using the DQN without a wall.

Based on these results, DQN-N emerges as the best-performing 
algorithm. By injecting noise into network parameters, DQN-
N enhances exploration by introducing stochasticity in action 
selection. This enables the agent to explore a broader range of 
actions and states more effectively, accelerating the discovery of 
optimal policies. Additionally, DQN-N reduces dependence on 
manually tuned parameters such as ϵ, leading to more stable and 
consistent learning. By balancing exploration and exploitation while 
minimizing hyperparameter tuning, DQN-N achieves superior 
learning speed, making it a powerful alternative among DQN 
variants (Li, 2023; Lapan, 2018). 

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 26
Throwing task using the DQN with a wall.

TABLE 8  Comparison between different DQNs (task performance). The 
first column lists the considered DQNs. The second column shows the 
number of attempts required to successfully throw the ball to a new 
target location without a wall. The third column presents the number of 
attempts needed when a wall is introduced as an obstacle.

DQN type No boundaries With boundaries

DQN-MHA 18 35

DQN-SA 23 39

DQN-N 25 52

DDQN 25 53

PER-DQN 24 45

DDQN-N 26 55

PER-DDQN 24 45

PER-DDQN-SA 21 39

DDQN-SA 23 49

Standard-DQN 31 68

3.2.4 Throwing an object to an unknown position 
of the basket using DQNs with and without an 
external constraint

To evaluate the robustness of various DQN algorithms in 
uncertain conditions, two experiments were conducted. In both 
cases, DQNs were trained to throw a ball into a basket located 0.6 m 
away from the robot manipulator. Their performance was then tested 
without retraining when the basket was moved to a new location, 
0.8 m away from the robot. The first experiment was performed 
without any obstacles, while the second included a wall obstructing 
the throw, as illustrated in Figures 25, 26. Each algorithm was tested 
over 100 trials using the same robot manipulator. The training 

TABLE 9  Hyperparameter settings for DQN variants in reinforcement 
learning experiments. Optimized hyperparameters are used for each 
algorithm. The learning rate α is shown in the column labeled α [10−3]. 
The number of hidden layers is specified in the column nl, while nneuron
denotes the number of neurons per layer. The activation function and 
optimizer are the same across all DQNs. The same number of neurons 
was used across all layers within a given model.

DQN type α(10−3) nl nneuron

DQN-MHA 10 256 2024

DQN-SA 10 128 1024

DQN-N 0.3 8 256

DDQN 0.1 8 512

PER-DQN 0.5 10 512

DDQN-N 0.5 8 256

PER-DDQN 0.5 8 256

PER-DDQN-SA 1 12 512

DDQN-SA 5 12 512

Standard-DQN 0.1 12 512

settings (hyperparameters, the activation function, and optimizer) 
were consistent across all DQNs and are listed below:

• Learning rate = 0.001
• Network layers = 12
• Episodes = 100
• Neurons for each layer = 512
• Epoch = 500
• Activation function = ReLU
• Optimizer = Adam

The performance results are summarized in Table 8, showing 
the number of successful throws into the relocated basket with and 
without the wall for each DQN variant.

The results indicate that DQN-MHA demonstrated the best 
overall performance in both scenarios. This suggests that the multi-
head attention mechanism significantly enhances the network’s 
ability to focus on important environmental features. This attention-
driven adaptability enables DQN-MHA to outperform other 
variants by achieving higher precision in altered environments, 
particularly when obstacles are introduced. 

4 Discussion

4.1 Results and discussion

The experiments were repeated using the best-performing 
configuration for each algorithm, with hyperparameters tuned 
individually. To ensure optimal performance of each algorithm, 
we employed Optuna, a modern open-source framework for 
automated hyperparameter optimization that enables efficient 

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 27
Comparison between different types of DQNs in terms of total average return for 100 episodes after tuning.

FIGURE 28
Loss curves for all DQN architectures across training episodes, illustrating convergence behavior.

exploration of the hyperparameter space and is recognized as 
one of the most effective tools for this purpose. Specifically, 
we utilized Bayesian optimization via the tree-structured Parzen 
estimator (TPE), a variant of sequential model-based optimization 
(SMBO), to guide the search process. To enhance robustness 
and mitigate overfitting, cross-validation was integrated into 
the optimization pipeline. The final configurations, summarized 
in Table 10, correspond to the best-performing hyperparameter 
sets identified by Optuna for each algorithm, as shown in
Table 9.

All algorithms were optimized with the same procedure (Optuna 
with Bayesian TPE, equal trial budgets, identical metrics, and 
cross-validation). Search spaces were adapted to each algorithm 
since DRL methods differ in terms of stability, sensitivity, and 
capacity requirements; for instance, attention-based variants often 
require deeper networks, while vanilla DQN is more susceptible to 
high learning rates as they cause Q-values to fluctuate excessively 
(each update potentially overwriting previous estimates), leading 
to divergence or oscillations in the Q-function. Imposing identical 
ranges would have biased results by forcing some methods into 

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 29
Last 10 loss values for DQN, DQN-N, DQN-MHA, and DQN-SA architectures.

FIGURE 30
Last 10 loss values for DDQN-SA and DDQN-N architectures.

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 31
Last 10 loss values for PER-DDQN and DDQN architectures.

FIGURE 32
Last 10 loss values for PER-DQN and PER-DDQN-SA architectures.

Frontiers in Robotics and AI 23 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 10  Comparison between different DQNs after hyperparameter 
optimization. The first column lists the considered DQNs. The second 
column shows the number of attempts required to reach a new target 
without a wall, while the third column shows the number of attempts 
required with a wall in place.

DQN type No boundaries With boundaries

DQN-MHA 16 30

DQN-SA 21 35

DQN-N 16 29

DDQN 15 29

PER-DQN 16 35

DDQN-N 12 27

PER-DDQN 12 28

PER-DDQN-SA 20 37

DDQN-SA 20 46

Standard-DQN 29 61

suboptimal regions rather than allowing them to explore the whole 
search space. Fairness was ensured by giving every algorithm equal 
opportunity to reach its best configuration within an appropriate 
search space, so the observed differences in hyperparameters 
in Table 9 reflect intrinsic inductive biases rather than unequal 
treatment, as shown in Table 9.

Figure 27 illustrates the performance of various DQN variants 
in terms of TAR, following individual tuning. The TAR metric 
evaluates the cumulative rewards collected across episodes during 
training, offering a quantitative measure of policy effectiveness. In 
robotic manipulation tasks, a higher TAR reflects the policy’s ability 
to consistently execute precise and repeatable throwing trajectories.

Among the evaluated algorithms, DDQN-N achieved the highest 
TAR value of 3,010,079, surpassing even the performance of PER-
DDQN-SA. The superior performance of DDQN-N can be attributed 
to the following factors:

• Stochastic policy exploration: The use of noisy weights in 
noisy DQN allows for adaptive exploration during training, 
enhancing the agent’s ability to navigate the complex and high-
dimensional reward landscape of the throwing task.

• Robust value estimation: Double Q-learning mitigates 
overestimation bias by decoupling action selection and 
evaluation, resulting in more reliable Q-value estimates 
and fewer suboptimal decisions in environments with 
high variance.

The poor performance of the standard DQN (424,286) can be 
attributed to the following factors:

• Over-reliance on greedy policies: Standard DQN primarily 
follows greedy action selection, which limits exploration and 
prevents the agent from discovering better strategies.

• Inadequate handling of reward sparsity: The throwing task 
often involves delayed and sparse rewards, requiring effective 
temporal credit assignment. Standard DQN struggles to 
propagate reward signals across long episodes, resulting in 
suboptimal learning.

Attention-based variants, such as DQN-MHA (937,760) and 
DQN-SA (743,742), show moderate improvements in TAR. 
These architectures benefit from hierarchical representation 
learning, where attention mechanisms excel at identifying 
critical dependencies in throwing dynamics—essential for 
accurate trajectory prediction. However, in the absence of 
other key enhancements—such as double Q-learning to 
reduce overestimation or noisy networks to encourage better 
exploration—their performance remains limited, with slower 
convergence and reduced robustness compared to more 
advanced variants.

The loss curve, or training curve, illustrates the temporal 
difference (TD) error during the learning process. This metric 
captures the discrepancy between the estimated value function and 
the actual return received from the environment. As shown in 
Figures 28–32, the TD error provides insights into the convergence 
behavior and stability of different DQN variants during training.

Among all evaluated algorithms, the standard DQN exhibited 
the poorest performance, with the highest loss value (236.67), 
indicating instability in the learning process. This poor performance 
is attributed to overestimation bias, a known limitation of standard 
DQN due to the absence of enhancements such as target networks 
with double estimation or structured noise. In contrast, advanced 
variants—such as PER-DQN, PER-DDQN, and the self-attention-
based PER-DDQN-SA—achieved significantly lower loss values, 
with PER-DDQN-SA reaching the lowest at 6.32× 10−10. These 
results can be explained by the improved training efficiency 
introduced by prioritized experience replay. Unlike standard 
DQN, which samples past transitions uniformly, PER prioritizes 
training on transitions with high temporal-difference error. This 
prioritization emphasizes informative yet rare events—such as 
successful or failed throws—that are critical in tasks such as robotic 
ball-throwing.

By sampling more frequently from these high-value experiences, 
PER guides the learning process toward more effective policy 
updates, especially in environments characterized by sparse 
rewards and high-dimensional state–action spaces. Furthermore, 
the DDQN architecture addresses the overestimation bias by 
decoupling action selection from value estimation using two 
separate networks. When combined with structured exploration 
strategies such as noisy networks, DDQN-N demonstrated notable 
stability (0.1171), suggesting that guided stochastic exploration 
accelerates convergence in complex robotic control tasks.

As shown in Table 10, PER-DDQN and DDQN-N required 
the fewest number of trials to successfully throw the ball to 
a new location without hitting a wall. This highlights the 
algorithms’ superior ability to generalize the task dynamics. 
The use of prioritized experience replay enables more efficient 
learning from informative transitions, while the incorporation 
of double Q-learning mitigates overestimation bias during value 
updates. Moreover, the inclusion of noisy weights in the DQN-N 
variants further improves the exploration–exploitation trade-off by 

Frontiers in Robotics and AI 24 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 33
Comparison of the total average return for the DQN architecture under different levels of sensor noise.

FIGURE 34
Loss curves for the DQN under different levels of sensor noise.

enabling more structured and adaptive exploration, outperforming 
algorithms that rely on fixed or simplistic exploration strategies.

In contrast, standard DQN consistently demonstrated poor 
performance across multiple metrics, including high loss, low 
TAR, and inefficient policy convergence. These shortcomings 
are primarily due to its reliance on basic epsilon-greedy 
exploration, which often results in overfitting and suboptimal 

Q-value estimation. Notably, DQN variants with attention 
mechanisms achieved higher trial efficiency compared to their 
non-attention counterparts. In particular, DDQN-SA benefited 
from the ability to better reason about complex dependencies, 
such as the relationship between ball trajectories and basket 
locations, leading to more effective decision-making during task
execution.

Frontiers in Robotics and AI 25 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 35
Comparison between DDQN-N for different levels of sensor noise in terms of the total average return.

FIGURE 36
Loss curves for DDQN-N under sensor noise.

The combined techniques with standard DQN, such as double 
networks, prioritized experience replay, noisy networks, and self-
attention, show better convergence, higher TAR, and greater 
trial efficiency. These findings reflect the importance of many 
structured exploration and reasoning mechanisms in DRL for 
complex robotic tasks such as throwing. 

4.2 Robustness evaluation

To evaluate robustness to sensor noise and joint 
constraints, we choose two architectures: DQN as a baseline 
architecture and DDQN-N as an architecture with superior
performance.

Frontiers in Robotics and AI 26 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 37
Histogram of attempts needed to successfully throw using DQN under sensor noise. In each episode (out of 100 in total), the robot has different initial 
positions.

4.2.1 Testing sensitivity to sensor noise
To evaluate the robustness of the trained DQN and DQN-N 

policies under sensor noise, we introduced zero-mean Gaussian 
noise to the input observations during testing—specifically to the 
joint positions and the computed throwing angle. The noise was 
applied with standard deviations of 0.01, 0.05, and 0.1, as suggested.

The performance under these noise levels is illustrated 
in Figures 33, 34 for DQN and Figures 35, 36 for DDQN-N, 
which show that all three policies maintain similar TAR and 
loss curve behavior across noise levels. However, differences 
become apparent when examining the number of attempts 
required to complete the task.

Frontiers in Robotics and AI 27 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 38
Histogram of attempts needed to throw using the DDQN-N under sensor noise. In each episode (out of 100 in total), the robot has different initial 
positions.

For this evaluation, we conducted 100 tasks for each DQN 
architecture. In each task, the planar robot arm started from a 
different initial position and attempted to throw an object toward 
a new target. The number of attempts required before a successful 
throw was recorded and plotted as a histogram, shown in Figures 37, 
38 for DQN and DDQN-N, respectively. Table 11 summarizes the 
results for DQN and DDQN-N. The pairwise comparison results 

show that both the DQN and DDQN-N algorithms are sensitive to 
increases in sensor noise, particularly when comparing high noise 
levels (SD = 0.10) with lower levels (SD = 0.05 and SD = 0.01). 
For DQN, these differences are statistically significant with medium 
effect sizes, indicating a clear degradation in performance as noise 
increases, as shown in Table 12. In contrast, DDQN-N also shows 
significant differences under the same comparisons, but with smaller 

Frontiers in Robotics and AI 28 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 39
Comparison between DQN for two different joint constraints in terms of the total average return.

FIGURE 40
Comparison between DDQN-N for two different ranges of the joint constraints in terms of the total average return.

effect sizes, indicating greater robustness to noise perturbations. 
Comparisons between SD = 0.05 and SD = 0.01 are not significant 
for either algorithm, implying that performance remains stable at 
lower noise levels. Overall, DQN is more strongly impacted by noise, 
whereas DDQN-N exhibits greater resilience, though it still exhibits 
measurable performance degradation under high-noise conditions, 
as shown in Table 13.

From these results, two key observations can be made:

• Impact of noise level: All architectures performed better 
with lower noise levels. As sensor noise increased, a higher 
proportion of throws required more attempts.

• Comparison between DQN and DDQN-N: DDQN-N showed 
improved resilience to noise. For instance, under the highest 

Frontiers in Robotics and AI 29 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 41
Loss curves for the DQN under joint constraints.

FIGURE 42
Loss curves for the DDQN-N under joint constraints.

noise level (with a standard deviation of 0.1), only 8% of 
the throws with DDQN-N required more than 40 attempts, 
compared to 20% for the baseline DQN.

These results indicate that DDQN-N exhibits greater robustness 
to input noise. We attribute this to the architectural differences: 
standard DQN learns a deterministic state–action mapping via the 
Q-function, which makes it more susceptible to perturbations in the 

input. In contrast, DDQN-N integrates mechanisms that enable it to 
better generalize over noisy observations. 

4.2.2 Testing sensitivity to joint constraints
To evaluate the impact of joint constraints on throwing task 

performance, we considered a two-link planar robot and imposed 
the following constraints:

Frontiers in Robotics and AI 30 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 43
Histogram of iterations needed to throw using the DQN under joint constraint.

• The angles of both joints are limited to move within the 
range[0, π

6
].

• The angles of both joints are limited to move within the 
range[ π

6
, π

3
].

• The angles of both joints are limited to move within the 
range[ π

3
, π

2
].

We again employed DQN and DQN-N architectures and 
compared their performance.

We could observe the following:

• The range of the joint constraint highly impacts the robot’s 
performance. For example, in the case of the first range, neither 
DQN nor DDQN-N could find the solution and the task has 
consistently failed. On the other hand, for the other two ranges, 
both DQN and DDQN-N were able to successfully learn the task.

• For successful ranges, the evolution of the total average return 
(Figures 39, 40) and the loss curves (Figures 41, 42) were 
similar across all architectures. However, there was a notable 
difference in the loss curve value: for DQN, it exhibited 
high values (above 311), indicating slower convergence and 

greater variance in Q-value estimates, whereas for DDQN-N, 
it converged to 0.

• When it comes to the number of attempts needed to 
successfully throw the ball, both architectures had a relatively 
high and consistent performance (see Figures 43, 44). 
However, DDQN-N had no throws where the number of 
attempts was greater than 50.

The joint range comparison highlights differing sensitivities 
between the DDQN-N and DQN algorithms. For DDQN-N, the 
performance difference between the 30°–60° and 60°–90° ranges is 
not statistically significant, with a very small effect size, indicating 
stable behavior across these ranges. In contrast, DQN shows a 
significant difference at the 95% confidence level, with a small-
to-medium effect size, suggesting that its performance is more 
strongly influenced by joint range variations. These results suggest 
that DDQN-N demonstrates greater robustness to changes in joint 
range, while DQN is more susceptible to performance shifts under 
different configurations, as shown in Table 15.

In summary, DDQN-N showed faster reward convergence, 
lower loss, and overall more reliable performance than DQN, 
as shown in Table 14. 

Frontiers in Robotics and AI 31 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 44
Histogram of iterations needed to throw using the DDQN-N under joint constraint.

4.3 Analysis of the time window

In this section, we examine how the sequence length influences 
the performance of the DQN-MHA architecture. In this context, 
the sequence length refers to the number of consecutive time 
steps provided as input to the self-attention mechanism for the 
assigned task. As this parameter directly influences how the model 
integrates past observations (previous knowledge) when estimating 
Q-values for the current state, it affects both short-term reactivity 
and long-term planning. The shorter sequences improve efficiency 
and reactivity over time but may fail in long-term tasks, and 
longer sequences enhance strategic foresight but require more 
computation and data.

To evaluate the impact of the sequence length on the 
performance of DQN-MHA, different values of the sequence 
length are used (Ba et al., 2016; Britt, 2020; Hausknecht and 
Stone, 2015; Mnih et al., 2015) as follows:

• Sequence length = 4: With a very short context window, 
the DQN captures only the most recent states, enabling 
fast computation and reduced memory usage due to smaller 
attention matrices, resulting in fast training. However, it limits 

the modeling of delayed rewards, often resulting in short-
sighted strategies in multi-step planning.

• Sequence length = 8: It has better performance than length 4 as 
it provides more historical context to DQN. On the other hand, 
it required greater computational and memory resources than 
length 4 and may still fail in tasks requiring long-term credit 
assignment.

• Sequence lengths = 16 and 32: It allows attention to operate 
over an extended history, enabling the capture of long-term 
dependencies and delayed rewards. However, it needs greater 
computational and memory resources for attention operations 
(O(n2) complexity) and carries a higher risk of overfitting in 
small or simple environments.

Regarding the TAR and loss curves (see Figures 45, 46), all 
architectures show similar behavior with a slight improvement 
observed for DQN-MHA using a 32-time-step window, as shown 
in Table 16. However, the results in Figure 47 show that increasing 
the sequence length generally improves the efficiency of the DQN-
MHA. When the sequence length increases from 4 to 8, the 
agent’s average decreases from 17.51 to 16.01 and further to 15.08 
with a sequence length of 16, showing gradual gains as more 

Frontiers in Robotics and AI 32 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 45
Comparison between DQN-MHA for different sequence lengths in terms of the total average return.

FIGURE 46
Loss curves for DQN-MHA for different sequence lengths.

contextual information becomes available to the agent. The largest 
improvement occurred at 32 steps, where the average decreased 
sharply to 9.25 trials. This suggests that the assigned task benefits 
from long context, which helps model the delayed rewards for 
more consistent planning. Overall, increasing the sequence length 
in DQN-MHA improves performance, particularly when changing 
from medium to long context windows. However, this gain comes 

at the expense of higher computational and memory usage. The 
DQN-MHA results show no significant differences among shorter 
windows (TW = 4, 8, and 16), with negligible effects. In contrast, 
TW = 32 consistently outperforms the others, yielding significant 
improvements with medium effect sizes, as shown in Table 17.

To ensure statistical robustness, all reported results are 
based on N independent runs with different random seeds. 

Frontiers in Robotics and AI 33 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

FIGURE 47
Histogram of iterations needed to throw using the DQN-MHA with different sequence lengths.

In addition to mean values, we provide 90%, 95%, and 99% 
confidence intervals (Tables 11–17), including the corresponding 
half-widths, which quantify the uncertainty associated with each 
estimate. Reporting confidence intervals across multiple levels 

offers information equivalent to formal significance testing while 
avoiding the pitfalls of assuming specific distributional forms, 
which are often violated in reinforcement learning outcomes. The 
observed performance differences, therefore, represent statistically 

Frontiers in Robotics and AI 34 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 11  Performance with 90%, 95%, and 99% confidence intervals of the number of trials across algorithms against sensor noise. h denotes the 
half-width of the CI.

Algorithm 90% 95% 99%

Mean ± h CI Mean ± h CI Mean ± h CI

DQN, SD = 0.01 12.22± 2.88 (9.34, 15.1) 12.22± 3.44 (8.78, 15.66) 12.22± 4.56 (7.66, 16.78)

DQN, SD = 0.05 12.52± 2.98 (9.54, 15.5) 12.52± 3.56 (8.96, 16.08) 12.52± 4.71 (7.81, 17.23)

DQN, SD = 0.1 24.76± 4.57 (20.19, 29.33) 24.76± 5.46 (19.3, 30.22) 24.76± 7.23 (17.53, 31.99)

DDQN-N, SD = 0.01 9.99± 1.57 (8.42, 11.56) 9.99± 1.87 (8.12, 11.86) 9.99± 2.48 (7.51, 12.47)

DDQN-N, SD = 0.05 10.22± 2.17 (8.05, 12.39) 10.22± 2.6 (7.62, 12.82) 10.22± 3.44 (6.78, 13.66)

DDQN-N, SD = 0.1 14.55± 3.0 (12.04, 17.06) 14.55± 3.0 (11.55, 17.55) 14.55± 3.97 (10.58, 18.52)

TABLE 12  Pairwise comparisons of the DQN algorithm under different sensor noise levels. Mean differences (Δ), 95% confidence intervals, Welch’s 
p-values, and Cohen’s d effect sizes are provided.

Comparison Mean difference (Δ) 95% CI of Δ t (Welch) p-value Cohen’s d Interpretation

SD = 0.10 vs SD = 0.05 12.24 (5.76, 18.72) 3.73 2.6× 10−4 0.53 Significant, medium effect

SD = 0.10 vs SD = 0.01 12.54 (6.12, 18.96) 3.86 1.6× 10−4 0.55 Significant, medium effect

SD = 0.05 vs SD = 0.01 0.30 (−4.62, 5.22) 0.12 0.90 0.02 Not significant, negligible effect

TABLE 13  Pairwise comparisons of the DDQN-N algorithm under different sensor noise levels. Mean differences (Δ), 90%, 95%, and 99% confidence 
intervals, Welch’s p-values, Cohen’s d effect sizes, and interpretation are provided.

Comparison Δ 90% CI 95% CI 99% CI p-value Cohen’s d Interpretation

SD = 0.10 vs SD = 0.05 4.33 (1.02, 7.64) (0.39, 8.27) (−0.87, 9.53) 0.032 0.31 Significant at 95%, small effect

SD = 0.10 vs SD = 0.01 4.56 (1.61, 7.51) (1.04, 8.08) (−0.09, 9.21) 0.011 0.36 Significant at 95%, small–medium effect

SD = 0.05 vs SD = 0.01 0.23 (−2.44, 2.90) (−2.95, 3.41) (−3.97, 4.43) 0.887 0.02 Not significant, negligible effect

TABLE 14  Performance with 90%, 95%, and 99% confidence intervals of the number of trials across algorithms against joint constraints. h denotes the 
half-width of the CI.

Algorithm 90% 95% 99%

Mean ± h CI Mean ± h CI Mean ± h CI

DQN, [π/6,π/3] 23.96± 4.32 (19.64, 28.28) 23.96± 5.16 (18.8, 29.12) 23.96± 6.83 (17.13, 30.79)

DQN, [π/3,π/2] 15.77± 3.35 (12.42, 19.12) 15.77± 4.0 (11.77, 19.77) 15.77± 5.3 (10.47, 21.07)

DDQN-N, [π/6,π/3] 12.61± 1.89 (10.72, 14.5) 12.61± 2.26 (10.35, 14.87) 12.61± 2.99 (9.62, 15.6)

DDQN-N, [π/3,π/2] 10.74± 1.64 (9.1, 12.38) 10.74± 1.96 (8.78, 12.7) 10.74± 2.59 (8.15, 13.33)

TABLE 15  Pairwise comparison of DDQN-N and DQN algorithms under different joint ranges. Mean difference (Δ), 90%, 95%, and 99% confidence 
intervals, Welch’s p-value, Cohen’s d, and interpretation are provided.

Comparison Δ 90% CI 95% CI 99% CI p-value Cohen’s d Interpretation

DDQN-N [30°–60°] vs [60°–90°] 1.87 (−0.62, 4.36) (−1.10, 4.84) (−2.05, 5.79) 0.217 0.18 Not significant, small effect

DQN [30°–60°] vs [60°–90°] 8.19 (2.75, 13.63) (1.70, 14.68) (−0.38, 16.76) 0.014 0.35 Significant at 95%, small–medium effect

Frontiers in Robotics and AI 35 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 16  Performance with 90%, 95%, and 99% confidence intervals of the number of trials across the DQN-MHA algorithm with different time 
windows. h denotes the half-width of the CI.

Algorithm 90% 95% 99%

Mean ± h CI Mean ± h CI Mean ± h CI

DQN-MHA, time window = 4 17.51± 3.73 (13.78, 21.24) 17.51± 4.45 (13.06, 21.96) 17.51± 5.89 (11.62, 23.4)

DQN-MHA, time window = 8 16.01± 1.8 (14.21, 17.81) 16.01± 2.15 (13.86, 18.16) 16.01± 2.84 (13.17, 18.85)

DQN-MHA, time window = 16 15.08± 1.62 (13.46, 16.7) 15.08± 1.94 (13.14, 17.02) 15.08± 2.57 (12.51, 17.65)

DQN-MHA, time window = 32 9.25± 2.4 (6.85, 11.65) 9.25± 2.86 (6.39, 12.11) 9.25± 3.79 (5.46, 13.04)

TABLE 17  Pairwise comparisons of the DQN-MHA algorithm under different time windows (TW = 4, 8, 16, 32). Mean differences (Δ), 90%, 95%, and 99% 
confidence intervals, Welch’s p-values, Cohen’s d effect sizes, and interpretation are provided.

Comparison Δ 90% CI 95% CI 99% CI p-value Cohen’s d Interpretation

DQN-MHA (TW 
= 4) − (TW = 8)

1.50 (−2.62, 5.62) (−3.42, 6.42) (−5.00, 8.00) 0.548 0.09 Not significant, 
negligible effect

DQN-MHA (TW 
= 4) − (TW = 16)

2.43 (−1.62, 6.48) (−2.41, 7.27) (−3.96, 8.82) 0.323 0.14 Not significant, 
negligible effect

DQN-MHA (TW 
= 4) − (TW = 32)

8.26 (3.85, 12.67) (2.99, 13.53) (1.31, 15.21) 0.002 0.44 Significant at all 
levels, medium 

effect

DQN-MHA (TW 
= 8) − (TW = 16)

0.93 (−1.48, 3.34) (−1.94, 3.80) (−2.86, 4.72) 0.524 0.09 Not significant, 
negligible effect

DQN-MHA (TW 
= 8) − (TW = 32)

6.76 (3.78, 9.74) (3.20, 10.32) (2.07, 11.45) 0.0002 0.53 Significant at all 
levels, medium 

effect

DQN-MHA (TW 
= 16) − (TW = 
32)

5.83 (2.95, 8.71) (2.39, 9.27) (1.29, 10.37) 0.001 0.47 Significant at all 
levels, medium 

effect

meaningful improvements. Furthermore, the magnitude of gains 
(e.g., DQN-MHA achieving approximately 60% higher mean 
performance than DQN under comparable conditions) illustrates 
the practical significance of the results. Our choice of sample size 
follows established practice in the reinforcement learning literature, 
balancing computational feasibility with reliable estimation of 
performance variability. 

4.4 Limitations

Although the proposed architectures show good results in 
throwing tasks, they have several important limitations. First, 
using discrete action spaces constrains the task’s performance. 
Discretizing joint angles makes learning more manageable but 
reduces precision, which can be problematic when highly accurate 
throwing is required.

Second, the methods depend on manually designed reward 
functions. These rewards were determined through trial and error 
and may not generalize effectively to other robots or tasks. The 
speed of learning and how quickly the model converges also depend 
heavily on how the state and reward functions are designed.

Third, although attention-based models such as DQN-MHA 
improve performance, they incur additional computational costs. 
Their complexity can limit real-time use on robots, particularly 
in resource-constrained environments. Finally, the models were 
trained in simplified environments. Their generalization to dynamic, 
real-world settings with more complex physics remains to be 
demonstrated. 

5 Conclusion and future work

This paper serves multiple purposes: it provides a detailed review 
of state-of-the-art deep reinforcement learning algorithms for 
robotic throwing and introduces two novel approaches to enhance 
deep Q-networks by integrating self-attention mechanisms. The 
proposed models demonstrate better performance than the standard 
DQN across all experiments. Although the new models outperform 
other algorithms in specific situations, they exhibit limitations in 
others. Notably, DQN with multi-head attention outperforms DQN 
with structured self-attention. The latter’s complexity and its reliance 
on attention heads reduce its effectiveness for the throwing problem 
compared to the multi-head attention approach.

Frontiers in Robotics and AI 36 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

Combining various techniques with DQNs could prove valuable 
for more complex robotic applications. Transformer architectures 
may significantly improve the precision and adaptability of robotic 
manipulators performing throwing tasks. Advanced transformer 
mechanisms, such as multi-head attention, enable simultaneous 
consideration of critical factors, including object trajectory 
and manipulator positioning, thereby enhancing accuracy and
efficiency.

Future work will focus on tackling throwing tasks with 
reinforcement learning algorithms designed for continuous action 
spaces, such as policy gradient and actor-critic methods, to improve 
performance under real-world constraints.

We also plan to test the proposed architectures in higher-
fidelity simulators such as NVIDIA Isaac Sim, which will allow 
us to incorporate more realistic physics and dynamic scenarios. 
Additionally, we will explore transfer learning techniques to 
apply knowledge from one robotic system to related tasks, 
such as picking and placing, object catching, handing off, and
sorting.

Although this work focused on evaluating the overall 
performance of different DQN-based architectures in a robotic 
throwing scenario, future investigations will include ablation studies 
to better understand the contribution of individual components 
such as attention mechanisms or prioritized replay buffers. Such an 
analysis would provide additional insights into the interpretability 
of the learned policies. Furthermore, statistical hypothesis testing, 
such as Welch’s test, can be beneficial in more marginal cases and 
will be considered in future analyses.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material; further inquiries can be directed 
to the corresponding author.

Author contributions

MA: Conceptualization, Data curation, Formal Analysis, 
Investigation, Methodology, Project administration, Resources, 
Software, Supervision, Validation, Visualization, Writing – original 
draft, Writing – review and editing. MT: Conceptualization, 
Methodology, Resources, Supervision, Validation, Writing – 
review and editing. AF: Formal Analysis, Funding acquisition, 

Project administration, Supervision, Writing – review and editing. 
GC: Formal Analysis, Investigation, Methodology, Resources, 
Supervision, Validation, Writing – review and editing. 

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was partially 
funded by MIMIT under the FREECO2 project, grant number 
F/310265/01-02/X56—Accordi per l’innovazione DM 31/12/2021 
and DD.18/03/2022. This work was partially funded by the Science 
Fund of the Republic of Serbia under the CircuBot project, grant 
number #6784.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures 
in this article has been generated by Frontiers with the 
support of artificial intelligence and reasonable efforts have 
been made to ensure accuracy, including review by the 
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those 
of the authors and do not necessarily represent those of 
their affiliated organizations, or those of the publisher, 
the editors and the reviewers. Any product that may be 
evaluated in this article, or claim that may be made by 
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

AI-ML (2023). “Analytics,” in Reinforcement learning: exploration vs exploitation 
tradeoff.

Albu-Schäffer, A., and Bicchi, A. (2016). “Actuators for soft robotics,” in Handbook of 
robotics. Editors B. Siciliano, and O. Khatib (Springer), 243–282.

August, W., Waeldele, S., Hein, B., Woern, H., and Wyeth, G. (2010). “Accurate 
object throwing by an industrial robot manipulator,” in Proceedings of the Australasian 
Conference on robotics and automation 2010, 10. Brisbane, Australia, 74–81.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv Preprint 
arXiv:1607.06450

Bianchi, D., Antonelli, M. G., Laschi, C., Sabatini, A. M., and Falotico, E. (2023). 
Softoss: learning to throw objects with a soft robot. IEEE Robotics and Automation Mag.
2–12. doi:10.1109/MRA.2023.3310865

Bombile, M., and Billard, A. (2022). Dual-arm control for coordinated fast grabbing 
and tossing of an object: Proposing a new approach. IEEE Robotics Automation Mag.
29, 127–138. doi:10.1109/MRA.2022.3177355

Bombile, M., and Billard, A. (2023). Bimanual dynamic grabbing and 
tossing of objects onto a moving target. Robotics Aut. Syst. 167, 104481. 
doi:10.1016/j.robot.2023.104481

Frontiers in Robotics and AI 37 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://doi.org/10.1109/MRA.2023.3310865
https://doi.org/10.1109/MRA.2022.3177355
https://doi.org/10.1016/j.robot.2023.104481
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Al Homsi et al. 10.3389/frobt.2025.1567211

Britt, P. (2020). How growing e-commerce demand is driving growth in mobile 
robotics. Robot. Bus. Rev. Available online at:  https://www.therobotreport.com/wp-
content/uploads/2019/08/RBR-Whitepaper-GeekPlus-Final.pdf.

Burridge, R. R., Rizzi, A. A., and Koditschek, D. E. (1995). Toward a dynamical pick 
and place. Proc. 1995 IEEE/RSJ Int. Conf. Intelligent Robots Syst. Hum. Robot Interact. 
Coop. Robots (IEEE) 2, 292–297. doi:10.1109/iros.1995.526175

Costa, M. A., Wullt, B., Norrlof, M., and Gunnarsson, S. (2019). Failure detection in 
robotic arms using statistical modeling, machine learning and hybrid gradient boosting. 
Measurement 146, 425–436. doi:10.1016/j.measurement.2019.06.039

Dong, K., Pereida, K., Shkurti, F., and Schoellig, A. P. (2020). “Catch the ball: accurate 
high-speed motions for mobile manipulators via inverse dynamics learning,” in 2020 
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (IEEE), 
6718–6725.

Frank, H., Wellerdick-Wojtasik, N., Hagebeuker, B., Novak, G., and Mahlknecht, S. 
(2006). “Throwing objects–a bio-inspired approach for the transportation of parts,” in 
2006 IEEE International Conference on Robotics and Biomimetics (IEEE), 91–96.

Gonzalez, S. G. (2020). Real time Probabilistic models for robot trajectories. Technische 
Universität Darmstadt, Darmstadt, Germany. Ph.D. thesis.

Group, M. R. (2024). Robotic systems - inverse kinematics. Available online at: 
https://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html. Accessed on [. 
Accessed on [8/January/2024]

Hassan, G., Gouttefarde, M., Chemori, A., Hervé, P.-E., El Rafei, M., Francis, 
C., et al. (2022). Time-optimal pick-and-throw s-curve trajectories for fast parallel 
robots. IEEE/ASME Trans. Mechatronics 27, 4707–4717. doi:10.1109/tmech.
2022.3164247

Hausknecht, M. J., and Stone, P. (2015). Deep recurrent q-learning for partially 
observable mdps. Corr. abs/1507, 06527.

Homsi, M. A., Trumić, M., Cirrincione, G., and Fagiolini, A. (2023). “AI-Based 
approach for throwing and Grasping objects from unknown positions by soft robot 
Upper Body manipulators,” in Proceedings of the IEEE/RSJ International Workshop on 
Intelligent Robots and Systems (IROS) (Detroit, MI, USA).

Hu, N.-Z., Su, C.-H. S., Gong, C.-S. A., Lee, C.-J., Chen, Y.-S., Yang, C.-H., et al. 
(2019). “Machine learning approach for robot diagnostic system,” in IEEE Eurasia 
Conference on IOT.

Kasaei, H., and Kasaei, M. (2024). Throwing objects into a moving basket while 
avoiding obstacles. Unspecified. doi:10.1109/ICRA48891.2023.10160215

Keras (2023). Attention layer.

Kim, J. H., Xiang, Y., Bhatt, R., Yang, J., Arora, J. S., and Abdel-Malek, K. (2008). 
“Throwing motion generation of a biped human model,” in 2008 2nd IEEE RAS and 
EMBS International Conference on Biomedical Robotics and Biomechatronics (IEEE), 
587–592.

Lapan, M. (2018). Deep reinforcement learning hands-on. Packt Publishing 
Birmingham, 6.

Learning, R. R. (2025). Inverse kinematics tutorial.

Li, S. E. (2023). Reinforcement learning for sequential decision and optimal control. 
Springer. Available online at:  https://libgen.li.

Lin, H.-I., Yu, Z., and Huang, Y.-C. (2020). Ball tracking and trajectory prediction for 
table-tennis robots. Sensors 20, 333. doi:10.3390/s20020333

Liu, Y., Nayak, A., and Billard, A. (2022). “A solution to adaptive mobile manipulator 
throwing,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 
IROS, 1625–1632. doi:10.1109/IROS47612.2022.9981231

Lynch, K. M., and Mason, M. T. (1999). Dynamic nonprehensile manipulation: 
Controllability, planning, and experiments. Int. J. Robotics Res. 18, 64–92. 
doi:10.1177/027836499901800105

Mason, M. T., and Lynch, K. M. (1993). Dynamic manipulation. Proc. 1993 IEEE/RSJ 
Int. Conf. Intelligent Robots Syst. 1, 152–159. doi:10.1109/iros.1993.583093

Mims, C. (2020). As e-commerce booms, robots pick up human slack. Wall Str. J.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., 
et al. (2013). Playing atari with deep reinforcement learning. arXiv Prepr. arXiv:1312. 
doi:10.48550/arXiv.1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., 
et al. (2015). Human-level control through deep reinforcement learning. Nature 518, 
529–533. doi:10.1038/nature14236

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., et al. 
(2015). Massively parallel methods for deep reinforcement learning. arXiv Preprint 
arXiv:1507.04296

Raptopoulos, F., Koskinopoulou, M., and Maniadakis, M. (2020). “Robotic pick-and-
toss facilitates urban waste sorting,” in 2020 IEEE 16th International Conference on 
automation Science and engineering (CASE) (IEEE), 1149–1154.

Satici, A. C., Ruggiero, F., Lippiello, V., and Siciliano, B. (2016). “A 
coordinate-free framework for robotic pizza tossing and catching,” in 2016 
IEEE International Conference on robotics and automation, ICRA, 3932–3939. 
doi:10.1109/ICRA.2016.7487582

Satici, A. C., Ruggiero, F., Lippiello, V., and Siciliano, B. (2022). A coordinate-free 
framework for robotic Pizza Tossing and catching. Springer, 207–227.

Schill, M. M., and Buss, M. (2018). Robust ballistic catching: a hybrid 
system stabilization problem. IEEE Trans. Robotics 34, 1502–1517. 
doi:10.1109/tro.2018.2868857

Siciliano, B. (2008). “Kinematics,” in Robotics: Modelling, planning, and control
(Springer).

Sivasamy, D., Dev Anand, M., and Anitha Sheela, K. (2019). Intelligence decision 
making of fault detection and fault tolerance method for industrial robotic 
manipulators. IJRTE. doi:10.35940/ijrte.B1004.0782S319

Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., and Ignateva, A. (2015). Deep 
attention recurrent q-network. ArXiv. doi:10.48550/arXiv.1512.01693

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: an introduction. MIT 
Press.

van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with 
double q-learning. arXiv Prepr. arXiv:1509.06461. doi:10.48550/arXiv.1509.06461

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning with 
double q-learning,”, 2. Phoenix, AZ, 5. doi:10.1609/aaai.v30i1.10295

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., 
et al. (2017). Attention is all you need. Adv. Neural Inf. Process. Syst. (NeurIPS) 30. 
doi:10.48550/arXiv.1706.03762

Watkins, C. J. (1989). Learning from delayed rewards. Cambridge: King’s College. 
Ph.D. thesis.

Wiki, R. (2024). Controlling the phantomx pincher robot arm.

Wikipedia (2023). Exploration-exploitation dilemma.

Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser, T. (2020). Tossingbot: 
learning to throw arbitrary objects with residual physics. IEEE Trans. Robotics 36, 
1307–1319. doi:10.1109/tro.2020.2988642

Zhang, Y., Luo, J., and Hauser, K. (2012). “Sampling-based motion planning 
with dynamic intermediate state objectives: application to throwing,” in 2012 IEEE 
International Conference on Robotics and automation (IEEE), 2551–2556.

Zhang, S., Zhang, S., Wang, B., and Habetler, T. G. (2019). Machine learning and 
deep learning algorithms for bearing fault diagnostics – a comprehensive review. Cornell 
Univ. arXiv:1901, 08247v2. doi:10.1109/ACCESS.2020.2972859

Frontiers in Robotics and AI 38 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.therobotreport.com/wp-content/uploads/2019/08/RBR-Whitepaper-GeekPlus-Final.pdf
https://www.therobotreport.com/wp-content/uploads/2019/08/RBR-Whitepaper-GeekPlus-Final.pdf
https://doi.org/10.1109/iros.1995.526175
https://doi.org/10.1016/j.measurement.2019.06.039
https://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html
https://doi.org/10.1109/tmech.-✐2022.3164247
https://doi.org/10.1109/tmech.-✐2022.3164247
https://doi.org/10.1109/ICRA48891.2023.10160215
https://libgen.li
https://doi.org/10.3390/s20020333
https://doi.org/10.1109/IROS47612.2022.9981231
https://doi.org/10.1177/027836499901800105
https://doi.org/10.1109/iros.1993.583093
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ICRA.2016.7487582
https://doi.org/10.1109/tro.2018.2868857
https://doi.org/10.35940/ijrte.B1004.0782S319
https://doi.org/10.48550/arXiv.1512.01693
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/tro.2020.2988642
https://doi.org/10.1109/ACCESS.2020.2972859
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Methods and solution
	2.1 Reinforcement learning approach
	2.2 Q-learning approach
	2.2.1 Q-learning choice of hyperparameters
	2.2.2 Q-learning states and actions
	2.2.3 Constraint compensation using Q-learning

	2.3 Approaches using DQNs
	2.3.1 DQN with self-attention
	2.3.2 Multi-head attention in DQNs
	2.3.3 Structured self-attention in DQNs
	2.3.4 Comparison analysis of DQNs based on self-attention


	3 Result
	3.1 Q-learning for robot throwing
	3.1.1 Q-learning for pick-and-place tasks
	3.1.2 Constraint compensation using reward function
	3.1.3 Q-learning for throwing tasks

	3.2 Throwing a ball using deep RL
	3.2.1 Compatibility with deep learning
	3.2.2 Comparison between DQN and other RL algorithms
	3.2.3 Comparison between different types of DQNs
	3.2.4 Throwing an object to an unknown position of the basket using DQNs with and without an external constraint


	4 Discussion
	4.1 Results and discussion
	4.2 Robustness evaluation
	4.2.1 Testing sensitivity to sensor noise
	4.2.2 Testing sensitivity to joint constraints

	4.3 Analysis of the time window
	4.4 Limitations

	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

