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This paper addresses a critical challenge in Industry 4.0 robotics by enhancing
Visual Inertial Odometry (VIO) systems to operate effectively in dynamic
and low-light industrial environments, which are common in sectors like
warehousing, logistics, and manufacturing. Inspired by biological sensing
mechanisms, we integrate bio-inspired event cameras to improve state
estimation systems performance in both dynamic and low-light conditions,
enabling reliable localization and mapping. The proposed state estimation
framework integrates events, conventional video frames, and inertial data to
achieve reliable and precise localization with specific emphasis on real-world
challenges posed by high-speed and cluttered settings typical in Industry 4.0.
Despite advancements in event-based sensing, there is a noteworthy gap in
optimizing Event Simultaneous Localization and Mapping (SLAM) parameters
for practical applications. To address this, we introduce a novel VIO-Gradient-
based Optimization (VIO-GO) method that employs Batch Gradient Descent
(BGD) for efficient parameter tuning. This automated approach determines
optimal parameters for Event SLAM algorithms by using motion-compensated
images to represent event data. Experimental validation on the Event Camera
Dataset shows a remarkable 60% improvement in Mean Position Error (MPE) over
fixed-parameter methods. Our results demonstrate that VIO-GO consistently
identifies optimal parameters, enabling precise VIO performance in complex,
dynamic scenarios essential for Industry 4.0 applications. Additionally, as
parameter complexity scales, VIO-GO achieves a 24% reduction in MPE when
using the most comprehensive parameter set (VIO-GO8) compared to a minimal
set (VIO-GO2), highlighting the method’s scalability and robustness for adaptive
robotic systems in challenging industrial environments.

KEYWORDS

visual inertial odometry, event SLAM, batch gradient descent, optimization, edge image,
dynamic and low-light environments

1 Introduction

SLAM is a key technology in the autonomous navigation of robots, serving as a
fundamental element for the operation of autonomous vehicles (Sahili et al., 2023). Over
the past 2 decades, research in SLAM and Visual Odometry (VO), using cameras either
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independently or in conjunction with inertial sensors, has led to
highly accurate and robust systems that continually improve in
performance (Campos et al., 2021).

As the complexity of autonomous applications grows, new
challenges require innovative VO and SLAM solutions that deliver
precision and reliability in increasingly dynamic scenarios. Standard
cameras, while effective in certain conditions, encounter difficulties
in low-light environments or during rapid movement due to motion
blur and constrained frame rates. Event cameras, asynchronous
visual sensors that address these issues, have emerged as a promising
alternative (Hadviger et al., 2023). Event-based SLAM offers distinct
advantages by eliminating motion blur, supporting high dynamic
range (HDR), and operating at higher frame rates. However, event
cameras may struggle in scenarios with minimal relative motion,
such as in stationary states, where standard cameras excel in offering
instantaneous and comprehensive environmental data, particularly
in low-speed, well-lit conditions (Vidal et al., 2018).

This complementary nature suggests a hybrid approach,
combining event and standard cameras with an inertial
measurement unit (IMU) to produce a reliable and precise VIO
framework (Chen et al., 2023). By compensating for each sensor’s
limitations, this integrated framework is versatile and adaptable to
a broad range of environmental conditions and movement patterns.
One such example is Ultimate SLAM (Vidal et al., 2018), which
integrates traditional cameras, event frames, and IMU data to
provide reliable state estimation even in challenging scenarios.

As event cameras transform the way visual data is captured,
new methodologies are needed to handle and interpret this unique
data effectively (Sahili et al., 2023). A major limitation involves
adapting to the asynchronous and sparse output from event cameras,
contrasting with the dense, synchronous images produced by
conventional cameras. Consequently, traditional vision algorithms
developed for frame-based image sequences cannot be directly
applied to event data (Gallego et al., 2022).

To bridge this gap, several techniques have been presented
to transform asynchronous event data into a synchronous format
(Guan et al, 2023). Some methods directly process raw event
streams without accumulating frames (Alzugaray and Chli, 2018).
Others use learning-based methods to create intensity images from
events (Gehrig et al., 2020). Another approach is the generation
of motion-compensated event or edge images by grouping events
within specific spatial and temporal windows, highlighting scene
edges and providing a structured visual representation of event data
(Vidal et al., 2018; Rebecq et al., 2017b). However, this method
presents challenges, requiring substantial parameter adjustments
specific to each environment, which becomes burdensome when
transitioning across diverse scenarios (Huang et al., 2024). This
dependency on manual tuning creates a bottleneck for VIO
systems, which must exhibit robust performance in unfamiliar
environments where the event count varies widely. For practical
applications, especially within Industry 4.0, where environments
are constantly changing, manual parameter adjustments become
impractical (Mahlknecht et al., 2022).

In this paper, we present VIO-GO, a novel approach designed
to enhance the performance and robustness of Event SLAM in
unknown environments through targeted parameter optimization.
Our method focuses on tuning parameters for Visual SLAM
systems that use motion-compensated images to represent event
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data. By integrating event-based SLAM methods with a BGD
algorithm, VIO-GO enables iterative refinement of parameters
across diverse scenes with varying event generation rates. Unlike
conventional motion-compensated image methods, VIO-GO
minimizes the need for extensive manual parameter tuning, leading
to improved time efficiency. Experimental results indicate that
VIO-GO outperforms both fixed-parameter motion-compensated
approaches and state-of-the-art EVIO methods, demonstrating
superior performance across various dynamic scenes. Figure 1
shows a comparison between VIO-GO and Ultimate SLAM
using its fine-tuned parameters, highlighting the improvements
in performance achieved by VIO-GO.

2 Related work

The integration of RGB cameras and inertial sensors has long
been foundational in VIO systems. However, recent advancements
have seen an increasing shift towards the inclusion of event
cameras, marking a pivotal development in the field of Visual
SLAM. This literature review is divided into two subsections:
Event-Based Visual-Inertial Odometry (EVIO) and Adaptive
Parameter Optimization, providing a focused examination of the
latest research.

2.1 Event-based visual-Inertial odometry
(EVIO)

EVIO integrates the high-speed, high-contrast sensitivity of
event cameras combined with inertial data from accelerometers and
gyroscopes (Chen et al,, 2023). Unlike traditional cameras, event
cameras capture changes in a scene at up to 1 MHz, allowing them
to handle rapid motion without issues like image blur, temporal
aliasing, or saturation under intense lighting. These attributes
make event cameras particularly useful for dynamic and low-light
environments (Zhu et al., 2017).

The study in (Mueggler et al., 2017a) examines the integration
of event frames and inertial data using a continuous-time model.
However, real-time application remains challenging due to the
computational burden of adjusting spline parameters for each
incoming event. In a different approach, the authors in (Rebecq et al.,
2017b) propose a real-time event-based VIO pipeline that uses
optical flow estimation, grounded in the recent camera pose,
scene configuration, and inertial data, to track visual features
across multiple frames. These tracked features are subsequently
combined with inertial measurements through keyframe-based
nonlinear optimization. Similarly, in (Vidal et al, 2018), the
authors integrate event streams, standard frames, and IMU data
through nonlinear optimization process, achieving a notable
accuracy enhancement of 130% over event-only frames and
85% over standard frames with IMU data. This system also
supports real-time integration with a quadrotor. Furthermore,
the authors in (Censi and Scaramuzza, 2014; Kueng et al,
2016) introduce low-latency, event-based VO techniques that
accurately estimate rotation and translation using Dynamic
Vision Sensors (DVS) alongside conventional CMOS cameras in
natural scenes.
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FIGURE 1
The estimated trajectory of Ultimate SLAM (Vidal et al., 2018) and VIO-GO aligned with the ground truth trajectory for the Hdr_boxes
sequence in (Mueggler et al., 2017b). The figures show that VIO-GO produces a precise trajectory with a low absolute position error (APE) value, which
is comparable to the trajectory estimated by Ultimate SLAM. (a) Estimated trajectory (fine-tuned parameters). (b) Estimated trajectory (VIO-GO).

In (Kim et al., 2016), the authors discuss an event-based 6-
degree-of-freedom (6-DoF) VO system, using three decoupled
probabilistic filters to estimate the cameras pose, a 3D scene
model, and image intensity. However, this approach incurs a
significant computational burden, requiring GPU use for real-
time performance. In (Zhu et al, 2017), the EVIO method is
presented, where an Extended Kalman Filter (EKF) fuses event
data with pre-integrated IMU measurements, demonstrating the
potential of event-based VIO for applications like planetary
exploration. To further explore this potential (Mahlknecht et al.,
2022), introduce the Event-based Lucas-Kanade Tracking VIO
(EKLT-VIO), which integrates an event-based tracker developed
by (Gehrig et al., 2020) in the front-end and a filter-based back-
end to conduct VIO in Mars-like environments. Their results
show a 32% improvement in MPE under low-light and HDR
conditions compared to prior frame-based and event-based VIO
techniques, although front-end and back-end parameter selection
were not addressed. Expanding upon previous methodologies, PL-
EVIO, proposed by (Guan et al, 2023), tightly integrates event-
based point and line features, standard frame point features, and
IMU data, thereby providing more geometric restrictions and
enhancing robustness. While these advancements mark significant
progress in Event SLAM, the literature reveals a gap in adaptive
parameter optimization across various scenarios. Our approach
aligns closely with methodologies in (Vidal et al., 2018; Rebecq et al.,
2017b), which use motion-compensated images to represent event
data but require significant manual parameter tuning for diverse
environments. Our goal is to streamline the process by developing
a pipeline capable of automating parameter optimization, thereby
enhancing both the practicability and time efficiency of Event
SLAM systems.
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2.2 Adaptive parameter optimization

Integrating event cameras into VO/VIO systems presents a
major challenge that arises from the asynchronous nature of event
streams, which fundamentally differs from synchronous image data.
Consequently, many methods designed for traditional image-based
cameras cannot be directly applied to event-based systems. To
address this gap, various techniques for representing event data have
been introduced in the literature (Guan et al., 2023). Common
approaches involve applying conventional feature detection and
tracking methods to edge images created from motion-compensated
event streams (Vidal et al., 2018; Rebecq et al.,, 2017b). However,
these methods often require extensive parameter adjustments to
adapt to specific fluctuations in event density, which can impact
VIO system performance. Through a review of existing parameter
optimization methods, we aim to identify the most effective strategies
for enhancing event-based VIO systems and highlight areas where
further optimization could improve system adaptability and reliability.

In (Lietal., 2020), the authors use a Stochastic Gradient Descent
(SGD) approach for localization, coupled with scan matching via a
2D LiDAR system. This SGD-based approach enables the localizer
to effectively track the robot’s state, generating a coherent trajectory
of its movements. The technique attained a position error of
0.26 m and a heading error of around 5°. In (Torroba et al., 2023),
the authors employ SGD to optimize the evidence lower bound
(ELBO) on Gaussian process maps by estimating mini-batches,
which allowed real-time performance on large-scale datasets and
was successfully tested in a live Autonomous Underwater Vehicle
(AUV) mission. Similarly, the authors in (Song et al., 2021) examine
SGD for map classification in SLAM, while (Beomsoo et al., 2021)
implements SGD to refine the policy network within the Proximal
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Policy Optimization algorithm. These approaches demonstrate the
effectiveness of SGD in achieving both accuracy and efficiency for
front-end and back-end optimization in dynamic environments.

In (Rebecq et al, 2017a), the authors use an intermediate
representation by accumulating events into an edge-like image,
employing a Gradient Descent (GD) approach that simplifies
representation by randomly sampling pixels. This technique
improves tracker speed and enhances robustness by increasing
resilience to occlusions. In another approach, Luo et al. (2019)
introduce a stage-wise SGD algorithm with a selective update
mechanism to efficiently select a subset of training images for direct
SLAM tracking, ensuring faster convergence.

As discussed, although significant research has focused on
optimizing conventional SLAM methods, limited studies have
applied GD approaches specifically to optimize Event SLAM
parameters. Given the potential benefits, this work adopts the
GD approach to optimize front-end and back-end parameters,
particularly in challenging low-light and HDR scenarios.

3 Motion-compensated EVIO
framework

This section details the motion-compensated event image
state estimation framework, which serves as the backbone of the
methodology presented in Section 4. Optimization of the state
estimation parameters is addressed in the following paragraphs.

The motion-compensated EVIO system detects features within
the edge image created from motion-compensated events by
employing conventional image-based feature detection techniques.
For example (Rebecq et al.,, 2017b), integrates event data with IMU
data to obtain an accurate motion-compensated EVIO pipeline that
leverages the distinctive features of event cameras to enable accurate
state estimation in challenging scenarios. This approach is further
extended in Ultimate SLAM (Vidal et al., 2018), where standard
frames are incorporated as an additional sensing modality, achieving
a more reliable and precise state estimation.

The motion-compensated EVIO system is traditionally divided
into two parts: the front-end process, which processes a stream of
events to establish feature tracks and triangulate landmarks, and
the back-end, which integrates these feature tracks, landmarks, and
IMU measurements to constantly update both current and past
sensor states (Rebecq et al., 2017b). However, employing the edge
image in this state estimation framework presents difficulties that
often demand extensive parameter tuning.

To address these limitations, this work aims to enhance existing
methods by developing an automated parameter optimization
pipeline that facilitates the tuning process and identifies optimal
parameters across diverse scenarios. The following paragraphs
discuss key parameters that can be optimized within both the front-
end and back-end components.

3.1 Front-end process

The main approach in the front-end is to generate event frames
from spatiotemporal clusters of events, followed by applying feature
detection and tracking techniques. This state estimation system
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builds on methodologies from (Vidal et al., 2018; Rebecq et al.,
2017b), where features are detected and tracked within edge images
derived from motion-compensated events, employing conventional
image-based feature detection and tracking methods. Particularly,
the FAST corner detector (Rosten and Drummond, 2006) and the
Lucas-Kanade tracker (Lucas and Kanade, 1981) are utilized for
these purposes. Additionally, features from standard frames are
extracted and incorporated into the back-end optimization module,
enhancing overall robustness and accuracy.

In noise-free scenarios, event frames can be represented as e, =
(Xf, tf, pf), where X ¢ denotes the pixel value (xf, yf), tf indicates the
elapsed time, and p; signifies the polarity ranging from {-1,+1}.
Additionally, the events ey are synchronized by aligning them with
the spatio-temporal windows of events based on the timestamps of
the conventional frames. For each conventional frame at time tpa
new spatiotemporal event window W, is defined as follows:

o M

Here, j(tf) denotes the index of the first event with a timestamp

Wy = {ej(tf)—FSH;

t; < ty, and Fg represents the size of the window. Subsequently, each
spatiotemporal event window undergoes a transformation into an
artificial event frame I, by applying motion compensation at its
individual timestamp, as demonstrated in the next equation:

I (%) = Z S(x—xl),

e, Wy

2)

where 6 (x) represents the Kronecker delta, x. denotes the adjusted
event location acquired by shifting event e, to align with the specified
event camera frame. Further, it is necessary to adjust the movement
of every event locally based on its respective timestamp due to the
limited information in small window sizes and the motion blur
introduced by extensive window sizes. The x/ in Equation 2 can
be calculated using the formula given by (Rebecq et al., 2017b),
as shown in Equation 3:

Xt = 7 (Ton) (Z (%) 15" (%)) 5 3)

where x, denotes the event pixel location, 7,(:) is the event camera
projection sample derived from previous inherent calibration,
(T,

im.m) Signifies the gradual transition of the camera poses at times

t,, and t,, derived from integrating the inertial measurements, and
Z(x,) represents the scene depth at time f estimated through a 2D
linear interpolation.

The count of events Fg in each spatiotemporal window needs to
be adapted and can be optimized according to the texture density
present in the scene. Hence, in this work, it has been chosen
as one of the optimized parameters'. The median depth of the
current landmarks M, can produce satisfactory results with reduced
computational costs compared to linearly interpolating the depth
Z(x,). Therefore, the median depth of landmarks is optimized using
the proposed method! presented in Section 4.

New features are identified using the FAST corner detector,
which is applied to both motion-compensated event frames and

1 Refer to Tablel for key parameters wused in the state

estimation framework and optimized through the proposed method

outlined in Section 4.
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standard frames (Mueggler et al., 2017a). This approach ensures
an even distribution of features across the image by using a

bucketing grid:
D, ifI_,<I-T
Sey=vS ML -T<I_, <L+T (4)
B, ifL+T<I,,

where I, is the intensity at pixel x, T is the threshold value,
I, denotes the intensity difference between pixel x and y,
D is the darker corner, S is the similar pixel, and B is the
brighter corner. To effectively detect these features, the threshold
of the FAST detector is optimized in this work!. These features
are subsequently tracked from I, to I.+1, derived through an
incremental transformation. Moreover, landmarks are tracked using
the pyramidal Lukas-Kanade tracking algorithm (Lucas and Kanade,
1981), with the number of pyramid levels for feature extraction
set as an automatically adjusted parameter'. Furthermore, a two-
point RANSAC approach (Mueggler et al, 2014) is used for
additional filtering of outlier feature tracks. In this system, the
parameters for detection and tracking are maintained consistently
across both motion-compensated event frames and conventional
frames. Moreover, if the number of tracked features drops below a
certain threshold Ky, features are re-detected.

3.2 Back-end process

This section explores the integration of feature tracks from
the event stream with IMU data, using a smoothing-based
nonlinear optimization method on chosen keyframes. A detailed
comprehensive analysis of IMU biases and kinematics can be found
in (Rebecq et al., 2017b; Guan et al., 2023). The visual-inertial
nonlinear optimization is described by a cost function Jy, 5, which
consists of three components: two weighted reprojection errors
associated with event-based and conventional camera data, and an
inertial error E,. The cost function Jy ;, is formulated as shown in
Equation 5:

1 K K-1
Jvio= Z Z Z Ei’j’kTWi,j’kEi’j'k + z EfTWfEf ,

(5)
120 k=1 jg (k) k=1
and the reprojection error E“ is given by Equation 6:
Eik = gk _ g (Tlgs wa [i,j) . (6)

In the previous equations, i represents the sensor identifier, k
signifies the frame identifier, and j refers to the landmark. The set
(i, k) includes the landmarks tracked by sensor i in the k™ frame.
The data matrix for each landmark measurement I/ is represented
as WI,J * . while WX denotes the data matrix corresponding to
the IMU error in the k™ frame. Additionally, 2"k denotes the
calculated image coordinates for every k™ frame. The IMU error is
computed as the disparity between predicted and actual trajectories
(Leutenegger et al., 2013). Optimization is performed selectively,
focusing on a subset comprising of keyframes and the last K frames
in a sliding window, while predictions for intervening frames are
propagated using IMU data. The number of keyframes employed
in the back-end process is one of the parameters optimized
in this study’.
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4 Materials and methods

Motion compensation necessitates identifying motion
parameters that precisely match a sequence of events. By using
a continuous-time warping framework, it is possible to fully
leverage the exact temporal information offered by events, setting
this approach apart from conventional image-based methods.
Obtaining parameters for these continuous-time motion models
frequently relies on optimization strategies (Mueggler et al., 2018).
This section focuses on optimizing Event SLAM parameters to
enhance trajectory pose prediction using the BGD algorithm.
A comprehensive diagram of the proposed VIO-GO process
flow is depicted in Figure 2. Therefore, BGD is chosen in this
study for its proven stability and reliability in achieving efficient
parameter tuning.

BGD is chosen due to its fundamental role as an optimization
technique widely used in machine learning (Mustapha et al,
2020). Its significance emerges from its ability to systematically
uncover optimal parameter values through iterative adjustments
guided by gradients of the objective function, computed across the
entire dataset. This makes BGD particularly effective for smaller
datasets, such as ours, where the dataset is dynamically generated
as the robot navigates through the environment. Unlike SGD,
which updates parameters based on individual data points and
can introduce noise, BGD provides stable convergence, minimizing
variance and ensuring more consistent results (Singh and Singh,
2023). Furthermore, successful applications of BGD in parameter
optimization, such as in (Mustapha et al., 2020; Rao et al,
2023), demonstrate its robustness and effectiveness in enhancing
model performance. Therefore, BGD is chosen in this study for
its demonstrated stability and reliability in achieving efficient
parameter tuning.

A key challenge with the GD method is that the search may
oscillate within the search space, influenced by the gradients
direction. For instance, although the descent can move toward
a global minimum, it may sometimes veer off course due to
local minima or saddle points, ultimately slowing convergence.
To address this, a common solution is to introduce momentum
into the parameter update equation. This approach introduces an
additional hyperparameter that controls the extent to which the past
gradient (momentum) influences the current update (Chandra et al.,
2022). Momentum helps the search maintain a consistent direction,
reducing oscillations and enhancing the likelihood of bypassing
local minima. In this work, momentum has been added to the BGD
algorithm, formulated as shown in Equation 7:

Gi=p*Giy+gp Q)
where G; defines the adjusted gradient incorporating momentum, 8
is the hyperparameter that represents the momentum constant, and
g; denotes the gradient, showing the direction of decrease for the
cost function.

Identifying the optimal event window size is crucial for event-
based SLAM systems that use motion compensation to represent
event data. This calibration relies on the event frame’s dynamics,
influenced more by camera resolution and scene complexity than
by the speed of camera motion (Xiao et al., 2022). The number of
events N in every spatiotemporal window must be adjusted based
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FIGURE 2

A detailed illustration showcasing the VIO-GO process, highlighting the integration of event frames, standard frames, and IMU using BGD optimization.
The figure provides an overview of the iterative optimization process, emphasizing the seamless fusion of event-based visual information and inertial

on the scen€’s texture density, making it a main optimization target
in VIO-GO. The primary goal is to achieve sharp motion blur-
free edges, ensuring that the event frame accurately reflects the
scene’s layout.

The VIO-GO model is implemented alongside the state-
of-the-art VIO method, Ultimate SLAM, chosen for its use
of motion-compensated images to represent event data, which
requires significant parameter adjustments. VIO-GO functions as
an auxiliary technique that automatically finds and updates optimal
parameters within the Ultimate SLAM framework.

VIO-GO incorporates several approaches: the 2-parameter set
(VIO-GO2), the 4-parameter set (VIO-GO4), the 6-parameter set
(VIO-GOE6), and the 8-parameter set (VIO-GOS). The parameters
selected for each approach are determined from the front-end and

Frontiers in Robotics and Al

back-end equations discussed in Section 3. VIO-GO2 and VIO-
GO4 concentrate on optimizing the spatiotemporal event window
parameters, while VIO-GO6 and VIO-GOS8 extend optimization
to include feature extraction and back-end parameters. The key
parameter sets ©© considered for optimizing event VIO are
detailed in Table 1.

All VIO-GO approaches prioritize the event window size from
Equation 1 as the main optimization parameter, due to its critical
role, as discussed previously. Furthermore, each method adjusts the
noise event rate, which acts as a threshold for scenarios where the
sensor is stationary and produces minimal events. When the event
rate falls below this threshold, indicating low activity aside from
noise events, the sensor is held in a stationary state. These two
parameters are the focus of fine-tuning in VIO-GO2.
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TABLE 1 List of parameter sets ©© selected for BGD optimization in event-based VIO.

VIO-GO2

Parameter

Frame size F

Explanation

Number of events drawn from the event camera

‘ Noise event rate

VIO-GO4

Parameter

Events per second regarded as noise

Explanation

10.3389/frobt.2025.1541017

Frame size F. Number of events drawn from the event camera

Noise event rate N Events per second regarded as noise
Data size augmented event packet Ep Event packet size
Frame norm factor Ng Normalization factor for event frames

VIO-GO6
Parameter Description
Frame size F, Number of events drawn from the event camera
Noise event rate Nir Events per second regarded as noise
VIO median depth My, Median depth of landmarks
Imp detector num octaves Ny Number of pyramid levels for feature extraction
Imp detector threshold T Absolute threshold value of the FAST detector
VIO numbkeyframes Cyr Number of keyframes in back-end process
VIO-GO8
Parameter Description
Frame size F, Number of events drawn from the event camera
Noise event rate Nggp Events per second regarded as noise
VIO median depth Mp, Median depth of landmarks
Imp detector num octaves No Number of pyramid levels for feature extraction
Imp detector threshold T Absolute threshold value of the FAST detector
VIO numbkeyframes Cyr Number of keyframes in the back-end process
VIO kfselect numfts lower thresh Kr Force keyframe selection below this number of features
Detector max features per frame Dy Maximum number of features to extract per frame

The optimal values of @ for the VIO-GO2 are calculated from
the set of BGD equations, as shown in Equation 8:

where Gpg denotes the gradient frame size and Gy indicates the
gradient noise event rate.

In VIO-GO4, additional parameters are optimized, including
the event packet size, which defines the dimensions of augmented

Fg=Fg—(y * Ggg) event packets sent to the front-end for rendering event frames, and

Now = Noo — ( ys ﬂ) ®) the normalization factor for event frames. However, in VIO-GO6
ER = INER > .
2 and VIO-GO8, these parameters were adjusted, as they were found
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Input:Initial parameters 0©, Number of iterations
N, Learning rate y

Output: Final parameters 0™

1. for n=0 to N-1

2. estimate VL(0™)«— USLAM(trajectory)
3. compute AO™ = —vL(©OM)

4 o+ .— g 4 VA@(H)

5. return o™

Algorithm 1. Proposed parameter set ®© of optimization method®.

to have minimal impact on the estimated trajectory of the overall
VIO system, as discussed in Section 5.

The optimal values of @ for the VIO-GO4 are calculated from
the set of BGD equations, as shown in Equation 9:

Ep=Ep—(y* 1.5 Ggp)
Ni=Gyp 9)

where Gpg is the gradient frame size, Gy corresponds to the
gradient noise event rate, Gpp corresponds to the gradient event
packet size, and Gy is the gradient normalization factor.

To enhance feature identification in Equation 4, both VIO-GO6
and VIO-GOS8 adjust the FAST detector threshold and the number
of pyramid levels used for feature extraction. Additionally, both
methods fine-tune the parameter defining the number of keyframes
used in the back-end optimization process.

The optimal values of ©© for the VIO-GO6 are calculated from
the set of BGD equations, as shown in Equation 10:

= (y*Gyp)
No=Gno
T=T-(y*Gp)

Cxr=Cgr— (V * GCKF)’ (10)

where Gpg and Gy remain as in the previous approach, Gy
corresponds to the gradient of the median depth, Gy, is the gradient
of the number of octaves, G is the gradient threshold, and Gqxp
corresponds to the gradient of the number of keyframes in the back-
end.

VIO-GO8 includes two additional parameters not found in
VIO-GO6: the minimum number of features needed to enforce
keyframe selection and the maximum number of features to extract
from each frame. These parameters have a considerable effect on the
feature extraction process, thereby affecting the overall performance
of the VIO system.

The optimal values of ©©) for VIO-GO8 are calculated from the
set of BGD equations, as shown in Equation 11:
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=Mp—(y* Gyp)
No =Gno
T=T-(y=*Gy)

Cxr=Crr— (V * GCKF)
Ky =Kp—=(y* Ggp)

Dyp=Dyp=(y * Gpyp) s (11)

where Gy represents the gradient of the maximum number
of features per frame and Gp, denotes the gradient keyframes
selection threshold, while all other parameters remain the same as
in VIO-GO6.

The loss functions for these parameter sets are calculated based
on the mean error and target error of the trajectories obtained from
the event-based VIO. The parameters are updated using a learning
rate y of 0.02. Once these parameters are optimized, they are fedback
into the event-based VIO, and the resulting trajectories in the x,
y, and z directions are recorded along with the MPE. The error is
calculated over a 5-s interval, as described in (Rebecq et al., 2017b;
Vidal et al., 2018). The complete parameter optimization technique
is outlined in Algorithm 1.

Although the Ultimate SLAM involves numerous parameters,
restricting their number ensures the practical feasibility of the
proposed system. This constraint was chosen for two main reasons.
First, the selected parameters are crucial elements of the front-end
and back-end equations discussed in Section 3. Second, maintaining
a fixed learning rate across all VIO-GO approaches makes it
challenging to integrate parameters with significantly different
values into the GD equations. Moreover, using various learning rates
for different parameters would significantly increase the system’s
computational cost.

The proposed algorithm extends its applicability beyond
Ultimate SLAM, demonstrating adaptability to a broader
range of algorithms. Specifically, the VIO-GO2 and VIO-GO4
approaches are applicable to any event-based VIO system that uses
motion-compensated images for event data representation. This
compatibility is due to the shared use of a spatio-temporal event
window in the front-end processing of these systems. Moreover,
VIO-GO6 and VIO-GOS8 are designed for seamless integration
with event-based systems that specifically use the FAST detector for
feature extraction and nonlinear back-end optimization.

5 Results

We assess the efficiency of the VIO-GO framework by
comparing it to various event-based VIO methods across
challenging sequences the Dataset
(Mueggler et al., 2017b). This dataset comprises sequences captured

from Event Camera
with a Dynamic and Active-pixel Vision Sensor (DAVIS) across
various synthetic and real-world environments, serving as a widely
accepted benchmark for evaluating SLAM systems for high-speed

motion and HDR scenarios. The sequences exhibit complexity
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FIGURE 3
Scenes from the different sequences in the Event Camera Dataset (Mueggler et al., 2017b, Copyright © 2017 by The Author(s). Reprinted by Permission

of Sage Publications). (a) Boxes_sequence. (b) Dynamic_sequence. (c) Shapes_sequence.

(b)

(c)

through varying speeds, scenes, and DoF. In the shapes, poster,
and boxes datasets, each DoF is initially excited individually,
followed by mixed and progressively faster excitations, resulting in
higher event rates over time. The HDR datasets include significant
intrascene contrasts created by a spotlight. The dynamic sequences,
gathered in a simulated office environment and observed by a
motion-capture method, depict an individual transitioning from
sitting at a desk to moving around. Figure 3 displays snapshots
from representative sequences within the dataset, highlighting the
diversity and complexity of the captured scenarios.

Our evaluation includes a quantitative examination to assess the
accuracy of the proposed algorithm. Accuracy is measured using
the MPE, expressed as a percentage of the total distance traveled.
A 6-DOF transformation in SE(3) is applied over a 5-s segment of
the trajectory to align the estimated and ground truth trajectories.
This alignment and accuracy calculation is carried out using the
EVO tool (Grupp, 2017). All experiments were conducted on a
laptop powered by an Apple M1 chip, running Ubuntu 20.04 and
ROS Noetic. To evaluate the performance of the presented adaptive
optimization system, it was integrated with the Ultimate SLAM
framework (Vidal et al., 2018). Ultimate SLAM uses edge images for
VIO, requiring significant parameter tuning to adapt to the dynamic
nature of events in the scene.

To initiate the BGD optimization process, we set all parameter
values to the upper bounds of their respective ranges. This
choice provides a conservative starting point, allowing the system
to iteratively refine the parameters toward their optimal values.
For IMU biases, fixed initial values were used throughout all
experiments to ensure consistent benchmarking. These values are
derived from the calibration data provided with the Event Camera
Dataset Mueggler et al,, 2017b. Moreover, they fall within the
nominal factory calibration ranges specified in the datasheet of the
InvenSense MPU-6150 IMU sensor?, which is the integrated IMU
sensor in DAVIS. The values used are listed in Table 2.

2 IMU datasheet:

mpu-6100a

https://www.cdiweb.com/datasheets/invensense/ps-
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The evaluation is divided into two parts. First, we analyze various
VIO-GO approaches to identify the most effective model, determine
the optimal number of parameters for optimization, and test the
scalability of the presented approach. Next, in the second part, we
compare VIO-GO with the state-of-the-art edge image-based event-
driven VIO approaches to highlight its performance advantages.

5.1 Evaluating VIO-GO approaches

We evaluate the impact of varying the number of optimized
parameters in the VIO-GO approach on the overall performance
of the VIO system. This involves comparing VIO-GO2, VIO-
GO4, VIO-GO6, and VIO-GO8 across various sequences from the
Event Camera Dataset. Table 3 provides a detailed comparison of
the results.

The results show that increasing the number of tuned
parameters in the proposed model significantly enhances the overall
performance of the VIO system. As illustrated in Table 3, optimizing
8 parameters (VIO-GO8) instead of 2 (VIO-GO?2) results in a 24%
reduction in the average MPE of the estimated trajectory across
all sequences. Similarly, VIO-GO4 surpasses VIO-GO2 in most
sequences, achieving a 4% reduction in average MPE. Further
improvements are observed with VIO-GO6, which reduces the
average MPE by 16% compared to VIO-GO4. Finally, VIO-GOS8
delivers the most accurate trajectories, achieving an additional 5%
reduction in average MPE compared to VIO-GO6 across all tested
sequences.

Figure 4 presents heatmaps of the estimated trajectories
obtained from various VIO-GO approaches for the hdr_boxes
sequence, aligned with the ground truth trajectory. The plots
demonstrate that all VIO-GO variants produce precise trajectory
estimations, as indicated by the low APE values. Notably, the
graphs highlight clear improvement in trajectory accuracy with an
increasing number of optimized parameters. This is shown by the
significant reduction in the mean APE from 0.031 m for VIO-GO2
to 0.020 m for VIO-GOS. Figure 5 presents relative error metrics
to evaluate the performance of different VIO-GO approaches on
the hdr_boxes and boxes_translation sequences. The charts clearly
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TABLE 2 Initial IMU bias values used in all experiments.

Accelerometer Value (m/s?) Gyroscope Value (rad/s)
Bias X ~0.1059 Bias X 0.0494
Bias Y -02015 Bias Y 0.0105
Bias Z 0.2432 Bias Z 0.0012

TABLE 3 The performance of various VIO-GO approaches measured in terms of MPE (%).

Dataset VIO-GO2 (2 VIO-GO4 (4 VIO-GOE6 (6 VIO-GOS8 (8

parameters) parameters) parameters) parameters)
boxes_6dof 0.45 0.50 0.44 0.41
boxes_translation 0.35 0.27 0.26 0.25
dynamic_6dof 0.29 0.35 0.27 0.27
dynamic_translation 0.33 0.27 0.26 0.25
hdr_boxes 0.48 0.46 0.37 0.35
hdr_poster 0.29 0.31 0.31 0.25
poster_6dof 0.59 0.69 0.54 0.50
poster_translation 0.26 0.26 0.25 0.23
shapes_6dof 1.05 091 0.77 0.77
shapes_translation 0.64 0.50 0.33 0.36
Average 0.47 0.45 0.38 0.36

The values displayed in bold show the best results.

demonstrate the effectiveness of VIO-GO in reducing trajectory  parameter space in parallel and requires minimal computational

drift over time, with notable improvements observed as the number  resources.

of optimized parameters increases. Although VIO-GOS delivers the best results in terms of both
To further evaluate computational efficiency, we measured the ~ accuracy and computational efficiency, it is worth noting that

elapsed time of each VIO-GO configuration (with 2, 4, 6, and 8  increasing the number of optimized parameters beyond eight may

parameters) using the same hardware setup. The experiments show  further enhance performance. However, such an expansion would

that the VIO-GOS consistently achieves lower elapsed time across  also introduce greater complexity into the optimization process.

most sequences, with an average elapsed time of 16.39 s, compared ~ As noted previously, the choice to limit the parameter set to eight

to 18.98 s for VIO-GO2, 18.51 s for VIO-GO4, and 18.90 s for VIO-  was driven by practical considerations, including the constraints

GOG. Therefore, an average computational improvement of 13.6%  of maintaining a fixed learning rate and controlling computational

over VIO-GO2 was observed, primarily due to the fine-tuning of key =~ overhead associated with parameter tuning. Nonetheless, extending

parameters. This computational efficiency gain is achieved during  the optimization to a broader set of parameters remains a promising

the feature extraction phase, specifically the number of features  direction for future research.

used to trigger keyframe selection and the maximum number

of features extracted per frame. By optimizing these parameters,

VIO-GO8 reduces the computational overhead associated with 5.2 Compa ring with event-based VIO

processing redundant or suboptimal features, leading to faster ~Mmethods

execution. It is important to note that VIO-GOS8 requires a higher

optimization cost upfront compared to other approaches, due to In our evaluation, we benchmark the proposed system against

the increased number of parameters being tuned. Nevertheless,  the raw results of Ultimate SLAM, as reported by its authors

this does not significantly impact the time required to find the = who used per-sequence parameter tuning and accurate IMU bias

optimal parameters, as the BGD algorithm efficiently explores the initialization. Building upon the Ultimate SLAM framework, our
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FIGURE 4
Heatmaps depicting the APE of various VIO-GO trajectories for the hdr_boxes sequence, aligned with the ground truth via a 6-DOF transformation
over a 5-s period using the EVO tool. (a) VIO-GO2. (b) VIO-GOA4. (c) VIO-GO6. (d) VIO-GO8.

model is evaluated against this baseline to demonstrate its capability
to automatically identify optimal parameters for each sequence
in the Event Camera Dataset. Additionally, we compare it with
Ultimate SLAM results obtained using a fixed parameter set adjusted
across all sequences simultaneously and initialized with zero IMU
bias, as presented in (Mahlknecht et al., 2022).

The aim of this comparison is to demonstrate the importance
of parameter optimization in event-based VIO methods and to
highlight the performance of the proposed model against a fixed
parameter set across various scenarios. Moreover, we compare VIO-
GO with (Rebecq et al., 2017b), an event-based algorithm coupled
with an IMU, considered the foundational pipeline for Ultimate
SLAM. The evaluation also includes EKLT-VIO (Mahlknecht et al.,
2022), a system that integrates the EKLT feature tracker with a
filter-based back-end, and EVIO (Zhu et al., 2017), an event-based
tracking algorithm combined with an IMU. Similar to the proposed
approach, both EKLT-VIO and EVIO are developed to perform
efficiently under diverse conditions, including HDR environments
and different lighting scenarios. The developers of the selected EVIO
methods evaluated them using MPE as the error metric and the
Event Camera Dataset as the simulation environment, following the
same evaluation methodology employed in this work.

Table 4 provides a comprehensive comparison of the MPE
five benchmark algorithms and VIO-GO using the 8-parameter
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configuration (VIO-GOS8), across various sequences from the
Event Camera Dataset. As shown in Table 4, the presented
integrated system achieves state-of-the-art performance. Compared
to Ultimate SLAM with a fixed parameter set (Vidal et al., 2018;
Mahlknecht et al., 2022), which has an average MPE of 0.89%, VIO-
GO8 demonstrates superior performance across all sequences with
an average MPE of 0.36%. In contrast to the raw results of Ultimate
SLAM (Vidal et al., 2018), VIO-GO8 successfully identifies optimal
parameters, resulting in a lower MPE in the boxes_translation, hdr_
boxes, and hdr_poster sequences, with MPE values of 0.25%, 0.35%,
and 0.25%, respectively. Although the raw results of Ultimate SLAM
exhibit better performance compared to VIO-GO, it is important to
note that Ultimate SLAM heavily relies on manual parameter tuning
for each sequence, which is considered impractical. Conversely,
VIO-GO automatically fine-tunes the selected parameters across
different environments. Furthermore, as explained in Section 4, we
opted for only eight key parameters that we identified as directly
influencing the system performance. In contrast, Ultimate SLAM
has a much larger set of parameters that can be adjusted for
improved results, but this comes at the cost of requiring substantial
computational time. For these reasons, we have grayed-out the
Ultimate SLAM results in Table 4. This decision to downplay
Ultimate SLAM was made to highlight the practical advantages of
our simpler parameter set over the more computationally intensive
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FIGURE 5

Comparison of relative errors across various VIO-GO variants. (a)
Hdr_boxes sequence. (b) Boxes_translation sequence.

Ultimate SLAM, thereby focusing on the efficiency and practicality
of VIO-GO in real-world scenarios. Notably, VIO-GO8 surpasses
all other approaches in 7 out of 10 sequences. With an average MPE
of 0.36%, VIO-GO8 exhibits a 16% reduction in MPE compared to
the 0.43% reported in (Rebecq et al., 2017b), a 33% lower MPE than
EKLT-VIO (Mahlknecht et al., 2022) with 0.54% MPE, and an 86%
lower MPE compared to EVIO (Zhu et al., 2017), which reports an
MPE of 2.57%.

Figures 6-8 illustrate heatmaps of the estimated trajectories
from the proposed approach alongside the raw trajectory from
Ultimate SLAM, both aligned with the ground truth trajectory
for three different sequences from the Event Camera Dataset. In
Figure 6, which corresponds to the boxes_6dof sequence, VIO-
GOS8 demonstrates high trajectory accuracy, closely aligning with
the ground truth and achieving a low APE. However, its APE
is slightly higher than that of Ultimate SLAM. This difference
is primarily attributed to Ultimate SLAM relying on extensive
manual tuning across a wide range of parameters. In contrast,
VIO-GO automatically optimizes a fixed subset of eight key
parameters. While broader manual tuning can improve accuracy,
it increases system complexity and limits scalability. VIO-GO
prioritizes efficiency and generalizability by eliminating the need
for manual intervention. Figures 7, 8 present results for the hdr_
boxes and boxes_translation sequences, respectively. In both cases,
VIO-GO8 outperforms Ultimate SLAM by producing trajectories
that more closely align with the ground truth and achieving lower
APE values. These improvements highlight VIO-GO’s ability to
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adapt parameter configurations to challenging conditions without
requiring manual tuning. The results further demonstrate the
robustness and flexibility of the proposed framework across diverse
scenarios.

In Figure 9, we employ relative error metrics to compare VIO-
GO8 to Ultimate SLAM with its default parameter configuration
applied to the hdr_boxes and boxes_translation sequences. The results
show that VIO-GO8 notably reduces drift in the estimated trajectory
over time. Table 5 presents a time analysis comparison between
Ultimate SLAM, using its default parameters, and VIO-GO8 with its
optimal parameter set. As shown, VIO-GOS requires significantly
less time to process all datasets compared to Ultimate SLAM.
This performance improvement is attributed to VIO-GO8’s ability
to dynamically select the best parameter set for each sequence,
thereby reducing processing overhead in both the front-end and
back-end stages. Furthermore, as previously discussed, VIO-GO8
outperforms the fixed parameter set approach by achieving an
average MPE that is 58% lower than Ultimate SLAM’s default
parameters across all sequences.

6 Discussion

In this section, we highlight the effectiveness of VIO-GO in
addressing key challenges such as parameter optimization and
computational efficiency. Additionally, we reflect on the broader
impact of our findings, explore potential research avenues, and
identify areas for improvement to guide future advancements in
this field.

6.1 Contributions

The primary contribution of VIO-GO is its ability to
automatically optimize parameters for event-based VIO systems,
significantly improving both accuracy and computational efficiency.
Specifically, the VIO-GO8 approach, which optimizes eight key
parameters, achieves an average MPE of 0.36%, outperforming
fixed-parameter approaches such as Ultimate SLAM and other
state-of-the-art methods, including EKLT-VIO and EVIO. These
results underline the effectiveness of adaptive parameter tuning
in enhancing VIO performance across diverse and dynamic
environments.

A critical observation is the scalability of VIO-GO, where system
performance improves with the inclusion of additional optimized
parameters. For instance, a comparison between VIO-GO2 and
VIO-GO8 demonstrates the benefits of comprehensive parameter
optimization. Moreover, VIO-GO eliminates the need for manual
parameter tuning required by previous methods, significantly
reducing deployment time and effort. This makes it particularly
well-suited for applications in Industry 4.0, where environments are
highly variable and demand rapid adaptation. The core design of
VIO-GO emphasizes generalizability. By dynamically optimizing a
fixed set of key parameters based on scene characteristics, it adapts
automatically to diverse conditions without relying on predefined
configurations. In contrast to traditional motion-compensation
approaches that require extensive manual adjustment for each new
environment, VIO-GO offers a more scalable and practical solution.
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(b) USLAM*evaluated on Boxes_6dof.

Heatmaps presents the APE for the VIO-GO trajectory and the Ultimate SLAM raw trajectory for the Boxes_6do f sequence, both aligned with the
ground truth trajectory using a 6-DOF transformation in SE3 over a 5-s duration, as generated by the EVO tool. (a) VIO-GO evaluated on Boxes_6dof.
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Boxes_translation. (b) USLAM*evaluated on Boxes_translation.

Heatmaps presents the APE for the VIO-GO trajectory and the Ultimate SLAM raw trajectory for the Boxes_Translation sequence, both aligned with the
ground truth trajectory using a 6-DOF transformation in SE3 over a 5-s duration, as generated by the EVO tool. (a) VIO-GO evaluated on
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In comparison with existing approaches, VIO-GO introduces a
paradigm shift by automating the parameter optimization process.
Our results show that VIO-GO significantly reduces trajectory drift
over time and achieves a lower APE compared to fixed-parameter
approaches. This is crucial for real-time applications, making
VIO-GO an ideal candidate for resource-constrained scenarios in
industrial robotics and autonomous navigation.

6.2 Limitations

While VIO-GO demonstrates promising results, several
limitations remain. One key challenge is its dependency on
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a predefined set of key parameters, which may constrain its
adaptability to highly diverse or previously unseen environments.
Future iterations could expand the parameter set or incorporate
environment-specific variables, allowing the system to adapt
more effectively to complex scenarios. Another limitation is
the sensitivity of the system to initial conditions, such as IMU
bias and feature selection, which may affect stability during
extended operations. Future efforts could address these challenges
through advanced initialization methods and noise mitigation
strategies.

Additionally, while the Event Camera Dataset provides a
valuable and well-calibrated benchmark for evaluating event-based
VIO systems, it represents a relatively controlled environment. In
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FIGURE 9

The relative error comparison between Ultimate SLAM with its default
parameters and VIO-GO8 with its optimized parameters. (a)
Hdr_boxes sequence. (b) Boxes_translation sequence.

real-world scenarios, factors like unstructured environments, sensor
noise, and erratic motion patterns can significantly affect event data
quality. VIO-GO is designed to address such variability through its
core capability of dynamically optimizing key system parameters
based on the characteristics of each scene. This allows the system
to adapt in real time without requiring manual reconfiguration.
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Nevertheless, transferring the system from a controlled dataset
to real-world deployment may affect the effectiveness of the
selected parameter sets. Real-world conditions could present
edge cases or variations not fully represented in the dataset,
potentially impacting the convergence behavior or responsiveness
of the optimization process. For instance, parameters such as
the frame size and noise event rate might need adjustments
to account for fluctuating event densities caused by background
activity. Furthermore, parameters related to feature extraction
may need to be tuned to handle less structured or more
repetitive textures commonly found in natural scenes. These factors
underscore that testing VIO-GO in real-world environments would
provide a deeper understanding of its robustness in diverse and
unpredictable conditions. Lastly, the use of BGD for parameter
optimization, while effective, could be complemented by exploring
alternative techniques, such as SGD, Bayesian optimization, or
Gauss-Newton methods, to improve convergence speed and
efficiency.

6.3 Future directions

Building on the current success of VIO-GO,
several promising research avenues could extend its
capabilities:

1. Expansion of the Parameter Optimization Scope: Extending
the optimization to a larger set of parameters remains a
promising avenue for future work. While this study limited
the number of optimized parameters to maintain practical
feasibility, expanding this scope could potentially unlock
additional performance improvements.

2. Integration with Other Event-Based SLAM Approaches:
Future work could explore extending VIO-GO to integrate
with other event-based SLAM systems. This would help
develop more robust solutions adaptable to a wider range of
applications.

3. Exploration of Advanced Event Processing Techniques: Future
studies could look into advanced event-based processing
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TABLE 5 Elapsed time comparison between Ultimate SLAM with its default parameters and VIO-GO8 with its optimized parameters.

Dataset USLAM (default parameters) VIO-GOS8
Time cost (s) MPE (%) Time cost (s) MPE (%)
boxes_6dof 20.01 0.49 18.56 0.41
boxes_translation 22.11 0.38 20.30 0.25
dynamic_6dof 17.83 0.66 14.50 0.27
dynamic_translation 17.65 1.07 10.94 0.25
hdr_boxes 20.58 1.12 18.39 0.36
hdr_poster 2147 0.51 18.83 0.25
poster_6dof 22.14 0.96 21.90 0.50
poster_translation 18.71 0.35 16.18 0.23
shapes_6dof 16.45 1.46 11.30 0.77
shapes_translation 15.35 0.70 12.99 0.36
Average 19.23 0.77 16.39 0.36

The values displayed in bold show the best results.

techniques, including deep learning-based methods for event- by fluctuating event rates. This capability is particularly
to-image conversion or more sophisticated feature tracking  critical for industrial applications, where environmental
approaches. These could further boost the performance of  variability demands highly responsive and efficient navigation
event-based VIO systems. solutions.

4. Real-Time Adaptation and On-the-Fly Tuning: Implementing These results highlight the importance of automated parameter
real-time adaptation and on-the-fly parameter tuning would  optimization in event-based SLAM systems. Future research should
make VIO-GO more suitable for autonomous systems  focus on testing VIO-GO in more diverse and complex real-
operating in unpredictable environments, minimizing the  world settings, incorporating advanced event-based processing
need for pre-set parameters. techniques and exploring alternative optimization methods to

By addressing these limitations and expanding the scope of the further enhance performance. AdditiOI?ally, VIO-GO’s adaptability

study, future research could significantly advance the field of Event can be further evaluated across a wider range of datasets and

SLAM, contributing to the development of more robust, efficient, integrated with other event-based SLAM approaches beyond

Ultimate SLAM, expanding its applicability and generalizability to

and adaptable systems for autonomous navigation in dynamic
real-world scenarios. By addressing these directions, VIO-GO could

environments.
establish a new standard for robust, scalable, and adaptive SLAM
solutions, particularly in the demanding contexts of Industry 4.0
7 Conclusion and beyond.

This work presents VIO-GO, a novel framework for automated
parameter optimization in event-based VIO systems, tailored for ~ [)atg ava'lab|[|ty statement
use in dynamic environments central to Industry 4.0 applications.
Designed to address the challenges of dynamic and variable The original contributions presented in the study are included in
environments, VIO-GO achieves a balance of accuracy and

the article/supplementary material, further inquiries can be directed
computational efficiency by using motion-compensated images and

to the corresponding author.
a BGD algorithm, enhancing the performance and robustness of

Event SLAM systems.
Our evaluation on the Event Camera Dataset shows that
VIO-GO outperforms fixed-parameter approaches, achieving Author contributions
a 60% reduction in MPE. The system successfully identifies
optimal parameters for Ultimate SLAM across multiple SS: Conceptualization, Investigation, Methodology, Software,
sequences, confirming its adaptability to scenarios characterized = Validation, Writing - original draft, Writing — review and editing.
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