
 

TYPE Original Research
PUBLISHED 18 September 2025
DOI 10.3389/frobt.2025.1541017

OPEN ACCESS

EDITED BY

Rajkumar Muthusamy,
Dubai Future Foundation, United 
Arab Emirates

REVIEWED BY

Weibin Guo,
Chinese Academy of Sciences (CAS), China
Chuanfei Hu,
Southeast University, China

*CORRESPONDENCE

Jinane Mounsef,
 jmbcad@rit.edu

RECEIVED 06 December 2024
ACCEPTED 01 July 2025
PUBLISHED 18 September 2025

CITATION

Sakhrieh S, Singh A, Mounsef  J, Arain  B and 
Maalouf  N (2025) VIO-GO: optimizing 
event-based SLAM parameters for robust 
performance in high dynamic range 
scenarios.
Front. Robot. AI 12:1541017.
doi: 10.3389/frobt.2025.1541017

COPYRIGHT

© 2025 Sakhrieh, Singh, Mounsef , Arain  and 
Maalouf . This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

VIO-GO: optimizing event-based 
SLAM parameters for robust 
performance in high dynamic 
range scenarios

Saber Sakhrieh1, Abhilasha Singh1, Jinane Mounsef 1*, 
Bilal Arain 2 and Noel Maalouf 3

1Electrical Engineering and Computing Sciences Department, Rochester Institute of Technology, 
Dubai, United Arab Emirates, 2Department of Computer Engineering, University of Sharjah, Sharjah, 
United Arab Emirates, 3Electrical and Computer Engineering Department, Lebanese American 
University, Byblos, Lebanon

This paper addresses a critical challenge in Industry 4.0 robotics by enhancing 
Visual Inertial Odometry (VIO) systems to operate effectively in dynamic 
and low-light industrial environments, which are common in sectors like 
warehousing, logistics, and manufacturing. Inspired by biological sensing 
mechanisms, we integrate bio-inspired event cameras to improve state 
estimation systems performance in both dynamic and low-light conditions, 
enabling reliable localization and mapping. The proposed state estimation 
framework integrates events, conventional video frames, and inertial data to 
achieve reliable and precise localization with specific emphasis on real-world 
challenges posed by high-speed and cluttered settings typical in Industry 4.0. 
Despite advancements in event-based sensing, there is a noteworthy gap in 
optimizing Event Simultaneous Localization and Mapping (SLAM) parameters 
for practical applications. To address this, we introduce a novel VIO-Gradient-
based Optimization (VIO-GO) method that employs Batch Gradient Descent 
(BGD) for efficient parameter tuning. This automated approach determines 
optimal parameters for Event SLAM algorithms by using motion-compensated 
images to represent event data. Experimental validation on the Event Camera 
Dataset shows a remarkable 60% improvement in Mean Position Error (MPE) over 
fixed-parameter methods. Our results demonstrate that VIO-GO consistently 
identifies optimal parameters, enabling precise VIO performance in complex, 
dynamic scenarios essential for Industry 4.0 applications. Additionally, as 
parameter complexity scales, VIO-GO achieves a 24% reduction in MPE when 
using the most comprehensive parameter set (VIO-GO8) compared to a minimal 
set (VIO-GO2), highlighting the method’s scalability and robustness for adaptive 
robotic systems in challenging industrial environments.

KEYWORDS

visual inertial odometry, event SLAM, batch gradient descent, optimization, edge image, 
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 1 Introduction

SLAM is a key technology in the autonomous navigation of robots, serving as a 
fundamental element for the operation of autonomous vehicles (Sahili et al., 2023). Over 
the past 2 decades, research in SLAM and Visual Odometry (VO), using cameras either
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independently or in conjunction with inertial sensors, has led to 
highly accurate and robust systems that continually improve in 
performance (Campos et al., 2021).

As the complexity of autonomous applications grows, new 
challenges require innovative VO and SLAM solutions that deliver 
precision and reliability in increasingly dynamic scenarios. Standard 
cameras, while effective in certain conditions, encounter difficulties 
in low-light environments or during rapid movement due to motion 
blur and constrained frame rates. Event cameras, asynchronous 
visual sensors that address these issues, have emerged as a promising 
alternative (Hadviger et al., 2023). Event-based SLAM offers distinct 
advantages by eliminating motion blur, supporting high dynamic 
range (HDR), and operating at higher frame rates. However, event 
cameras may struggle in scenarios with minimal relative motion, 
such as in stationary states, where standard cameras excel in offering 
instantaneous and comprehensive environmental data, particularly 
in low-speed, well-lit conditions (Vidal et al., 2018).

This complementary nature suggests a hybrid approach, 
combining event and standard cameras with an inertial 
measurement unit (IMU) to produce a reliable and precise VIO 
framework (Chen et al., 2023). By compensating for each sensor’s 
limitations, this integrated framework is versatile and adaptable to 
a broad range of environmental conditions and movement patterns. 
One such example is Ultimate SLAM (Vidal et al., 2018), which 
integrates traditional cameras, event frames, and IMU data to 
provide reliable state estimation even in challenging scenarios.

As event cameras transform the way visual data is captured, 
new methodologies are needed to handle and interpret this unique 
data effectively (Sahili et al., 2023). A major limitation involves 
adapting to the asynchronous and sparse output from event cameras, 
contrasting with the dense, synchronous images produced by 
conventional cameras. Consequently, traditional vision algorithms 
developed for frame-based image sequences cannot be directly 
applied to event data (Gallego et al., 2022).

To bridge this gap, several techniques have been presented 
to transform asynchronous event data into a synchronous format 
(Guan et al., 2023). Some methods directly process raw event 
streams without accumulating frames (Alzugaray and Chli, 2018). 
Others use learning-based methods to create intensity images from 
events (Gehrig et al., 2020). Another approach is the generation 
of motion-compensated event or edge images by grouping events 
within specific spatial and temporal windows, highlighting scene 
edges and providing a structured visual representation of event data 
(Vidal et al., 2018; Rebecq et al., 2017b). However, this method 
presents challenges, requiring substantial parameter adjustments 
specific to each environment, which becomes burdensome when 
transitioning across diverse scenarios (Huang et al., 2024). This 
dependency on manual tuning creates a bottleneck for VIO 
systems, which must exhibit robust performance in unfamiliar 
environments where the event count varies widely. For practical 
applications, especially within Industry 4.0, where environments 
are constantly changing, manual parameter adjustments become 
impractical (Mahlknecht et al., 2022).

In this paper, we present VIO-GO, a novel approach designed 
to enhance the performance and robustness of Event SLAM in 
unknown environments through targeted parameter optimization. 
Our method focuses on tuning parameters for Visual SLAM 
systems that use motion-compensated images to represent event 

data. By integrating event-based SLAM methods with a BGD 
algorithm, VIO-GO enables iterative refinement of parameters 
across diverse scenes with varying event generation rates. Unlike 
conventional motion-compensated image methods, VIO-GO 
minimizes the need for extensive manual parameter tuning, leading 
to improved time efficiency. Experimental results indicate that 
VIO-GO outperforms both fixed-parameter motion-compensated 
approaches and state-of-the-art EVIO methods, demonstrating 
superior performance across various dynamic scenes. Figure 1 
shows a comparison between VIO-GO and Ultimate SLAM 
using its fine-tuned parameters, highlighting the improvements 
in performance achieved by VIO-GO.

2 Related work

The integration of RGB cameras and inertial sensors has long 
been foundational in VIO systems. However, recent advancements 
have seen an increasing shift towards the inclusion of event 
cameras, marking a pivotal development in the field of Visual 
SLAM. This literature review is divided into two subsections: 
Event-Based Visual-Inertial Odometry (EVIO) and Adaptive 
Parameter Optimization, providing a focused examination of the 
latest research. 

2.1 Event-based visual-Inertial odometry 
(EVIO)

EVIO integrates the high-speed, high-contrast sensitivity of 
event cameras combined with inertial data from accelerometers and 
gyroscopes (Chen et al., 2023). Unlike traditional cameras, event 
cameras capture changes in a scene at up to 1 MHz, allowing them 
to handle rapid motion without issues like image blur, temporal 
aliasing, or saturation under intense lighting. These attributes 
make event cameras particularly useful for dynamic and low-light 
environments (Zhu et al., 2017).

The study in (Mueggler et al., 2017a) examines the integration 
of event frames and inertial data using a continuous-time model. 
However, real-time application remains challenging due to the 
computational burden of adjusting spline parameters for each 
incoming event. In a different approach, the authors in (Rebecq et al., 
2017b) propose a real-time event-based VIO pipeline that uses 
optical flow estimation, grounded in the recent camera pose, 
scene configuration, and inertial data, to track visual features 
across multiple frames. These tracked features are subsequently 
combined with inertial measurements through keyframe-based 
nonlinear optimization. Similarly, in (Vidal et al., 2018), the 
authors integrate event streams, standard frames, and IMU data 
through nonlinear optimization process, achieving a notable 
accuracy enhancement of 130% over event-only frames and 
85% over standard frames with IMU data. This system also 
supports real-time integration with a quadrotor. Furthermore, 
the authors in (Censi and Scaramuzza, 2014; Kueng et al., 
2016) introduce low-latency, event-based VO techniques that 
accurately estimate rotation and translation using Dynamic 
Vision Sensors (DVS) alongside conventional CMOS cameras in
natural scenes.
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FIGURE 1
The estimated trajectory of Ultimate SLAM (Vidal et al., 2018) and VIO-GO aligned with the ground truth trajectory for the Hdr_boxes
sequence in (Mueggler et al., 2017b). The figures show that VIO-GO produces a precise trajectory with a low absolute position error (APE) value, which 
is comparable to the trajectory estimated by Ultimate SLAM. (a) Estimated trajectory (fine-tuned parameters). (b) Estimated trajectory (VIO-GO).

In (Kim et al., 2016), the authors discuss an event-based 6-
degree-of-freedom (6-DoF) VO system, using three decoupled 
probabilistic filters to estimate the camera’s pose, a 3D scene 
model, and image intensity. However, this approach incurs a 
significant computational burden, requiring GPU use for real-
time performance. In (Zhu et al., 2017), the EVIO method is 
presented, where an Extended Kalman Filter (EKF) fuses event 
data with pre-integrated IMU measurements, demonstrating the 
potential of event-based VIO for applications like planetary 
exploration. To further explore this potential (Mahlknecht et al., 
2022), introduce the Event-based Lucas-Kanade Tracking VIO 
(EKLT-VIO), which integrates an event-based tracker developed 
by (Gehrig et al., 2020) in the front-end and a filter-based back-
end to conduct VIO in Mars-like environments. Their results 
show a 32% improvement in MPE under low-light and HDR 
conditions compared to prior frame-based and event-based VIO 
techniques, although front-end and back-end parameter selection 
were not addressed. Expanding upon previous methodologies, PL-
EVIO, proposed by (Guan et al., 2023), tightly integrates event-
based point and line features, standard frame point features, and 
IMU data, thereby providing more geometric restrictions and 
enhancing robustness. While these advancements mark significant 
progress in Event SLAM, the literature reveals a gap in adaptive 
parameter optimization across various scenarios. Our approach 
aligns closely with methodologies in (Vidal et al., 2018; Rebecq et al., 
2017b), which use motion-compensated images to represent event 
data but require significant manual parameter tuning for diverse 
environments. Our goal is to streamline the process by developing 
a pipeline capable of automating parameter optimization, thereby 
enhancing both the practicability and time efficiency of Event 
SLAM systems.

2.2 Adaptive parameter optimization

Integrating event cameras into VO/VIO systems presents a 
major challenge that arises from the asynchronous nature of event 
streams, which fundamentally differs from synchronous image data. 
Consequently, many methods designed for traditional image-based 
cameras cannot be directly applied to event-based systems. To 
address this gap, various techniques for representing event data have 
been introduced in the literature (Guan et al., 2023). Common 
approaches involve applying conventional feature detection and 
tracking methods to edge images created from motion-compensated 
event streams (Vidal et al., 2018; Rebecq et al., 2017b). However, 
these methods often require extensive parameter adjustments to 
adapt to specific fluctuations in event density, which can impact 
VIO system performance. Through a review of existing parameter 
optimization methods, we aim to identify the most effective strategies 
for enhancing event-based VIO systems and highlight areas where 
further optimization could improve system adaptability and reliability. 

In (Li et al., 2020), the authors use a Stochastic Gradient Descent 
(SGD) approach for localization, coupled with scan matching via a 
2D LiDAR system. This SGD-based approach enables the localizer 
to effectively track the robot’s state, generating a coherent trajectory 
of its movements. The technique attained a position error of 
0.26 m and a heading error of around 5°. In (Torroba et al., 2023), 
the authors employ SGD to optimize the evidence lower bound 
(ELBO) on Gaussian process maps by estimating mini-batches, 
which allowed real-time performance on large-scale datasets and 
was successfully tested in a live Autonomous Underwater Vehicle 
(AUV) mission. Similarly, the authors in (Song et al., 2021) examine 
SGD for map classification in SLAM, while (Beomsoo et al., 2021) 
implements SGD to refine the policy network within the Proximal 
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Policy Optimization algorithm. These approaches demonstrate the 
effectiveness of SGD in achieving both accuracy and efficiency for 
front-end and back-end optimization in dynamic environments.

In (Rebecq et al., 2017a), the authors use an intermediate 
representation by accumulating events into an edge-like image, 
employing a Gradient Descent (GD) approach that simplifies 
representation by randomly sampling pixels. This technique 
improves tracker speed and enhances robustness by increasing 
resilience to occlusions. In another approach, Luo et al. (2019) 
introduce a stage-wise SGD algorithm with a selective update 
mechanism to efficiently select a subset of training images for direct 
SLAM tracking, ensuring faster convergence.

As discussed, although significant research has focused on 
optimizing conventional SLAM methods, limited studies have 
applied GD approaches specifically to optimize Event SLAM 
parameters. Given the potential benefits, this work adopts the 
GD approach to optimize front-end and back-end parameters, 
particularly in challenging low-light and HDR scenarios. 

3 Motion-compensated EVIO 
framework

This section details the motion-compensated event image 
state estimation framework, which serves as the backbone of the 
methodology presented in Section 4. Optimization of the state 
estimation parameters is addressed in the following paragraphs.

The motion-compensated EVIO system detects features within 
the edge image created from motion-compensated events by 
employing conventional image-based feature detection techniques. 
For example (Rebecq et al., 2017b), integrates event data with IMU 
data to obtain an accurate motion-compensated EVIO pipeline that 
leverages the distinctive features of event cameras to enable accurate 
state estimation in challenging scenarios. This approach is further 
extended in Ultimate SLAM (Vidal et al., 2018), where standard 
frames are incorporated as an additional sensing modality, achieving 
a more reliable and precise state estimation.

The motion-compensated EVIO system is traditionally divided 
into two parts: the front-end process, which processes a stream of 
events to establish feature tracks and triangulate landmarks, and 
the back-end, which integrates these feature tracks, landmarks, and 
IMU measurements to constantly update both current and past 
sensor states (Rebecq et al., 2017b). However, employing the edge 
image in this state estimation framework presents difficulties that 
often demand extensive parameter tuning.

To address these limitations, this work aims to enhance existing 
methods by developing an automated parameter optimization 
pipeline that facilitates the tuning process and identifies optimal 
parameters across diverse scenarios. The following paragraphs 
discuss key parameters that can be optimized within both the front-
end and back-end components. 

3.1 Front-end process

The main approach in the front-end is to generate event frames 
from spatiotemporal clusters of events, followed by applying feature 
detection and tracking techniques. This state estimation system 

builds on methodologies from (Vidal et al., 2018; Rebecq et al., 
2017b), where features are detected and tracked within edge images 
derived from motion-compensated events, employing conventional 
image-based feature detection and tracking methods. Particularly, 
the FAST corner detector (Rosten and Drummond, 2006) and the 
Lucas-Kanade tracker (Lucas and Kanade, 1981) are utilized for 
these purposes. Additionally, features from standard frames are 
extracted and incorporated into the back-end optimization module, 
enhancing overall robustness and accuracy.

In noise-free scenarios, event frames can be represented as e f =
(X f , t f ,p f), where X f  denotes the pixel value (x f ,y f), t f  indicates the 
elapsed time, and p f  signifies the polarity ranging from {-1,+1}. 
Additionally, the events e f  are synchronized by aligning them with 
the spatio-temporal windows of events based on the timestamps of 
the conventional frames. For each conventional frame at time t f , a 
new spatiotemporal event window Wk is defined as follows:

Wk = {ej(tf)−FS+1;……;ej(tf)} . (1)

Here, j(t f) denotes the index of the first event with a timestamp 
tj < t f , and FS represents the size of the window. Subsequently, each 
spatiotemporal event window undergoes a transformation into an 
artificial event frame Ik by applying motion compensation at its 
individual timestamp, as demonstrated in the next equation:

Ik (x) = ∑
erϵWK

δ(x− x′c) , (2)

where δ (x) represents the Kronecker delta, xc denotes the adjusted 
event location acquired by shifting event er to align with the specified 
event camera frame. Further, it is necessary to adjust the movement 
of every event locally based on its respective timestamp due to the 
limited information in small window sizes and the motion blur 
introduced by extensive window sizes. The x′c  in Equation 2 can 
be calculated using the formula given by (Rebecq et al., 2017b), 
as shown in Equation 3:

x′c = πo (Ttm,tn)(Z(xc)π−1o (xc)) , (3)

where xc denotes the event pixel location, πo(:) is the event camera 
projection sample derived from previous inherent calibration, 
(Ttm,tn) signifies the gradual transition of the camera poses at times 
tm and tn, derived from integrating the inertial measurements, and 
Z(xc) represents the scene depth at time t f  estimated through a 2D 
linear interpolation.

The count of events FS in each spatiotemporal window needs to 
be adapted and can be optimized according to the texture density 
present in the scene. Hence, in this work, it has been chosen 
as one of the optimized parameters1. The median depth of the 
current landmarks MD can produce satisfactory results with reduced 
computational costs compared to linearly interpolating the depth 
Z(xc). Therefore, the median depth of landmarks is optimized using 
the proposed method1 presented in Section 4.

New features are identified using the FAST corner detector, 
which is applied to both motion-compensated event frames and 

1 Refer to Table 1 for key parameters used in the state 

estimation framework and optimized through the proposed method 

outlined in Section 4.
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standard frames (Mueggler et al., 2017a). This approach ensures 
an even distribution of features across the image by using a 
bucketing grid:

Sx→y =
{{{{
{{{{
{

D, if Ix→y ≤ Ix −T

S, if Ix −T < Ix→y < Ix +T

B, if Ix +T ≤ Ix→y

(4)

where Ix is the intensity at pixel x, T is the threshold value, 
Ix→y denotes the intensity difference between pixel x and y, 
D is the darker corner, S is the similar pixel, and B is the 
brighter corner. To effectively detect these features, the threshold 
of the FAST detector is optimized in this work1. These features 
are subsequently tracked from Ix to Ix + 1, derived through an 
incremental transformation. Moreover, landmarks are tracked using 
the pyramidal Lukas-Kanade tracking algorithm (Lucas and Kanade, 
1981), with the number of pyramid levels for feature extraction 
set as an automatically adjusted parameter1. Furthermore, a two-
point RANSAC approach (Mueggler et al., 2014) is used for 
additional filtering of outlier feature tracks. In this system, the 
parameters for detection and tracking are maintained consistently 
across both motion-compensated event frames and conventional 
frames. Moreover, if the number of tracked features drops below a 
certain threshold KT, features are re-detected. 

3.2 Back-end process

This section explores the integration of feature tracks from 
the event stream with IMU data, using a smoothing-based 
nonlinear optimization method on chosen keyframes. A detailed 
comprehensive analysis of IMU biases and kinematics can be found 
in (Rebecq et al., 2017b; Guan et al., 2023). The visual-inertial 
nonlinear optimization is described by a cost function JV IO, which 
consists of three components: two weighted reprojection errors 
associated with event-based and conventional camera data, and an 
inertial error Es. The cost function JV IO is formulated as shown in 
Equation 5:

JV IO =
1

∑
i=0

K

∑
k=1
∑

jϵȷ(i,k)
Ei,j,kT

Wi,j,k
r Ei,j,k +

K−1

∑
k=1

EkT

s Wk
s Ek

s , (5)

and the reprojection error Ei,j,k is given by Equation 6:

Ei,j,k = zi,j,k − πi (Tk
cis

Tk
sWIi,j) . (6)

In the previous equations, i represents the sensor identifier, k
signifies the frame identifier, and j refers to the landmark. The set 
ȷ(i,k) includes the landmarks tracked by sensor i in the kth frame. 
The data matrix for each landmark measurement Ii,j is represented 
as Wi,j,k

r , while Wk
s  denotes the data matrix corresponding to 

the IMU error in the kth frame. Additionally, zi,j,k denotes the 
calculated image coordinates for every kth frame. The IMU error is 
computed as the disparity between predicted and actual trajectories 
(Leutenegger et al., 2013). Optimization is performed selectively, 
focusing on a subset comprising of keyframes and the last K frames 
in a sliding window, while predictions for intervening frames are 
propagated using IMU data. The number of keyframes employed 
in the back-end process is one of the parameters optimized 
in this study1. 

4 Materials and methods

Motion compensation necessitates identifying motion 
parameters that precisely match a sequence of events. By using 
a continuous-time warping framework, it is possible to fully 
leverage the exact temporal information offered by events, setting 
this approach apart from conventional image-based methods. 
Obtaining parameters for these continuous-time motion models 
frequently relies on optimization strategies (Mueggler et al., 2018). 
This section focuses on optimizing Event SLAM parameters to 
enhance trajectory pose prediction using the BGD algorithm. 
A comprehensive diagram of the proposed VIO-GO process 
flow is depicted in Figure 2. Therefore, BGD is chosen in this 
study for its proven stability and reliability in achieving efficient 
parameter tuning.

BGD is chosen due to its fundamental role as an optimization 
technique widely used in machine learning (Mustapha et al., 
2020). Its significance emerges from its ability to systematically 
uncover optimal parameter values through iterative adjustments 
guided by gradients of the objective function, computed across the 
entire dataset. This makes BGD particularly effective for smaller 
datasets, such as ours, where the dataset is dynamically generated 
as the robot navigates through the environment. Unlike SGD, 
which updates parameters based on individual data points and 
can introduce noise, BGD provides stable convergence, minimizing 
variance and ensuring more consistent results (Singh and Singh, 
2023). Furthermore, successful applications of BGD in parameter 
optimization, such as in (Mustapha et al., 2020; Rao et al., 
2023), demonstrate its robustness and effectiveness in enhancing 
model performance. Therefore, BGD is chosen in this study for 
its demonstrated stability and reliability in achieving efficient 
parameter tuning.

A key challenge with the GD method is that the search may 
oscillate within the search space, influenced by the gradient’s 
direction. For instance, although the descent can move toward 
a global minimum, it may sometimes veer off course due to 
local minima or saddle points, ultimately slowing convergence. 
To address this, a common solution is to introduce momentum 
into the parameter update equation. This approach introduces an 
additional hyperparameter that controls the extent to which the past 
gradient (momentum) influences the current update (Chandra et al., 
2022). Momentum helps the search maintain a consistent direction, 
reducing oscillations and enhancing the likelihood of bypassing 
local minima. In this work, momentum has been added to the BGD 
algorithm, formulated as shown in Equation 7:

Gi = β∗Gi−1 + gi, (7)

where Gi defines the adjusted gradient incorporating momentum, β
is the hyperparameter that represents the momentum constant, and 
gi denotes the gradient, showing the direction of decrease for the 
cost function.

Identifying the optimal event window size is crucial for event-
based SLAM systems that use motion compensation to represent 
event data. This calibration relies on the event frame’s dynamics, 
influenced more by camera resolution and scene complexity than 
by the speed of camera motion (Xiao et al., 2022). The number of 
events N in every spatiotemporal window must be adjusted based 
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FIGURE 2
A detailed illustration showcasing the VIO-GO process, highlighting the integration of event frames, standard frames, and IMU using BGD optimization. 
The figure provides an overview of the iterative optimization process, emphasizing the seamless fusion of event-based visual information and inertial 
measurements to refine the estimated trajectory and reduce the MPE.

on the scene’s texture density, making it a main optimization target 
in VIO-GO. The primary goal is to achieve sharp motion blur-
free edges, ensuring that the event frame accurately reflects the 
scene’s layout.

The VIO-GO model is implemented alongside the state-
of-the-art VIO method, Ultimate SLAM, chosen for its use 
of motion-compensated images to represent event data, which 
requires significant parameter adjustments. VIO-GO functions as 
an auxiliary technique that automatically finds and updates optimal 
parameters within the Ultimate SLAM framework.

VIO-GO incorporates several approaches: the 2-parameter set 
(VIO-GO2), the 4-parameter set (VIO-GO4), the 6-parameter set 
(VIO-GO6), and the 8-parameter set (VIO-GO8). The parameters 
selected for each approach are determined from the front-end and 

back-end equations discussed in Section 3. VIO-GO2 and VIO-
GO4 concentrate on optimizing the spatiotemporal event window 
parameters, while VIO-GO6 and VIO-GO8 extend optimization 
to include feature extraction and back-end parameters. The key 
parameter sets Θ(0) considered for optimizing event VIO are 
detailed in Table 1.

All VIO-GO approaches prioritize the event window size from
Equation 1 as the main optimization parameter, due to its critical 
role, as discussed previously. Furthermore, each method adjusts the 
noise event rate, which acts as a threshold for scenarios where the 
sensor is stationary and produces minimal events. When the event 
rate falls below this threshold, indicating low activity aside from 
noise events, the sensor is held in a stationary state. These two 
parameters are the focus of fine-tuning in VIO-GO2.
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TABLE 1  List of parameter sets Θ(0) selected for BGD optimization in event-based VIO.

VIO-GO2

Parameter Symbol Explanation

Frame size Fs Number of events drawn from the event camera

Noise event rate NER Events per second regarded as noise

VIO-GO4

Parameter Symbol Explanation

Frame size Fs Number of events drawn from the event camera

Noise event rate NER Events per second regarded as noise

Data size augmented event packet EP Event packet size

Frame norm factor NF Normalization factor for event frames

VIO-GO6

Parameter Symbol Description

Frame size Fs Number of events drawn from the event camera

Noise event rate NER Events per second regarded as noise

VIO median depth MD Median depth of landmarks

Imp detector num octaves NO Number of pyramid levels for feature extraction

Imp detector threshold T Absolute threshold value of the FAST detector

VIO numkeyframes CKF Number of keyframes in back-end process

VIO-GO8

Parameter Symbol Description

Frame size Fs Number of events drawn from the event camera

Noise event rate NER Events per second regarded as noise

VIO median depth MD Median depth of landmarks

Imp detector num octaves NO Number of pyramid levels for feature extraction

Imp detector threshold T Absolute threshold value of the FAST detector

VIO numkeyframes CKF Number of keyframes in the back-end process

VIO kfselect numfts lower thresh KT Force keyframe selection below this number of features

Detector max features per frame DMF Maximum number of features to extract per frame

The optimal values of Θ(0) for the VIO-GO2 are calculated from 
the set of BGD equations, as shown in Equation 8:

FS = FS − (γ∗GFS)

NER = NER −(γ∗
GN

2
), (8)

 where GFS denotes the gradient frame size and GN indicates the 
gradient noise event rate.

In VIO-GO4, additional parameters are optimized, including 
the event packet size, which defines the dimensions of augmented 
event packets sent to the front-end for rendering event frames, and 
the normalization factor for event frames. However, in VIO-GO6 
and VIO-GO8, these parameters were adjusted, as they were found 
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Input:Initial parameters Θ(0), Number of iterations

N, Learning rate γ

Output: Final parameters Θ(N)

1. for n = 0 to N−1

2.     estimate ∇L(Θ(n)) ← USLAM(trajectory)

3.     compute ΔΘ(n) = −∇L(Θ(n))
4.     Θ(n+1) ≔ Θ(n) +γΔΘ(n)

5. return Θ(N)

Algorithm 1. Proposed parameter set Θ(0) of optimization method1.

to have minimal impact on the estimated trajectory of the overall 
VIO system, as discussed in Section 5.

The optimal values of Θ(0) for the VIO-GO4 are calculated from 
the set of BGD equations, as shown in Equation 9:

FS = FS − (γ∗GFS)

NER = NER −(γ∗
GN

2
)

EP = EP − (γ∗ 1.5∗GEP)

NF = GNF, (9)

where GFS is the gradient frame size, GN corresponds to the 
gradient noise event rate, GEP corresponds to the gradient event 
packet size, and GNF is the gradient normalization factor.

To enhance feature identification in Equation 4, both VIO-GO6 
and VIO-GO8 adjust the FAST detector threshold and the number 
of pyramid levels used for feature extraction. Additionally, both 
methods fine-tune the parameter defining the number of keyframes 
used in the back-end optimization process.

The optimal values of Θ(0) for the VIO-GO6 are calculated from 
the set of BGD equations, as shown in Equation 10:

FS = FS − (γ∗GFS)

NER = NER −(γ∗
GN

2
)

MD =MD − (γ∗GMD)

NO = GNO

T = T− (γ∗GT)

CKF = CKF − (γ∗GCKF) , (10)

 where GFS and GN remain as in the previous approach, GMD
corresponds to the gradient of the median depth, GNO is the gradient 
of the number of octaves, GT is the gradient threshold, and GCKF
corresponds to the gradient of the number of keyframes in the back-
end.

VIO-GO8 includes two additional parameters not found in 
VIO-GO6: the minimum number of features needed to enforce 
keyframe selection and the maximum number of features to extract 
from each frame. These parameters have a considerable effect on the 
feature extraction process, thereby affecting the overall performance 
of the VIO system.

The optimal values of Θ(0) for VIO-GO8 are calculated from the 
set of BGD equations, as shown in Equation 11:

FS = FS − (γ∗GFS)

NER = NER −(γ∗
GN

2
)

MD =MD − (γ∗GMD)

NO = GNO

T = T− (γ∗GT)

CKF = CKF − (γ∗GCKF)

KT = KT − (γ∗GKT)

DMF = DMF − (γ∗GDMF) , (11)

 where GKT represents the gradient of the maximum number 
of features per frame and GDMF denotes the gradient keyframes 
selection threshold, while all other parameters remain the same as 
in VIO-GO6.

The loss functions for these parameter sets are calculated based 
on the mean error and target error of the trajectories obtained from 
the event-based VIO. The parameters are updated using a learning 
rate γ of 0.02. Once these parameters are optimized, they are fedback 
into the event-based VIO, and the resulting trajectories in the x, 
y, and z directions are recorded along with the MPE. The error is 
calculated over a 5-s interval, as described in (Rebecq et al., 2017b; 
Vidal et al., 2018). The complete parameter optimization technique 
is outlined in Algorithm 1.

Although the Ultimate SLAM involves numerous parameters, 
restricting their number ensures the practical feasibility of the 
proposed system. This constraint was chosen for two main reasons. 
First, the selected parameters are crucial elements of the front-end 
and back-end equations discussed in Section 3. Second, maintaining 
a fixed learning rate across all VIO-GO approaches makes it 
challenging to integrate parameters with significantly different 
values into the GD equations. Moreover, using various learning rates 
for different parameters would significantly increase the system’s 
computational cost.

The proposed algorithm extends its applicability beyond 
Ultimate SLAM, demonstrating adaptability to a broader 
range of algorithms. Specifically, the VIO-GO2 and VIO-GO4 
approaches are applicable to any event-based VIO system that uses 
motion-compensated images for event data representation. This 
compatibility is due to the shared use of a spatio-temporal event 
window in the front-end processing of these systems. Moreover, 
VIO-GO6 and VIO-GO8 are designed for seamless integration 
with event-based systems that specifically use the FAST detector for 
feature extraction and nonlinear back-end optimization. 

5 Results

We assess the efficiency of the VIO-GO framework by 
comparing it to various event-based VIO methods across 
challenging sequences from the Event Camera Dataset 
(Mueggler et al., 2017b). This dataset comprises sequences captured 
with a Dynamic and Active-pixel Vision Sensor (DAVIS) across 
various synthetic and real-world environments, serving as a widely 
accepted benchmark for evaluating SLAM systems for high-speed 
motion and HDR scenarios. The sequences exhibit complexity 
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FIGURE 3
Scenes from the different sequences in the Event Camera Dataset (Mueggler et al., 2017b, Copyright © 2017 by The Author(s). Reprinted by Permission 
of Sage Publications). (a) Boxes_sequence. (b) Dynamic_sequence. (c) Shapes_sequence.

through varying speeds, scenes, and DoF. In the shapes, poster, 
and boxes datasets, each DoF is initially excited individually, 
followed by mixed and progressively faster excitations, resulting in 
higher event rates over time. The HDR datasets include significant 
intrascene contrasts created by a spotlight. The dynamic sequences, 
gathered in a simulated office environment and observed by a 
motion-capture method, depict an individual transitioning from 
sitting at a desk to moving around. Figure 3 displays snapshots 
from representative sequences within the dataset, highlighting the 
diversity and complexity of the captured scenarios.

Our evaluation includes a quantitative examination to assess the 
accuracy of the proposed algorithm. Accuracy is measured using 
the MPE, expressed as a percentage of the total distance traveled. 
A 6-DOF transformation in SE(3) is applied over a 5-s segment of 
the trajectory to align the estimated and ground truth trajectories. 
This alignment and accuracy calculation is carried out using the 
EVO tool (Grupp, 2017). All experiments were conducted on a 
laptop powered by an Apple M1 chip, running Ubuntu 20.04 and 
ROS Noetic. To evaluate the performance of the presented adaptive 
optimization system, it was integrated with the Ultimate SLAM 
framework (Vidal et al., 2018). Ultimate SLAM uses edge images for 
VIO, requiring significant parameter tuning to adapt to the dynamic 
nature of events in the scene.

To initiate the BGD optimization process, we set all parameter 
values to the upper bounds of their respective ranges. This 
choice provides a conservative starting point, allowing the system 
to iteratively refine the parameters toward their optimal values. 
For IMU biases, fixed initial values were used throughout all 
experiments to ensure consistent benchmarking. These values are 
derived from the calibration data provided with the Event Camera 
Dataset Mueggler et al., 2017b. Moreover, they fall within the 
nominal factory calibration ranges specified in the datasheet of the 
InvenSense MPU-6150 IMU sensor2, which is the integrated IMU 
sensor in DAVIS. The values used are listed in Table 2.

2 IMU datasheet: https://www.cdiweb.com/datasheets/invensense/ps-

mpu-6100a

The evaluation is divided into two parts. First, we analyze various 
VIO-GO approaches to identify the most effective model, determine 
the optimal number of parameters for optimization, and test the 
scalability of the presented approach. Next, in the second part, we 
compare VIO-GO with the state-of-the-art edge image-based event-
driven VIO approaches to highlight its performance advantages. 

5.1 Evaluating VIO-GO approaches

We evaluate the impact of varying the number of optimized 
parameters in the VIO-GO approach on the overall performance 
of the VIO system. This involves comparing VIO-GO2, VIO-
GO4, VIO-GO6, and VIO-GO8 across various sequences from the 
Event Camera Dataset. Table 3 provides a detailed comparison of 
the results.

The results show that increasing the number of tuned 
parameters in the proposed model significantly enhances the overall 
performance of the VIO system. As illustrated in Table 3, optimizing 
8 parameters (VIO-GO8) instead of 2 (VIO-GO2) results in a 24% 
reduction in the average MPE of the estimated trajectory across 
all sequences. Similarly, VIO-GO4 surpasses VIO-GO2 in most 
sequences, achieving a 4% reduction in average MPE. Further 
improvements are observed with VIO-GO6, which reduces the 
average MPE by 16% compared to VIO-GO4. Finally, VIO-GO8 
delivers the most accurate trajectories, achieving an additional 5% 
reduction in average MPE compared to VIO-GO6 across all tested 
sequences.

Figure 4 presents heatmaps of the estimated trajectories 
obtained from various VIO-GO approaches for the hdr_boxes
sequence, aligned with the ground truth trajectory. The plots 
demonstrate that all VIO-GO variants produce precise trajectory 
estimations, as indicated by the low APE values. Notably, the 
graphs highlight clear improvement in trajectory accuracy with an 
increasing number of optimized parameters. This is shown by the 
significant reduction in the mean APE from 0.031 m for VIO-GO2 
to 0.020 m for VIO-GO8. Figure 5 presents relative error metrics 
to evaluate the performance of different VIO-GO approaches on 
the hdr_boxes and boxes_translation sequences. The charts clearly 
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TABLE 2  Initial IMU bias values used in all experiments.

Accelerometer Value (m/s2) Gyroscope Value (rad/s)

Bias X −0.1059 Bias X 0.0494

Bias Y −0.2015 Bias Y 0.0105

Bias Z 0.2432 Bias Z 0.0012

TABLE 3  The performance of various VIO-GO approaches measured in terms of MPE (%).

Dataset VIO-GO2 (2 
parameters)

VIO-GO4 (4 
parameters)

VIO-GO6 (6 
parameters)

VIO-GO8 (8 
parameters)

boxes_6dof 0.45 0.50 0.44 0.41

boxes_translation 0.35 0.27 0.26 0.25

dynamic_6dof 0.29 0.35 0.27 0.27

dynamic_translation 0.33 0.27 0.26 0.25

hdr_boxes 0.48 0.46 0.37 0.35

hdr_poster 0.29 0.31 0.31 0.25

poster_6dof 0.59 0.69 0.54 0.50

poster_translation 0.26 0.26 0.25 0.23

shapes_6dof 1.05 0.91 0.77 0.77

shapes_translation 0.64 0.50 0.33 0.36

Average 0.47 0.45 0.38 0.36

The values displayed in bold show the best results.

demonstrate the effectiveness of VIO-GO in reducing trajectory 
drift over time, with notable improvements observed as the number 
of optimized parameters increases.

To further evaluate computational efficiency, we measured the 
elapsed time of each VIO-GO configuration (with 2, 4, 6, and 8 
parameters) using the same hardware setup. The experiments show 
that the VIO-GO8 consistently achieves lower elapsed time across 
most sequences, with an average elapsed time of 16.39 s, compared 
to 18.98 s for VIO-GO2, 18.51 s for VIO-GO4, and 18.90 s for VIO-
GO6. Therefore, an average computational improvement of 13.6% 
over VIO-GO2 was observed, primarily due to the fine-tuning of key 
parameters. This computational efficiency gain is achieved during 
the feature extraction phase, specifically the number of features 
used to trigger keyframe selection and the maximum number 
of features extracted per frame. By optimizing these parameters, 
VIO-GO8 reduces the computational overhead associated with 
processing redundant or suboptimal features, leading to faster 
execution. It is important to note that VIO-GO8 requires a higher 
optimization cost upfront compared to other approaches, due to 
the increased number of parameters being tuned. Nevertheless, 
this does not significantly impact the time required to find the 
optimal parameters, as the BGD algorithm efficiently explores the 

parameter space in parallel and requires minimal computational
resources.

Although VIO-GO8 delivers the best results in terms of both 
accuracy and computational efficiency, it is worth noting that 
increasing the number of optimized parameters beyond eight may 
further enhance performance. However, such an expansion would 
also introduce greater complexity into the optimization process. 
As noted previously, the choice to limit the parameter set to eight 
was driven by practical considerations, including the constraints 
of maintaining a fixed learning rate and controlling computational 
overhead associated with parameter tuning. Nonetheless, extending 
the optimization to a broader set of parameters remains a promising 
direction for future research. 

5.2 Comparing with event-based VIO 
methods

In our evaluation, we benchmark the proposed system against 
the raw results of Ultimate SLAM, as reported by its authors 
who used per-sequence parameter tuning and accurate IMU bias 
initialization. Building upon the Ultimate SLAM framework, our 
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FIGURE 4
Heatmaps depicting the APE of various VIO-GO trajectories for the hdr_boxes sequence, aligned with the ground truth via a 6-DOF transformation 
over a 5-s period using the EVO tool. (a) VIO-GO2. (b) VIO-GO4. (c) VIO-GO6. (d) VIO-GO8.

model is evaluated against this baseline to demonstrate its capability 
to automatically identify optimal parameters for each sequence 
in the Event Camera Dataset. Additionally, we compare it with 
Ultimate SLAM results obtained using a fixed parameter set adjusted 
across all sequences simultaneously and initialized with zero IMU 
bias, as presented in (Mahlknecht et al., 2022).

The aim of this comparison is to demonstrate the importance 
of parameter optimization in event-based VIO methods and to 
highlight the performance of the proposed model against a fixed 
parameter set across various scenarios. Moreover, we compare VIO-
GO with (Rebecq et al., 2017b), an event-based algorithm coupled 
with an IMU, considered the foundational pipeline for Ultimate 
SLAM. The evaluation also includes EKLT-VIO (Mahlknecht et al., 
2022), a system that integrates the EKLT feature tracker with a 
filter-based back-end, and EVIO (Zhu et al., 2017), an event-based 
tracking algorithm combined with an IMU. Similar to the proposed 
approach, both EKLT-VIO and EVIO are developed to perform 
efficiently under diverse conditions, including HDR environments 
and different lighting scenarios. The developers of the selected EVIO 
methods evaluated them using MPE as the error metric and the 
Event Camera Dataset as the simulation environment, following the 
same evaluation methodology employed in this work.

Table 4 provides a comprehensive comparison of the MPE 
five benchmark algorithms and VIO-GO using the 8-parameter 

configuration (VIO-GO8), across various sequences from the 
Event Camera Dataset. As shown in Table 4, the presented 
integrated system achieves state-of-the-art performance. Compared 
to Ultimate SLAM with a fixed parameter set (Vidal et al., 2018; 
Mahlknecht et al., 2022), which has an average MPE of 0.89%, VIO-
GO8 demonstrates superior performance across all sequences with 
an average MPE of 0.36%. In contrast to the raw results of Ultimate 
SLAM (Vidal et al., 2018), VIO-GO8 successfully identifies optimal 
parameters, resulting in a lower MPE in the boxes_translation, hdr_
boxes, and hdr_poster sequences, with MPE values of 0.25%, 0.35%, 
and 0.25%, respectively. Although the raw results of Ultimate SLAM 
exhibit better performance compared to VIO-GO, it is important to 
note that Ultimate SLAM heavily relies on manual parameter tuning 
for each sequence, which is considered impractical. Conversely, 
VIO-GO automatically fine-tunes the selected parameters across 
different environments. Furthermore, as explained in Section 4, we 
opted for only eight key parameters that we identified as directly 
influencing the system performance. In contrast, Ultimate SLAM 
has a much larger set of parameters that can be adjusted for 
improved results, but this comes at the cost of requiring substantial 
computational time. For these reasons, we have grayed-out the 
Ultimate SLAM results in Table 4. This decision to downplay 
Ultimate SLAM was made to highlight the practical advantages of 
our simpler parameter set over the more computationally intensive 
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FIGURE 5
Comparison of relative errors across various VIO-GO variants. (a)
Hdr_boxes sequence. (b) Boxes_translation sequence.

Ultimate SLAM, thereby focusing on the efficiency and practicality 
of VIO-GO in real-world scenarios. Notably, VIO-GO8 surpasses 
all other approaches in 7 out of 10 sequences. With an average MPE 
of 0.36%, VIO-GO8 exhibits a 16% reduction in MPE compared to 
the 0.43% reported in (Rebecq et al., 2017b), a 33% lower MPE than 
EKLT-VIO (Mahlknecht et al., 2022) with 0.54% MPE, and an 86% 
lower MPE compared to EVIO (Zhu et al., 2017), which reports an 
MPE of 2.57%.

Figures 6–8 illustrate heatmaps of the estimated trajectories 
from the proposed approach alongside the raw trajectory from 
Ultimate SLAM, both aligned with the ground truth trajectory 
for three different sequences from the Event Camera Dataset. In 
Figure 6, which corresponds to the boxes_6dof sequence, VIO-
GO8 demonstrates high trajectory accuracy, closely aligning with 
the ground truth and achieving a low APE. However, its APE 
is slightly higher than that of Ultimate SLAM. This difference 
is primarily attributed to Ultimate SLAM relying on extensive 
manual tuning across a wide range of parameters. In contrast, 
VIO-GO automatically optimizes a fixed subset of eight key 
parameters. While broader manual tuning can improve accuracy, 
it increases system complexity and limits scalability. VIO-GO 
prioritizes efficiency and generalizability by eliminating the need 
for manual intervention. Figures 7, 8 present results for the hdr_
boxes and boxes_translation sequences, respectively. In both cases, 
VIO-GO8 outperforms Ultimate SLAM by producing trajectories 
that more closely align with the ground truth and achieving lower 
APE values. These improvements highlight VIO-GO’s ability to 

adapt parameter configurations to challenging conditions without 
requiring manual tuning. The results further demonstrate the 
robustness and flexibility of the proposed framework across diverse 
scenarios.

In Figure 9, we employ relative error metrics to compare VIO-
GO8 to Ultimate SLAM with its default parameter configuration 
applied to the hdr_boxes and boxes_translation sequences. The results 
show that VIO-GO8 notably reduces drift in the estimated trajectory 
over time. Table 5 presents a time analysis comparison between 
Ultimate SLAM, using its default parameters, and VIO-GO8 with its 
optimal parameter set. As shown, VIO-GO8 requires significantly 
less time to process all datasets compared to Ultimate SLAM. 
This performance improvement is attributed to VIO-GO8’s ability 
to dynamically select the best parameter set for each sequence, 
thereby reducing processing overhead in both the front-end and 
back-end stages. Furthermore, as previously discussed, VIO-GO8 
outperforms the fixed parameter set approach by achieving an 
average MPE that is 58% lower than Ultimate SLAM’s default 
parameters across all sequences.

6 Discussion

In this section, we highlight the effectiveness of VIO-GO in 
addressing key challenges such as parameter optimization and 
computational efficiency. Additionally, we reflect on the broader 
impact of our findings, explore potential research avenues, and 
identify areas for improvement to guide future advancements in 
this field. 

6.1 Contributions

The primary contribution of VIO-GO is its ability to 
automatically optimize parameters for event-based VIO systems, 
significantly improving both accuracy and computational efficiency. 
Specifically, the VIO-GO8 approach, which optimizes eight key 
parameters, achieves an average MPE of 0.36%, outperforming 
fixed-parameter approaches such as Ultimate SLAM and other 
state-of-the-art methods, including EKLT-VIO and EVIO. These 
results underline the effectiveness of adaptive parameter tuning 
in enhancing VIO performance across diverse and dynamic 
environments.

A critical observation is the scalability of VIO-GO, where system 
performance improves with the inclusion of additional optimized 
parameters. For instance, a comparison between VIO-GO2 and 
VIO-GO8 demonstrates the benefits of comprehensive parameter 
optimization. Moreover, VIO-GO eliminates the need for manual 
parameter tuning required by previous methods, significantly 
reducing deployment time and effort. This makes it particularly 
well-suited for applications in Industry 4.0, where environments are 
highly variable and demand rapid adaptation. The core design of 
VIO-GO emphasizes generalizability. By dynamically optimizing a 
fixed set of key parameters based on scene characteristics, it adapts 
automatically to diverse conditions without relying on predefined 
configurations. In contrast to traditional motion-compensation 
approaches that require extensive manual adjustment for each new 
environment, VIO-GO offers a more scalable and practical solution.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1541017
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Sakhrieh et al. 10.3389/frobt.2025.1541017

T
A

B
LE

 4
  P

er
fo

rm
an

ce
 o

f 
th

e 
p

ro
p

o
se

d
 V

IO
-G

O
 a

g
ai

n
st

 o
th

er
 e

ve
n

t-
b

as
ed

 V
IO

 s
ys

te
m

s 
in

 t
er

m
s 

o
f 

M
P

E
 in

 %
. T

h
e 

U
SL

A
M
∗ r

es
u

lt
s 

ar
e 

o
b

ta
in

ed
 b

y 
in

d
iv

id
u

al
ly

 t
u

n
in

g
 p

ar
am

et
er

s 
fo

r 
ea

ch
 s

eq
u

en
ce

, w
h

er
ea

s 
Fi

xe
d

 
U

SL
A

M
 u

se
s 

a 
si

n
g

le
 s

et
 o

f 
p

ar
am

et
er

s 
th

at
 is

 t
u

n
ed

 a
cr

o
ss

 a
ll

 s
eq

u
en

ce
s 

si
m

u
lt

an
eo

u
sl

y.

D
at

as
e

t
U

SL
A

M
a
 V

id
al

 e
t a

l. 
(2

0
18

)
Fi

xe
d

 U
SL

A
M

R
e

b
e

cq
 e

t a
l. 

(2
0

17
b

)
E

K
LT

-V
IO

 
M

ah
lk

n
e

ch
t e

t a
l. 

(2
0

2
2

)
E

V
IO

 Z
h

u
 e

t a
l. 

(2
0

17
)

V
IO

-G
O

8
 (

8
 p

ar
am

e
te

rs
)

bo
xe

s_
6d

of
0.

30
0.

68
0.
36

0.
84

3.
61

0.
41

bo
xe

s_
tr

an
sla

tio
n

0.
27

1.
12

0.
31

0.
48

2.
69

0.
25

dy
na

m
ic

_6
do

f
0.

19
0.

76
0.

56
0.

79
4.

07
0.
27

dy
na

m
ic

_t
ra

ns
la

tio
n

0.
18

0.
63

0.
39

0.
40

1.
90

0.
25

hd
r_

bo
xe

s
0.

37
1.

01
0.

59
0.

46
1.

23
0.
35

hd
r_

po
st

er
0.

31
1.

48
0.

33
0.

65
2.

63
0.
25

po
st

er
_6

do
f

0.
28

0.
59

0.
40

0.
35

3.
56

0.
50

po
st

er
_t

ra
ns

la
tio

n
0.

12
0.

24
0.

46
0.

35
0.

94
0.
23

sh
ap

es
_6

do
f

0.
10

1.
07

0.
42

0.
60

2.
69

0.
77

sh
ap

es
_t

ra
ns

la
tio

n
0.

26
1.

36
0.

50
0.

51
2.

42
0.
36

Av
er

ag
e

0.
24

0.
89

0.
43

0.
54

2.
57

0.
36

a Re
qu

ire
s s

ub
st

an
tia

l p
ar

am
et

er
 ad

ju
st

m
en

ts
 b

as
ed

 o
n 

th
e d

yn
am

ic
 ev

en
ts

 in
 the

 sce
ne

.
Th

e v
al

ue
s d

isp
la

ye
d 

in
 b

ol
d 

sh
ow

 th
e b

es
t re

su
lts

.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2025.1541017
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Sakhrieh et al. 10.3389/frobt.2025.1541017

FIGURE 6
Heatmaps presents the APE for the VIO-GO trajectory and the Ultimate SLAM raw trajectory for the Boxes_6do f sequence, both aligned with the 
ground truth trajectory using a 6-DOF transformation in SE3 over a 5-s duration, as generated by the EVO tool. (a) VIO-GO evaluated on Boxes_6dof.
(b) USLAM∗evaluated on Boxes_6dof.

FIGURE 7
Heatmaps presents the APE for the VIO-GO trajectory and the Ultimate SLAM raw trajectory for the Boxes_Translation sequence, both aligned with the 
ground truth trajectory using a 6-DOF transformation in SE3 over a 5-s duration, as generated by the EVO tool. (a) VIO-GO evaluated on
Boxes_translation. (b) USLAM∗evaluated on Boxes_translation.

In comparison with existing approaches, VIO-GO introduces a 
paradigm shift by automating the parameter optimization process. 
Our results show that VIO-GO significantly reduces trajectory drift 
over time and achieves a lower APE compared to fixed-parameter 
approaches. This is crucial for real-time applications, making 
VIO-GO an ideal candidate for resource-constrained scenarios in 
industrial robotics and autonomous navigation. 

6.2 Limitations

While VIO-GO demonstrates promising results, several 
limitations remain. One key challenge is its dependency on 

a predefined set of key parameters, which may constrain its 
adaptability to highly diverse or previously unseen environments. 
Future iterations could expand the parameter set or incorporate 
environment-specific variables, allowing the system to adapt 
more effectively to complex scenarios. Another limitation is 
the sensitivity of the system to initial conditions, such as IMU 
bias and feature selection, which may affect stability during 
extended operations. Future efforts could address these challenges 
through advanced initialization methods and noise mitigation
strategies.

Additionally, while the Event Camera Dataset provides a 
valuable and well-calibrated benchmark for evaluating event-based 
VIO systems, it represents a relatively controlled environment. In 
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FIGURE 8
Heatmaps presents the APE for the VIO-GO trajectory and the Ultimate SLAM raw trajectory for the Hdr_Boxes sequence, both aligned with the ground 
truth trajectory using a 6-DOF transformation in SE3 over a 5-s duration, as generated by the EVO tool. (a) VIO-GO evaluated on Hdr_boxes. (b)
USLAM∗evaluated on Hdr_boxes.

FIGURE 9
The relative error comparison between Ultimate SLAM with its default 
parameters and VIO-GO8 with its optimized parameters. (a)
Hdr_boxes sequence. (b) Boxes_translation sequence.

real-world scenarios, factors like unstructured environments, sensor 
noise, and erratic motion patterns can significantly affect event data 
quality. VIO-GO is designed to address such variability through its 
core capability of dynamically optimizing key system parameters 
based on the characteristics of each scene. This allows the system 
to adapt in real time without requiring manual reconfiguration. 

Nevertheless, transferring the system from a controlled dataset 
to real-world deployment may affect the effectiveness of the 
selected parameter sets. Real-world conditions could present 
edge cases or variations not fully represented in the dataset, 
potentially impacting the convergence behavior or responsiveness 
of the optimization process. For instance, parameters such as 
the frame size and noise event rate might need adjustments 
to account for fluctuating event densities caused by background 
activity. Furthermore, parameters related to feature extraction 
may need to be tuned to handle less structured or more 
repetitive textures commonly found in natural scenes. These factors 
underscore that testing VIO-GO in real-world environments would 
provide a deeper understanding of its robustness in diverse and 
unpredictable conditions. Lastly, the use of BGD for parameter 
optimization, while effective, could be complemented by exploring 
alternative techniques, such as SGD, Bayesian optimization, or 
Gauss-Newton methods, to improve convergence speed and 
efficiency. 

6.3 Future directions

Building on the current success of VIO-GO, 
several promising research avenues could extend its
capabilities: 

1. Expansion of the Parameter Optimization Scope: Extending 
the optimization to a larger set of parameters remains a 
promising avenue for future work. While this study limited 
the number of optimized parameters to maintain practical 
feasibility, expanding this scope could potentially unlock 
additional performance improvements.

2. Integration with Other Event-Based SLAM Approaches: 
Future work could explore extending VIO-GO to integrate 
with other event-based SLAM systems. This would help 
develop more robust solutions adaptable to a wider range of 
applications.

3. Exploration of Advanced Event Processing Techniques: Future 
studies could look into advanced event-based processing 
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TABLE 5  Elapsed time comparison between Ultimate SLAM with its default parameters and VIO-GO8 with its optimized parameters.

Dataset USLAM (default parameters) VIO-GO8

Time cost (s) MPE (%) Time cost (s) MPE (%)

boxes_6dof 20.01 0.49 18.56 0.41

boxes_translation 22.11 0.38 20.30 0.25

dynamic_6dof 17.83 0.66 14.50 0.27

dynamic_translation 17.65 1.07 10.94 0.25

hdr_boxes 20.58 1.12 18.39 0.36

hdr_poster 21.47 0.51 18.83 0.25

poster_6dof 22.14 0.96 21.90 0.50

poster_translation 18.71 0.35 16.18 0.23

shapes_6dof 16.45 1.46 11.30 0.77

shapes_translation 15.35 0.70 12.99 0.36

Average 19.23 0.77 16.39 0.36

The values displayed in bold show the best results.

techniques, including deep learning-based methods for event-
to-image conversion or more sophisticated feature tracking 
approaches. These could further boost the performance of 
event-based VIO systems.

4. Real-Time Adaptation and On-the-Fly Tuning: Implementing 
real-time adaptation and on-the-fly parameter tuning would 
make VIO-GO more suitable for autonomous systems 
operating in unpredictable environments, minimizing the 
need for pre-set parameters.

By addressing these limitations and expanding the scope of the 
study, future research could significantly advance the field of Event 
SLAM, contributing to the development of more robust, efficient, 
and adaptable systems for autonomous navigation in dynamic 
environments. 

7 Conclusion

This work presents VIO-GO, a novel framework for automated 
parameter optimization in event-based VIO systems, tailored for 
use in dynamic environments central to Industry 4.0 applications. 
Designed to address the challenges of dynamic and variable 
environments, VIO-GO achieves a balance of accuracy and 
computational efficiency by using motion-compensated images and 
a BGD algorithm, enhancing the performance and robustness of 
Event SLAM systems.

Our evaluation on the Event Camera Dataset shows that 
VIO-GO outperforms fixed-parameter approaches, achieving 
a 60% reduction in MPE. The system successfully identifies 
optimal parameters for Ultimate SLAM across multiple 
sequences, confirming its adaptability to scenarios characterized 

by fluctuating event rates. This capability is particularly 
critical for industrial applications, where environmental 
variability demands highly responsive and efficient navigation 
solutions.

These results highlight the importance of automated parameter 
optimization in event-based SLAM systems. Future research should 
focus on testing VIO-GO in more diverse and complex real-
world settings, incorporating advanced event-based processing 
techniques and exploring alternative optimization methods to 
further enhance performance. Additionally, VIO-GO’s adaptability 
can be further evaluated across a wider range of datasets and 
integrated with other event-based SLAM approaches beyond 
Ultimate SLAM, expanding its applicability and generalizability to 
real-world scenarios. By addressing these directions, VIO-GO could 
establish a new standard for robust, scalable, and adaptive SLAM 
solutions, particularly in the demanding contexts of Industry 4.0 
and beyond.
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