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Introduction: The challenges encountered in the design of multi-robot teams 
(MRT) highlight the need for different levels of human involvement, creating 
human-in-the-loop multi-robot teams. By integrating human cognitive abilities 
with the functionalities of the robots in the MRT, we can enhance overall system 
performance. Designing such a human-in-the-loop MRT requires several 
decisions based on the specific context of application. Before implementing 
these systems in real-world scenarios, it is essential to model and simulate the 
various components of the MRT to evaluate their impact on performance and 
the different roles a human operator might play.
Methods: We developed a simulation framework for a human-in-the-loop MRT 
using the Java Agent DEvelopment framework (JADE) and investigated the 
effects of different numbers of robots in the MRT, MRT architectures, and 
levels of human involvement (human collaboration and human intervention) on 
performance metrics.
Results: Results show that task execution outcomes and request completion 
times (RCT) improve with an increasing number of robots in the MRT. Human 
collaboration reduced the RCT, while human intervention increased the RCT, 
regardless of the number of robots in the MRT. The effect of system architecture 
was only significant when the number of robots in the MRT was low.
Discussion: This study demonstrates that both the number of robots in a multi-
robot team (MRT) and the inclusion of a human in the loop significantly influence 
system performance. The findings also highlight the value of simulation as 
a cost- and time-efficiency strategy to evaluate MRT configurations prior to 
real-world implementation.

KEYWORDS
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 1 Introduction

Complex problems that exceed the capabilities of a single robot can be addressed 
by a multi-robot team (MRT) (Darmanin and Bugeja, 2017). The use of MRTs is not 
limited to using the robots to execute different tasks (Yang and Parasuraman, 2020), 
but also in scenarios where the robots have similar capabilities and may be used to 
execute similar concurrent tasks (Chang et al., 2021). Application domains of MRTs 
include surveillance, search and rescue (Stancovici et al., 2016; Mendonça et al., 2016),
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foraging and flocking (Parker, 1998; Lein and Vaughan, 2009; 
Gu and Wang, 2009), formation and exploration (Wang et al., 
2016; Phanichnitinon et al., 2014), large scale assembly lines 
(Simmons et al., 2001) and adversarial or extreme environments 
(Zhang and Wang, 2007; Agmon et al., 2008).

Due to the technical complexity of MRTs, a variety of 
technology-related research topics have been explored, these include 
communication and architectures (Gielis et al., 2022), task allocation 
(Chakraa et al., 2023), localization (Chen et al., 2025), mapping 
and exploration (Kwa et al., 2022), manipulation, and motion 
coordination (Chang et al., 2021). In most of this research, the 
assumption is that the MRT is programmed to act autonomously 
without human involvement. However, in real-world deployments 
of MRTs in many industries a human-in-the-loop approach is 
required when using MRTs. For example, the safety-conscious 
nuclear industry does require a human operator to either tele-
operate robots directly, or at least monitor their actions.

Human-robot interaction (HRI) has been studied in the field of 
MRTs (Villani et al., 2020; Patel and Pinciroli, 2020), but most of 
the previous HRI MRT research have focused more on the human 
carrying out supervisory activities. In the research presented in 
this paper, we introduce HRI to MRTs where the human performs 
roles beyond just monitoring the robots, but also collaborates with 
the robot. Human-Robot collaboration involves the human and 
robot working together simultaneously on a shared goal, in the 
form of physical collaboration or contactless collaborations (Hjorth 
and Chrysostomou, 2022). The main goal of our work is to 
evaluate how different levels of human involvement affect the overall 
performance of an MRT.

In order to evaluate the impact of human involvement on MRTs, 
we developed and implemented an MRT simulation environment. 
This has the advantage that we can evaluate a broad set of MRT 
system parameters and operational contexts in a short time frame. 
We modelled the MRT as a multi-agent system (MAS) and simulated 
a set of scenarios. Each scenario comprises a combination of MRT 
architecture type (centralised, decentralised), human involvement 
(no involvement, collaboration, intervention), and number of robots 
(4, 6, 8, 10). We measured the impact on several performance 
parameters, including request execution outcome (success/failure), 
number of successful tasks, number of failed tasks, and request 
completion time.

This work makes two main contributions to the knowledge 
about human-in-the-loop MRT: (1) we present a simulation 
framework based on a MAS that simulates a robot team for nuclear 
decommissioning tasks with a human in the loop, and (2) we 
evaluated the impact of different levels of involvements in a human 
in the loop MRT on centralised and decentralised architectures. 

2 Related work

Research on MRTs and their implementations for different 
applications reveal the different MRT themes that may be explored. 
Due to these large number of research themes, this literature review 
only covers topics relevant to this paper, which include modeling a 
MRT as a multi-agent system (MAS), and modelling and simulation 
environments for agent based systems. Modelling an MRT as an 
MAS allows us to define relevant actors in the MRT as agents, thus 

making it possible to model the behaviours of, and communication 
between, all actors in the system. We also reviewed literature on 
human-in-the-loop multi-agent teams, since it is a theme of interest 
to this paper, providing an overview of the state of research in this 
MRT theme. In order to model and simulate our human-in-the-
loop MRT as a MAS, we also explored literature on modelling and 
simulation environments for agent based systems. 

2.1 Multi-agent systems

An MAS consists of autonomous entities called agents that 
collaboratively solve complex tasks. Dorri defined an agent as an 
entity in an environment that has the ability to sense different 
parameters that may be used to make decisions to achieve 
the goal of the entity (Dorri et al., 2018). Agents operate 
by sensing parameters from the environment, using knowledge 
obtained from neighbouring agents, and using history of previous 
actions taken (Garcia et al., 2010).

Important features in MAS and the corresponding categories 
that arise from these features were outlined by Dorri et al. (2018). 
The features and their corresponding categories include leadership 
[leader-follower, leaderless (Fu and Wang, 2014; Li et al., 2011)], 
decision function [linear, non-linear (Zhao et al., 2013; Li et al., 
2012)], heterogeneity (heterogeneous, homogeneous (Kim and 
Matson, 2016; Vrancken and Soares, 2009)), agreement parameters 
(first order, second order, high order (Miao and Ma, 2015; 
Wen et al., 2013)), delay consideration [with and without time 
delay (Gao et al., 2016; Du et al., 2013)], topology [static and 
dynamic (Liu et al., 2015; Olfati-Saber and Murray, 2004)], data 
transmission frequency (time triggered, event triggered (Guo et al., 
2014; Li et al., 2014)), and mobility [static and mobile agents 
(Wooldridge, 2009; Wang et al., 2014)].

The properties and collaborative behaviours of agents therefore 
make them suitable to represent challenges commonly faced in 
MRT, such as cooperation and coordination between robots, 
non-deterministic dynamic environments which may increase the 
complexity of their decision making, and trajectory planning (Ota, 
2006; Soriano et al., 2013; Iñigo-Blasco et al., 2012; Duan et al., 
2012). With these features in mind, we modelled our MRT as MAS 
that includes a decision and task allocation system, and multiple 
leaderless homogeneous robots. To the best of our knowledge, no 
prior work has been carried out in modelling a human-in-the-
loop MRT as a MAS for investigative research,where the effect of 
different levels of human involvement is explored for different MRT 
architectures. 

2.2 Human-in-the-loop multi-robot teams

Although there are advances in technologies that improve the 
autonomous capabilities of robots employed to carry out tasks, 
sometimes application areas, such as nuclear decommissioning, 
insist on having a human in the loop. Whilst there are several reasons 
why there may be the need to have a human in the loop, such 
as the safety case in nuclear decommissioning, one advantage is 
that it allows for the integration of robots and human capabilities. 
Hence, it makes it possible to integrate the superior capabilities of the 
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robot, in terms of precision and being able to operate in dangerous 
environments, with human cognitive capacities (Ajoudani et al., 
2017). Likewise, as the environment becomes more unpredictable, 
unexpected problems may be solved with human input, e.g., 
monitoring, fault detection, and recovery (Kaufmann et al., 2021).

Introducing a human into an MRT however has its challenges. 
The complexity of task coordination varies with scenario, and 
as the number of robots in the MRT increases, a greater level 
of multitasking may be required. Therefore, as operators switch 
between tasks, the chance of human error and of human-induced 
complications increases. In general, performance of an MRT with a 
human in the loop may be affected by the flexibility of task allocation 
(Valenchon et al., 2022), the structure of the MRT (Gao et al., 
2014), factors that may affect supervisory control like the number 
of concurrent tasks (Cummings et al., 2010; McKendrick et al., 
2014) and human-induced errors. It is therefore important to find 
a balance in assigning responsibilities to the different components 
in the system based on known information about the limitations in 
their capabilities. A possible solution is to simulate a human-in-the-
loop MRT to understand how roles assigned to the human and MRT 
may affect the success of executing requests before implementation 
for real-world applications. 

2.3 Simulated MultiRobot teams 
applications

One of the challenges of integrating a human into a Multi-
Robot Team (MRT) is scalability. While scalability in MRTs is often 
advantageous, allowing for flexible adaptation to varying job sizes 
and dynamic demand levels, it is constrained by human cognitive 
limitations and decision-making speed (Humann and Pollard, 2019) 
examined the impact of humans on the scalability of multirobot 
systems and simulated the challenges of scaling a multi-operator, 
multirobot surveillance system. Their review highlighted several 
human-related factors that limit scalability, including reduced 
situational awareness, errors due to high workload, and declining 
precision in control inputs. Using an agent-based model developed 
with the open-source software GAMA, the surveillance simulation 
incorporated human operator agents, quadrotor UAVs, and fixed-
wing UAVs. The results indicated that a single operator could 
effectively control up to three robots, and increasing the number 
of controllable robots required adding more human operators to 
the system.

Al-Hussaini et al. (2021) developed adaptive techniques using 
Monte Carlo forward simulations to predict future mission states 
by constructing probability distributions of potential outcomes 
in complex environments, thereby enabling alert generation. This 
approach allowed for accurate real-time alert generation in scenarios 
where computational time is limited to just a few seconds.

To assess proposed team designs in uncertain Military 
Operations in Urban Terrain (MOUT) scenarios and 
identify the most critical design factors influencing team 
performance (Giachetti et al., 2013), developed a simulation model 
incorporating team coordination and human-robot interaction. 
The findings indicate that larger teams outperformed the effects 
of noise factors such as danger level and robot reliability, with 
robot reliability being a key determinant in human-robot team 

formation. Additionally, the results suggest that as team size 
increases, centralized decision-making may lead to communication 
challenges.

In one of the agility challenges during the “Agile Robotics for 
Industrial Automation Competitions” (ARIAC) 2023, the human 
operator was modeled as a “Belief-Desire-Intention (BDI)” agent 
using Jason. Participants were required to control a gantry robot, 
four automated guided vehicles, and various other components to 
navigate agility challenges within a simulated factory environment 
using ROS 2 (Robot Operating System) and Gazebo (Becker et al., 
2023). Different behavioral models were implemented to define 
how the human operator responded when near the robot, ranging 
from minimally intrusive to highly intrusive interactions. Additional 
simulation studies have been conducted by Maoudj et al. (2015), 
Carlin et al. (2010), Mota et al. (2011), Zhang et al. (2012), 
Dawson et al. (2010), Harbin et al. (2021), Humann et al. (2023), 
An et al. (2023), Street et al. (2023).

The reviewed MRT simulation applications demonstrate that 
multirobot teams have been successfully simulated across various 
application contexts. However, the extent to which the behaviors 
of MRT components can be defined and simulated varies, as some 
environments function as black boxes. Additionally, none of the 
reviewed studies explored MRT simulations in a nuclear context. 
Consequently, our selection of a simulation environment prioritized 
the ability to precisely define the behaviors of MRT components. 

2.4 Modelling and simulation environments 
for agent-based systems

There are several performance metrics of agent-based systems 
that may be defined, analysed and evaluated using different methods. 
However, the choice of methods may vary depending on the 
MRT application, goal of the system, or the agent-based system. 
Some of the commonly used multi-agent frameworks include 
the Java Agent DEvelopment framework (JADE) (Sadik et al., 
2019; Bellifemine et al., 2007), GAMA (GAMA, 2023), Matlab 
(Panasetsky and Tomin, 2013), Repast (North et al., 2006), 
MASON (Luke et al., 2005), Netlogo (Tisue and Wilensky, 2004), 
and Anylogic (Borshchev, 2014).

For the evaluation reported in this paper, we employed the JADE 
to model, simulate, and evaluate different scenarios of an MRT. JADE 
was chosen because it allows the creation of agents and redefinition 
of behaviours by providing relevant class libraries. Hence, it makes 
it possible to define in detail the attributes and behaviours of each 
components of the MRT. It is also easier to translate Business Process 
Model and Notation (BPMN) activity diagrams, which were used to 
model simulation framework components, into JADE agents. 

3 Materials and methods

A human-in-the-loop MRT consists of a human operator and 
different components of the MRT. In this section we provide a 
detailed description of a simulation framework model to evaluate 
human involvement in an MRT. In this paper, we have explored 
the context of nuclear decommissioning as the application area; 
however, the results and recommendations may also be applicable 
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to other MRT contexts. Components of the system were modelled 
using the BPMN (Camunda, 2025), an architecture description 
language that extends the Unified Modelling Language (UML) 
(Object Management Group, 2025; Sadik et al., 2019). BPMN is 
capable of describing logical flows of activities within a process and 
provides a rich set of notations, each having a predefined semantic. 
The BPMN notations that have been used to construct analytical 
models of the different MRT architecture use cases investigated in 
this paper are described in Supplementary Figure 1. The notations 
have been added to facilitate the interpretation of the various activity 
diagrams, which illustrate the flow of information across the use 
cases. Explanations for each activity diagram are also provided. 
The simulation framework is discussed in Section 3.1. We describe 
the characteristics of the centralised and decentralised architectures 
as modelled in this paper in Sections 3.2, 3.3, respectively. These 
sections also describe how the different components vary between 
different architectures. The different use cases of varying levels of 
human involvements are discussed in Section 3.4. 

3.1 Simulation framework

We implemented a framework that simulates centralised and 
decentralised MRT. Figure 1 shows an overview of the MRT 
system architecture. The architecture consists of the following 
components: Operator, sends out requests to MRT for tasks that 
are to be executed; Requests Manager, identifies relevant plan 
blueprints that may be used to execute requests; Planner, develops 
a verified plan for a request; Robots Manager, assigns tasks to 
robots and handles registering and deregistering of each robot; 
Robot, executes tasks assigned to it based on its capabilities; and the 
Knowledge Base (KB), a central repository for keeping track of plan 
blueprints, robots, and tasks. The Knowledge Base is implemented 
as catalogues in code. Figure 1 also shows the information flow 
between components.

The simulation framework has been implemented 
using JADE (Jade, 2023). It includes a runtime environment where 
JADE agents can live. It also consists of a library of classes that 
can be used to develop agents. Each instance of JADE runtime 
is an independent thread which is made of a set of containers. 
A group of agents running under the same runtime instance is 
called a container, and a set of active containers is called a platform. 
For a platform to be functional, it must contain an active special 
main container. The main difference between a main container and 
normal container is that it holds the Agent Management System 
(AMS) and the Directory Facilitator (DF). Whilst the AMS provides 
the naming service, ensuring that each agent in the platform has 
a unique agent identifier (AID), the DF provides a yellow pages 
service by which an agent can find other agents.

The functionalities of agents are typically carried out within 
“behaviours”. A behaviour is an event handler routine that is used 
by the agent to modify its parameters and interact with other 
agents. Behaviours offered by JADE include Simple behaviour, One-
shot behaviour, Cyclic Behaviour, Composite behaviour, Sequential 
Behaviour, Parallel behaviour, Finite State Machine behaviour, 
Waker behaviour, and Ticker behaviour. The behaviours employed 
for the implementation of our simulation framework include the 
following:

• One-shot behaviour: this is a simple behaviour that is executed 
once when it is called by the agent. It is often used to trigger an 
event and send an ACL-Message.

• Cyclic behaviour: this is a simple behaviour that stays active as 
long as the agent is alive.

• Sequential behaviour: this is a composite behaviour that 
controls the sequence of execution of more than one one-shot 
behaviour.

• Parallel behaviour: this is a composite behaviour that 
concurrently controls the execution and termination of more 
than one one-shot behaviour.

We represent every component in the different architecture 
scenarios as JADE software agents. The JADE description above 
informs JADE as a proper tool to implement BPMN models in the 
context of MRTs. This is particularly relevant because an activity 
from the BPMN can be coded as a simple one-shot or cyclic 
behaviour in JADE, while a gateway can be translated into composite 
or parallel behaviours in JADE. We can also use JADE to simulate the 
MRT and to examine the different scenarios as used in this paper. 
Likewise, the same implementation code can be used to deploy the 
system over real world hardware (Sadik et al., 2017).

It is important to consider different concepts when designing 
an MRT. One such concept is the group architecture, which 
provides the infrastructure that determines the capabilities 
and limitations of the system. Some of the features include 
centralisation/decentralisation, differentiation (homogeneous and 
heterogeneous), and communication (via environment, via sensing, 
and via communications) (Cao et al., 1997). While centralised 
architectures have a single control agent, decentralised architectures 
do not. Decentralised architectures may furthermore be divided 
into two types, namely distributed architectures and hierarchical 
architectures. In distributed architectures, all agents are equal 
with respect to control, but hierarchical architectures exhibit 
local centralisation. In this work, centralised and distributed 
decentralised architectures have been modelled and simulated. 
Centralized and decentralized architectures are two of the most 
common approaches for MRT architectures (Parker, 2008), which 
led to our decision to explore them further. The main difference 
between the centralised and decentralised architectures modelled in 
this paper is access to system information and how task allocation 
was implemented. The following sections describe our centralised 
and decentralised MRT architecture designs in more detail. 

3.2 Centralised multi-robot team 
architecture

The main feature of the modelled centralised architecture 
presented in this paper is the single control agent. This agent has 
knowledge of all robots and their states, and is involved with task 
allocation for all robots based on access to their information. We 
briefly describe the different components of the system, modelled 
as individual agents. In order to allocate tasks in a given request, 
the chances of failure (minimum = 0, maximum = 1, Equation 4) 
of all capable Robots are calculated for all tasks. Tasks are therefore 
allocated starting with the task with the least chance of failure.
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FIGURE 1
Overview of inter-agent information flow in the system design.

Operator: responsible for making requests that are to be 
executed. Figure 2 shows the activity diagram for the Operator agent. 
Each request is made up of a set of tasks. All requests to be executed 
are stored in the Knowledge Base (KB), and on a first-come-first-
serve basis, each request in the KB is sent to the Requests Manager 
in 5 s intervals until all the requests in the KB have been sent. For 
every request received, the Requests Manager sends a request receipt 
acknowledgment to the Operator. After each acknowledgement, the 
Operator updates the status of the request on its graphical user 
interface (GUI) from ‘waiting’ to ‘request sent’. The GUI is provided 
so that request executions can be observed in real-time to monitor 
the system for errors in operation. Simultaneously, the Operator 
waits for request execution feedback requests from the Requests 
Manager. After receiving the feedback, the Operator updates its GUI 
and an Excel file with information on the outcome of the request, the 
number of successful tasks in the request, the number of failed tasks 
in the request, the number of times tasks have been reassigned, and 
the request completion time. The different actions performed by the 
Operator are executed in separate threads for concurrent execution 
of actions.

Requests Manager: responsible for identifying the relevant plan 
blueprint that may be used to execute each request. The different 
actions performed by the Requests Manager are executed in separate 
threads for concurrent execution of actions as shown in Figure 3. 
Each plan blueprint in the KB contains tasks and the capabilities 
a Robot must possess to complete each task. Requests received 
from the Operator are stored in the KB and randomly chosen for 
execution. A timer is set when a request is chosen for execution 
and if request execution feedback is not received within the set 
time, the request execution fails. If the Requests Manager finds 

one or more matching blueprints, a blueprint is randomly selected. 
The selected plan blueprint and the request are then sent to the 
Planner to develop a verified plan. The Request Manager also waits 
for blueprint receipt feedback from the planner. However, if no 
relevant plan blueprint is found, a “failed request (no blueprint)” 
message is sent to the Operator. Simultaneously, the Requests 
Manager also listens for verified plans feedback message from 
the Planner and requests execution feedback message from the
Robots Manager.

Verified plan feedback is received from the Planner if no 
verified plan may be developed by the Planner. The requests 
execution feedback message received from the Robots Manager may 
be positive or negative. The message will be positive if all task 
executions succeed but negative if the execution of at least one task 
in the request fails. The request execution feedback message sent 
to the Operator may also be positive or negative. The message will 
be positive if all the tasks contained in the request are successfully 
executed. However, the message will be negative if no verified 
plan can be developed, if the request is not executed within the 
required time, or if the execution of at least one of the tasks in 
the request fails. Simultaneously, the Requests Manager GUI is also 
updated with the plan blueprints for all the requests and request
execution status.

Planner: responsible for developing a verified plan on how to 
execute a request. The different actions performed by the Planner 
are executed in separate threads for concurrent execution of actions, 
shown in Figure 4. In order to develop the verified plan, the Planner 
splits the request into separate tasks and retrieves the capabilities 
required to execute the task from the plan blueprint. The Planner 
also retrieves information on all available Robots, and checks if 
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FIGURE 2
Centralized architecture: operator activity diagram.

FIGURE 3
Centralized architecture: Requests Manager activity diagram.

each Robot has the capabilities required to complete the task. We 
assume that there must be more than one Robot for consideration to 
increase the chance of having a capable Robot to assign the task to. 
Likewise, having more than one capable Robot makes it possible to 
execute tasks concurrently, hence reducing the request completion 
time. If only one Robot is available for the request execution, a “failed 
(Insufficient robots)” message is sent to the Requests Manager for 
the chosen request. The capable Robots must also have sufficient 

power (battery life) to complete the task. Battery life is crucial, 
as, unlike industrial robots or those stationed in fixed locations 
(Bolarinwa et al., 2019; Boschetti et al., 2021; Bolarinwa et al., 
2022), many robotic applications require mobility or deployment 
in environments where tethered connections to alternating current 
power sources are not feasible (Baniqued et al., 2024; Azpúrua et al., 
2023). A Robot is not considered for a task if its battery life is lower 
than that required to complete the task, even if the Robot has the 
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FIGURE 4
Centralized architecture: Planner activity diagram.

capabilities required to execute the task. If no capable Robot is found 
for a task in the request, a ‘charging leeway’ timer is set. The charging 
leeway timer is introduced for instances where a capable Robot is 
not found due to the robot being deregistered for its battery to be 
charged. The timer is chosen to be longer than the Robot’s charging 
time. When the timer elapses, the process is repeated to identify 
capable Robots.

We assume that the centralised architecture has complete 
information about all the Robots and tasks. Therefore, for all the 
tasks in the request, the chances of failure of all capable Robots 
are calculated and stored in a KB. Task allocation then starts with 
the Robot with the lowest chance of failure. When the Robot 
with the lowest chance of failure is assigned to a task, all the 
other robots considered for the allocated task and their calculated 
chances of failure are removed from the catalogue. If more than one 
Robot has the lowest chance of failure for a given task, a Robot is 
randomly chosen. The next lowest chance of failure is selected for 
the corresponding task and Robot. This process is repeated until all 
the tasks are allocated to Robots. If at least one of the tasks could not 
be assigned a Robot, a ‘failed (No sufficient capable Robots)’ message 
will be sent to the Requests Manager.

Our task allocation algorithm ensures that the robot with the 
lowest chances of failure is always allocated the task. However, there 
is a chance that a robot may be allocated more than one task from 
a request. The allocated tasks and corresponding Robots form the 
verified plan that is then sent to the Robots Manager. The Planner 
also waits for a ‘verified plan’ receipt message from the Robots 
Manager to ensure that the plan is received.

Simultaneously, the Planner receives task reassignment 
messages from the Robots Manager and stores the messages in the 
KB. If a previously allocated task fails, and the request execution time 
has not elapsed, the request is sent back to the planner to reassign the 
task to another Robot. To reassign the task, if the number of capable 
Robots is more than one, task allocation is done using the chances of 
failure of the capable Robots. If more than one capable Robot has the 

lowest chance of failure, a Robot is randomly chosen and sent to the 
Robots Manager. If no Robot is found, a ‘no robots found’ message is 
sent to the Robots Manager. If no capable Robots are found, a ‘failed 
(No capable robot)’ message is sent to the Robots Manager.

Robots Manager: responsible for assigning tasks to the Robots 
and also handles registering and deregistering of each Robot. 
The different actions performed by the Robots Manager are 
executed in separate threads for concurrent execution of actions, 
as shown in Figure 5. The Robots Manager manages a KB of the 
Robots’ information. The information stored in the KB include 
Robot capabilities, Robot availability, number of tasks assigned to 
each robot, battery power level of each Robot, radiation exposure 
dosages of each Robot, status of each Robot. The simulation is 
designed such that other agents can access and modify the KB 
when needed.

The Robot capabilities KB contains information about the 
capabilities of each Robot which makes it possible to assign each 
Robot to tasks. The availability KB is updated as each Robot registers 
or deregisters. A Robot may deregister from the team of Robots if it 
needs to recharge its batteries, and registers when its batteries are 
fully charged. When a Robot is deregistered, it cannot be assigned to 
a task. We represent the battery power level with a range of numbers 
from 0 (batteries depleted) to 100% (batteries fully charged). Each 
task is assigned a number which represents the percentage of battery 
power required to complete the task. This number is subtracted from 
the Robot’s battery power level as the task is completed. When the 
battery level drops to 14% (a value at which no task may be executed 
in our simulation), the Robot deregisters to recharge its batteries. 
We represent the charging process by setting a timer for 10 s, after 
which the Robot’s battery power level is updated to 100 and the robot 
sends a message to the Robots Manager to register it into the MRT. 
The charging time of 10 s was chosen after repeated simulations, to 
be just long enough for ongoing tasks to be completed but not too 
long as to delay the request execution. In reality, calculations can be 
made to determine how long it would take to charge the batteries. 
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FIGURE 5
Centralized architecture: Robots Manager activity diagram.

The charging process may be designed to be fast enough to avoid 
delays in request executions. As each Robot is assigned a task, the 
KB of the number of assigned tasks is updated for each Robot. After 
completing the task, the Robots Manager also updates the Robot’s 
radiation exposure dosage KB based on the task’s assigned radiation 
dosage. The minimum radiation dosage of a Robot is set to 0, while 
the maximum is set to 100. When a Robot’s radiation dosage reaches 
100, the Robot is decommissioned and can no longer be assigned a 
task. Hence the Robot status KB will be updated from “active” to 
“decommissioned”.

The Robots Manager also manages the task information KB. The 
information managed include task completion time, task difficulty, 
and task radiation dosage. The task completing time (TCT) varies for 
different tasks. This was simulated by creating a timer using a loop. 
The loop was used instead of a sleep function to make it possible 
to interrupt the task execution when the request completion time 
elapses. Task difficulty also varies from task to task as we assigned 
values to tasks based on our perceived difficulty levels. For example, 
we assume that a mapping task will have lower task difficulty than 
a task which requires a robot to stack barrels as stacking up barrels 
would require more sensing and actuating, as well as greater level 
of precision. Higher numbers imply higher difficulty. Task radiation 
exposure dosage also varies based on the task and has been defined 
numerically as the amount of radiation exposure a robot is exposed 
to as it carries out a task. Other agents can also access the task 
specification KB.

The Robots Manager receives the verified plan from the Planner 
and sends receipt feedback message to the Planner. The Robots 
Manager splits the verified plan into tasks, assigned Robots, and 
sends each task to its assigned Robot. The Robots Manager also 
stores the task and assigned Robots info in a separate KB. As each 
Robot completes its assigned task, its ID and assigned task are 
removed from the KB. This makes it possible to keep tabs on busy 
Robots. If the request completion time elapses before all the tasks 
are completed, the information in the KB is used to send messages 
to busy Robots to cancel their tasks and the request fails. The 

Robots Manager updates its GUI after receiving task receipt feedback 
message from the Robot.

Simultaneously, the Robots Manager waits to receive 
“Register/Deregister” messages from any of the Robots. If a Register 
message is received, the Robots Manager adds the robot to the 
MRT by changing the availability of the Robot to “Registered” and 
the battery level to 100. If a ‘deregistered’ message is received, the 
Robots Manager removes the Robot from the MRT by changing the 
availability of the Robot to “Deregistered”.

The Robots Manager also listens for task completion messages 
from Robots. As each Robot completes the assigned task, its busy 
status is changed from “busy” to “not busy”. The task completion 
feedback message could show that the task succeeds or fails. When 
a ‘task failed’ message is received, and the request completion time 
has not elapsed, the Robots Manager sends the task to the Planner 
to be assigned to another Robot. If the task fails, and the request 
completion time has elapsed, the task is not reassigned but the 
request fails. If a ‘task successful’ message is received, the number 
of successful tasks is increased and the battery level, as well as 
the radiation dosage of the robot is updated. Within the request 
completion time, if the number of successful tasks equals the number 
of tasks in the request, the request execution completes, and a request 
execution feedback message is sent to the requests manager. The 
Robot Manager also updates its GUI as messages are received and 
actions are executed.

Robot: Each robot in the MRT is simulated using a separate 
Robot agent. The different actions performed by the Robot are 
executed in separate threads for concurrent execution of actions, 
as shown in Figure 6. The Robot is responsible for executing 
tasks that have been assigned to it based on its capabilities. The 
Robot receives assigned tasks and sends a receipt message to the 
Robots Manager. The Robot checks its properties KB and updates 
its GUI. The GUI makes it possible to monitor processes going 
on within each agent. The Robot sends messages to the Robots 
Manager to deregister it from the MRT when its battery level 
falls below a set value. The Robot receives tasks from the Robots 
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FIGURE 6
Centralized architecture: Robot activity diagram.

Manager, stores in its internal KB, and randomly selects the tasks for
execution.

If a Robot becomes deregistered, inactive, or the battery level 
drops below a set level before it begins to execute a task, the task fails 
and a “task failed message” is sent to the Robots Manager. However, 
if not, the Robot proceeds to execute the task. If the Robot receives 
a ‘time up’ message as it executes the task, the task execution is 
cancelled and a “failed” message is sent to the Robots Manager. Tasks 
execution is simulated using a while loop with 1 s sleep function. The 
task execution result is simulated by calculating the chance of failure 
using the task difficulty and cumulative radiation dosage as shown. 
The chance of failure is then fed into a random number generator. 
If the number generated is more than the chance of failure, the task 
succeeds. However, if the number generated is less than the chance 
of failure, the task fails. This makes it possible to dynamically vary 
the success or failure of the task based on the task executed and the 
task execution history of the Robot. 

3.3 Decentralised architecture

In the decentralised architecture modelled in this paper, tasks are 
put up for auction and each Robot bids for the task by calculating 
its chance of failure of the auctioned task. This means that for 
task allocation, there is no need for the task allocation agents 
to be aware of the conditions or states of each robot. Tasks are 
allocated based on the bid responses of the Robots. The Robot 
with the lowest chance of failure bid is assigned the task. The main 
difference between the centralised architecture and the decentralised 
architecture with regard to task allocation is that, whilst the 
centralised architecture considers all the tasks in a given request, 
the centralised architecture does not. We have chosen to model 
task allocation and execution, as well as resource management 
and communication in this paper to reduce the complexity of 

the system. The following paragraphs detail the implementation 
of the decentralised architecture in comparison to the centralised 
architecture.

Operator: the Operator is identical to the Operator of the 
centralised architecture.

Requests Manager: the Requests Manager is identical to the 
Requests Manager of the centralised architecture.

Planner: responsible for assigning tasks to Robots. This is done 
by auctioning each task in the request. Figure 7 shows the activity 
diagram of the Planner for the decentralised architecture. The 
Planner splits the request into separate tasks and auctions each task 
and its corresponding execution requirements. The development 
of the verified plan fails if the MRT has fewer than two Robots. 
In order to introduce redundancy into the system, we define 
that there must be more than one Robot available for request 
execution. Each Robot will either bid for the task or refuse to 
bid. All the Robots that bid for the task will bid with chance 
of failure values for the task. The task is therefore allocated to 
the Robot with the lowest chance of failure. Information about 
the Robot, allocated task, and the number of tasks in the request 
are sent to the Robots Manager after each bidding process. The 
bidding process is repeated until all the tasks in the request are
allocated.

The Planner also listens for ‘task reallocation’ messages. A task 
may be reassigned if it fails or if the allocated Robot deregisters due 
to low battery. To reassign the task, the planner puts the task up 
for bidding and the process is repeated. After all tasks have been 
reassigned, the Planner waits for the next Plan Blueprint to process.

Robots Manager: The Robots Manager in the decentralised 
architecture is only responsible for registering and deregistering 
robots, receiving task feedback from Robots, sending the reassign 
task message to Planner and sending the request execution feedback 
to the Requests Manager. The activity diagram in Figure 8 shows the 
information flow and processes involved.
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FIGURE 7
Decentralized architecture: Planner activity diagram.

FIGURE 8
Decentralized architecture: Robots Manager activity diagram.

The Robots Manager receives information about the allocated 
task and corresponding Robots from the Planner and stores the 
details noting the Robots as busy. After completing a task, each 
Robot sends task feedback to the Robots Manager which updates 
the information received on its GUI and in the KB. If the task 
execution is successful, the number of successful tasks count is 
increased. However, if the task fails the number of failed tasks 
is increased. If the request execution time has not elapsed, the 
failed task is sent back to the Planner for reassignment. After 
each task execution, battery levels and radiation exposure are 
updated on the GUI and KB. If the battery level falls below the 
minimum set value, the Robots Manager deregisters the robots 
from the MRT. If the radiation exposure get higher than the 
expected value, the robot is decommissioned and can no longer be
assigned a task.

Simultaneously, the Robots Manager also receives “time-up” 
messages from the Requests Manager and raises the “time-up” flag. 
Using the information in the “busy” Knowledge Base (KB), the 
Robots Manager sends ‘time-up’ messages to all the currently active 
robot to stop task execution and the task execution fails. If the “time-
up” flag is raised during request execution, all active task executions 
are stopped and reported as failed to the Requests Manager. 
However, if all tasks are executed before the request execution 
elapses, a ‘successful’ message is sent to the Request Manager.

If the Robots Manager receives register/deregister messages 
from any robot. It processes the registering and deregistering 
processes by updating the KB and GUIs.

Robot: Unlike in the centralised architecture, each Robot is 
involved with the allocation of the task it executes (Figure 9). After 
receiving the proposal from the Planner, the Robot checks to ensure 
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FIGURE 9
Decentralized architecture: Robot activity diagram.

that it has enough battery power to complete the task. The Robot 
also checks to confirm that it has the required capabilities to execute 
the task before calculating its chance of failing to execute the task 
successfully. The Robot then bids for the task if the calculated chance 
of failure is less than 1. The proposal is refused if the robot is 
unregistered, if it does not have the required capabilities, or if the 
calculated chance of failure is more than 1. If the Robot wins the 
bid, the Planner sends the task to the Robot. The robot subsequently 
executes all the tasks it has been assigned. Task execution is 
simulated using a timer. The duration of the timer varies with the 
task. As the timer counts, the Robot checks if a ‘time up’ flag has been 
raised. If the flag is raised before the completion of task execution, 
the Robot aborts the task and sends a ‘task fail’ feedback to the 
Robots Manager. When the timer elapses, the Robot calculates the 
chance of failure and simulates task execution result. To simulate 
the result, we use a random number generator to generate double 
values between 0 and 1. The values were generated randomly as 
random number generators are important in the simulation of real-
world processes. Also, each value generated has an equal chance of 
being generated. If the number randomly generated is greater than 
the chance of failure, the task succeeds, else the task fails and the 
feedback is sent to the Robots Manager.

Simultaneously, the robot also frequently updates its details on 
its GUI by retrieving those details from the KB. If the Robot’s 
availability reads “Deregistered”, the “registered” flag is lowered and 
a timer is started to simulate the charging process. When the timer 
elapses, a “register” message is sent to the Robots Manager to add 
the Robot to the MRT.

Table 1 shows the comparisons of the different components 
for centralised and decentralised architectures. in Table 4, we 
explain the simulation parameters and the rationale behind each
of them.

3.4 Use cases

We explored three different use cases for the two architectures. 
These use cases were designed to model most real-world scenarios, 
as different organizations and application areas have specific 
human-in-the-loop requirements. Additionally, the presence or 
absence of human-in-the-loop involvement can affect task execution 
difficulty, thereby increasing or decreasing the chances of request 
execution success.

Use case “No Human Interference”: the two architectures 
described earlier are modelled without any human interference to 
complete specific requests. For each task, we have defined task 
attributes which include task completion time (in seconds), task 
radiation dosage, and task difficulty. Task completion time was 
simulated using the sleep function for the duration allocated to 
completing the task. Since we are exploring the use of MRTs in 
nuclear environments, we have also allocated radiation dosage to 
each task based on the nature of the task (e.g., 5, 10). For example, 
we assume that a mapping task will expose the robot to a lower 
radiation dosage than a task which requires the robot to move 
barrels from one place to the other. Lower and higher numbers 
are assigned to tasks with lower and higher radiation exposures 
respectively. The maximum cumulative radiation dosage a robot 
should be exposed to in this simulation is 100, after which the robot 
is decommissioned and can no longer be assigned any task. The 
higher the task difficulty, the higher the numbers assigned (e.g. 20, 
30, 40, …, 80). We assume that a robot may fail to complete a task 
due to operational failures caused by mechanical issues, software 
glitches, environmental conditions, human interference, or control 
system malfunctions, as well as challenges associated with the task 
itself. The success of each task was therefore calculated as a function 
of cumulative radiation exposure, which may contribute to the 
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TABLE 1  Comparing the system components for Centralised and decentralised architectures.

Component Centralised architecture Decentralised architecture

Overall Single control agent with knowledge of all the robots 
and their states

This does not operate as a single control agent because 
the planner does not have knowledge of all available 
robots and their states

Operator Sends requests to Requests Manager and receives 
request execution feedback

Same as in centralised architecture

Requests Manager Identifies relevant plan blueprint for request execution 
and sends to Planner with the request

Same as in centralised architecture

Planner Develops a verified plan with the plans blueprint 
received from the Requests manager. To develop a 
verified plan, the Planner retrieves information on all 
available robots, including their capabilities. The 
information is used to calculate each robot’s chance of 
failure when executing the task. The Robot with the 
lowest chance of failure is assigned the task. Allocated 
tasks and their corresponding assigned robots make 
up the verified plan. The Planner also receives task 
reassignment messages from the Robots Manager if a 
task fails within the request execution time

Responsible for assigning tasks to Robots by 
auctioning tasks and their corresponding execution 
requirements from the plan blueprint. Robots bid for 
each task with their self calculated chance of failure 
values. The robot with the lowest value is assigned the 
task. Information about the Robot, allocated task, and 
the number of tasks in the request are sent to the 
Robots Manager. For tasks reassignments, the Planner 
puts each task up for auction

Robots Manager The Robots Manager manages the KB of Robots 
information. Receives the verified plan and assigns 
tasks to their corresponding robots. The Robots 
Manager also manages the registering and 
deregistering of robots from the MRT.

Unlike the centralised architecture, the Robots 
Manager is not responsible for allocating tasks to the 
robot but is only responsible for registering and 
deregistering Robots, receiving task feedback from 
Robots, sending the reassign task message to the 
Planner, and sending the request execution feedback to 
the Requests Manager

Robot The Robot executes tasks that it has been allocated by 
the planner based on its capabilities

The robot partakes in the allocation of tasks it is 
assigned to execute by biding for tasks with its chance 
of failure for each auctioned task

causes of failure highlighted and task difficulty which may both be 
reduced with the introduction of a human collaborator.

As shown in Equation 1, a new cumulative radiation exposure 
dosage (Dosagence) of a robot carrying out a task is calculated by 
adding the radiation exposure dosage of the task (Dosaget) to the 
robot’s previous cumulative exposure dosages (Dosagepce).

Dosagence = Dosagepce +Dosaget (1)

Setting the maximum possible values of the cumulative exposure 
dosage and task difficulty to 100 respectively, the sum of both 
parameters should yield a maximum value of 200. We have 
calculated the chance of failure for each task following Equation 2.

Failurechance =
Dosagence +Di f ficultytask

200
(2)

This means that the maximum value for the chance of failure will 
always be 1. Therefore the chance of successfully carrying out each 
change will be inputted into the simulation as

Successchance = 1− Failurechance (3)

Use case “Human Collaboration”: in this use case, the operator 
collaborates with the MRT by taking over a robot after the tasks 
have been assigned to complete the task assigned to the robot 
(Freedy et al., 2007; Desai et al., 2013; Xu and Dudek, 2015). 

Taking over after the tasks have been assigned ensures that the 
operator is not involved with task allocation but only collaborates 
with the team of robots to execute a request. The difference with 
the chance of failure in tasks executed in this use case however is 
that task difficulty is lowered to a third. We assume that having 
the operator tele-operate a robot in executing a task reduces 
the task difficulty, and in this case, making it a third of the 
difficulty. Therefore the chance of failure is calculated as shown in
Equation 4.

Failurechance =
Dosagence + (Di f ficultytask)/3

200
(4)

The chance of success remains as defined in Equation 3.
The Operator in this use case only receives the information about 

the paired robots and their allocated tasks from the Robots Manager 
and sends a reply with a randomly selected robot and its allocated 
task. The Operator also sends a ‘take over’ message to the selected 
robot. The changes described for the human collaboration use 
case also applies to the decentralised architecture for the Operator, 
Robots Manager, and Robot.

Use case ’Human Intervention’: for the human intervention use 
case, an operator takes over a robot after tasks have been allocated 
for an entirely different purpose, causing the task to fail as a result. 
The task is therefore reassigned to another robot or put out for 
auction (dependent on architecture). We have also assumed that all 
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TABLE 2  Evaluation setup. Robot capabilities, tasks, and link between both.

Capability Task Task-capability link

C1 proximity sensor T1 map an area T1: 〈C1, C4, C6〉

C2 radiation sensor T2 identify locations of high radiation T2: 〈C1, C2, C4, C6〉

C3 gripper T3 move barrels T3: 〈C1, C2, C3, C4, C5, C7〉

C4 camera T4 connect device to power source T4: 〈C1, C3, C4, C5, C7〉

C5 gyroscope

C6 lidar

C7 bump sensor

tasks execution must be successful for the request execution to be 
successful. 

4 Evaluation

In order to evaluate the impact of human collaboration, human 
intervention, and number of robot on MRTs with centralised 
and decentralised architectures, we set up 4 simulation runs 
(i.e. each scenario with different numbers of robots in the 
MRT). Each scenario (centralised architecture with no human 
involvement (C), centralised architecture with human collaboration 
(C_HC), centralised architecture with human intervention (C_
HI), decentralised architecture with no human involvement (D), 
decentralised architecture with human collaboration (D_HC), and 
decentralised architecture with human intervention (D_HI)) is a 
combination of MRT architecture and human involvement. Each 
simulation run was repeated 40 times for all scenarios which are 
combinations of system architectures and use cases (2 architectures 
x 3 use cases), as well as different numbers of robots in the MRT (4, 6, 
8, and 10 robots). In this Section we first show how robot capabilities, 
tasks, request to MRT, plan blueprints, and robots were set up 
for the evaluation (Section 4.1). We then present the dependent 
measures used to measure the simulation runs (Section 4.2), and the 
evaluation results (Section 4.3). 

4.1 Evaluation setup

We begin by defining capabilities for the robots based on the 
tasks to be executed. We also define robot tasks that are commonly 
executed in nuclear facilities. Finally, we link each task with the 
capabilities required for each robot to be able to execute it. Table 2 
shows capabilities, tasks, and how they are linked.

Additionally, we define a number of requests issued to the MRT. 
In each simulation attempt, nine requests are executed. Each request 
comprises of several combinations of tasks to be executed. We 
also define plan blueprints that describe how each request may be 
executed by listing the tasks the MRT needs to execute. Finally, 
we assigned different capabilities to a set of robots that represent a 

TABLE 3  Requests, plan blue prints, and MRT composition.

Request Plan blueprint Robot (capabilities)

RQ1: ⟨T1,T2⟩ PB1: ⟨T1,T2⟩ R1: ⟨C1,C4,C6⟩

RQ2: ⟨T1,T2,T4⟩ PB2: ⟨T1,T2,T4⟩ R2: ⟨C1,C2,C4,C6⟩

RQ3: ⟨T1,T3,T4⟩ PB3: ⟨T2,T3⟩ R3: ⟨C1,C2,C3,C4,C5,C7⟩

RQ4: ⟨T1,T4⟩ PB4: ⟨T2,T3,T4⟩ R4: ⟨C1,C3,C4,C5,C7⟩

RQ5: ⟨T1,T3⟩ PB5: ⟨T1,T3⟩ R5: ⟨C1,C2,C3,C4,C5,C6,C7⟩

RQ6: ⟨T1,T2,T3⟩ PB6: ⟨T1,T2⟩ R6: ⟨C1,C4,C5,C6⟩

RQ7: ⟨T2,T3⟩ R7: ⟨C1,C2,C3,C4,C6⟩

RQ8: ⟨T2,T3,T4⟩ R8: ⟨C1,C3,C4,C5,C7⟩

RQ9: ⟨T2,T4⟩ R9: ⟨C1,C2,C3,C4,C5,C6,C7⟩

R10: ⟨C1,C3,C4,C5,C6,C7⟩

possible MRT. The team composition was developed such that there 
will always be enough robots to execute all tasks in a given request 
unless a robot leaves the MRT to charge its batteries, or has been 
decommissioned having being exposed to the maximum radiation 
dose it can withstand. Table 3 shows all requests, plan blueprints, and 
robots with their capabilities.

In order to make the system behaviour dynamic, we also 
introduced variations into the system. The variations ensure that the 
results of each simulation varies based on the characteristics of the 
agents in the system. The variations include:

Plan blueprint: the plan blueprint provides information on the 
capabilities a robot must possess to execute tasks in a request, and 
could be available or unavailable. If no plan blueprint is found for 
a specific request, the request execution fails. We implemented the 
simulation to demonstrate the two possible scenarios.

Varying numbers of registered/unregistered robots in the MRT: 
the simulation was designed to allow robots to dynamically register 
and deregister themselves from the MRT. A robot deregisters itself 
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from the MRT if its battery level drops below a certain level and 
registers when the battery is charged. For every task executed, a 
robot’s battery level drops. The amount of drop depends on the 
task executed.

Varying numbers of active robots: the dynamic behaviours of 
the robots in the MRT imply that we could have varying numbers 
of active robots as requests are executed. This is because robots can 
either temporarily deregister themselves when their battery levels 
are low or get decommissioned if their radiation exposure exceeds 
the allowed level. This creates the possibilities of having varying 
numbers of active robots in the MRT as requests are executed. The 
number of robots in the MRT are the same at the beginning of each 
simulation instance.

Capabilities of each robot: in real-world scenarios, different 
robots may have different capabilities to make them suitable for 
varying tasks. We have modelled the robots in our study to have 
varying capabilities.

Operator involvement: three scenarios of operator involvements 
were explored. The first scenario involves the robots executing tasks 
with no human operator involvement. In the second scenario, the 
human collaborates with the robots to execute tasks after the tasks 
have been allocated. In the third scenario, the human intervenes by 
taking over a robot to execute a separate task than was allocated 
to the robot.

Different architectures (task allocation differences): centralised 
and decentralised architectures were explored. In the centralised 
architecture, the system has access to all the information about all 
robots in the MRT and allocates tasks based on the information. In 
the decentralised architecture, tasks are auctioned and each robot 
bids for the task with its calculated chance of failure.

Varying request compositions: requests are made up of two or 
more different tasks. The task composition in each request also vary, 
creating different request execution outcomes. 

4.2 Dependent measures

In order to compare the different scenarios, we identified 
dependent measures with which comparisons can be made to 
examine the performance of scenarios. Table 4 gives detailed 
information about the measures used in our simulations.

4.3 Results

We conducted the simulation 40 times for each scenario, which 
included the independent variables: MRT architecture (centralised 
and decentralised), number of robots (4, 6, 8, 10) in the MRT, 
and level of human involvement (no human involvement, human 
collaboration, and human intervention). Table 5 shows the results 
across scenarios for the request outcome (no. of successful requests), 
task outcome (no. of successful tasks and failed tasks), and request 
completion time.

4.3.1 Request execution outcome
By design, each scenario can have a maximum of 7 

successful requests. From the 9 requests the Operator sends, 
2 request executions fail because there are no plan blueprints 

for their execution. The descriptive statistics of the average 
number of successful requests for each scenario are shown in 
Table 5. Figure 10A shows the average number of successful requests 
for all scenarios. Since each request execution involves the execution 
of tasks within the request, it is important to likewise examine task 
execution outcomes.

4.3.2 Task execution outcome
The overall number of tasks in each simulation run was 

consistent across all scenarios, but the number of successfully 
executed tasks varied between scenarios (Figure 10B). Given 
sufficient time, and provided there are capable robots, all tasks in 
a request will eventually be successfully completed provided there 
are plan blueprints for their execution. However, since real-world 
applications do not allow for indefinite time or an unlimited number 
of capable robots to execute tasks, the number of successful task 
executions varied across scenarios. Table 5 shows the descriptive 
statistics of the average number of successful tasks for all scenarios. 
It is therefore important to examine the number of task execution 
failures in each scenario, as this can serve as a key metric for 
differentiating between the scenarios. Table 5 also shows descriptive 
statistics of the average number of failed tasks. Figure 10C shows the 
boxplots of failed tasks for all scenarios.

Shapiro-Wilk test of normality was conducted on the 
average number of failed task executions under both architecture 
conditions (centralised (W(480) = .979,p < .001) and decentralised 
(W(480) = .946,p < .001), number of robots in the MRT 
condition (4(W(240) = .972,p < .001), 6(W(240) = .923,p < .001), 
8(W(240) = .920,p < .001), 10(W(240) = .944,p < .001)), and levels 
of human involvement (none (W(320) = .978,p < .001), human 
collaboration (W(320) = .918,p < .001), and human intervention 
(W(320) = .976,p < .001))). The results indicated a significant 
deviation from normality. A Mann-Whitney U test was conducted to 
investigate the effect of the MRT architecture on the number of failed 
tasks. The difference in the number of failed tasks between the two 
architectures was not statistically significant U = 109,961.000,Z =
− 1.22,p = .222. We conducted a Kruskal–Wallis H test to examine 
the differences in the number of failed tasks for different numbers of 
robots (4,6,8,10) in the MRT. The results show that the distribution 
of failed tasks was significant between the groups H(3) = 20.86,p <
.001. For different levels of human involvement, the Kruskal–Wallis 
H test showed a statistically significant difference in failed tasks 
between groups H(2) = 646.46,p < .001.

We conducted Mann-Whitney test to compare the number 
of failed tasks between different number of robots in the MRT. 
Results as follows: 4 and 6 robots in the MRT (U = 26,108.00,Z =
− 1.77,p = .076, indicating that there is no significant difference 
in failed tasks), 4 and 8 robots in the MRT (U = 23,438.00,Z =
− 3.53,p < .001, indicating that there is a statistically significant 
difference in the number of failed tasks), 4 and 10 robots in the 
MRT (U = 22,188.00,Z = − 4.36,p < .001, indicating that there is 
a statistically significant difference in the number of failed tasks), 
6 and 8 robots in the MRT (U = 26.560.50,Z = − 1.48,p = .140, 
indicating that there is no significant difference in the number 
of failed tasks), 6 and 10 robots in the MRT (U = 25,593.50,Z =
− 2.11,p = .035, indicating that there was a statistically significant 
difference in the number of failed tasks), 8 and 10 robots in the 
MRT (U = 27,756.50,Z = − 0.69,p = .491, indicating that there no 
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TABLE 4  Dependent measures for MRT Simulation.

Component Centralised architecture

Request outcome The execution of a request can either be a “success” or “failure”. A request may fail due to various factors, some of which we have examined in 
this paper. The first factor is the unavailability of plan blueprints to execute the tasks in the request. A second factor is the unavailability or low 
number of sufficient and capable robots in the MRT to handle the tasks. Robots in the MRT may be unavailable having been de-registered for 
charging or decommissioned due to excessive exposure to radiation. The chance of robots getting de-registered or decommissioned may 
increase if there is a low number of robots in the MRT, or due to continuous task failure and the need for task reassignment. As requests have to 
be executed within a specific time, a request execution may also fail if all the tasks in the request are not successfully executed within the given 
time frame. Finally, different levels of human involvement may also affect request execution outcomes since there is no guarantee that human 
involvements will always lead to successful request execution. Advantages of using request outcomes as a performance metric include scenario 
analysis, system improvement and resource management

Task outcome Each request to be executed contains tasks, and each task execution can result in either failure or success. Since we are simulating the behaviours 
of each agent, no actual tasks are performed; instead, a loop is used to count down the task execution time. After each countdown, a new chance 
of failure is calculated, and a random number generator is used to produce values between 0 and 1. These values are appropriate because the 
chance of failure cannot exceed 1 or be less than 0. If the generated random number is greater than the calculated chance of failure, the task 
succeeds. This method ensures that a higher chance of failure makes it more difficult for the task to succeed. The number of failed and successful 
tasks within each request execution is recorded. If not all tasks in a request are successfully executed before the specified request execution time 
elapses, the request execution fails. Additionally, within that time frame, a task may fail, be reassigned to another robot, and then be successfully 
executed after reassignment. This is why the number of successful and failed task executions is recorded for all scenarios examined

Request completion time This metric measures the time taken to complete the execution of a request. A request fails if the timer runs out before all tasks in the request are 
completed or if there are no plans blueprint to execute the request. If a request fails due to the unavailability of plans blueprint, RCT is recorded 
as zero. However, if a request fails due to the timer running out, the allocated request execution time is recorded. Since the task allocation 
process varies across different architectures, and varying levels of human involvement can impact task execution outcomes, it is crucial to 
measure the duration required to execute requests

significant difference in the number of failed tasks). Figure 11 
shows the plot of the mean failure number for varying numbers 
of robots and scenarios. Only significant differences are shown. 
Increasing the number of robots is advantageous, but only up to 
a certain point. Post hoc pairwise comparisons of the number of 
failed tasks for different levels of human involvement (no, HC, and 
HI), using Bonferroni adjustment, showed a significant difference 
between all pairs of groups. Trials without human involvement had 
more failed tasks than the trials with human collaboration (Mean 
difference = 2.77, SE = 0.26, p < .001), but fewer than trials with 
human intervention (mean difference = −9.11, SE = 0.26, p < .001). 
Furthermore, the human collaboration group had fewer failed tasks 
than the human intervention group (mean difference = −11.88, SE = 
0.26, p < .001)

For the combination of system architecture and levels of human 
involvement (C, C_HC, C_HI, D, D_HC, and D_HI), normality 
tests using the Shapiro-Wilk test indicated that the assumption 
of normality was violated for all six groups. A Kruskal–Wallis 
test revealed a statistically significant difference in failed tasks 
among the six architecture - human involvement role groups, 
χ2(5) = 648.21,p < .001. Mann-Whitney U tests were carried out on 
failed tasks between the groups. Figure 11B shows the significant 
comparisons. 

4.3.3 Request completion time
We define the Request Completion Time (RCT) as the time 

taken to complete each request. RCT depends on the number of 
task execution failures, which could be another significant factor 
distinguishing each scenario. An ideal scenario would involve all 
tasks being successfully executed on first attempt, in which case RCT 
should be identical across all scenarios. However, this is not the case 
since scenarios affect task execution outcomes. We set the maximum 

allowable value for RCT at 60 s; requests exceeding this time limit 
are considered failed. Figure 12 shows the boxplots of the request 
completion time for all scenarios.

Test of normality shows that the average request completion time 
for the different scenarios explored followed a normal distribution. 
Mauchly’s test, χ2(5) = 6.212, p = 0.286 did not indicate any 
violation of sphericity for the number of robots in the MRT. 
However, Mauchly’s test, χ2(14) = 30.095, p = 0.008 indicated 
violation of sphericity for the scenarios. The interaction between 
the number of robots and scenario also violated the assumption of 
sphericity χ2(119) = 163.662, p = 0.006.

A linear mixed-effects model was used to examine the effects 
of architecture, human involvement, the number of robots in the 
MRT and their interactions on requests completion time. The 
analysis revealed a significant main effect of different levels of 
human involvement (F(2,936) = 322.778,p < .001), and the number 
of robots in the MRT (F(3,936) = 68.037,p < .001). However, there 
was no significant effect of architecture on request completion time 
(F(1,936) = .067,p = .796).

The interaction between architecture and levels of human 
involvement (scenarios) (F(2,936) = 3.131,p = .044), as well as 
between human involvement and number of robots in the 
MRT (F(6,936) = 9.830,p < .001) was significant. However, the 
architecture by number of robots in the MRT interaction was 
not significant (F(3,936) = 1.529,p = .205). In addition, the three-
way interaction between system architecture, levels of human 
involvement, and the number of robots in the MRT was significant 
(F(6,936) = 3.676,p = .001). This indicates that the combined effect 
of human involvement and number of robots in the MRT on the 
completion time of requests depended on the architecture.

Pairwise comparisons of estimated marginal means (with 
Bonferroni correction) showed significant difference in requests 
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TABLE 5  Evaluation results for all scenarios.

Scenario Robots No. 
successful 
requests

No. 
successful 
tasks

No. failed 
tasks

Request 
completion 
time

mean SD mean SD mean SD mean SD

C: centralised architecture

4 5.85 0.700 14.73 0.877 9.50 3.566 273.93 36.544

6 6.32 0.764 15.23 0.947 7.40 3.622 251.28 39.491

8 6.45 0.597 15.40 0.709 6.20 2.653 244.38 28.556

10 6.45 0.677 15.32 0.971 6.33 2.965 236.38 33.695

C_HC: centralised architecture human collaboration

4 6.37 0.705 15.15 1.210 5.25 3.028 246.68 32.904

6 6.75 0.439 15.75 0.439 4.18 2.135 222.10 23.872

8 6.65 0.483 15.53 0.784 4.55 2.353 229.55 23.834

10 6.88 0.404 15.83 0.675 3.55 2.207 211.73 25.211

C_HI: centralised architecture human intervention

4 3.85 1.122 11.22 1.874 17.90 2.790 315.95 42.888

6 5.57 0.874 14.33 1.207 18.55 4.266 301.25 36.060

8 6.35 0.700 15.17 1.010 15.00 3.382 271.65 29.955

10 6.20 0.992 14.90 1.297 14.18 3.551 263.35 33.388

D: decentralised architecture

4 5.85 0.700 14.65 1.122 8.35 3.527 251.60 31.740

6 6.22 0.660 14.98 1.209 6.55 3.071 243.60 29.828

8 6.50 0.679 15.45 0.846 5.55 2.669 239.55 27.852

10 6.32 0.656 15.18 0.984 6.45 3.021 243.53 32.429

D_HC: decentralised architecture human collaboration

4 6.45 0.714 15.43 0.747 6.00 3.623 245.55 34.127

6 6.68 0.526 15.67 0.526 3.90 3.463 216.52 30.277

8 6.68 0.526 15.58 0.781 3.30 2.198 226.48 25.919

10 6.60 0.545 15.57 0.594 3.45 2.396 219.13 23.724

D_HI: decentralised architecture human intervention

4 4.63 1.295 10.03 2.537 14.53 2.582 343.17 47.132

6 5.60 1.033 14.35 1.388 17.60 3.380 290.20 35.691

8 5.95 0.749 14.58 1.217 16.78 2.815 282.77 29.052

10 6.10 0.810 14.98 0.974 14.68 3.562 259.63 30.628

completion time across all levels of human involvement. Simulation 
trials with human intervention condition (HI) had significantly 
longer completion times than trials in human collaboration 
condition (HC) (mean difference = 63.78, SE = 2.56, p < .001, 95% 
CI [57.64, 69.92]). The condition without any form of human 
involvement had significantly shorter completion time than the HI 
condition (mean difference = 42.97, SE = 2.56, p < .001, 95% CI 
[36.83, 49.11]). The human collaboration condition (HC) resulted 
in significantly faster request completion time than both HI (mean 

difference = −63.781, SE = 2.56, p < .001, 95% CI [-69.92,-57.64]) 
and the scenario without human involvement (mean difference = 
−20.812, SE = 2.56, p < .001, 95% CI [-26.953, −14.672])

A post hoc pairwise comparison using the Bonferroni correction 
was also carried out between the different instances of number 
of robots and scenarios. Figures 13A,B show the plot of average 
request completion time for varying numbers of robots and 
scenarios respectively. They also show the significance of pairwise 
comparisons. Only the significant differences are shown.
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FIGURE 10
Simulation outcome. (A) Average number of successful requests. (B) Average number of successful tasks. (C) Average number of failed tasks. Labels 
follow the convention: [architecture type (C / D)]_[use case (NO/HI/HC)]_[number of robots (4/6/8/10)].

We further compared all the scenarios using a paired samples 
t-test for the different numbers of robots in the MRT and their 
corresponding scenarios. Figures 12A,B show the paired samples 
t-test carried out to compare all the scenarios for the different 
categories of robots in the MRT.

5 Discussion

Results show that the number of robots in the Multi-Robot Team 
(MRT) was a significant factor influencing task execution success or 
failure, and in return request execution success. By increasing the 
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FIGURE 11
Mean number of failed tasks. (A) between different numbers of robots in the MRT (B) between different scenarios.

number of robots in the MRT, we were able to consistently reduce 
task failures. This may be due to the cumulative effects of radiation 
exposure on robots, which impacts their success in task execution, 
as radiation dosage is factored into calculating each robot’s failure 
probability. As the number of robots increases, especially with the 
addition of those with similar capabilities, tasks are assigned to 
robots with a lower chance of failure, thereby reducing the number 
of failed tasks. With the introduction of human collaboration and 
human intervention, results showed that they had different effects on 
the number of failed tasks. While human collaboration reduced the 
number of failed tasks, human intervention significantly increased 
the number of failed tasks. The significant difference in the number 

of failed tasks between scenarios with human collaboration and 
human intervention is as a result of the human operator taking over 
robots to execute tasks different from their originally assigned tasks, 
leading to the failure of the assigned tasks.

Similarly, number of robots in the MRT significantly affected 
the request completion time (RCT). Generally, increasing the 
number of robots in the MRT reduced the RCT. As the number 
of robots in the MRT increases, task execution failures decrease, 
which in turn reduces the request completion time, as tasks will not 
need to be reallocated to other robots for completion. Specifically, 
for centralised architectures, increasing the number of robots 
significantly reduced the RCT, whereas this effect was not observed 
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FIGURE 12
Paired Samples t-test (A) scenarios without human involvement for request completion time (B) scenarios with human involvement for request 
completion time.

in decentralized architectures. Human collaboration reduced 
the request completion time (RCT), while human intervention 
increased the RCT, regardless of the number of robots in the 
MRT. Keeping the number of robots in the MRT constant, there 
was a significant difference in request completion times between 
centralised and decentralised architectures when the number 
of robots was low. However, as the number of robots in the 
MRT increased, the request completion times for centralised and 
decentralised architectures became similar. The reason for the 
differences in RCT between the two architectures with lower number 
of robots in the MRT may be because centralised architecture has 
more access to system data and may be able to allocate tasks better, 
especially when more than one task has to be allocated to a robot. 
This may be investigated further in future studies.

Given sufficient time and an unlimited number of capable robots 
in the MRT, all requests will eventually be successfully executed. 
However, in real-world scenarios, MRTs do not have indefinite 

request execution time and unlimited numbers of capable robots. 
As such, decisions must be made regarding system architecture, 
number of robots in the MRT, and different levels of human 
involvement. As the number of robots in the MRT increases, the 
number of successful request executions also increases. Request 
executions fail if all tasks within a request are not successfully 
executed within the allocated time.

Since task allocations are made by calculating the robot’s chance 
of failure, which depends on factors such as radiation exposure, 
task difficulty, and the level of human involvement, having a higher 
number of robots in the MRT ensures that only robots with higher 
chances of success are assigned tasks. Conversely, if the number of 
robots in the MRT is low, tasks will be allocated to the available 
robots that can execute the tasks, leading to significantly increased 
radiation exposure for the robots. This increased exposure raises the 
chances of robots getting decommissioned or having to leave the 
MRT to recharge their batteries. When this happens, if the MRT does 
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FIGURE 13
Mean request completion time (A) between different numbers of robots in the MRT (B) between different scenarios.

not have capable robots to whom the task would be assigned to, the 
request fails.

Human collaboration reduces the number of failed tasks by 
reducing the chances of failure. The effect of different levels of human 
involvement was significant when the number of robots in the MRT 

was low. This is because when the number of robots in the MRT 
is low, there are fewer robots to assign task to, which may lead to 
having to assign more than one task to a robot. When tasks fail, 
task reassignment will also be more difficult with fewer number 
of robots in the MRT. Our results showed that having more than 
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8 robots did not further increase the number of successful task 
executions in our simulation as that was found to be the limit of 
redundancies introduced in our simulation by having robots with 
similar capabilities. 

5.1 Design recommendations

The simulation results discussed may be used in the formulation 
of design guidelines for developing human robot interaction - MRTs 
(HRI-MRT) systems: 

1. If one wants to reduce task failures, increase number of robots, up 
to a point. As shown in the results from Section 4.3.2, regardless 
of the architecture used, a higher number of task failures was 
observed when fewer robots were involved in the multi-robot 
team (MRT). However, after a certain threshold, increasing the 
number of robots in the MRT does not have any significant 
effect on reducing no of failed tasks.

2. If you can, avoid human intervention. As shown in Table 5, 
scenarios involving human intervention had the highest 
number of failed tasks and the least number of successful tasks 
and requests.

3. Human collaboration decreases task failures and request 
completion time. As described in the study, human collaboration 
reduces the chance of failure in the execution of a task, hence 
resulting in decreased task failures and request completion time.

4. Simulations shows problems will occur, so plan for it. The 
different scenarios and the number of robots in the MRT 
will introduce different problems in the system. For instance, 
human intervention, where a human operator takes control of a 
robot to perform a task other than its assigned one, can lead to 
an increase in task failures. This may result in longer request 
completion times and more failed task executions. Running 
the simulation can therefore reveal the possible problems that 
may arise as a result of the different scenarios and no of robots 
in the MRT.

5. Redundancies should be implemented to prevent system failures.
We introduced redundancies into the system by increasing 
the capabilities of each robots and adding robots with similar 
capabilities into the MRT. Increasing the capabilities of each 
robot ensures that each robot may be assigned a higher number 
of tasks, which increases the chance that each request will 
be executed. Likewise, in increasing the number of robots in 
the MRT, we introduced robots with similar capabilities to 
reduce the rate at which robots deregister to recharge or get 
decommissioned.

6. Impact of system architecture is higher with lower number of robots 
in the MRT. Comparing results for centralised and decentralised 
architectures in Table 5; Figure 12, the number of failed tasks 
and the request completion time were significantly higher in 
centralised architecture than decentralised architecture with 4 
robots in the MRT. As the number of robots in the MRT was 
increased, there was no significant differences in the measured 
performance parameters between the 2 architectures. Therefore, 
in order to compare the effect of different architectures, reduce 
the number of robots in the MRT.

5.2 Limitations and future work

Our study was limited by the simulation environment, which 
does not capture all real-world variables. For example, the 
simulation environment did not take into account potential 
hardware challenges that may affect system performance. We 
suggest that this is taken into account in future research and 
real-world implementations. In addition, more real-world variables 
may also be simulated and accounted for. The operator cognitive 
load may also be simulated to provide better understanding of 
the interaction between the human and team of robots from 
the human point of view. Furthermore, to enhance realism, the 
simulation may incorporate decision variability or the likelihood 
of errors. To effectively address the research questions posed in 
this paper, we limited the number of parameters included in the 
simulation and made assumptions where necessary. Additionally, 
due to computational constraints, certain behaviors were abstracted 
and treated as black boxes.

In this paper, we also assumed the effect of factors such as 
radiation exposure. However, the effects of radiation exposure 
on real robot hardware are not fully understood and should be 
further investigated to ascertain how radiation exposure would 
affect robot performance and the electronic circuitry of the MRT 
components. This paper also does not explicitly simulate other 
failure modes such as communication failures, task execution 
faults, sensor degradation, or timing jitters which are all relevant 
in real-world multi-robot teams. Although some of these modes 
were considered when we introduced the chance of failure in the 
simulation, additional parameters may be introduced to account for 
these failure modes.

Another limitation of this research is with regard to 
the system architectures examined. Other architectures of 
interest may also be simulated in future research for thorough 
comparisons. In addition, the types of tasks and the level of human 
involvement were controlled, which may not reflect all operational
scenarios.

To improve simulation efficiency, it is important to account for 
variability in task execution and request completion times, as similar 
tasks may not be performed identically in real-world settings due 
to a range of influencing factors. These real-world uncertainties 
can significantly impact both task execution and task completion 
times. Variability in task execution and completion times may be 
introduced into the simulation via stochastic task durations or 
execution of delay variability.

While we hope that the design and results presented in 
this paper are applicable to other contexts, it is important 
to acknowledge the contextual limitations of our approach. 
Certain simulation design decisions were tailored to the 
specific requirements of our application domain. Although the 
overall agent-based design is transferable, adaptations may be 
necessary to align with the characteristics and constraints of
other domains. 

6 Conclusion and outlook

The need to simultaneously execute tasks in application 
scenarios where robotic solutions are employed necessitates the 
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use of MRTs. This requirement is also driven by the fact that it 
is challenging to have individual robots capable of performing all 
possible tasks, hence the need to employ a team of robots with 
specialized functionalities. Additionally, robots are designed with 
features that allow them to operate in specialized terrains with 
varying levels of autonomy.

Although different levels of autonomy may be employed as 
robots execute tasks, some use-cases insist on having human 
involvement in the task execution process. This introduces the 
possibility of human intervention when there is system failure. 
One such application that requires a human in the loop is nuclear 
decommissioning and operations in nuclear power stations, where 
robot teleoperation is employed to reduce worker exposure to 
radiation. The safety requirements in such environments necessitate 
different levels of human involvement, even when teams of robots 
are employed. Describing how a team of robots would perform with 
the introduction of a human operator remains a challenging task. 
Therefore, it is important to investigate how this may affect the task 
execution performance of MRTs.

We implemented a simulation framework using the Java Agent 
DEvelopment (JADE) framework to compare the request execution 
performance of centralised and decentralised architectures, as well 
as different levels of human involvement (no human involvement, 
human collaboration, and human intervention). We also compared 
performance based on different numbers of robots (4, 6, 8, 10) in the 
MRT. The performance metrics employed include request execution 
outcomes (success or failure), number of successful tasks, number of 
failed tasks, and request completion time (RCT).

All relevant components of the human-in-the-loop MRT were 
modeled as agents with defined functionalities and behaviors. Each 
agent is able to communicate with all other agents, simulating real-
world functionalities. The different agents in our framework include 
the Human Operator, Requests Manager, Planner, Robots Manager, 
and Robots.

The design guidelines and findings outlined in Sections 4, 5 can 
assist researchers and system developers aiming to deploy MRTs in 
human-in-the-loop scenarios, helping guide their decision-making 
processes. Additionally, we have shown that simulating different use 
cases can significantly reduce the cost and time otherwise spent on 
purchasing robots and implementing MRTs to obtain results.

Future research should focus on exploring varying task 
complexities and more diverse operational environments. Examining 
different coordination and task allocation algorithms could also offer 
valuable insights into optimizing the performance of robot teams. 
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