:' frontiers ‘ Frontiers in Robotics and Al

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Giovanni lacca,
University of Trento, Italy

REVIEWED BY
Dler Salih Hasan,

Salahaddin University, Iraq

Lara Toledo Cordeiro Ottoni,

Federal Institute of Minas Gerais, Brazil
Flabio Mirelez-Delgado,

Unidad Profesional Interdisciplinaria de
Ingenieria Zacatecas (IPN), Mexico

*CORRESPONDENCE
Mohammad Al Homsi,
mohammad.alhomsi@unipa.it

RECEIVED 26 January 2025
REVISED 20 September 2025
ACCEPTED 24 September 2025
PUBLISHED 14 November 2025

CITATION

Al Homsi M, Trumi¢ M, Fagiolini A and
Cirrincione G (2025) Comparative analysis of
deep Q-learning algorithms for object
throwing using a robot manipulator.

Front. Robot. Al 12:1567211.

doi: 10.3389/frobt.2025.1567211

COPYRIGHT
© 2025 Al Homsi, Trumi¢, Fagiolini and
Cirrincione. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Robotics and Al

TYPE Original Research
PUBLISHED 14 November 2025
pol 10.3389/frobt.2025.1567211

Comparative analysis of deep
Q-learning algorithms for object
throwing using a robot
manipulator

Mohammad Al Homsi'*, Maja Trumi¢?, Adriano Fagiolini* and
Giansalvo Cirrincione?

*Mobile and Intelligent Robots @ Panormus Laboratory (MIRPALab), Department of Engineering,
University of Palermo, Palermo, Italy, ’School of Electrical Engineering, University of Belgrade,
Belgrade, Serbia, *Université de Picardie Jules Verne, Amiens, France

Recent advances in artificial intelligence (Al) have attracted significant attention
due to Al's ability to solve complex problems and the rapid development of
learning algorithms and computational power. Among the many Al techniques,
transformers stand out for their flexible architectures and high computational
capacity. Unlike traditional neural networks, transformers use mechanisms such
as self-attention with positional encoding, which enable them to effectively
capture long-range dependencies in sequential and spatial data. This paper
presents a comparison of various deep Q-learning algorithms and proposes
two original techniques that use self-attention into deep Q-learning. The first
technique is structured self-attention with deep Q-learning, and the second uses
multi-head attention with deep Q-learning. These methods are compared with
different types of deep Q-learning and other temporal techniques in uncertain
tasks, such as throwing objects to unknown targets. The performance of these
algorithms is evaluated in a simplified environment, where the task involves
throwing a ball using a robotic arm manipulator. This setup provides a controlled
scenario to analyze the algorithms' efficiency and effectiveness in solving
dynamic control problems. Additional constraints are introduced to evaluate
performance under more complex conditions, such as a joint lock or the
presence of obstacles like a wall near the robot or the target. The output of the
algorithm includes the correct joint configurations and trajectories for throwing
to unknown target positions. The use of multi-head attention has enhanced
the robot’s ability to prioritize and interact with critical environmental features.
The paper also includes a comparison of temporal difference algorithms to
address constraints on the robot’s joints. These algorithms are capable of finding
solutions within the limitations of existing hardware, enabling robots to interact
intelligently and autonomously with their environment.

KEYWORDS

artificial intelligence, deep learning, reinforcement learning, deep Q-learning, robotic
manipulation, object throwing, robotics, self-attention mechanism

01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1567211
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1567211&domain=pdf&date_stamp=
2025-11-11
mailto:mohammad.alhomsi@unipa.it
mailto:mohammad.alhomsi@unipa.it
https://doi.org/10.3389/frobt.2025.1567211
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1567211/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

1 Introduction

In recent years, rapid developments in processor hardware have
enabled artificial intelligence (AI) to significantly transform the
field of robotics. Al facilitates the transition from preprogrammed
automation to adaptive learning, allowing robotic systems to
operate more effectively in complex and dynamic environments.
In this context, the success of deep Q-learning network (DQNY)
in mastering control policies at a human level across various
Atari games (Mnih et al., 2015) has inspired many Al researchers
to explore enhancements to DeepMind’s original algorithm
(Hausknecht and Stone, 2015; Nair et al., 2015; van Hasselt et al,,
2015). DQN has since led to significant advancements in multiple
domains, particularly in robotics.

DQN is based on traditional Q-learning, which aims to
determine the optimal action an agent should take in a given
state to maximize cumulative rewards. However, traditional Q-
learning becomes impractical in high-dimensional or complex
environments, such as those often encountered in robotics.
To address this, DQN uses deep neural networks (DNNs) to
approximate Q-values for all states and possible actions, enabling
scalable and efficient learning (Lapan, 2018). Originally introduced
by researchers at DeepMind in 2013, DQN demonstrated superior
performance in Atari games, surpassing human-level play through
a trial-and-error learning process (Mnih et al., 2015). This success
in gaming applications has encouraged researchers to apply DQN
across a wide range of fields, including robotics.

In robotic applications, DQN enables robots to learn complex
tasks such as navigation, manipulation, and interaction with
dynamic environments (Lapan, 2018). Numerous advancements
and innovations have been made within DQN, including the
introduction of target networks and experience replay, both of which
improve the algorithm’s stability and performance. Experience
replay enhances learning efficiency by allowing the agent to learn
from a diverse set of past experiences rather than relying solely on
recent interactions. The use of a target network provides a stable
reference for updating Q-values, helping mitigate issues related to
the non-stationary nature of learning (Lapan, 2018). As research
in deep reinforcement learning (DRL) for robotics continue to
advance, DQN offers a promising approach for developing more
intelligent and autonomous robotic systems capable of adapting to
their environments and performing complex tasks with minimal
human intervention.

The demand for robotic solutions in the logistics industry
has increased significantly in recent years, driven by the rapid
expansion of e-commerce and the challenges it presents. For
example, online shopping services exert increasing pressure on
logistics operations to handle packages efficiently. Although human
workers possess a high degree of adaptability, they are increasingly
struggling to meet the increasing demand for package handling,
particularly as product volumes continue to grow sharply (Britt,
2020; Mims, 2020; Raptopoulos et al., 2020; Bombile and Billard,
2022). Robotic systems, however, offer promising adaptability to
address these challenges. For instance, robotic throwing can provide
a substantial advantage in scenarios where speed and precision

1 The list of acronyms used in this paper is provided in Table 1.

Frontiers in Robotics and Al

02

10.3389/frobt.2025.1567211

TABLE 1 List of acronyms.

Acronym Meaning

Al Artificial intelligence

ML Machine learning

NN Neural network

RL Reinforcement learning

DQN Deep Q-learning

DNN Deep neural network

DRL Deep reinforcement learning

DH parameters Denavit-Hartenberg parameters

PPO Proximal policy optimization

SAC Soft actor-critic

SARSA State—action-reward-state-action

DQN-N Deep Q-learning with noisy network

DDQN Double deep Q-learning

PER-DQN Prioritized experience replay deep Q-learning

DDQN-N Double deep Q-learning with noisy networks

PER-DDQN Prioritized experience replay double deep Q-learning

DQN-SA Structured self-attention-based deep Q-learning

DQN-MHA Deep Q-network with multi-head attention

DDQN-SA Structured self-attention-based double deep Q-learning

PER-DDQN-SA | Prioritized experience replay and structured
self-attention-based double deep Q-learning

TAR Total average return

DM Dynamic model

DDPG Deep deterministic policy gradient

are critical as it extends a robot’s effective working range beyond
its physical and hardware limitations (Frank et al., 2006). This
capability is particularly valuable in robotic pick-and-place tasks,
as demonstrated in autonomous bi-manual robots such as Delta
robots, which have proven especially effective in applications like
waste sorting (Raptopoulos et al., 2020; Hassan et al., 2022).
Controlling the trajectory of an object using a robotic system
is a complex task; however, it is essential for performing tasks
in dynamic environments. In such scenarios, the robot must
continuously adapt and adjust the position and velocity of the
end-effector to ensure the ball lands accurately in the basket.
Two main challenges arise under these conditions. First, the robot
must compute a valid solution or determine the correct trajectory

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

configuration to successfully throw the ball into the target. Second, it
must accurately adapt its throwing parameters in real time, including
the release position and velocity, to overcome environmental
constraints (Bombile and Billard, 2023).

Controlling the trajectory of an object with a robotic system
seems a complex task, however, it is essential when dealing with
tasks in dynamic environments. In these scenarios, the robot must
continuously adapt and adjust its parameters such as the end-
effector’s position to ensure the ball lands accurately in the basket
position. There are two main challenges in these scenarios. First,
the robot must determine a solution or the correct configuration
for the robot’s trajectory movement to throw the ball into the target.
Second, it must accurately adapt its throwing parameters-including
release position, joint values, and direction in real-time to overcome
constraints in the environment (7).

1.1 Related work

The challenge of dynamic object manipulation has received
increasing attention in recent years. The problem of robotic catching
is often framed as an interception task, similar to traditional robotic
catching scenarios (Burridge et al., 1995; Lynch and Mason, 1999;
Schill and Buss, 2018; Dong et al., 2020; Satici et al., 2022). While
catching involves intercepting an object moving toward the robot,
throwing requires greater control over the robot’s trajectory. In this
case, the trajectory depends on several factors, including the initial
and final positions of the joints, their velocities, and environmental
constraints.

Robotic throwing (Mason and Lynch, 1993; Raptopoulos et al.,
2020; Bombile and Billard, 2022) offers significant advantages in
terms of time and energy efficiency compared to static pick-
and-place approaches. In such cases, advanced vision systems are
employed to track and guide thrown objects with high precision
(Frank et al., 2006). Other researchers have used hybrid learning
and optimization methods to determine the parameters required for
accurate object throwing (Bombile and Billard, 2023).

Various robotic platforms have been used for object throwing,
including 1-DoF and 2-DoF systems (Frank et al., 2006; Mason
and Lynch, 1993), industrial robots (Raptopoulos et al., 2020;
August et al, 2010; Zhang et al, 2012), and humanoid robots
(Kim et al., 2008; Satici et al., 2016). For instance, the KUKA KR-
16 robot has been shown to throw objects to targets 2.5 m away
(August et al., 2010). The UR5 robot has been adapted to throw
objects of different shapes and sizes (Zeng et al, 2020). More
recently, the Franka Emika Panda robot demonstrated adaptive
throwing capabilities, adjusting its behavior in response to dynamic
conditions (Liu et al., 2022). These developments reflect the growing
interest and potential of robotic throwing applications using deep
learning models, laying the groundwork for future innovations
across various industries.

Artificial intelligence enhances the performance of robotic
systems but still requires retraining to adapt to sudden
environmental changes or newly introduced constraints in robotic
manipulators. When new manipulators are deployed, updated
datasets are often necessary for retraining. However, current
algorithms face several challenges in adapting to such changes.
First, many adaptation algorithms rely heavily on human expertise

Frontiers in Robotics and Al

03

10.3389/frobt.2025.1567211

to identify and address constraints, often requiring carefully
planned strategies. Undetected constraints or malfunctions can
cause the robot’s task to fail. Moreover, some Al algorithms cannot
compensate for constraints in real time.

Researchers have explored various approaches to improve
robotic adaptability and mitigate these limitations. For instance,
neural networks have been used to estimate new workspaces for
robotic arms with locked joints, although these methods often fall
short in providing real-time compensation (Sivasamy et al., 2019).
Other research uses acoustic filtering to identify constraints using
sound sensors (Hu et al., 2019). Deep learning algorithms have
also been applied to improve fault diagnosis in robotic systems
under harsh conditions, with a primarily focus on fault identification
(Zhang et al.,, 2019; Costa et al,, 2019). These algorithms have
been primarily used for fault identification, leaving a research gap
regarding their performing under such conditions.

In the context of robotic throwing, researchers have explored
ways to significantly enhance robot capabilities by enabling
them to throw objects into a moving basket while avoiding
obstacles—offering an advantage over manual object placement
using algorithms such as soft actor-critic (SAC) and deep
deterministic policy gradient (DDPG) (Kasaei and Kasaei, 2024).
Other studies have combined several AI models, including
deep convolutional encoder-decoder architectures for image
segmentation, stochastic neural networks for physics simulation,
and reinforcement learning (Zeng et al., 2020).

In one approach, a reinforcement learning agent is used to
generate forward-phase actuation, while a dynamic model (DM)
predicts the landing position. Both the agent and the DM are
implemented as neural networks with a single hidden layer
(Bianchi et al., 2023). It could be observed that the robot’s dynamics
significantly influence the learning process. Other AI approaches
include the use of dual neural networks to predict ping-pong ball
trajectories (Lin et al., 2020) and more advanced architectures such
as autoencoders (Gonzalez, 2020).

Previous studies have highlighted key challenges in this
domain, related to limited training data, prediction errors, and
insufficient accuracy in throwing tasks. Moreover, there is a lack
of comprehensive analysis addressing scenarios where the robot
encounters both environmental constraints and hardware failures
during the throwing process.

1.2 Contributions

This paper compares the performance of various DQN
algorithms applied to the task of object throwing using an
articulated serial robot manipulator. In particular, one of the
paper’s contributions is two novel algorithms that integrate attention
mechanisms into the DQN framework. The effectiveness of these
attention-based algorithms is evaluated against standard DQN
algorithms, with and without attention layers, through a detailed
performance analysis. By incorporating attention mechanisms into
DQN, the robot manipulator’s ability to capture relevant information
is improved, enabling more efficient decision-making during the
throwing process.

This research further tackles real-world limitations such
as hardware faults (e.g., joint restrictions) and environmental

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

TABLE 2 Positioning of proposed research within the related work of throwing an object using a robot manipulator.

Approach

Environmental
constraint/hardware
failure

Learning model

Zeng et al. (2020) Deep learning residual physics

Neither is considered Convolutional residual network

August et al. (2010) Ballistic-trajectory-based motion

planning. An illustrative result

Neither is considered Not ML-based

Liu et al. (2022) Adaptive throwing using trajectory

The robot is disturbed using an external | ML is used to build the object’s inverted

avoidance

planning. The approach requires interaction force flying dynamics
accurate trajectory tracking

Kim et al. (2008) and Satici et al. (2016) Feasibility of humanoid throwing. The Neither is considered Not used
focus is on physical execution, not
learning

Bianchi et al. (2023) Throwing an object using a soft Neither is considered NN +RL
manipulator

Kasaei and Kasaei (2024) Throwing an object with obstacle There is an obstacle near the target. SAC and DDPG

This paper Deep Q-learning approaches

We consider three cases: 1) obstacle
near the target, blocking the ball’s
trajectory; 2) obstacle near the robot,
constraining its motion; and 3) failure

DQN, Noisy DQN, DDQN, PER, and
SA variants

in the robot’s joint

obstacles (e.g., nearby walls or target obstacles), demonstrating
how these challenges can be effectively addressed through reward
shaping within the Q-learning framework. To the best of our
knowledge, this is the first study to evaluate the performance of
learning algorithms for robotic throwing under such conditions, as
summarized in Table 2.

Finally, an extensive comparative analysis is presented,
examining the performance of standard and attention-augmented
DQN variants across a range of constrained and unconstrained
scenarios, highlighting their potential for improved performance in
unstructured environments.

2 Methods and solution

To solve throwing or pick-and-place tasks using Q-learning and
deep reinforcement learning algorithms, it is necessary to define the
action and state spaces the algorithm operates in, along with several
key design decisions, as outlined below:

1. Actions: The actions correspond to joint adjustments, which
vary across experiments. Each adjustment value is computed as
afunction of the difference between the basket’s center position
and the predicted landing point.

2. States: The states include the starting state, working state, and
end state. An additional modification has been introduced:
every new position of the end-effector corresponds to
a new state.

3. Reward function: The reward is based on the error distance,
defined as the distance between the baskets center and the
landing point from the most recent throw.

Frontiers in Robotics and Al

4. Denavit-Hartenberg (DH) parameters: These parameters are
defined for each of the robots used.

2.1 Reinforcement learning approach

An agent is defined as an entity that interacts with the
environment by performing actions, collecting information
(observations or states), and receiving rewards (positive or negative)
(Lapan, 2018). In reinforcement learning, there are two main types
of actions an agent can perform:

o Policy-based actions: The agent learns a policy, which
is a mapping of states to actions. This policy can be
stochastic—where action-state pairs are based on probabilities
for different actions, as observed in algorithms such as DQN
during exploration or proximal policy optimization (PPO)—or
deterministic, where each state maps to a single specific action
(Lapan, 2018).

o Value-based actions: Here, the agent estimates the value of
each action-state pair and selects actions based on these values
(e.g., by choosing the action with the maximum value). For
example, in Q-learning, the Q-function estimates the expected
reward in a Q-table, and the agent selects the action with the
highest Q-value (Lapan, 2018; Van Hasselt et al., 2016; Sutton
and Barto, 2018).

The epsilon-greedy strategy in Q-learning is used to encourage

exploration of the environment. When the agent encounters a new
state with unknown Q-values, it needs to explore different actions

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

FIGURE 1

10.3389/frobt.2025.1567211

Actions
Left 0.05
—p | -
Right 0.7
(B
Up 0.08
Down 17

Neural network-based policy approximation for a discrete action space (adapted from Lapan (2018)).

to estimate their rewards since there is no prior knowledge. This
strategy prevents the agent from sticking to a suboptimal policy and
ensures it does not miss better actions or paths (Van Hasselt et al.,
2016; Sutton and Barto, 2018). In contrast, algorithms such as PPO
or SAC perform exploration automatically. Because these algorithms
initialize network weights randomly during training, the output
initially follows a uniform probability distribution, resulting in
random agent behavior (Lapan, 2018).

A DRL policy is the decision-making mechanism in RL
that guides the agent’s actions based on observations from the
environment. Traditional temporal difference algorithms such as Q-
learning, state—action-reward—state—action (SARSA), and expected
SARSA define policies by estimating state values mapped to each
action, selecting the action with the highest expected return (Lapan,
2018). When the environment has a small, discrete action set, Q-
learning can efficiently approximate the value of each state-action
pair and select the best action.

However, when the action set is large, directly calculating Q-
values for every action becomes inefficient. In such cases, neural
networks (NNs) are used to approximate Q-values (Lapan, 2018). In
DQNs, the NN outputs the expected reward values for actions given
a specific state, represented as scalar values.

There are multiple ways to implement this output:

« The NN outputs identifiers for all possible actions in an array
(representing a discrete set of actions). Although this is a
simple approach, it may not be the most effective way to handle
discrete action sets (Lapan, 2018).

o The NN outputs a probability distribution over the agent’s
actions, as illustrated in Figure 1 (Lapan, 2018).

The pieces of information or knowledge collected by the agent
from the environment at a specific time and state are called the
RL state. The state captures various aspects, including the agent’s
location, the surrounding environment, and sometimes information
on previous states, actions taken, and rewards received.

The activities performed by the agent in DRL are called actions.
Actions can be discrete, continuous, or a combination of both.
Discrete actions represent fixed behaviors, such as moving left or
rightin a grid, moving up or down, or pressing and releasing buttons.
Continuous actions specify variable values related to the agent, such
as the angle position of a steering wheel or the angular velocity

Frontiers in Robotics and Al

of robot joints. Some environments require multiple simultaneous
actions, like adjusting an angle by a discrete increment while
setting a continuous angular speed (Lapan, 2018). In this paper, the
actions in DQN or Q-learning are described as varying between
experiments. Importantly, the joint positions in all experiments
respect the physical constraints and limitations of the robot arm.

The RL reward is a scalar value obtained from the environment
that indicates the degree to which the agent’s previous action was
beneficial or detrimental. Rewards can be positive or negative and
large or small. The timing of reward delivery depends on the
experiment: rewards can be given continuously at every interaction
or only once during the agent’s lifetime (Lapan, 2018). When
rewards are sparse—given only once—other reward signals are 0
until the final reward is received. The reward reflects the success
or failure of the agent’s previous actions. However, receiving a
high reward for certain actions does not guarantee the absence
of negative consequences from earlier decisions. For example, a
risky policy might yield a high immediate reward but lead to poor
outcomes overall (Lapan, 2018).

2.2 Q-learning approach

Q-learning is a model-free, off-policy algorithm that uses a
lookup table to learn the optimal action-value function (Q-function)
for a given state. In the context of throwing balls using a robot
arm, the Q-function represents the expected reward for taking a
particular action (e.g., adjusting the arm’s angle or the throwing
velocity) in a specific state (e.g., the current position of the ball or
the robot arm). However, learning the optimal policy through Q-
learning requires extensive trial-and-error exploration, which can be
time-consuming and inefficient (Van Hasselt et al., 2016).

Additionally, Q-learning may struggle with continuous action
spaces, posing limitations for tasks such as robotic ball throwing that
demand precise control over continuous variables (Sutton and Barto,
2018). Q-learning is classified as an off-policy algorithm because
it learns and improves a policy that is different from the policy
currently being executed by the agent. This contrasts with on-policy
algorithms, in which the agent learns and improves the policy it is
actively following (Van Hasselt et al., 2016).

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Q-Learning

r N
Q Table
o) State-Action Value
State D>
R e T
) - 0
Action s
J - 0
- 0
\ _J

FIGURE 2

Tabular representation of state—action values (Q-table) in the Q-learning algorithm.

2.2.1 Q-learning choice of hyperparameters

The Q-learning algorithm aims to find the optimal policy—a
sequence of actions—that maximizes the expected cumulative
reward over time. This is achieved by updating Q-values using
the Bellman equation, which relates the Q-value of a current
state-action pair to the Q-values of the next state-action pairs, as
illustrated in Figure 2.

The Q-function, or Q-learning update rule, is expressed using
the Bellman equation as follows:

Q(s,a) «— Q(s,a)+¢x[r+ yrr;z/le(s’,a’)—Q(s,a)].

o «is the learning rate, a value between 0 and 1 that determines
how much new information overrides old estimates. A higher
a places more weight on recent rewards.

Q(s,a) is the estimated cumulative reward for taking action a

in state s.

o ris the immediate reward received after executing action a in
state s.

o y is the discount factor, also between 0 and 1, which
determines the importance of future rewards compared to
immediate rewards.

« max,Q(s',a’) represents the maximum Q-value over all

possible actions a’ in the next state s’. Q-learning selects

actions by considering both the immediate and the maximum
future reward.

€ represents the exploration-exploitation trade-off. A higher
€ encourages exploration (trying new actions), while a
lower ¢ favors exploitation (choosing the best-known action).
A decaying ¢ schedule is commonly used, starting with
high exploration that decreases over time (Sutton and
Barto, 2018; Van Hasselt et al., 2016).

This approach allows the agent to first explore its environment

through random actions and then use the gained experience
to select the most appropriate actions for making an optimal

Frontiers in Robotics and Al

06

policy (Sutton and Barto, 2018; Watkins, 1989; Mnih et al., 2013;
Mnih et al., 2015; Van Hasselt et al., 2016). The Q-learning update
rule is applied iteratively as the agent interacts with the environment,
enabling it to learn the optimal policy for choosing actions across
different states to maximize cumulative rewards over time. SARSA,
an on-policy reinforcement learning algorithm, differs from Q-
learning by replacing the term max, Q(s',a’) with Q(s’,a’) in the
update rule:

Q(s,a) «— Q(s,a) +a[r+yQ(s',a') - Q(s,a)].

The agent in the SARSA algorithm updates its Q-values based
on the actions it actually takes. This characteristic indicates that the
learned policy is tightly coupled with the exploration strategy used
during training. As a result, SARSA often yields more conservative
behavior, making it more robust to the agent’s exploration decisions.
In contrast, expected SARSA is an off-policy reinforcement learning
algorithm that improves upon standard SARSA. Instead of relying
on the single action taken by the agent, it uses the expected value over
all possible next actions in the policy’s distribution. This provides a
smoother and often more stable learning process. The update rule
for expected SARSA is provided as follows:

Q(St’at) — Q(St’at)
+a [rt+1 +yVE, [JOWNRYI Q(Svat)] .

Here,

Q(s; a,) is the current estimate of the action-value function for

state s, and action a,.

o « is the learning rate, determining the step size of the Q-
value update.

o 1, is the reward received after taking action a, in state s,.

o yisthe discount factor, controlling the weight of future rewards
relative to immediate rewards.

e E, ;[Q(s141,0,,)] denotes the expected value of Q(s,. 1, ay,1)

over all possible actions a,,, that may be taken in the next state

S;41 under policy 7.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

Error distance vs Joint adjustments

(3'%)/5
(x)2.5] 1
(x2)i5
x/2

Joint adjustments/Radian
o o -
o o = N

o
'S

0.2}

1.5 2 25 3
Error distance/meter

0 0.5 1

FIGURE 3
Different functional mappings from distance d, to joint adjustments in
Q-learning.

This approach aims to reduce variance and improve both
learning efficiency and stability. One of the key hyperparameters
in Q-learning is the exploration-exploitation strategy. As is well
known, this strategy balances two competing objectives: selecting
the best-known action based on current knowledge (exploitation)
and exploring new actions that might yield better long-term rewards
(exploration) (Wikipedia, 2023; AI-ML, 2023).

The immediate reward R(s,a) is designed to encourage
actions that move the throwing result closer to the basket. It is
defined as follows:

20, ifd,, >d,

R=1-0.5(dp, —d,)+
S ifd,,, <d,

+0.3,

where d, is the distance- i.e., the straight-line distance from the
landing point to the center of the basket in throw ¢, and d,,, is the
corresponding distance in the next throw.

In experiments, an additional reward of +0.3 is added if
d,,, <d,. Conversely, a penalty of —20 is imposed if the error
increases. This adjustment helps the agent distinguish between joints
with constraints and those without. For instance, if a joint with
constraints is repeatedly selected, its Q-value will decrease due to
poor performance, making it less likely to be chosen in future
iterations. A numerical example illustrating this behavior is provided
later in the paper.

Moreover, Q-learning easily allows mapping the joint
adjustment values to the error distance d,. When d, is large, the
algorithm tends to apply larger joint adjustments. Conversely,
when d, is small, finer adjustments are made to refine the
trajectory (Figure 3). Although adjusting the joint weights may
influence the results, the same weight is consistently used across all
experiments.

2.2.2 Q-learning states and actions

A Q-learning state encompasses the information available to
an agent about its environment at a specific moment in time.

Frontiers in Robotics and Al

07

10.3389/frobt.2025.1567211

This includes various aspects such as the agent’s current location,
surrounding objects, and the history of previous states, actions
taken, and rewards received. As illustrated in Figure 2, the Q-
learning algorithm relies on a Q-table, typically represented as an
array of Q-values where each row corresponds to a state and each
column corresponds to an action. The generic entry a;; in the Q-
table represents the value Q(s;, aj) (Sutton and Barto, 2018). At the
start of the algorithm, all entries in the Q-table are initialized to 0.
The agent begins to explore the environment, and the Q-function
iteratively updates these values based on interactions. Over time, this
iterative process yields improved approximations of the optimal Q-
values.
The typical Q-learning update loop is as follows:

1. Parameters: step size ain (0, 1l,¢ >0

2. Initialize Q(s,a), for all s € Sand a € A(s), arbitrarily except
Q(terminal,-) =0

3. Loop for each episode:

a. Initialize s
b. Loop for each step of the episode:
1. Choose a from s using policy derived from Q (e.g., ¢
greedy).

2. Take action a and observe R and s'.
3. Calculate the new reward using the Q-function.
4. s=¢'

c. until s is terminal

The e-greedy policy is defined as follows (Li, 2023):

€

[A(s)]
€

+(1-¢ ifa=argmax, Q(s,a)

n(als) =
otherwise.

[A(s)]

Here,

« 71(als) is the probability of taking action 4 in state s.

o ¢ is the exploration rate (a small positive constant, typically
between 0 and 1).

o | A(s)| is the number of possible actions in state s.

o Q(s,a) is the action-value function.

In this paper, the initial state is defined as the starting
configuration of the system, while the ending state corresponds
to a configuration in which Q-learning identifies a successful
throwing solution. A key modification introduced in this work is
the assignment of a unique state to every new position of the end-
effector. This results in a significantly larger number of working
states compared to previous implementations that used a single state
representation, thereby enhancing performance.

A comparison is conducted between two scenarios: (i) Q-
learning with a limited number of discrete states and (ii) Q-learning
with an expanded state space that includes a greater number of end-
effector positions. This comparison is illustrated in Figures 15-17.
By using a finer state discretization, the algorithm is less reliant on
pure exploitation. This is important as excessive exploitation can
cause the algorithm to overlook alternative promising trajectories.
The broader state space increases the diversity of solutions available
for the throwing task, often allowing the algorithm to converge
more quickly. However, this also introduces a risk of over-
exploration, where the agent continually explores new actions

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al. 10.3389/frobt.2025.1567211

TABLE 3 DH parameters for PhantomX Pincher robot (standard
convention).

Joint j 0; (variable) d; (m) a; (m) a; (rad)

2 0, 0 0.105 0
3 6, 0 0.105 0
4 6, 0 0.075 0

FIGURE 5
Franka Emika Panda robot whose simulated model is used in the

robotic throwing task (Albu-Schaffer et al., 2016).

2. For the two-link planar arm (Figure4, DH
parameters provided in Table 4), used in the throwing

task, the defined actions for both joints are as
follows:

I o Increasing or decreasing the joint angle) by a fixed

Admissible configuration of a two-link planar arm (Siciliano, 2008). adjustment value, where k € {1,2}.
o Increasing or decreasing the throwing angle
by 0.1.

TABLE 4 DH parameters for a two-link planar robot (standard

convention). 3. For the Franka Emika Panda robot (Figure 5, DH parameters

provided in Table 5), also used in the throwing task, the defined

Jointi O (variable) d;(m) a;(m) «;(rad)

actions are as follows:

o Increasing or decreasing the joint angle 0, by a fixed
2 0, 0 L, 0 adjustment value, where k € {1,2,3,4,5,6,7}.

« Increasing or decreasing the throwing angle by 0.1.

The adjustment value is computed based on the Euclidean
distance between the position of the target (basket) center and the

without sufficiently exploiting learned policies. To mitigate this Janding point of the most recent throw as follows:
issue, the Q-learning algorithm is further modified: if an action

results in a negative reward, the agent returns to the previous Adj_value =w, d,,

state. This simple yet effective modification ensures consistent)))
where d, denotes the distance between the two points and w, is a

convergence by discouraging the repetition of poor actions and i o)]
scaling factor. The updated joint values are constrained to remain

reinforcing successful behaviors.

The actions in Q-learning are defined as joint adjustments, and within their predefined ranges and must satisfy all joint-specific

they vary depending on the experiment, as described below: constraints.
1. For the PhantomX Pincher Robot Manipulator (Figure 10,DH ~ 2.2.3 Constraint compensation using Q-learning

parameters provided in Table 3), used in pick-and-place tasks, Q-learning is employed to update the joint positions, resulting

the defined actions for each joint are as follows: in new coordinates for the end-effector. These coordinates are

calculated using the DH parameters, which describe the kinematics

o Increasing or decreasing the joint angle 6 by w times the of the robotic arm. Various approaches exist for computing the

adjustment value, where k € {1,2,3,4} and w € {1,2,3}. correct end-effector coordinates required for the throwing task.

Frontiers in Robotics and Al 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

TABLE 5 DH parameters for Franka Emika Panda (standard convention).

Joint i 0; (variable) d; (m) a; (m)
1 0, 0333 0 0
2 0, 0 0 —n/2
3 0 0316 0 /2
4) 0 0.0825 /2
5 0 0384 -0.0825 /2
6 6 0 0 /2
7 0, 0.107 0 0

Once these coordinates are determined, inverse kinematics (IK)
can be applied to derive the corresponding joint values. Techniques
such as the Jacobian inverse method and numerical optimization are
commonly used to solve IK problems. These methods account for the
arm’s specific kinematic structure and any joint faults or constraints
(Group, 2024; Learning, 2025).

However, traditional IK solutions are often slow and struggle to
handle multiple joint failures. The Q-learning algorithm overcomes
these limitations by adapting to environmental changes and
predefined policies. The Q-function is shaped to assign higher
rewards to actions that result in throws closer to the basket.
If an action violates a joint constraint, the associated reward is
reduced, guiding the algorithm to select alternative actions involving
unconstrained joints in subsequent iterations. Thus, Q-learning
provides a more adaptive and fault-tolerant solution for dynamically
updating joint positions during the throwing task.

2.3 Approaches using DQNs

Deep reinforcement learning combines neural networks
with RL techniques to address high-dimensional decision-
making problems. This integration enables interactive learning in
complex and dynamic environments. A key reason behind the
growing adoption of deep RL is its demonstrated effectiveness
across diverse applications and its compatibility with modern
computational platforms (Figure 6). Several types of DQNs have
been developed to enhance performance in various settings
(Lapan, 2018; Sorokin et al., 2015). These include standard DQN,
double DQN, N-step DQN, noisy networks, and prioritized
experience replay (PER) DQN, along with attention-based
extensions.

This paper explores several advanced DQN variants:

« Noisy networks (DQN-N): they enhance exploration efficiency
by injecting noise into the network weights.

o Double DQNs (DDQNs): they mitigate overestimation
by decoupling action selection and evaluation through
two separate networks and improving stability and

accuracy—especially useful in tasks requiring precision, such

as robotic throwing.

Frontiers in Robotics and Al

10.3389/frobt.2025.1567211

.

Prioritized replay DQNs (PER-DQNs): they increase learning
efficiency by prioritizing more informative experiences
during training.

Noisy double DQNs (DDQN-Ns): they combine the benefits
of DQN-Ns and DDQNs for robust exploration and
stable learning.

o PER with double DQNs (PER-DDQNs): they integrate the
strengths of PER-DQNs and DDQNs to enhance both
sampling efficiency and Q-value estimation.
Self-attention-based DQNs (DQN-SA, DQN-MHA): they
incorporate attention mechanisms to help the model focus on

critical input features, improving learning in high-dimensional

environments such as throwing tasks.

Structured self-attention double DQNs (DDQN-SA): they

combine DDQNs with structured self-attention to further

refine decision making.

« PER-DDQN-SA: it integrates PER, DDQN, and self-attention
to leverage the advantages of all three approaches.

Recently, deep reinforcement learning studies have investigated
the robustness of policies. A robust policy is desirable because it
should not be sensitive to random seeds or hyperparameters. In
some cases, such as when a validation environment is unavailable,
off-policy evaluation can be used to estimate policy performance
using only pre-collected data. This method allows RL agents to
predict the effectiveness of new policies without deploying them in
the real world (Li, 2023).

In this paper, the following metrics are used to evaluate the
performance of different DQN algorithms:

« Policy performance: the total average return (TAR) is the most

common measure of policy performance (Li, 2023):

TAR=E, 4

s

1 N
NZR“]’

]
—

where

o TAR is the total average return,

E, .4 is the expectation over initial states s, sampled from
distribution d_,

o Nis the number of episodes or samples, and

o R; is the return in the ith episode.

This equation expresses the expected average return computed
over N episodes, with the initial states drawn from a given
distribution.

o Learning speed: this refers to the rate at which an RL agent
improves its performance over time through training and
interactions with the environment (Li, 2023).

o Learning accuracy: this metric assesses how closely

a learned policy or value function approximates the

optimal one (Li, 2023).

2.3.1 DQN with self-attention
This novel approach applies two different self-attention
mechanisms within DQN. Self-attention mechanisms selectively

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Deep Q-Network (DQN)

State

FIGURE 6

Q-Value Action

Q-Value Action

Q-Value Action'

Structure of the deep Q-network, illustrating the flow from input state representation to Q-value outputs for each discrete action.

Scaled Dot-Product Multi-Head Attention

Attention

Scaled Dot-Product
Attention

r 1 1

[Linear] [Linear] [Linear]

&k v 1T

Q K Q

Mask (opt.)

FIGURE 7
Visualization of scaled dot-product attention (left) and multi-head
attention (right) (Vaswani et al., 2017).

focus on the most relevant parts of the input data, enhancing the
neural network’s capacity to process large inputs.
The key concepts of attention mechanisms are as follows:

« Self-attention computes relationships between different parts
of the input to generate context-aware representations. It maps
a query and a set of key-value pairs to an output, as shown in
Figure 7. The output is a weighted sum of the values, where
weights are computed using a compatibility function. This
function measures the alignment between the query and each
corresponding key (Vaswani et al., 2017).

o Scaled dot-product attention calculates attention scores by
taking the dot products of queries and keys, scaling by \/d_k,
and applying a softmax function to obtain attention weights
(Vaswani et al., 2017). The inputs are queries and keys (each of
dimension d) and values (dimension d,), arranged in matrices
Q, K, and V, respectively (Figure 7). The attention output is
computed as follows (Ba et al., 2016):

Frontiers in Robotics and Al

QK"
dy

Attention (Q, K, V) = softmax

« Multi-head attention uses multiple attention heads to capture
different aspects of relationships within the data (Figure 7).

Incorporating self-attention mechanisms into DQNs enhances
the agent’s ability to focus on the most relevant features. This leads
to improved decision-making and increased learning efficiency. Self-
attention can be integrated into a DQN as follows:

« The representation of the state uses attention mechanisms
to process and encode state information. For example, the
state vector in a throwing task with a robot manipulator is
processed using self-attention to extract crucial features. This
allows the network to prioritize the most significant parts of
the input data.

Self-attention-based DQNs incorporate self-attention layers
within the network architecture. In this paper, self-attention
layers are added to the network except for the final fully
connected layers. This modification significantly improves the
networK’s ability to handle complex state representations and
enhances learning performance.

Integrating attention mechanisms into DQN improves the
identification and prioritization of critical information from input
data. By focusing on important features, the learning process
becomes more efficient, reducing the number of episodes required
to achieve good performance and accelerating training. Moreover,
attention mechanisms enhance the agent’s ability to generalize. This
facilitates better performance in unseen or complex environments
and allows the agent to adapt more effectively to new scenarios and
challenges.

2.3.2 Multi-head attention in DQNs

Integrating multi-head attention into a DQN can enhance the
agent’s ability to learn more complex policies. This improvement is
achieved by enabling the agent to simultaneously focus on multiple
aspects of the state representation. The architecture of the DQN with

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

multi-head attention (DQN-MHA) used in this paper is shown in
Figure 8 and includes the following components.

o A state input layer that receives a sequence representing
the environments current and previous states as a vector,
illustrated in Figure 8. The input sequence consists of the latest
eight states.

« An attention layer that applies a self-attention mechanism
to the input state, allowing the model to focus on the most
relevant parts. Each attention head processes the same input
sequence but from a different perspective. The outputs of
the heads are concatenated to form the multi-head attention
output. This approach mimics the [query, value] format by
passing the same input twice. Following Keras (2023), the
value is also used as a key. In this work, 12 attention heads
are employed (Vaswani et al., 2017).

» Normalization and residual layers are applied to the multi-
head attention output. The residual connection allows the
input to bypass sub-layers and be added directly to the
output. Layer normalization is applied after the residual
connection to stabilize learning and improve convergence.
The normalization layer uses €= 1x 107°. Its output type is a
KerasTensor with shape (1,No.Neurons).

o A flatten layer reshapes the multi-dimensional tensor
(1,No.Neurons) into a one-dimensional tensor of the same
shape. This facilitates the transition from attention layers to
fully connected dense layers, without altering the data values
or structure.

« A DQN consisting of fully connected dense layers applies
linear transformations followed by ReLU activations. This
enables the learning of complex patterns from the integrated
attention outputs.

« A final dense output layer produces q-values for each possible
action. These Q-values estimate the expected future rewards
for actions given the current state and are used for decision-
making in reinforcement learning.

Within the DQN-MHA model, each attention head receives
the same input sequence, processes it independently using distinct
(g,k) weight matrices, and generates an output that reflects
a unique perspective. This design implements horizontal self-
attention, enabling the model to extract diverse features from the
same input, which enhances information abstraction.

The output of each attention head i is defined as follows:

sw(swi)"
Attention; (S) = softmax| —————— (SW,V)

i

The outputs from all heads are concatenated and projected:

MHA (S) = Concat (Attention, (S), ..., Attention,, (S)) W°.

A residual connection followed by layer normalization is applied:
Z, = LayerNorm (S + MHA(S)).

The output is then flattened and passed through two fully
connected layers with ReLU activations:

z = Flatten (Z,),

Frontiers in Robotics and Al

10.3389/frobt.2025.1567211

State Input

/ Multi-Head Attention / Multi-Head Attention

Layer Normalization

+ Residual Connection Normalization + Residual

<
Z

FIGURE 8
Overview of the DQN-MHA architecture, which integrates multi-head

attention into the deep Q-network framework.

h, =ReLU(W,z+b,),

h, =ReLU(W,h, +b,).
The final Q-value is computed as follows:
Q(spa) = W3h, +bs.

Notations:

o s, € R": current state vector

o S=[s,5...,8,] € R®": sequence of the last eight states

o Q(s,a): Q-value for state s and action a

o A: number of actions

« h: number of attention heads

o d;, d,: dimensions of keys/queries and values

. W?, WE, W,V weight matrices for query, key, and value in head
i

« W9: output projection matrix for the multi-head attention

o Z,: output after residual connection and LayerNorm

« z: flattened vector of Z,

o W, W,, W;: weight matrices for the fully connected layers

o b;,b,,b;: bias terms for the fully connected layers

o h;,h,: hidden layer outputs in the feedforward network

2.3.3 Structured self-attention in DQNs

Integrating scaled dot-product attention with a DQN can

improve the agent’s ability to learn more complex policies.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

State Sequence (States + Actions)

Y

/ Attentioz! /

ttention Layer 1

Attention Layer 2

v
/ Attention 3 / Attention Layer 3

Concatenate

FIGURE 9
Overview of the DQN-SA architecture integrating self-attention layers

within the deep Q-network.

This is achieved by enabling the agent to focus on different
aspects of the state representation simultaneously. The DQN-
SA architecture proposed in this work (Figure 9) consists of the
following components:

State input layer: it receives a sequence of states, identical to
the input used in the DQN with MHA architecture.
Self-attention layer 1: it applies a scaled dot-product attention

mechanism to the input sequence, offering a first perspective
(“point of view”) on the state.

Self-attention layer 2: it processes the original state input again,
now incorporating the output of the first self-attention layer.

Self-attention layer 3: it takes the result from the second layer
and combines it with the first layer’s output to form a refined

third-level perspective.

» Concatenation layer: it merges the outputs of all three self-
attention layers into a single vector. This integration step
allows the network to combine multiple attention-derived
representations of the state.

o DQN module: it comprises a series of fully connected dense
layers, identical to the architecture used in the MHA-based
DQN, which processes the concatenated output.

o Q-values output layer: It is a final dense layer that computes
the Q-values for each possible action.

This architecture processes the input state through successive
self-attention layers, with each layer forming its own representation

Frontiers in Robotics and Al

12

10.3389/frobt.2025.1567211

based on the output of the previous layer. As a result, the network
creates a vertical self-attention hierarchy. This layered structure
enables the model to extract increasingly abstract features during
training. However, there is a risk of losing certain low-level details.
To mitigate this, outputs from all attention layers are concatenated,
ensuring that essential information is retained.

For DQN-SA, let Z,, = S. For each attention layer [= 1,2,3,

Q
Q=72 W, K=Z_,Wf, V,=Z_,W/,

.
K;

d

Attention; = softmax A\

Z, = Attention,.

After computing the outputs of the attention layers,
they are concatenated and passed through a fully connected

feedforward network:

Z = Concat(Z,,Z,,Z;), z=Flatten(Z

‘concat concat) >

h, =ReLU(W,z+b,), h,=ReLU(W,h, +b,),

Q(spa) = Wsh, +bs,
where

« § € R": input state sequence vector.

o Z, = S: initial input to the first attention layer.

B W?, Wf(,WlV: query, key, and value weight matrices for layer I,
respectively.

o dj: dimensionality of the keys and queries.

» Q;, K, V;: transformed input matrices in layer I.

« Attention;: output of the scaled dot-product attention for layer
L.

« Z;: output of attention layer [.

o Zonear: concatenated outputs from all attention layers.

« z: flattened version of Z_, ;.

o W, W,,W,: weight matrices of the dense layers.

o b;,b,,b;: bias vectors for the dense layers.

o h,,h,:intermediate activations from the fully connected layers.

o Q(s;,a): predicted Q-value for taking action a in state s,.

2.3.4 Comparison analysis of DQNs based on
self-attention

The primary distinction between the two architectures lies in the
direction of self-attention: DQN-SA employs vertical self-attention,
while DQN-MHA uses horizontal self-attention. In DQN-MHA,
multiple attention heads operate in parallel on the same input
but produce different outputs due to variations in their query-key
weight matrices. Each head captures a distinct perspective of the
input, enabling the network to extract diverse features relevant for
solving deep reinforcement learning problems.

In contrast, DQN-SA generates each layer’s output based on
the preceding self-attention layer, forming a hierarchical abstraction
of the input. This vertical stacking enhances the model’s capacity
for abstraction but may lead to a loss of finer details. To mitigate
this, the input vector of each self-attention layer is fused with the

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

original state input. Although DQN-SA shares structural similarities
with DQN-MHA, it functions in a sequential (vertical) manner.
Considering the complexity of the throwing task, additional self-
attention layers or multi-head attention in DQN-SA may not be
necessary.

3 Result

This section describes the application of the above techniques
to different robots performing various tasks when limited by
physical boundaries or affected by failures. These scenarios are
addressed using different reinforcement learning algorithms. The
corresponding code can be found on GitHub?,

3.1 Q-learning for robot throwing

3.1.1 Q-learning for pick-and-place tasks

To evaluate the performance of the Q-learning algorithm
in the presence of physical constraints (e.g., hardware failures
or environmental boundaries), two experiments were conducted
for pick-and-place tasks (Wiki, 2024). The robot used is the
PhantomX Pincher, shown in Figure 10, with its DH parameters
provided in Table 3.

« Experiment #1: The robot is tasked with moving from an initial
position to point A (0.1698,0.0272,-0.2081) and subsequently
to point B (0.2313,-0.0401,-0.1333) in Cartesian space.
After reaching point A, two simultaneous failures occur: one
restricts the motion of the second joint, while the other
completely locks the fourth joint. Despite these failures, the
Q-learning algorithm is able to adapt and find alternative
solutions, avoiding reliance on the faulty joints. The robot
reaches near point A with a position error of 0.8778 cm and
near point B with an error of 0.3817 cm. The total execution
time is 10.25 s.

o Experiment #2: To assess the algorithm’s behavior under
multiple joint failures, the robot sequentially
reach three target points in Cartesian space: A=
(0.1698,0.0272,-0.2081), B =(0.2313,-0.0401,-0.1333), and
C =(-0.0436,0.2610,-0.182). After reaching point A, a failure
affects the first joint, limiting its motion. Upon reaching point

must

B, two additional failures occur: the second joint becomes fully
blocked, and the third joint’s range is severely restricted. The
Q-learning algorithm successfully guides the robot to all three
points despite the joint limitations, achieving position errors
of 0.7176 cm, 0.7921 cm, and 0.9853 cm for points A, B, and
C, respectively. The total time taken is 18.83 s.

3.1.2 Constraint compensation using reward
function

Reward function design, also known as reward function
engineering, is among the most challenging aspects of reinforcement

2 https://github.com/MhdNur9/DQN_Types

Frontiers in Robotics and Al

13

10.3389/frobt.2025.1567211

FIGURE 10
PhantomX Pincher robotic manipulator.

learning, particularly when addressing robotic constraints such asjoint
range limits and torque saturation. To ensure that the agent operates
within its physical limitations, penalty terms can be introduced into the
reward function, e.g., for actions that violate joint constraints. Properly
tuning these penalty weights not only encourages physically feasible
behavior but also accelerates the learning process by guiding the agent
toward safer and more effective solutions.

Although numerous types of constraints are relevant in robotic
systems, we focus now solely on total joint failures. The reward
function is modified accordingly to enable efficient task execution
while respecting these constraints.

-20, ifd,,, >d,

R=1-05-(d,,,—d,)+
t+1 t) ifdt+1<dt

+0.3,

The above reward function incorporates a distance-based
shaping term and a discrete bonus/penalty mechanism. The
additional reward values (+0.3 and —20) were selected empirically
through systematic experimentation, evaluating various alternatives
to identify those that produced optimal learning performance and
stable agent behavior.

The reward is computed based on the distance, defined as the
Euclidean distance between the landing point and the center of the
basket. The center of the basket is taken as the coordinate origin
(0,0). A positive bonus of +0.3 is applied whenever the distance
decreases, whereas a large negative penalty of —20 is applied when
the distance increases or remains the same as in the previous attempt.
This design encourages the agent to perform actions that improve
task success while simultaneously adhering to joint constraints.

« Analysis without sudden constrains.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://github.com/MhdNur9/DQN_Types
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Action 1
Reward 1
(s2)
Qctiond33 Action 2
cwar Reward 2
- s4 . s3
- &_—_7// “—.\\—_) //
States - Actions Action 1 Action 2 Action 3
Starting State (S1) Reward 1>0 0 0
S2 0 Reward 2 <0 Reward3>0
S4 - - -

FIGURE 11
Example of state transition in Q-learning based on action outcomes.

As illustrated in Figure 11, selecting action 2 from state 2 leads
to a negative reward because the distance d, increases. Consequently,
the algorithm does not transition to state 3 but instead remains in
state 2, and the negative reward is recorded for action 2. In the
following iteration, the algorithm selects a different action—either
by exploiting prior knowledge or through random exploration—and
chooses action 3. Since this action results in a smaller d,, it yields a
positive reward and transitions the agent to state 4.

If a valid solution—or multiple solutions—exists, the Q-
learning algorithm consistently converges toward it as it favors joint
adjustment values that minimize the error distance. In cases where
no exact solution is possible due to joint failures or constraints, the
algorithm outputs a set of joint values and a throwing angle that
results in the object being thrown to the position closest to the
basket.

o Analysis with sudden constraints.

There are two possible sub-cases in this scenario:

1. Unconstrained action dominance: The reward associated with
the unconstrained joint is higher, and the agent consistently
selects actions unrelated to constraints. In this case, the
algorithm proceeds toward the solution.

2. Constraint-induced deviation (worst case): The agent may
choose an action involving a constrained joint either during
exploration or due to exploitation, where the constrained joint
previously had the highest Q-value. This situation worsens if a
sudden constraint (e.g., joint failure) is introduced.

Consider the worst-case scenario where the agent previously
selected an action with the highest reward, and the resulting landing
point was very close to the basket but not inside it. Suppose a fault

Frontiers in Robotics and Al

14

occurs in a specific joint, rendering it immobile. Let the following
parameters apply:

e d,=d, ; =0.02m (distance to target remains the same),

e Q(s,a) = 0.5 (previous Q-value),

o Q(s',a) = 0 (assuming next state’s value is 0 for simplicity),
o learning rate « = 0.5, and

« discount factor y = 0.5.

The immediate reward, without any additional reward or
penalty, is calculated as follows:

R=1-05(d,, —d,)=1-0.5(0.02-0.02) = 1.
The Q-value is updated as follows:
Q(s,a) =0.5+0.5(1+0.5-0—-0.5) = 0.75.

The increase in Q(s,a) incorrectly indicates that choosing the
same action brings the throwing point closer to the target, which
is misleading due to the joint fault.

Reward shaping: To address this issue, additional penalties and
rewards are introduced in the reward function:

o If d,,; > d,, a large penalty of —20 is applied to discourage
moving away from the target.
o Ifd,,, <d, apositive bonus of +0.3 is awarded to encourage a

reduction in distance.

With the penalty applied, the new immediate reward becomes

R=1-0.5(0.02-0.02) —20 = —19.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Throwing Coordinates over time
0.4 T . .
0.35 |-
0.3
E
— 0.25 1
0
2
5]
g o02f
k<]
—
3
S 015 1
>
0.1
0.05
-0.7 -0.6 -0.5 -04 -03 -0.2 0 0 0.1
X Coordinates [m]

FIGURE 12
Learning process using Q-learning-based throwing using the two-link
planar robot. The figure shows how the robot refines its throwing
strategy: the green line denotes the initial attempt, and the blue line
reflects improvement in the subsequent throw.

The updated Q-value is
Q(s,a) =0.5+0.5(-19+0.5-0-0.5) = -9.25.

Compared to the unmodified case, this significantly lower Q-
value ensures that the agent avoids selecting the same faulty action
in future iterations. Similarly, the positive additional reward helps
reinforce beneficial behavior when the distance decreases.

These reward modifications must be carefully tuned to ensure a
balance between exploration and exploitation during training.

3.1.3 Q-learning for throwing tasks

The performance of the Q-learning algorithm is evaluated for
throwing tasks using a two-link planar arm (Figure 4) and the
Franka Emika robot (Figure 5). The experiments are conducted
under different scenarios, both with and without boundary
constraints.

« Experiment #3: The target basket is placed at varying positions
to evaluate the algorithm’s learning capability. A two-link
planar manipulator with rotational joints is used, with its DH
parameters given in Table 4.

As shown in Figure 12, after the initial throw, the algorithm
quickly adapts the manipulator’s joint configuration to bring the
ball closer to the basket, using information obtained from the
previous throw. The number of iterations is 2, and the elapsed time
is 0.010830 s.

In the scenario illustrated in Figure 13, the algorithm executes
six actions as follows:

Decrease 0,, negative reward, “randomly”
Increase 0,, positive reward, “exploit”

Increase 0,, positive reward, “randomly”
Increase 6, and 6,, positive reward, “randomly”
Increase ,, positive reward, “exploit”

Increase 0,, positive reward, “exploit.”

I o

Frontiers in Robotics and Al

15

Throwing Coordinates over time

0.45

0.4
E o3}
[}
g
g 02
o
=
s}
S o01f
>

0.0

-0.1 ' ' ¢ ' '
-0.8 -0.7 -0.6 -0.4 -0.2 -0.1 0.0
X Coordinates [m]

FIGURE 13
Learning process using Q-learning-based throwing using the two-link
planar robot. The figure illustrates the evolution of the learned policy
across six training steps, highlighting how the agent progressively
improves its decision-making.

The total elapsed time is 0.143417 s, and the final distance is
0.92 cm.

« Experiment #4: The basket is placed at position (0,0), close to
the robot’s base, to evaluate Q-learning behavior under more
constrained spatial configurations.

As shown in Figure 14, the algorithm finds a valid solution by
adjusting the throwing angle. However, it requires a large number
of iterations (1183), resulting in a total execution time of 2.248 s
(Homsi et al., 2023). This is primarily due to the limited number of
states managed by the algorithm.

« Experiment #5: This experiment explores performance in three
scenarios: (i) a limited number of states (Figure 15), (ii) an
expanded state set (Figure 16), and (iii) expanded states with
a hardware failure in joint 2 (Figure 17).

These setups assess the algorithm’s adaptability to changes
in the state space and the reliability of the hardware.
With a limited state space, the algorithm converges in 51
iterations. When the number of states is increased, convergence
improves significantly to just nine iterations. However, in
the presence of a hardware fault (immobile second joint),
convergence requires 12 iterations. This comparison illustrates
that expanding the state space enhances learning efficiency, while
hardware failures introduce additional complexity that delays
convergence.

o Experiment 6: The algorithm was evaluated under physical
constraints, such as the presence of a wall or a nearby person.
In certain test scenarios, the algorithm operated without
explicitly detecting these constraints, relying solely on the
distance between the landing point and the basket, as shown
in Figures 18-20.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

Y Coordinates [m]

Throwing Coordinates over time
0.45 : . .

o
o

o
w
3}

o
w

e
N
o

o
)

o
o
&

0.1+

0 I | | | !
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
X Coordinates [m]

FIGURE 14
Learning process using Q-learning as the agent progressively

improves its actions to reach the target position at (0,0).

Y Coordinates [m]

Throwing Coordinates over time

0.4

0.35

0.3

0.25

0.2

0.15

0.1

07 06 -05 04 03 -02 -01_0 0.1 0.2 0.3
X Coordinates [m]

FIGURE 15
Learning process using Q-learning shows how the agent learns to

perform the throwing motion despite being constrained to a limited
number of states.

The algorithm demonstrated notable robustness under the
following challenging conditions.

With a wall near the basket, a successful throw was achieved
within 10 iterations.

In the presence of a hardware failure (immobile second joint)
and a nearby wall, the robot successfully adapted, requiring
nine iterations.

When only a wall was present near the robot, the algorithm
needed just seven iterations to reach the goal.

These outcomes highlight the adaptability and efficiency of
the Q-learning algorithm in environments constrained by physical

obstacles and hardware limitations.

Frontiers in Robotics and Al

16

10.3389/frobt.2025.1567211
Throwing Coordinates over time

0.1+
0.05

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
X Coordinates [m]

o o
o R o w o
) a w] ES

Y Coordinates [m]
o
&

FIGURE 16
Learning process using Q-learning illustrates improved throwing

behavior enabled by incorporating a larger number of states.

Throwing Coordinates over time

Y Coordinates [m]

o o o
e I o L © & ©o
- [$;] N (4] w (4] £

o
=)
&

0
-0.7 07 -05 -04 -03 -02 -01 O 0.1 02 03 03

X Coordinates [m]

FIGURE 17
Learning process using Q-learning with more states considered and

the fully constrained second joint.

« Experiment 7: To further test the adaptability of Q-learning,
experiments were conducted using the Franka Emika robot
to optimize object throwing into a basket. The robot
learned through iterative trials, adjusting its joint parameters
to minimize the distance between the landing point and
the basket.

The learning process, illustrated in Figure 21, demonstrates the
robot’s improved performance over time. The resulting trajectory of
a successful throw is shown in Figure 22. Remarkably, the algorithm
required only five iterations to discover an effective solution using
the Franka Emika platform.

Although Q-learning exhibits clear benefits in terms of
robustness and rapid convergence, it is important to recognize its
limitations in scenarios involving high-dimensional or continuous
action spaces. In such cases, deep reinforcement learning methods

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Throwing Coordinates over time

Throwing Coordinates over time

Learning process using Q-learning when there is a wall as a nearby
boundary and one joint is completely fixed (nine iterations).

such as DQNs are typically employed to extend Q-learning’s
capabilities (Sutton and Barto, 2018; Watkins, 1989).

3.2 Throwing a ball using deep RL

3.2.1 Compatibility with deep learning

Integration with deep neural networks through techniques such
as DQNs expands the capabilities of Q-learning (Mnih et al., 2013;
Mnih et al, 2015). This combination, often referred to as deep
RL, enables Q-learning to handle high-dimensional input spaces,
including images, thereby broadening its applicability across diverse
domains (Sutton and Barto, 2018; Watkins, 1989).

Frontiers in Robotics and Al

0.4 0.45
035 | L Y] 04|
0.35
03
0.3
025 Eozs|
v 1]
o 2
‘E 021 E 0.2
T T
S S 0.15
§0.15 8
> ~ oart
0.1
0.05 -
0.05 f ol
0] -0.05 '
08 07 06 -05 -04 -03 -02 -01 0 0.1 0.2 -08 -07 -06 05 -04 -03 -02 -0.1 0 0.1 0.2
X Coordinates [m] X Coordinates [m]
FIGURE 18 FIGURE 20
Learning process using Q-learning when a wall presents a Learning process using Q-learning when a wall presents a boundary
nearby boundary. that is near the target basket (10 iterations).
Throwing Coordinates over time Learning Process by Q-Learning
0.4 T T T
0.35 0.4
031 0.3
E
E 025 02
‘o 2
3 b
T 02 8§ o
° N
5
8 0.15 0.0
> A
0.6
0.1 0.4
C°°ru
fing, 0-2
0.0 Sty 0
ol— | \ | |
-08 -07 06 -05 -04 -03 -02 -01 0 0.1 0.2 FIGURE 21
X Coordinates [m] Learning process using Q-learning for the throwing task using the
Franka Emika Panda robot (five iterations).
FIGURE 19

17

DQN enhances
managing complex and high-dimensional state spaces, which
are difficult to represent using tabular methods (Mnih et al,
2013; Mnih et al, 2015). It is a powerful AI technique capable
of learning hierarchical features directly from raw input data,

conventional Q-learning by effectively

eliminating the need for manual feature engineering (Sutton and
Barto, 2018; Watkins, 1989).

Despite these advantages, DQNSs present several challenges. As
an extension of Q-learning, DQN approximates the Q-function
using a deep neural network instead of a Q-table. The network
takes the environment’s state as input and outputs expected
rewards for each possible action. It is trained by minimizing a
loss function defined as the difference between predicted and
target Q-values. However, DQN involves high computational
complexity, requires careful hyperparameter tuning, and may
experience instability during training. Additionally, its effectiveness

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Final trajectory by Q-learning

0.4
0.3

0.2

Z Coordinates [m]

FIGURE 22
Trajectory of the solution for the throwing task found by Q-learning
using the Franka Emika Panda robot.

1e6 Returns of Different RL algorithms
141 — Normal DQN
—— Q-Learning
1.2 4 —— Expected Sarsa
— Sarsa
1.0 4
» 0.8
IS
2
& 0.6
0.4
0.2
0.0
T T T T T T
0 20 40 60 80 100
Episodes
FIGURE 23

Comparison between DQN, Q-learning, expected SARSA, and SARSA
in terms of TAR.

depends on the specific problem characteristics (Sutton and
Barto, 2018; Watkins, 1989).

3.2.2 Comparison between DQN and other RL
algorithms

The same experiments were conducted using the standard DQN,
and a comparison was made between SARSA, expected SARSA,
and Q-learning for the task of throwing a ball into a basket using a
two-arm robot manipulator. Upon comparison, DQN demonstrated
superior performance over the other algorithms in terms of total
average return, as shown in Figure 23.

3.2.3 Comparison between different types of
DQNs

When comparing different types of DQNs for a robot
manipulator tasked with throwing balls, several key factors

Frontiers in Robotics and Al

18

Returns of Different types of DQNs

800000 —— Normal DQN
~—— PER-DQN
700000 { —— DQN-N
—— DDQN
600000 | — DQN-SA
—— DDQN-N
500000 1 —— DDQN-SA
e —— PER-DDQN
S 400000 { —— PER-DDQN-SA
L J—
300000 -
200000
100000 1
0
0 20 40 60 80 100
Episodes
FIGURE 24

Comparison between different types of DQN in terms of total average
return for 100 episodes.

are considered. All types of DQNs succeed in the throwing
DQNs with multi-head (DQN-
MHA) outperform others in terms of total average return,

task; however, attention
as shown in Figure 24.

The performance comparison between different DQN's is based
on key performance indicators (KPIs) related to policy performance,
learning speed, and learning accuracy.

1. Total average return (TAR): this parameter provides an overall
measure of the agent’s performance by calculating the mean
reward across multiple episodes.

2. Standard deviation (SD): this parameter measures the
variability in the reward curve, indicating the consistency
of the agent’s performance:

o Lower SD values indicate more consistent rewards,
implying stable agent performance.

« Higher SD values suggest greater variability in rewards,
generally indicating instability or inconsistency in
performance.

3. Learningspeed: this parameter indicates how quickly the agent
improves its performance, how rapidly it converges to an
optimal or near-optimal policy, and how effectively it balances
exploration and exploitation.

4. Trend slope (TS) of the reward: this parameter reflects the
general direction of the agent’s performance over time:

o Positive TS wvalues indicate increasing rewards,
suggesting that the agent is learning and improving,
which is desirable.

o Negative TS values indicate decreasing rewards, implying
deterioration in performance, which is generally
undesirable.

o Zero or near-zero TS indicates stable rewards over time,

which may indicate a learning plateau.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

TABLE 6 Comparison between different DQNs. The first column lists the
considered DQNs. The second column reports the standard deviation of
the return, the third column shows the trend slope of the return during
training, and the final column indicates the learning speed through the
number of episodes required to reach 75%, 90%, and 95% of the

final return.

DQN type = SD[10°] | TS [10%]
DQN-MHA 2.25 0.766 86 95 98
DQN-SA 1.435 0.4625 84 94 97
DQN-N 0.793 0.288 79 92 96
PER-DDQN-SA 2.126 0.733 86 95 98
DDQN-SA 1.6 0.546 85 95 98
DDQN-N 1.745 0.595 88 96 98
DDQN 1.727 0.572 91 97 99
PER-DDQN 1.973 0.636 84 94 97
PER-DQN 1.883 0.647 89 96 98
Standard-DQN 0.664 0.227 89 97 99

5. Mean loss: this parameter measures average error; lower values
indicate better model performance accuracy.

Based on these KPIs, performance improves as the TAR
increases. As shown in Figure 24, DQN-MHA achieves the highest
rewards (TAR = 415,505), while the standard DQN has the
lowest performance (TAR = 100,147). Regarding SDand TS,
algorithms with lower SD and higher TS are considered superior. As
presented in Table 6, DQN-MHA and PER-DDQN-SA outperform
other variants in terms of TS. Conversely, standard DQN and
DQN-N exhibit the best performance concerning SD. Other DQN
types demonstrate intermediate results across KPIs, neither excelling
nor significantly underperforming. While they do not lead in
all metrics, they maintain competitive performance compared to
other methods.

Another crucial metric is learning speed, which indicates how
rapidly an agent improves its performance during training. It is
typically measured by the rate at which cumulative reward or average
reward per episode increases over time. Common measurements
include the number of episodes needed to reach 75%, 90%, and 95%
of the total reward. Learning speed generally depends on factors
such as the neural network architecture, the quality of the training
data, and the effectiveness of the exploration-exploitation strategy
(Li, 2023; Lapan, 2018). The results from the previous experiment
are summarized in Table 6. Based on the mean loss KPI, the results
demonstrate a significant reduction in mean loss from the standard
DQN (242.2) to the enhanced variants. DDQN-based models
demonstrate significantly lower losses, with DDQN-N achieving
the lowest among standard variants (0.26). PER-enhanced methods
further improve performance by several orders of magnitude, with
PER-DQN reaching as low as 7.367 x 10™'2, indicating more stability
and learning efficiency, as summarized in Table 7.

Frontiers in Robotics and Al

19

TABLE 7 Mean loss values for different DQNs. The mean is computed as

1
u= ;Z,Z Xj.

10.3389/frobt.2025.1567211

Algorithm ‘ Mean loss(u)
DQN 2422
DQN-MHA 211.05
DQN-N 142
DQN-SA 104.36
DDQN 6.6
DDQN-SA 0.34
DDQN-N 0.26
PER-DQN 7.367 x 10712
PER-DDQN 7.5458230 x 1078
PER-DDQN-SA 1.22712x 10710
Robot Arm
054 ~~- Throw trajectory
0.4
E 03] Lo A
] P4
2 e
o ’
£ 021 Ca
P /
o s
S /
O o014 ,’/
> /
7
/
-l @
-0.1
—OZB —6.6 —6.4 —0‘.2 0:0
X Coordinates [m]
FIGURE 25
Throwing task using the DQN without a wall.

Based on these results, DQN-N emerges as the best-performing
algorithm. By injecting noise into network parameters, DQN-
N enhances exploration by introducing stochasticity in action
selection. This enables the agent to explore a broader range of
actions and states more effectively, accelerating the discovery of
optimal policies. Additionally, DQN-N reduces dependence on
manually tuned parameters such as ¢ leading to more stable and
consistent learning. By balancing exploration and exploitation while
minimizing hyperparameter tuning, DQN-N achieves superior
learning speed, making it a powerful alternative among DQN
variants (Li, 2023; Lapan, 2018).

frontiersin.org

https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

Robot Arm
~~~ Throw trajectory

0.4
_ 031 o \\
£ Vi S
— ’ N,

/ 1

n 7 \\
2 02 /£ \
© /7
£ K4
B /
3 01 !
o il
> Yy

> ‘

-0.1

—0.8 ~0.6 —0.4
X Coordinates [m]

FIGURE 26
Throwing task using the DQN with a wall.

TABLE 8 Comparison between different DQNs (task performance). The
first column lists the considered DQNs. The second column shows the
number of attempts required to successfully throw the ball to a new
target location without a wall. The third column presents the number of
attempts needed when a wall is introduced as an obstacle.

With boundaries

DQN type ‘ No boundaries

DQN-MHA 18 35
DQN-SA 23 39
DQN-N 25 52
DDQN 25 53
PER-DQN 24 45
DDQN-N 26 55
PER-DDQN 24 45
PER-DDQN-SA 21 39
DDQN-SA 23 49
Standard-DQN 31 68

3.2.4 Throwing an object to an unknown position
of the basket using DQNs with and without an
external constraint

To evaluate the robustness of various DQN algorithms in
uncertain conditions, two experiments were conducted. In both
cases, DQN’s were trained to throw a ball into a basket located 0.6 m
away from the robot manipulator. Their performance was then tested
without retraining when the basket was moved to a new location,
0.8 m away from the robot. The first experiment was performed
without any obstacles, while the second included a wall obstructing
the throw, as illustrated in Figures 25, 26. Each algorithm was tested
over 100 trials using the same robot manipulator. The training

Frontiers in Robotics and Al

10.3389/frobt.2025.1567211

TABLE 9 Hyperparameter settings for DQN variants in reinforcement
learning experiments. Optimized hyperparameters are used for each
algorithm. The learning rate « is shown in the column labeled « [1073].
The number of hidden layers is specified in the column n,, while n,.,,.,,
denotes the number of neurons per layer. The activation function and
optimizer are the same across all DQNs. The same number of neurons
was used across all layers within a given model.

DQN type ‘ «(1073) ‘ n, Npeuron ‘
DQN-MHA 10 256 2024
DQN-SA 10 128 1024
DQN-N 0.3 8 256
DDQN 0.1 8 512
PER-DQN 0.5 10 512
DDQN-N 0.5 8 256
PER-DDQN 0.5 8 256
PER-DDQN-SA 1 12 512
DDQN-SA 5 12 512
Standard-DQN 0.1 12 512

settings (hyperparameters, the activation function, and optimizer)
were consistent across all DQNs and are listed below:

o Learning rate=10.001

« Network layers=12

« Episodes =100

« Neurons for each layer =512
« Epoch =500

« Activation function=ReLU
o« Optimizer = Adam

The performance results are summarized in Table 8, showing
the number of successful throws into the relocated basket with and
without the wall for each DQN variant.

The results indicate that DQN-MHA demonstrated the best
overall performance in both scenarios. This suggests that the multi-
head attention mechanism significantly enhances the network’s
ability to focus on important environmental features. This attention-
driven adaptability enables DQN-MHA to outperform other
variants by achieving higher precision in altered environments,
particularly when obstacles are introduced.

4 Discussion
4.1 Results and discussion

The experiments were repeated using the best-performing
configuration for each algorithm, with hyperparameters tuned
individually. To ensure optimal performance of each algorithm,
we employed Optuna, a modern open-source framework for
automated hyperparameter optimization that enables efficient

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Returns of Different types of DQNs

FIGURE 28

le6
3.0 1 =—— DQN
—— DQN-N
—— DDQN
257 DQN-SA
—— DDQN-N
2.0 DQN-MHA
—— PER-DQN
g —— PER-DDQN
2 157 DDQN-SA
& —— PER-DDQN-SA
1.0
0.5
0.0
0 20 a0 60 80 100
Episodes
FIGURE 27
Comparison between different types of DQNs in terms of total average return for 100 episodes after tuning.
Loss Curve during the Training
— DQN
1000 - —— DQN-N
—— DDQN
DQN-SA
800 —— DDQN-N
DQN-MHA
. - PER-DQN
«» 6001 } —— PER-DDQN
§ DDQN-SA
\ —— PER-DDQN-SA
400
\i\v\_
200 A% .
WW\N\/\/\A . .
M g VV\N—’\—VM
oA
0 20 2 60 80 100
Episode

Loss curves for all DQN architectures across training episodes, illustrating convergence behavior.

exploration of the hyperparameter space and is recognized as
one of the most effective tools for this purpose. Specifically,
we utilized Bayesian optimization via the tree-structured Parzen
estimator (TPE), a variant of sequential model-based optimization
(SMBO), to guide the search process. To enhance robustness
and mitigate overfitting, cross-validation was integrated into
the optimization pipeline. The final configurations, summarized
in Table 10, correspond to the best-performing hyperparameter
sets identified by Optuna for each algorithm, as shown in
Table 9.

Frontiers in Robotics and Al

All algorithms were optimized with the same procedure (Optuna
with Bayesian TPE, equal trial budgets, identical metrics, and
cross-validation). Search spaces were adapted to each algorithm
since DRL methods differ in terms of stability, sensitivity, and
capacity requirements; for instance, attention-based variants often
require deeper networks, while vanilla DQN is more susceptible to
high learning rates as they cause Q-values to fluctuate excessively
(each update potentially overwriting previous estimates), leading
to divergence or oscillations in the Q-function. Imposing identical
ranges would have biased results by forcing some methods into

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al. 10.3389/frobt.2025.1567211

Last 10 Loss Values for Different DQN Variants

23674 236,63 23%87 236,69 23("*71 236,71 23?71 236,74 23("*67

225
200 i » i
18@48 18@49 18@49 186,48 18@49 18(;49 18@48 186,48 18@49 18@48
175
—e— DON
0 1507 —o— DQN-N
9 —8— DQN-SA
125 —e— DQN-MHA |

100
93,44 93’42 9341 93;9 93458 93‘36 93.34 93.33 93.31 93‘30

75
65,33
42 55

922 94 9% 98 100
Last 10 Episode

FIGURE 29
Last 10 loss values for DQN, DQN-N, DQN-MHA, and DQN-SA architectures.

Last 10 Loss Values for Different DQN Variants

0.45
—&— DDQN-N

—&— DDQN-SA

0.40

0.351 034 034 034 034 034 034 034 034
0.21
0.30
[1)]
wn
S
0.25
o1
0.20 019 19
0.18 0.78 T
0.15
N2 N2
92 94 9]5 98 160

Last 10 Episode

FIGURE 30
Last 10 loss values for DDQN-SA and DDQN-N architectures.

Frontiers in Robotics and Al 22 frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al. 10.3389/frobt.2025.1567211

Last 10 Loss Values for Different DQN Variants
0,012 {2:01209_0.01206_0.01203 0.01200 0.01197 0.01194 0.01192 0.01189 0.01187 0.01184
0.010
0.008
v —e— DDQN
g 0.006 —e— PER-DDQN
0.004
0.002
0.0Q082 0.00078 0.0Q084
0.0Q0 0.0Q063 0 0.000 0.00049 0006
0.000
92 94 9% 98 100
Last 10 Episode
FIGURE 31
Last 10 loss values for PER-DDQN and DDQN architectures.

1le—10 Last 10 Loss Values for Different DQN Variants
—&— PER-DDQN 6.3204
6 4 —®— PER-DDQN-SA
5
4
wv
wn
S 3
24 1.8583
25 1.0331
1
. 0.0339__0.821% 0.0737 _0.0737 _0.0737

92 94 % 98 100
Last 10 Episode

FIGURE 32
Last 10 loss values for PER-DQN and PER-DDQN-SA architectures.

Frontiers in Robotics and Al 23 frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

TABLE 10 Comparison between different DQNs after hyperparameter
optimization. The first column lists the considered DQNs. The second
column shows the number of attempts required to reach a new target
without a wall, while the third column shows the number of attempts
required with a wall in place.

DQN type ‘ No boundaries ‘ With boundaries

DQN-MHA 16 30
DQN-SA 21 35
DQN-N 16 29
DDQN 15 29
PER-DQN 16 35
DDQN-N 12 27
PER-DDQN 12 28
PER-DDQN-SA 20 37
DDQN-SA 20 46
Standard-DQN 29 61

suboptimal regions rather than allowing them to explore the whole
search space. Fairness was ensured by giving every algorithm equal
opportunity to reach its best configuration within an appropriate
search space, so the observed differences in hyperparameters
in Table 9 reflect intrinsic inductive biases rather than unequal
treatment, as shown in Table 9.

Figure 27 illustrates the performance of various DQN variants
in terms of TAR, following individual tuning. The TAR metric
evaluates the cumulative rewards collected across episodes during
training, offering a quantitative measure of policy effectiveness. In
robotic manipulation tasks, a higher TAR reflects the policy’s ability
to consistently execute precise and repeatable throwing trajectories.

Among the evaluated algorithms, DDQN-N achieved the highest
TAR value of 3,010,079, surpassing even the performance of PER-
DDQN-SA. The superior performance of DDQN-N can be attributed
to the following factors:

o Stochastic policy exploration: The use of noisy weights in
noisy DQN allows for adaptive exploration during training,
enhancing the agent’s ability to navigate the complex and high-
dimensional reward landscape of the throwing task.

o Robust value estimation: Double Q-learning mitigates
overestimation bias by decoupling action selection and
evaluation, resulting in more reliable Q-value estimates
and fewer suboptimal decisions in environments with
high variance.

The poor performance of the standard DQN (424,286) can be
attributed to the following factors:

o Over-reliance on greedy policies: Standard DQN primarily

follows greedy action selection, which limits exploration and
prevents the agent from discovering better strategies.

Frontiers in Robotics and Al

10.3389/frobt.2025.1567211

« Inadequate handling of reward sparsity: The throwing task
often involves delayed and sparse rewards, requiring effective
temporal credit assignment. Standard DQN struggles to
propagate reward signals across long episodes, resulting in
suboptimal learning.

Attention-based variants, such as DQN-MHA (937,760) and
DQN-SA (743,742), show moderate improvements in TAR.
These architectures benefit from hierarchical representation
learning, where attention mechanisms excel at identifying
critical dependencies in throwing dynamics—essential for
accurate trajectory prediction. However, in the absence of
other double Q-learning to

reduce overestimation or noisy networks to encourage better

key enhancements—such as

exploration—their performance remains limited, with slower
convergence and reduced robustness compared to more
advanced variants.

The loss curve, or training curve, illustrates the temporal
difference (TD) error during the learning process. This metric
captures the discrepancy between the estimated value function and
the actual return received from the environment. As shown in
Figures 28-32, the TD error provides insights into the convergence
behavior and stability of different DQN variants during training.

Among all evaluated algorithms, the standard DQN exhibited
the poorest performance, with the highest loss value (236.67),
indicating instability in the learning process. This poor performance
is attributed to overestimation bias, a known limitation of standard
DQN due to the absence of enhancements such as target networks
with double estimation or structured noise. In contrast, advanced
variants—such as PER-DQN, PER-DDQN, and the self-attention-
based PER-DDQN-SA—achieved significantly lower loss values,
with PER-DDQN-SA reaching the lowest at 6.32x 107'°. These
results can be explained by the improved training efficiency
introduced by prioritized experience replay. Unlike standard
DQN, which samples past transitions uniformly, PER prioritizes
training on transitions with high temporal-difference error. This
prioritization emphasizes informative yet rare events—such as
successful or failed throws—that are critical in tasks such as robotic
ball-throwing.

By sampling more frequently from these high-value experiences,
PER guides the learning process toward more effective policy
updates, especially in environments characterized by sparse
rewards and high-dimensional state-action spaces. Furthermore,
the DDQN architecture addresses the overestimation bias by
decoupling action selection from value estimation using two
separate networks. When combined with structured exploration
strategies such as noisy networks, DDQN-N demonstrated notable
stability (0.1171), suggesting that guided stochastic exploration
accelerates convergence in complex robotic control tasks.

As shown in Table 10, PER-DDQN and DDQN-N required
the fewest number of trials to successfully throw the ball to
a new location without hitting a wall. This highlights the
algorithms’ superior ability to generalize the task dynamics.
The use of prioritized experience replay enables more efficient
learning from informative transitions, while the incorporation
of double Q-learning mitigates overestimation bias during value
updates. Moreover, the inclusion of noisy weights in the DQN-N
variants further improves the exploration-exploitation trade-off by

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Returns of DQN under sensor noise
—e— Standard DQN with sensor noise, SD=0.1
so0004 —®— Standard DQN with sensor noise, SD=0.05
—+— Standard DQN with sensor noise, SD=0.01
60000 -
(]
C
| =
2
@ 40000
ot
20000 1
04
0 20 a0 60 80 100
Episode
FIGURE 33
Comparison of the total average return for the DQN architecture under different levels of sensor noise.

DQN Loss with sensor noise over time

Loss curves for the DQN under different levels of sensor noise.

] —e— Standard DQN with sensor noise, SD=0.1
1400 - —=— Standard DQN with sensor noise, SD=0.05
—+— Standard DQN with sensor noise, SD=0.01
1200 A
1000 A
[}
)]
S
800 A
600 -
400 +
(') 2|0 4IO 6'0 8|0 160
Episode
FIGURE 34

enabling more structured and adaptive exploration, outperforming
algorithms that rely on fixed or simplistic exploration strategies.

In contrast, standard DQN consistently demonstrated poor
performance across multiple metrics, including high loss, low
TAR, and ineflicient policy convergence. These shortcomings
are primarily due to its reliance on basic epsilon-greedy
exploration, which often results in overfitting and suboptimal

Frontiers in Robotics and Al

25

Q-value estimation. Notably, DQN variants with attention
mechanisms achieved higher trial efficiency compared to their
non-attention counterparts. In particular, DDQN-SA benefited
from the ability to better reason about complex dependencies,
such as the relationship between ball trajectories and basket
locations, leading to more effective decision-making during task
execution.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Returns of DDQN-N under sensor noise
—e— DDQN-N with sensor noise, SD=0.1
—=— DDQN-N with sensor noise, SD=0.05
80000 . .
—+— DDQN-N with sensor noise, SD=0.01
60000 1
wn
C
-
3
@
I 40000 +
20000 4
oA
0 20 40 60 80 100
Episode
FIGURE 35
Comparison between DDQN-N for different levels of sensor noise in terms of the total average return.

DDQN-N Loss with sensor noise over time

Loss curves for DDQN-N under sensor noise.

—e— DDQN-N with sensor noise, SD=0.1
—=— DDQN-N with sensor noise, SD=0.05
007 —s— DDQN-N with sensor noise, SD=0.01
300
"))
wn
S
200 A
100 1
0-
Episode
FIGURE 36

The combined techniques with standard DQN, such as double 4.2 Robustness evaluation

networks, prioritized experience replay, noisy networks, and self-

attention, show better convergence, higher TAR, and greater To evaluate robustness to

sensor

noise and joint

trial efficiency. These findings reflect the importance of many
structured exploration and reasoning mechanisms in DRL for
complex robotic tasks such as throwing.

Frontiers in Robotics and Al

constraints, we choose two architectures: DQN as a baseline
architecture and DDQN-N as an architecture with superior
performance.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Histogram of Standard DQN with sensor noise (SD = 0.1)
30 129
251
R
— 20
]
(o))
©
)
c
Q
et
()
o
1
, : |
120 140 160
Number of Trials
Histogram of Standard DQN with sensor noise (SD = 0.05)
50
o
Q
O 30
@©
e
c
O 20
vl
—
()
Q- 10
. 22 I e I
60 80 100 120 140 160
Number of Trials
Histogram of Standard DQN with sensor noise (SD = 0.01)
Rl
Q
o
©
-
c
[
O
|-
[}
a
i
80 100 120 140 160
Number of Trials
FIGURE 37
Histogram of attempts needed to successfully throw using DQN under sensor noise. In each episode (out of 100 in total), the robot has different initial
positions.

4.2.1 Testing sensitivity to sensor noise

To evaluate the robustness of the trained DQN and DQN-N
policies under sensor noise, we introduced zero-mean Gaussian
noise to the input observations during testing—specifically to the
joint positions and the computed throwing angle. The noise was
applied with standard deviations of 0.01, 0.05, and 0.1, as suggested.

Frontiers in Robotics and Al

27

The performance under these noise levels is illustrated
in Figures 33, 34 for DQN and Figures 35, 36 for DDQN-N,
which show that all three policies maintain similar TAR and
loss curve behavior across noise levels. However, differences
become apparent when examining the number of attempts
required to complete the task.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Histogram of DDQN-N with sensor noise (SD = 0.1)
35
— 307
X
2 o5
o)
S 201
e
TRER
vl
—
O 10
o
5 .
0 . . " .
80 100 120 140 160
Number of Trials
Histogram of DDQN-N with sensor noise (SD = 0.05)
S
Q
o
©
-
c
[}
O
|-
[}
o
80 100 120 140 160
Number of Trials
Histogram of DDQN-N with sensor noise (SD = 0.01)
X
0]
o))
©
e
c
[}
O
|-
()
o
60 80 100 120 140 160
Number of Trials
FIGURE 38
Histogram of attempts needed to throw using the DDQN-N under sensor noise. In each episode (out of 100 in total), the robot has different initial
positions.

For this evaluation, we conducted 100 tasks for each DQN
architecture. In each task, the planar robot arm started from a
different initial position and attempted to throw an object toward
a new target. The number of attempts required before a successful
throw was recorded and plotted as a histogram, shown in Figures 37,
38 for DQN and DDQN-N, respectively. Table 11 summarizes the
results for DQN and DDQN-N. The pairwise comparison results

Frontiers in Robotics and Al

28

show that both the DQN and DDQN-N algorithms are sensitive to
increases in sensor noise, particularly when comparing high noise
levels (SD = 0.10) with lower levels (SD = 0.05 and SD = 0.01).
For DQN, these differences are statistically significant with medium
effect sizes, indicating a clear degradation in performance as noise
increases, as shown in Table 12. In contrast, DDQN-N also shows
significant differences under the same comparisons, but with smaller

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al. 10.3389/frobt.2025.1567211

Returns of Standard DQN under joints constraints
30000
25000 A
20000 A
w0
C
—
2
] 15000 1
o
10000 1
5000 -
—e— Standard DQN with joints constraints [n/6,1/3]
o] —=— Standard DQN with joints constraints [n/3,11/2]
(I) 2'0 41'0 6I0 8I0 1(I)0
Episode
FIGURE 39
Comparison between DQN for two different joint constraints in terms of the total average return.

Returns of DDQN-N under joints constraints

—e— DDQN-N with joints constraints [1/6,11/3]
100000 4. —*— DDQN-N with joints constraints [1/3,1/2]
80000 -
192}
£ 60000 1
2
&
40000 4
20000
04
(I) 2I0 4b 6‘0 8b 160
Episode
FIGURE 40

Comparison between DDQN-N for two different ranges of the joint constraints in terms of the total average return.

effect sizes, indicating greater robustness to noise perturbations. From these results, two key observations can be made:
Comparisons between SD = 0.05 and SD = 0.01 are not significant

for either algorithm, implying that performance remains stable at « Impact of noise level: All architectures performed better
lower noise levels. Overall, DQN is more strongly impacted by noise, with lower noise levels. As sensor noise increased, a higher
whereas DDQN-N exhibits greater resilience, though it still exhibits proportion of throws required more attempts.

measurable performance degradation under high-noise conditions, « Comparison between DQN and DDQN-N: DDQN-N showed
as shown in Table 13. improved resilience to noise. For instance, under the highest

Frontiers in Robotics and Al 29 frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Standard DQN Loss with joints constraints over time

350 1

—e— Standard DQN with joints constraints [n/6,11/3]
—=— Standard DQN with joints constraints [n/3,11/2]

300

2504

200 +

Loss

150 4

100 +

20 40

FIGURE 41
Loss curves for the DQN under joint constraints.

T
60 80 100

Episode

400

DDQN-N Loss with joints constraints over time

350 A

—e— DDQN-N with joints constraints [/6,11/3]
—=— DDQN-N with joints constraints [1/3,1/2]

300

250 A

200 A

Loss

150 4

100 +

FIGURE 42
Loss curves for the DDQN-N under joint constraints.

Episode

noise level (with a standard deviation of 0.1), only 8% of
the throws with DDQN-N required more than 40 attempts,
compared to 20% for the baseline DQN.

These results indicate that DDQN-N exhibits greater robustness
to input noise. We attribute this to the architectural differences:
standard DQN learns a deterministic state—action mapping via the

Q-function, which makes it more susceptible to perturbations in the

Frontiers in Robotics and Al

input. In contrast, DDQN-N integrates mechanisms that enable it to
better generalize over noisy observations.

4.2.2 Testing sensitivity to joint constraints

To evaluate the impact of joint constraints on throwing task
performance, we considered a two-link planar robot and imposed
the following constraints:

30 frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Histogram of Standard DQN with joints constraints [11/6,1/3]

10 4 10

Percentage [%]

2 2 2 2
[

2

=

0 20 40 60 80 100 120

Number of Trials

140 160

Histogram of Standard DQN with joints constraints [1/3,1/2]

40 4

20

Percentage [%]

3
2, 2 1
0 | | =

0 20 40 60

80 100

140 160

Number of Trials

FIGURE 43

Histogram of iterations needed to throw using the DQN under joint constraint.

« The angles of both joints are limited to move within the
range[O,g].

o The angles of both joints are limited to move within the
range[g,g].

 The angles of both joints are limited to move within the

T
range[g, 5]

We again employed DQN and DQN-N architectures and
compared their performance.

We could observe the following:

« The range of the joint constraint highly impacts the robots
performance. For example, in the case of the first range, neither
DQN nor DDQN-N could find the solution and the task has
consistently failed. On the other hand, for the other two ranges,
both DQN and DDQN-N were able to successfully learn the task.
For successful ranges, the evolution of the total average return

(Figures 39, 40) and the loss curves (Figures 41, 42) were
similar across all architectures. However, there was a notable
difference in the loss curve value: for DQN, it exhibited

high values (above 311), indicating slower convergence and

Frontiers in Robotics and Al

31

greater variance in Q-value estimates, whereas for DDQN-N,
it converged to 0.

e When it comes to the number of attempts needed to
successfully throw the ball, both architectures had a relatively
high and consistent performance (see Figures43, 44).
However, DDQN-N had no throws where the number of
attempts was greater than 50.

The joint range comparison highlights differing sensitivities
between the DDQN-N and DQN algorithms. For DDQN-N, the
performance difference between the 30°-60° and 60°-90° ranges is
not statistically significant, with a very small effect size, indicating
stable behavior across these ranges. In contrast, DQN shows a
significant difference at the 95% confidence level, with a small-
to-medium effect size, suggesting that its performance is more
strongly influenced by joint range variations. These results suggest
that DDQN-N demonstrates greater robustness to changes in joint
range, while DQN is more susceptible to performance shifts under
different configurations, as shown in Table 15.

In summary, DDQN-N showed faster reward convergence,
lower loss, and overall more reliable performance than DQN,
as shown in Table 14.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Histogram of DDQN-N with joints constraints [1/6,11/3]

'y
o
L

w
[,
L

w
o
L

N
o
L

=
w
L

12 12

Percentage [%]

=
o
L

w
L

o

20 40 60

o

80 100 120 140 160

Number of Trials
Histogram of DDQN-N with joints constraints [1/3,11/2]

N
o
L

w
(%)
L

w
o
L

N
w
L

N
o
L

15

=
w
L

10

Percentage [%]

=
o
L

w
L

o

20 60

o

40

80 100 120 140 160

Number of Trials

FIGURE 44

Histogram of iterations needed to throw using the DDQN-N under joint constraint.

4.3 Analysis of the time window

In this section, we examine how the sequence length influences
the performance of the DQN-MHA architecture. In this context,
the sequence length refers to the number of consecutive time
steps provided as input to the self-attention mechanism for the
assigned task. As this parameter directly influences how the model
integrates past observations (previous knowledge) when estimating
Q-values for the current state, it affects both short-term reactivity
and long-term planning. The shorter sequences improve efficiency
and reactivity over time but may fail in long-term tasks, and
longer sequences enhance strategic foresight but require more
computation and data.

To evaluate the impact of the sequence length on the
performance of DQN-MHA, different values of the sequence
length are used (Ba et al, 2016; Britt, 2020; Hausknecht and
Stone, 2015; Mnih et al.,, 2015) as follows:

o Sequence length = 4: With a very short context window,
the DQN captures only the most recent states, enabling
fast computation and reduced memory usage due to smaller
attention matrices, resulting in fast training. However, it limits

Frontiers in Robotics and Al

32

the modeling of delayed rewards, often resulting in short-
sighted strategies in multi-step planning.

o Sequence length = 8: It has better performance than length 4 as
it provides more historical context to DQN. On the other hand,
it required greater computational and memory resources than
length 4 and may still fail in tasks requiring long-term credit
assignment.

« Sequence lengths = 16 and 32: It allows attention to operate
over an extended history, enabling the capture of long-term
dependencies and delayed rewards. However, it needs greater
computational and memory resources for attention operations
(O(#*) complexity) and carries a higher risk of overfitting in
small or simple environments.

Regarding the TAR and loss curves (see Figures 45, 46), all
architectures show similar behavior with a slight improvement
observed for DQN-MHA using a 32-time-step window, as shown
in Table 16. However, the results in Figure 47 show that increasing
the sequence length generally improves the efficiency of the DQN-
MHA. When the sequence length increases from 4 to 8, the
agent’s average decreases from 17.51 to 16.01 and further to 15.08
with a sequence length of 16, showing gradual gains as more

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Returns of DQN-MHA with different sequence lengths

le6
—e— DQN-MHA with sequence length = 4
101 —s— DQN-MHA with sequence length = 8

DQN-MHA with sequence length = 16
DQN-MHA with sequence length = 32

0.8

Returns
=]
(=]

1
'S
L

0.2 1

0.0 1

FIGURE 45

Episode

Comparison between DQN-MHA for different sequence lengths in terms of the total average return.

60 80 100

400 DQN-MHA Loss with different sequence lengths
I
—e— DQN-MHA with sequence length = 4
350 - —=— DQN-MHA with sequence length = 8
—— DQN-MHA with sequence length = 16
300 4 —— DQN-MHA with sequence length = 32
250 1
& 200
S
150 A
100 +
50 -
0 T T T T T
0 20 40 60 80 100
Episode
FIGURE 46
Loss curves for DQN-MHA for different sequence lengths.

contextual information becomes available to the agent. The largest
improvement occurred at 32 steps, where the average decreased
sharply to 9.25 trials. This suggests that the assigned task benefits
from long context, which helps model the delayed rewards for
more consistent planning. Overall, increasing the sequence length
in DQN-MHA improves performance, particularly when changing

from medium to long context windows. However, this gain comes

Frontiers in Robotics and Al

33

at the expense of higher computational and memory usage. The
DQN-MHA results show no significant differences among shorter
windows (TW = 4, 8, and 16), with negligible effects. In contrast,
TW = 32 consistently outperforms the others, yielding significant
improvements with medium effect sizes, as shown in Table 17.

To ensure statistical robustness, all reported results are
based on N independent runs with different random seeds.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

Histogram of DQN-MHA with sequence length = 4

37

Percentage [%]

10 4

60

80
Number of Trials
Histogram of DQN-MHA with sequence length = 8

100 120 140 160

Percentage [%]

40

Number of Trials
Histogram of DQN-MHA with sequence length = 16

80 100 120 140 160

Percentage [%]

40 60

80
Number of Trials
Histogram of DQN-MHA with sequence length = 32

( 100 120 140 160

30

20

Percentage [%]

10 4

3
2 2 1.2 1

1

1

20 40 60

FIGURE 47

Number of Trials

Histogram of iterations needed to throw using the DQN-MHA with different sequence lengths.

80 100 120 140 160

In addition to mean values, we provide 90%, 95%, and 99%
confidence intervals (Tables 11-17), including the corresponding
half-widths, which quantify the uncertainty associated with each
estimate. Reporting confidence intervals across multiple levels

Frontiers in Robotics and Al

34

offers information equivalent to formal significance testing while
avoiding the pitfalls of assuming specific distributional forms,
which are often violated in reinforcement learning outcomes. The
observed performance differences, therefore, represent statistically

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

TABLE 11 Performance with 90%, 95%, and 99% confidence intervals of the number of trials across algorithms against sensor noise. h denotes the
half-width of the CI.

Algorithm
Mean + h Mean + h Mean + h

DQN, SD = 0.01 12.22+2.88 (9.34,15.1) 12.22+3.44 (8.78, 15.66) 12.22+4.56 (7.66, 16.78)
DQN, SD = 0.05 12.52+2.98 (9.54,15.5) 12.52+3.56 (8.96, 16.08) 12.52+4.71 (7.81,17.23)
DQN, SD = 0.1 2476 +4.57 (20.19, 29.33) 24.76 +5.46 (19.3,30.22) 24.76+£7.23 (17.53, 31.99)
DDQN-N, SD =0.01 9.99+1.57 (8.42,11.56) 9.99+1.87 (8.12,11.86) 9.99+2.48 (7.51,12.47)
DDQN-N, $D = 0.05 10.22+2.17 (8.05, 12.39) 10.22+2.6 (7.62,12.82) 10.22 +3.44 (6.78, 13.66)
DDQN-N, SD = 0.1 14.55+3.0 (12.04, 17.06) 14.55+3.0 (11.55,17.55) 14.55+3.97 (10.58, 18.52)

TABLE 12 Pairwise comparisons of the DQN algorithm under different sensor noise levels. Mean differences (A), 95% confidence intervals, Welch's

p-values, and Cohen'’s d effect sizes are provided.

Comparison Mean difference (A) | 95% Cl of A ‘ t (Welch) ‘ p-value ‘ Cohen’'s d Interpretation

SD =0.10 vs SD = 0.05 12.24 (5.76, 18.72) 3.73 26x107* 0.53 Significant, medium effect
SD =0.10 vs SD = 0.01 12.54 (6.12, 18.96) 3.86 1.6x10™* 0.55 Significant, medium effect
SD =0.05 vs SD = 0.01 0.30 (-4.62,5.22) 0.12 0.90 0.02 Not significant, negligible effect

TABLE 13 Pairwise comparisons of the DDQN-N algorithm under different sensor noise levels. Mean differences (A), 90%, 95%, and 99% confidence
intervals, Welch's p-values, Cohen'’s d effect sizes, and interpretation are provided.

Comparison A 90% ClI 95% ClI 99% ClI p-value Cohen's d Interpretation
SD=0.10vsSD=0.05 | 433 (1.02,7.64) (0.39,8.27) (~0.87,9.53) 0.032 0.31 Significant at 95%, small effect

SD =0.10 vs SD = 0.01 4.56 (1.61,7.51) (1.04, 8.08) (~0.09,9.21) 0.011 0.36 Significant at 95%, small-medium effect
SD =0.05 vs SD = 0.01 0.23 (-2.44, 2.90) (-2.95,3.41) (-3.97, 4.43) 0.887 0.02 Not significant, negligible effect

TABLE 14 Performance with 90%, 95%, and 99% confidence intervals of the number of trials across algorithms against joint constraints. h denotes the
half-width of the CI.

Algorithm

Mean + h Mean + h Mean + h
DQN, [7/6,7/3] 23.96 +4.32 (19.64,28.28) 23.96+5.16 (18.8,29.12) 23.96+6.83 (17.13, 30.79)
DQN, [7/3,7/2] 15.77 £3.35 (12.42,19.12) 15.77 £4.0 (11.77,19.77) 15.77 5.3 (10.47,21.07)
DDQN-N, [7/6,7/3] 12.61+1.89 (10.72, 14.5) 12.61+2.26 (10.35, 14.87) 12.61+2.99 (9.62,15.6)
DDQN-N, [7/3,7/2] 10.74 + 1.64 (9.1,12.38) 10.74+1.96 (8.78,12.7) 10.74+2.59 (8.15,13.33)

TABLE 15 Pairwise comparison of DDQN-N and DQN algorithms under different joint ranges. Mean difference (A), 90%, 95%, and 99% confidence
intervals, Welch’s p-value, Cohen'’s d, and interpretation are provided.

Comparison 95% ClI 99% ClI p-value | Cohen’'sd Interpretation

DDQN-N [30°-60°] vs [60°-90°] 1.87 (-0.62, 4.36) (-1.10, 4.84) (-2.05,5.79) 0.217 0.18 Not significant, small effect

DQN [30°-60°] vs [60°-90°] 8.19 (2.75,13.63) (1.70, 14.68) (-0.38, 16.76) 0.014 0.35 Significant at 95%, small-medium effect
Frontiers in Robotics and Al 35 frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

10.3389/frobt.2025.1567211

TABLE 16 Performance with 90%, 95%, and 99% confidence intervals of the number of trials across the DQN-MHA algorithm with different time
windows. h denotes the half-width of the CI.

Algorithm 90% ‘ 95% 99%

Mean + h Cl Mean + h Mean + h
DQN-MHA, time window = 4 17.51+3.73 (13.78,21.24) 17.51+4.45 (13.06, 21.96) 17.51 +£5.89 (11.62,23.4)
DQN-MHA, time window = 8 16.01+1.8 (14.21,17.81) 16.01+2.15 (13.86, 18.16) 16.01+2.84 (13.17,18.85)
DQN-MHA, time window = 16 15.08 + 1.62 (13.46,16.7) 15.08 +1.94 (13.14,17.02) 15.08 +2.57 (12.51, 17.65)
DQN-MHA, time window = 32 9.25+24 (6.85, 11.65) 9.25+2.86 (6.39,12.11) 9.25+3.79 (5.46, 13.04)

TABLE 17 Pairwise comparisons of the DQN-MHA algorithm under different time windows (TW = 4, 8, 16, 32). Mean differences (A), 90%, 95%, and 99%
confidence intervals, Welch's p-values, Cohen'’s d effect sizes, and interpretation are provided.

Comparison ‘ A 90% CI 95% ClI 99% CI p-value Cohen’'s d Interpretation
DQN-MHA (TW 1.50 (-2.62,5.62) (-3.42,6.42) (-5.00, 8.00) 0.548 0.09 Not significant,
=4)-(TW=38) negligible effect
DQN-MHA (TW 243 (-1.62, 6.48) (-2.41,7.27) (-3.96, 8.82) 0.323 0.14 Not significant,
=4) - (TW =16) negligible effect
DQN-MHA (TW 8.26 (3.85,12.67) (2.99, 13.53) (1.31,15.21) 0.002 0.44 Significant at all
=4) - (TW =32) levels, medium

effect
DQN-MHA (TW 0.93 (—1.48,3.34) (-1.94, 3.80) (-2.86,4.72) 0.524 0.09 Not significant,
=8)-(TW=16) negligible effect
DQN-MHA (TW 6.76 (3.78,9.74) (3.20,10.32) (2.07,11.45) 0.0002 0.53 Significant at all
=8)— (TW=232) levels, medium

effect
DQN-MHA (TW 5.83 (2.95,8.71) (2.39,9.27) (1.29,10.37) 0.001 0.47 Significant at all
=16) — (TW = levels, medium
32) effect

meaningful improvements. Furthermore, the magnitude of gains
(e.g, DQN-MHA achieving approximately 60% higher mean
performance than DQN under comparable conditions) illustrates
the practical significance of the results. Our choice of sample size
follows established practice in the reinforcement learning literature,
balancing computational feasibility with reliable estimation of
performance variability.

4.4 Limitations

Although the proposed architectures show good results in
throwing tasks, they have several important limitations. First,
using discrete action spaces constrains the task’s performance.
Discretizing joint angles makes learning more manageable but
reduces precision, which can be problematic when highly accurate
throwing is required.

Second, the methods depend on manually designed reward
functions. These rewards were determined through trial and error
and may not generalize effectively to other robots or tasks. The
speed of learning and how quickly the model converges also depend
heavily on how the state and reward functions are designed.

Frontiers in Robotics and Al

Third, although attention-based models such as DQN-MHA
improve performance, they incur additional computational costs.
Their complexity can limit real-time use on robots, particularly
in resource-constrained environments. Finally, the models were
trained in simplified environments. Their generalization to dynamic,
real-world settings with more complex physics remains to be
demonstrated.

5 Conclusion and future work

This paper serves multiple purposes: it provides a detailed review
of state-of-the-art deep reinforcement learning algorithms for
robotic throwing and introduces two novel approaches to enhance
deep Q-networks by integrating self-attention mechanisms. The
proposed models demonstrate better performance than the standard
DQN across all experiments. Although the new models outperform
other algorithms in specific situations, they exhibit limitations in
others. Notably, DQN with multi-head attention outperforms DQN
with structured self-attention. The latter’s complexity and its reliance
on attention heads reduce its effectiveness for the throwing problem
compared to the multi-head attention approach.

36 frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

Combining various techniques with DQNs could prove valuable
for more complex robotic applications. Transformer architectures
may significantly improve the precision and adaptability of robotic
manipulators performing throwing tasks. Advanced transformer
mechanisms, such as multi-head attention, enable simultaneous
consideration of critical factors, including object trajectory
and manipulator positioning, thereby enhancing accuracy and
efficiency.

Future work will focus on tackling throwing tasks with
reinforcement learning algorithms designed for continuous action
spaces, such as policy gradient and actor-critic methods, to improve
performance under real-world constraints.

We also plan to test the proposed architectures in higher-
fidelity simulators such as NVIDIA Isaac Sim, which will allow
us to incorporate more realistic physics and dynamic scenarios.
Additionally, we will explore transfer learning techniques to
apply knowledge from one robotic system to related tasks,
such as picking and placing, object catching, handing off, and
sorting.

Although this work focused on evaluating the overall
performance of different DQN-based architectures in a robotic
throwing scenario, future investigations will include ablation studies
to better understand the contribution of individual components
such as attention mechanisms or prioritized replay buffers. Such an
analysis would provide additional insights into the interpretability
of the learned policies. Furthermore, statistical hypothesis testing,
such as Welch’s test, can be beneficial in more marginal cases and
will be considered in future analyses.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material; further inquiries can be directed
to the corresponding author.

Author contributions

MA: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Resources,
Software, Supervision, Validation, Visualization, Writing - original
draft, Writing - review and editing. MT: Conceptualization,
Methodology, Resources, Supervision, Validation, Writing -
review and editing. AF: Formal Analysis, Funding acquisition,

References

AI-ML (2023). “Analytics,” in Reinforcement learning: exploration vs exploitation
tradeoff.

Albu-Schiffer, A., and Bicchi, A. (2016). “Actuators for soft robotics,” in Handbook of
robotics. Editors B. Siciliano, and O. Khatib (Springer), 243-282.

August, W., Waeldele, S., Hein, B., Woern, H., and Wyeth, G. (2010). “Accurate
object throwing by an industrial robot manipulator,” in Proceedings of the Australasian
Conference on robotics and automation 2010, 10. Brisbane, Australia, 74-81.

Ba, J. L., Kiros, J. R, and Hinton, G. E. (2016). Layer normalization. arXiv Preprint
arXiv:1607.06450

Frontiers in Robotics and Al

37

10.3389/frobt.2025.1567211

Project administration, Supervision, Writing — review and editing.
GC: Formal Analysis, Investigation, Methodology, Resources,
Supervision, Validation, Writing - review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was partially
funded by MIMIT under the FREECO2 project, grant number
F/310265/01-02/X56—Accordi per I'innovazione DM 31/12/2021
and DD.18/03/2022. This work was partially funded by the Science
Fund of the Republic of Serbia under the CircuBot project, grant
number #6784.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be of
interest.

construed as a potential conflict

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,

the editors and the reviewers. Any product that may be

affiliated organizations, or
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Bianchi, D., Antonelli, M. G., Laschi, C., Sabatini, A. M., and Falotico, E. (2023).
Softoss: learning to throw objects with a soft robot. IEEE Robotics and Automation Mag.
2-12. doi:10.1109/MRA.2023.3310865

Bombile, M., and Billard, A. (2022). Dual-arm control for coordinated fast grabbing
and tossing of an object: Proposing a new approach. IEEE Robotics Automation Mag.
29, 127-138. doi:10.1109/MRA.2022.3177355

Bombile, M., and Billard, A. (2023). Bimanual dynamic grabbing and
tossing of objects onto a moving target. Robotics Aut. Syst. 167, 104481.
doi:10.1016/j.robot.2023.104481

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://doi.org/10.1109/MRA.2023.3310865
https://doi.org/10.1109/MRA.2022.3177355
https://doi.org/10.1016/j.robot.2023.104481
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Al Homsi et al.

Britt, P. (2020). How growing e-commerce demand is driving growth in mobile
robotics. Robot. Bus. Rev. Available online at: https://www.therobotreport.com/wp-
content/uploads/2019/08/RBR-Whitepaper-GeekPlus-Final.pdf.

Burridge, R. R,, Rizzi, A. A., and Koditschek, D. E. (1995). Toward a dynamical pick
and place. Proc. 1995 IEEE/RS] Int. Conf. Intelligent Robots Syst. Hum. Robot Interact.
Coop. Robots (IEEE) 2, 292-297. d0i:10.1109/ir0s.1995.526175

Costa, M. A., Wullt, B, Norrlof, M., and Gunnarsson, S. (2019). Failure detection in
robotic arms using statistical modeling, machine learning and hybrid gradient boosting.
Measurement 146, 425-436. doi:10.1016/j.measurement.2019.06.039

Dong, K., Pereida, K., Shkurti, F, and Schoellig, A. P. (2020). “Catch the ball: accurate
high-speed motions for mobile manipulators via inverse dynamics learning,” in 2020
IEEE/RS] International Conference on Intelligent Robots and Systems, IROS (IEEE),
6718-6725.

Frank, H., Wellerdick-Wojtasik, N., Hagebeuker, B., Novak, G., and Mahlknecht, S.
(2006). “Throwing objects—a bio-inspired approach for the transportation of parts,” in
2006 IEEE International Conference on Robotics and Biomimetics (IEEE), 91-96.

Gonzalez, S. G. (2020). Real time Probabilistic models for robot trajectories. Technische
Universitdt Darmstadt, Darmstadt, Germany. Ph.D. thesis.

Group, M. R. (2024). Robotic systems - inverse kinematics. Available online at:
https://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html. Accessed on [.
Accessed on [8/January/2024]

Hassan, G., Gouttefarde, M., Chemori, A., Hervé, P.-E., El Rafei, M., Francis,
C., et al. (2022). Time-optimal pick-and-throw s-curve trajectories for fast parallel
robots. IEEE/ASME Trans. Mechatronics 27, 4707-4717. doi:10.1109/tmech.
2022.3164247

Hausknecht, M. J., and Stone, P. (2015). Deep recurrent q-learning for partially
observable mdps. Corr. abs/1507, 06527.

Homsi, M. A., Trumi¢, M., Cirrincione, G., and Fagiolini, A. (2023). “AI-Based
approach for throwing and Grasping objects from unknown positions by soft robot
Upper Body manipulators,” in Proceedings of the IEEE/RS] International Workshop on
Intelligent Robots and Systems (IROS) (Detroit, MI, USA).

Hu, N.-Z,, Su, C.-H. S., Gong, C.-S. A,, Lee, C.-],, Chen, Y.-S., Yang, C.-H., et al.
(2019). “Machine learning approach for robot diagnostic system,” in IEEE Eurasia
Conference on I0T.

Kasaei, H., and Kasaei, M. (2024). Throwing objects into a moving basket while
avoiding obstacles. Unspecified. doi:10.1109/ICRA48891.2023.10160215

Keras (2023). Attention layer.

Kim, J. H., Xiang, Y., Bhatt, R., Yang, J., Arora, J. S., and Abdel-Malek, K. (2008).
“Throwing motion generation of a biped human model,” in 2008 2nd IEEE RAS and
EMBS International Conference on Biomedical Robotics and Biomechatronics (IEEE),
587-592.

Lapan, M. (2018). Deep reinforcement learning hands-on. Packt Publishing
Birmingham, 6.

Learning, R. R. (2025). Inverse kinematics tutorial.

Li, S. E. (2023). Reinforcement learning for sequential decision and optimal control.
Springer. Available online at: https://libgen.li.

Lin, H.-I, Yu, Z., and Huang, Y.-C. (2020). Ball tracking and trajectory prediction for
table-tennis robots. Sensors 20, 333. d0i:10.3390/s20020333

Liu, Y., Nayak, A., and Billard, A. (2022). “A solution to adaptive mobile manipulator
throwing,” in 2022 IEEE/RS] International Conference on Intelligent Robots and Systems,
IROS, 1625-1632. doi:10.1109/IROS47612.2022.9981231

Lynch, K. M., and Mason, M. T. (1999). Dynamic nonprehensile manipulation:
Controllability, planning, and experiments. Int. J. Robotics Res. 18, 64-92.
doi:10.1177/027836499901800105

Frontiers in Robotics and Al

38

10.3389/frobt.2025.1567211

Mason, M. T,, and Lynch, K. M. (1993). Dynamic manipulation. Proc. 1993 IEEE/RS]
Int. Conf. Intelligent Robots Syst. 1, 152-159. doi:10.1109/ir0s.1993.583093

Mims, C. (2020). As e-commerce booms, robots pick up human slack. Wall Str. J.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I, Wierstra, D.,
et al. (2013). Playing atari with deep reinforcement learning. arXiv Prepr. arXiv:1312.
doi:10.48550/arXiv.1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G,,
et al. (2015). Human-level control through deep reinforcement learning. Nature 518,
529-533. doi:10.1038/nature14236

Nair, A., Srinivasan, P, Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., et al.
(2015). Massively parallel methods for deep reinforcement learning. arXiv Preprint
arXiv:1507.04296

Raptopoulos, E, Koskinopoulou, M., and Maniadakis, M. (2020). “Robotic pick-and-
toss facilitates urban waste sorting,” in 2020 IEEE 16th International Conference on
automation Science and engineering (CASE) (IEEE), 1149-1154.

Satici, A. C., Ruggiero, E, Lippiello, V, and Siciliano, B. (2016). “A
coordinate-free framework for robotic pizza tossing and catching” in 2016
IEEE International Conference on robotics and automation, ICRA, 3932-3939.
doi:10.1109/ICRA.2016.7487582

Satici, A. C., Ruggiero, E, Lippiello, V., and Siciliano, B. (2022). A coordinate-free
framework for robotic Pizza Tossing and catching. Springer, 207-227.

Schill, M. M., and Buss, M. (2018). Robust ballistic catching: a hybrid
system  stabilization  problem. IEEE  Trans. Robotics 34, 1502-1517.
doi:10.1109/tr0.2018.2868857

Siciliano, B. (2008). “Kinematics,” in Robotics: Modelling, planning, and control
(Springer).

Sivasamy, D., Dev Anand, M., and Anitha Sheela, K. (2019). Intelligence decision
making of fault detection and fault tolerance method for industrial robotic
manipulators. IJRTE. doi:10.35940/ijrte.B1004.07828319

Sorokin, I, Seleznev, A., Pavlov, M., Fedorov, A., and Ignateva, A. (2015). Deep
attention recurrent g-network. ArXiv. doi:10.48550/arXiv.1512.01693

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: an introduction. MIT
Press.

van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with
double q-learning. arXiv Prepr. arXiv:1509.06461. doi:10.48550/arXiv.1509.06461

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning with
double g-learning;’, 2. Phoenix, AZ, 5. doi:10.1609/aaai.v30i1.10295

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
et al. (2017). Attention is all you need. Adv. Neural Inf. Process. Syst. (NeurIPS) 30.
doi:10.48550/arXiv.1706.03762

Watkins, C. J. (1989). Learning from delayed rewards. Cambridge: King’s College.
Ph.D. thesis.

Wiki, R. (2024). Controlling the phantomx pincher robot arm.
Wikipedia (2023). Exploration-exploitation dilemma.

Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser, T. (2020). Tossingbot:
learning to throw arbitrary objects with residual physics. IEEE Trans. Robotics 36,
1307-1319. doi:10.1109/tr0.2020.2988642

Zhang, Y., Luo, J., and Hauser, K. (2012). “Sampling-based motion planning
with dynamic intermediate state objectives: application to throwing,” in 2012 IEEE
International Conference on Robotics and automation (IEEE), 2551-2556.

Zhang, S., Zhang, S., Wang, B., and Habetler, T. G. (2019). Machine learning and
deep learning algorithms for bearing fault diagnostics — a comprehensive review. Cornell
Univ. arXiv:1901, 08247v2. d0i:10.1109/ACCESS.2020.2972859

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567211
https://www.therobotreport.com/wp-content/uploads/2019/08/RBR-Whitepaper-GeekPlus-Final.pdf
https://www.therobotreport.com/wp-content/uploads/2019/08/RBR-Whitepaper-GeekPlus-Final.pdf
https://doi.org/10.1109/iros.1995.526175
https://doi.org/10.1016/j.measurement.2019.06.039
https://motion.cs.illinois.edu/RoboticSystems/InverseKinematics.html
https://doi.org/10.1109/tmech.-✐2022.3164247
https://doi.org/10.1109/tmech.-✐2022.3164247
https://doi.org/10.1109/ICRA48891.2023.10160215
https://libgen.li
https://doi.org/10.3390/s20020333
https://doi.org/10.1109/IROS47612.2022.9981231
https://doi.org/10.1177/027836499901800105
https://doi.org/10.1109/iros.1993.583093
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ICRA.2016.7487582
https://doi.org/10.1109/tro.2018.2868857
https://doi.org/10.35940/ijrte.B1004.0782S319
https://doi.org/10.48550/arXiv.1512.01693
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/tro.2020.2988642
https://doi.org/10.1109/ACCESS.2020.2972859
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Methods and solution
	2.1 Reinforcement learning approach
	2.2 Q-learning approach
	2.2.1 Q-learning choice of hyperparameters
	2.2.2 Q-learning states and actions
	2.2.3 Constraint compensation using Q-learning

	2.3 Approaches using DQNs
	2.3.1 DQN with self-attention
	2.3.2 Multi-head attention in DQNs
	2.3.3 Structured self-attention in DQNs
	2.3.4 Comparison analysis of DQNs based on self-attention


	3 Result
	3.1 Q-learning for robot throwing
	3.1.1 Q-learning for pick-and-place tasks
	3.1.2 Constraint compensation using reward function
	3.1.3 Q-learning for throwing tasks

	3.2 Throwing a ball using deep RL
	3.2.1 Compatibility with deep learning
	3.2.2 Comparison between DQN and other RL algorithms
	3.2.3 Comparison between different types of DQNs
	3.2.4 Throwing an object to an unknown position of the basket using DQNs with and without an external constraint


	4 Discussion
	4.1 Results and discussion
	4.2 Robustness evaluation
	4.2.1 Testing sensitivity to sensor noise
	4.2.2 Testing sensitivity to joint constraints

	4.3 Analysis of the time window
	4.4 Limitations

	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

