:' frontiers ‘ Frontiers in Robotics and Al

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Burak inner,
Kocaeli University, Turkiye

REVIEWED BY
Leandro Buss Becker,

Federal University of Santa Catarina, Brazil
Tomohiro Umetani,

Konan University, Japan

*CORRESPONDENCE
Joseph Bolarinwa,
paul2.bremner@uwe.ac.uk

RECEIVED 11 November 2024
ACCEPTED 17 September 2025
PUBLISHED 15 October 2025

CITATION

Bolarinwa J, Giuliani M and Bremner P (2025)
Should we get involved? impact of human
collaboration and intervention on multi-robot
teams.

Front. Robot. Al 12:1526287.

doi: 10.3389/frobt.2025.1526287

COPYRIGHT

© 2025 Bolarinwa, Giuliani and Bremner. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Robotics and Al

TYPE Original Research
PUBLISHED 15 October 2025
pol 10.3389/frobt.2025.1526287

Should we get involved? impact
of human collaboration and
Intervention on multi-robot
teams

Joseph Bolarinwa?*, Manuel Giuliani®* and Paul Bremner!

!Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom, ?Manchester
Centre for Robotics and Al, Department of Computer Science, The University of Manchester,
Manchester, United Kingdom, *Kempten University of Applied Sciences, Kempten, Germany

Introduction: The challenges encountered in the design of multi-robot teams
(MRT) highlight the need for different levels of human involvement, creating
human-in-the-loop multi-robot teams. By integrating human cognitive abilities
with the functionalities of the robots in the MRT, we can enhance overall system
performance. Designing such a human-in-the-loop MRT requires several
decisions based on the specific context of application. Before implementing
these systems in real-world scenarios, it is essential to model and simulate the
various components of the MRT to evaluate their impact on performance and
the different roles a human operator might play.

Methods: We developed a simulation framework for a human-in-the-loop MRT
using the Java Agent DEvelopment framework (JADE) and investigated the
effects of different numbers of robots in the MRT, MRT architectures, and
levels of human involvement (human collaboration and human intervention) on
performance metrics.

Results: Results show that task execution outcomes and request completion
times (RCT) improve with an increasing number of robots in the MRT. Human
collaboration reduced the RCT, while human intervention increased the RCT,
regardless of the number of robots in the MRT. The effect of system architecture
was only significant when the number of robots in the MRT was low.
Discussion: This study demonstrates that both the number of robots in a multi-
robot team (MRT) and the inclusion of a human in the loop significantly influence
system performance. The findings also highlight the value of simulation as
a cost- and time-efficiency strategy to evaluate MRT configurations prior to
real-world implementation.

KEYWORDS

multi-agent systems, simulation, centralised architecture, decentralised architecture,
Human collaboration, human intervention, human-in-the-loop, multi-robot teams

1 Introduction

Complex problems that exceed the capabilities of a single robot can be addressed
by a multi-robot team (MRT) (Darmanin and Bugeja, 2017). The use of MRTs is not
limited to using the robots to execute different tasks (Yang and Parasuraman, 2020),
but also in scenarios where the robots have similar capabilities and may be used to
execute similar concurrent tasks (Chang et al, 2021). Application domains of MRTs
include surveillance, search and rescue (Stancovici et al., 2016; Mendonga et al., 2016),

01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1526287
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1526287&domain=pdf&date_stamp=
2025-10-15
mailto:paul2.bremner@uwe.ac.uk
mailto:paul2.bremner@uwe.ac.uk
https://doi.org/10.3389/frobt.2025.1526287
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1526287/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1526287/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1526287/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1526287/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

foraging and flocking (Parker, 1998; Lein and Vaughan, 2009;
Gu and Wang, 2009), formation and exploration (Wang et al,
2016; Phanichnitinon et al, 2014), large scale assembly lines
(Simmons et al., 2001) and adversarial or extreme environments
(Zhang and Wang, 2007; Agmon et al., 2008).

Due to the technical complexity of MRTs, a variety of
technology-related research topics have been explored, these include
communication and architectures (Gielis et al., 2022), task allocation
(Chakraa et al., 2023), localization (Chen et al., 2025), mapping
and exploration (Kwa et al, 2022), manipulation, and motion
coordination (Chang et al., 2021). In most of this research, the
assumption is that the MRT is programmed to act autonomously
without human involvement. However, in real-world deployments
of MRTs in many industries a human-in-the-loop approach is
required when using MRTs. For example, the safety-conscious
nuclear industry does require a human operator to either tele-
operate robots directly, or at least monitor their actions.

Human-robot interaction (HRI) has been studied in the field of
MRTs (Villani et al., 20205 Patel and Pinciroli, 2020), but most of
the previous HRI MRT research have focused more on the human
carrying out supervisory activities. In the research presented in
this paper, we introduce HRI to MRTs where the human performs
roles beyond just monitoring the robots, but also collaborates with
the robot. Human-Robot collaboration involves the human and
robot working together simultaneously on a shared goal, in the
form of physical collaboration or contactless collaborations (Hjorth
and Chrysostomou, 2022). The main goal of our work is to
evaluate how different levels of human involvement affect the overall
performance of an MRT.

In order to evaluate the impact of human involvement on MRTs,
we developed and implemented an MRT simulation environment.
This has the advantage that we can evaluate a broad set of MRT
system parameters and operational contexts in a short time frame.
We modelled the MRT as a multi-agent system (MAS) and simulated
a set of scenarios. Each scenario comprises a combination of MRT
architecture type (centralised, decentralised), human involvement
(no involvement, collaboration, intervention), and number of robots
(4, 6, 8, 10). We measured the impact on several performance
parameters, including request execution outcome (success/failure),
number of successful tasks, number of failed tasks, and request
completion time.

This work makes two main contributions to the knowledge
about human-in-the-loop MRT: (1) we present a simulation
framework based on a MAS that simulates a robot team for nuclear
decommissioning tasks with a human in the loop, and (2) we
evaluated the impact of different levels of involvements in a human
in the loop MRT on centralised and decentralised architectures.

2 Related work

Research on MRTs and their implementations for different
applications reveal the different MRT themes that may be explored.
Due to these large number of research themes, this literature review
only covers topics relevant to this paper, which include modeling a
MRT as a multi-agent system (MAS), and modelling and simulation
environments for agent based systems. Modelling an MRT as an
MAS allows us to define relevant actors in the MRT as agents, thus

Frontiers in Robotics and Al

02

10.3389/frobt.2025.1526287

making it possible to model the behaviours of, and communication
between, all actors in the system. We also reviewed literature on
human-in-the-loop multi-agent teams, since it is a theme of interest
to this paper, providing an overview of the state of research in this
MRT theme. In order to model and simulate our human-in-the-
loop MRT as a MAS, we also explored literature on modelling and
simulation environments for agent based systems.

2.1 Multi-agent systems

An MAS consists of autonomous entities called agents that
collaboratively solve complex tasks. Dorri defined an agent as an
entity in an environment that has the ability to sense different
parameters that may be used to make decisions to achieve
the goal of the entity (Dorri et al, 2018). Agents operate
by sensing parameters from the environment, using knowledge
obtained from neighbouring agents, and using history of previous
actions taken (Garcia et al., 2010).

Important features in MAS and the corresponding categories
that arise from these features were outlined by Dorri et al. (2018).
The features and their corresponding categories include leadership
[leader-follower, leaderless (Fu and Wang, 2014; Li et al., 2011)],
decision function [linear, non-linear (Zhao et al., 2013; Li et al,,
2012)], heterogeneity (heterogeneous, homogeneous (Kim and
Matson, 2016; Vrancken and Soares, 2009)), agreement parameters
(first order, second order, high order (Miao and Ma, 2015;
Wen et al.,, 2013)), delay consideration [with and without time
delay (Gao et al,, 2016; Du et al, 2013)], topology [static and
dynamic (Liu et al,, 2015; Olfati-Saber and Murray, 2004)], data
transmission frequency (time triggered, event triggered (Guo et al.,
2014; Li et al, 2014)), and mobility [static and mobile agents
(Wooldridge, 2009; Wang et al., 2014)].

The properties and collaborative behaviours of agents therefore
make them suitable to represent challenges commonly faced in
MRT, such as cooperation and coordination between robots,
non-deterministic dynamic environments which may increase the
complexity of their decision making, and trajectory planning (Ota,
2006; Soriano et al., 2013; Inigo-Blasco et al., 2012; Duan et al.,
2012). With these features in mind, we modelled our MRT as MAS
that includes a decision and task allocation system, and multiple
leaderless homogeneous robots. To the best of our knowledge, no
prior work has been carried out in modelling a human-in-the-
loop MRT as a MAS for investigative research,where the effect of
different levels of human involvement is explored for different MRT
architectures.

2.2 Human-in-the-loop multi-robot teams

Although there are advances in technologies that improve the
autonomous capabilities of robots employed to carry out tasks,
sometimes application areas, such as nuclear decommissioning,
insist on having a human in the loop. Whilst there are several reasons
why there may be the need to have a human in the loop, such
as the safety case in nuclear decommissioning, one advantage is
that it allows for the integration of robots and human capabilities.
Hence, it makes it possible to integrate the superior capabilities of the

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

robot, in terms of precision and being able to operate in dangerous
environments, with human cognitive capacities (Ajoudani et al.,
2017). Likewise, as the environment becomes more unpredictable,
unexpected problems may be solved with human input, e.g,
monitoring, fault detection, and recovery (Kaufmann et al., 2021).

Introducing a human into an MRT however has its challenges.
The complexity of task coordination varies with scenario, and
as the number of robots in the MRT increases, a greater level
of multitasking may be required. Therefore, as operators switch
between tasks, the chance of human error and of human-induced
complications increases. In general, performance of an MRT with a
human in the loop may be affected by the flexibility of task allocation
(Valenchon et al., 2022), the structure of the MRT (Gao et al,
2014), factors that may affect supervisory control like the number
of concurrent tasks (Cummings et al., 2010; McKendrick et al.,
2014) and human-induced errors. It is therefore important to find
a balance in assigning responsibilities to the different components
in the system based on known information about the limitations in
their capabilities. A possible solution is to simulate a human-in-the-
loop MRT to understand how roles assigned to the human and MRT
may affect the success of executing requests before implementation
for real-world applications.

2.3 Simulated MultiRobot teams
applications

One of the challenges of integrating a human into a Multi-
Robot Team (MRT) is scalability. While scalability in MRTs is often
advantageous, allowing for flexible adaptation to varying job sizes
and dynamic demand levels, it is constrained by human cognitive
limitations and decision-making speed (Humann and Pollard, 2019)
examined the impact of humans on the scalability of multirobot
systems and simulated the challenges of scaling a multi-operator,
multirobot surveillance system. Their review highlighted several
human-related factors that limit scalability, including reduced
situational awareness, errors due to high workload, and declining
precision in control inputs. Using an agent-based model developed
with the open-source software GAMA, the surveillance simulation
incorporated human operator agents, quadrotor UAVs, and fixed-
wing UAVs. The results indicated that a single operator could
effectively control up to three robots, and increasing the number
of controllable robots required adding more human operators to
the system.

Al-Hussaini et al. (2021) developed adaptive techniques using
Monte Carlo forward simulations to predict future mission states
by constructing probability distributions of potential outcomes
in complex environments, thereby enabling alert generation. This
approach allowed for accurate real-time alert generation in scenarios
where computational time is limited to just a few seconds.

To assess proposed team designs in uncertain Military
Urban (MOUT)
identify the most critical design factors influencing team

Operations in Terrain scenarios and
performance (Giachetti et al., 2013), developed a simulation model
incorporating team coordination and human-robot interaction.
The findings indicate that larger teams outperformed the effects
of noise factors such as danger level and robot reliability, with

robot reliability being a key determinant in human-robot team

Frontiers in Robotics and Al

03

10.3389/frobt.2025.1526287

formation. Additionally, the results suggest that as team size
increases, centralized decision-making may lead to communication
challenges.

In one of the agility challenges during the “Agile Robotics for
Industrial Automation Competitions” (ARIAC) 2023, the human
operator was modeled as a “Belief-Desire-Intention (BDI)” agent
using Jason. Participants were required to control a gantry robot,
four automated guided vehicles, and various other components to
navigate agility challenges within a simulated factory environment
using ROS 2 (Robot Operating System) and Gazebo (Becker et al.,
2023). Different behavioral models were implemented to define
how the human operator responded when near the robot, ranging
from minimally intrusive to highly intrusive interactions. Additional
simulation studies have been conducted by Maoudj et al. (2015),
Carlin et al. (2010), Mota et al. (2011), Zhang et al. (2012),
Dawson et al. (2010), Harbin et al. (2021), Humann et al. (2023),
An et al. (2023), Street et al. (2023).

The reviewed MRT simulation applications demonstrate that
multirobot teams have been successfully simulated across various
application contexts. However, the extent to which the behaviors
of MRT components can be defined and simulated varies, as some
environments function as black boxes. Additionally, none of the
reviewed studies explored MRT simulations in a nuclear context.
Consequently, our selection of a simulation environment prioritized
the ability to precisely define the behaviors of MRT components.

2.4 Modelling and simulation environments
for agent-based systems

There are several performance metrics of agent-based systems
that may be defined, analysed and evaluated using different methods.
However, the choice of methods may vary depending on the
MRT application, goal of the system, or the agent-based system.
Some of the commonly used multi-agent frameworks include
the Java Agent DEvelopment framework (JADE) (Sadik et al,
2019; Bellifemine et al., 2007), GAMA (GAMA, 2023), Matlab
(Panasetsky and Tomin, 2013), Repast (North et al, 2006),
MASON (Luke et al., 2005), Netlogo (Tisue and Wilensky, 2004),
and Anylogic (Borshchev, 2014).

For the evaluation reported in this paper, we employed the JADE
to model, simulate, and evaluate different scenarios of an MRT. JADE
was chosen because it allows the creation of agents and redefinition
of behaviours by providing relevant class libraries. Hence, it makes
it possible to define in detail the attributes and behaviours of each
components of the MRT. It is also easier to translate Business Process
Model and Notation (BPMN) activity diagrams, which were used to
model simulation framework components, into JADE agents.

3 Materials and methods

A human-in-the-loop MRT consists of a human operator and
different components of the MRT. In this section we provide a
detailed description of a simulation framework model to evaluate
human involvement in an MRT. In this paper, we have explored
the context of nuclear decommissioning as the application area;
however, the results and recommendations may also be applicable

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

to other MRT contexts. Components of the system were modelled
using the BPMN (Camunda, 2025), an architecture description
language that extends the Unified Modelling Language (UML)
(Object Management Group, 2025; Sadik et al., 2019). BPMN is
capable of describing logical flows of activities within a process and
provides a rich set of notations, each having a predefined semantic.
The BPMN notations that have been used to construct analytical
models of the different MRT architecture use cases investigated in
this paper are described in Supplementary Figure 1. The notations
have been added to facilitate the interpretation of the various activity
diagrams, which illustrate the flow of information across the use
cases. Explanations for each activity diagram are also provided.
The simulation framework is discussed in Section 3.1. We describe
the characteristics of the centralised and decentralised architectures
as modelled in this paper in Sections 3.2, 3.3, respectively. These
sections also describe how the different components vary between
different architectures. The different use cases of varying levels of
human involvements are discussed in Section 3.4.

3.1 Simulation framework

We implemented a framework that simulates centralised and
decentralised MRT. Figure 1 shows an overview of the MRT
system architecture. The architecture consists of the following
components: Operator, sends out requests to MRT for tasks that
are to be executed; Requests Manager, identifies relevant plan
blueprints that may be used to execute requests; Planner, develops
a verified plan for a request; Robots Manager, assigns tasks to
robots and handles registering and deregistering of each robot;
Robot, executes tasks assigned to it based on its capabilities; and the
Knowledge Base (KB), a central repository for keeping track of plan
blueprints, robots, and tasks. The Knowledge Base is implemented
as catalogues in code. Figure 1 also shows the information flow
between components.

The
using JADE (Jade, 2023). It includes a runtime environment where

simulation framework has been implemented
JADE agents can live. It also consists of a library of classes that
can be used to develop agents. Each instance of JADE runtime
is an independent thread which is made of a set of containers.
A group of agents running under the same runtime instance is
called a container, and a set of active containers is called a platform.
For a platform to be functional, it must contain an active special
main container. The main difference between a main container and
normal container is that it holds the Agent Management System
(AMS) and the Directory Facilitator (DF). Whilst the AMS provides
the naming service, ensuring that each agent in the platform has
a unique agent identifier (AID), the DF provides a yellow pages
service by which an agent can find other agents.

The functionalities of agents are typically carried out within
“behaviours”. A behaviour is an event handler routine that is used
by the agent to modify its parameters and interact with other
agents. Behaviours offered by JADE include Simple behaviour, One-
shot behaviour, Cyclic Behaviour, Composite behaviour, Sequential
Behaviour, Parallel behaviour, Finite State Machine behaviour,
Waker behaviour, and Ticker behaviour. The behaviours employed
for the implementation of our simulation framework include the
following:

Frontiers in Robotics and Al

04

10.3389/frobt.2025.1526287

One-shot behaviour: this is a simple behaviour that is executed
once when it is called by the agent. It is often used to trigger an
event and send an ACL-Message.

o Cyclic behaviour: this is a simple behaviour that stays active as
long as the agent is alive.

Sequential behaviour: this is a composite behaviour that
controls the sequence of execution of more than one one-shot
behaviour.

Parallel behaviour: this is a composite behaviour that
concurrently controls the execution and termination of more
than one one-shot behaviour.

We represent every component in the different architecture
scenarios as JADE software agents. The JADE description above
informs JADE as a proper tool to implement BPMN models in the
context of MRTs. This is particularly relevant because an activity
from the BPMN can be coded as a simple one-shot or cyclic
behaviour in JADE, while a gateway can be translated into composite
or parallel behaviours in JADE. We can also use JADE to simulate the
MRT and to examine the different scenarios as used in this paper.
Likewise, the same implementation code can be used to deploy the
system over real world hardware (Sadik et al., 2017).

It is important to consider different concepts when designing
an MRT. One such concept is the group architecture, which
provides the infrastructure that determines the capabilities
and limitations of the system. Some of the features include
centralisation/decentralisation, differentiation (homogeneous and
heterogeneous), and communication (via environment, via sensing,
and via communications) (Cao et al,, 1997). While centralised
architectures have a single control agent, decentralised architectures
do not. Decentralised architectures may furthermore be divided
into two types, namely distributed architectures and hierarchical
architectures. In distributed architectures, all agents are equal
with respect to control, but hierarchical architectures exhibit
local centralisation. In this work, centralised and distributed
decentralised architectures have been modelled and simulated.
Centralized and decentralized architectures are two of the most
common approaches for MRT architectures (Parker, 2008), which
led to our decision to explore them further. The main difference
between the centralised and decentralised architectures modelled in
this paper is access to system information and how task allocation
was implemented. The following sections describe our centralised
and decentralised MRT architecture designs in more detail.

3.2 Centralised multi-robot team
architecture

The main feature of the modelled centralised architecture
presented in this paper is the single control agent. This agent has
knowledge of all robots and their states, and is involved with task
allocation for all robots based on access to their information. We
briefly describe the different components of the system, modelled
as individual agents. In order to allocate tasks in a given request,
the chances of failure (minimum = 0, maximum = 1, Equation 4)
of all capable Robots are calculated for all tasks. Tasks are therefore
allocated starting with the task with the least chance of failure.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

System Architecture

Knowledge base (KB)

Plans Blueprint Robot Capability Robot Availability ~Assigned no

(0

Robot Battery ~ Robot Status Radiation Dosage ~ Task Details

"

(E.g.C1,C2 (E.g. Registered, of Tasks level (E.g. Active, (E.g. 50%, 80%) (Corrplehon time,
C3,C4) Deregistered) (Eg.1,2,3) (E.g. 60%,80%) Inactive) radiation dosage,
difficulty)
______________________________ g g S S
|
1 1 1
1 1 1
: Request Chosen pfan blueprint Verfigd plan Robot
Operator | Request receipt confirmation | Requests \ P Chosen plbin blueprint obots
+__Request execution feedback Manager Crz‘é;ep’és::‘ﬁ:_':;?:n”t receipt confirmation | Manager

;'_/ Task regssignment
f 1
Plan execution feedback

1
1
: Registering/

Request time-up

FIGURE 1
Overview of inter-agent information flow in the system design.

Operator: responsible for making requests that are to be
executed. Figure 2 shows the activity diagram for the Operator agent.
Each request is made up of a set of tasks. All requests to be executed
are stored in the Knowledge Base (KB), and on a first-come-first-
serve basis, each request in the KB is sent to the Requests Manager
in 5 s intervals until all the requests in the KB have been sent. For
every request received, the Requests Manager sends a request receipt
acknowledgment to the Operator. After each acknowledgement, the
Operator updates the status of the request on its graphical user
interface (GUI) from ‘waiting’ to ‘request sent’. The GUI is provided
so that request executions can be observed in real-time to monitor
the system for errors in operation. Simultaneously, the Operator
waits for request execution feedback requests from the Requests
Manager. After receiving the feedback, the Operator updates its GUI
and an Excel file with information on the outcome of the request, the
number of successful tasks in the request, the number of failed tasks
in the request, the number of times tasks have been reassigned, and
the request completion time. The different actions performed by the
Operator are executed in separate threads for concurrent execution
of actions.

Requests Manager: responsible for identifying the relevant plan
blueprint that may be used to execute each request. The different
actions performed by the Requests Manager are executed in separate
threads for concurrent execution of actions as shown in Figure 3.
Each plan blueprint in the KB contains tasks and the capabilities
a Robot must possess to complete each task. Requests received
from the Operator are stored in the KB and randomly chosen for
execution. A timer is set when a request is chosen for execution
and if request execution feedback is not received within the set
time, the request execution fails. If the Requests Manager finds

Frontiers in Robotics and Al

05

message

one or more matching blueprints, a blueprint is randomly selected.
The selected plan blueprint and the request are then sent to the
Planner to develop a verified plan. The Request Manager also waits
for blueprint receipt feedback from the planner. However, if no
relevant plan blueprint is found, a “failed request (no blueprint)”
message is sent to the Operator. Simultaneously, the Requests
Manager also listens for verified plans feedback message from
the Planner and requests execution feedback message from the
Robots Manager.

Verified plan feedback is received from the Planner if no
verified plan may be developed by the Planner. The requests
execution feedback message received from the Robots Manager may
be positive or negative. The message will be positive if all task
executions succeed but negative if the execution of at least one task
in the request fails. The request execution feedback message sent
to the Operator may also be positive or negative. The message will
be positive if all the tasks contained in the request are successfully
executed. However, the message will be negative if no verified
plan can be developed, if the request is not executed within the
required time, or if the execution of at least one of the tasks in
the request fails. Simultaneously, the Requests Manager GUI is also
updated with the plan blueprints for all the requests and request
execution status.

Planner: responsible for developing a verified plan on how to
execute a request. The different actions performed by the Planner
are executed in separate threads for concurrent execution of actions,
shown in Figure 4. In order to develop the verified plan, the Planner
splits the request into separate tasks and retrieves the capabilities
required to execute the task from the plan blueprint. The Planner
also retrieves information on all available Robots, and checks if

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

Request execution
complete

O

Yes

10.3389/frobt.2025.1526287

Display request sent
on the GUI for the

| &

Al request
Display request execution feedback
edback on|
received?

the GUI

Receive request

execution feedback Save the received

corresponding requesi]

Wait for all request

execution feedback
messages

Receive request
receipt feedback from
Requests Manager

_'<>— feedback (0 a file

from Requests
Manager

Select the request at
the top of the queue
to be executed

Access requests
Knowledge Base
(KB)

Q_

‘Send request o
Requests Manager

Wait for ‘receipt’
message from
Requests Manager

unsent request

Require execution
exists?

of requests
[
NAO
Timer elapsed?
FIGURE 2

Centralized architecture: operator activity diagram.

Display erified plan

Set the timer
for 5 seconds

no verified

Receive verified plan
reation feedback fro

feedback’ on
Gul

the Planner

Receive plan blueprin Display ‘plan biueprint

receipt feedback from sentinfo on GUI
Planner

X

verified plan

‘plan created

request execution

created timer elapsed?

X

]
Send request receipt
feedback o
Operator

Requests Manager
waiting for plan
execution feedback?

O

Place the request at
the bottom of the
request queue

Receive a new
request from
Operator

—<X

keep waiting for the
plan execution
feedback

Send plan
blueprint and

request to Planner

Randomly select one
plan blueprint

| T
Yes
— Wait for overall matching
b success requests completion plans bluprin:
request execution more than 12
feedback to the T
Operats
perator 1 NA
Check the plans
Display status of blueprint Knowledge
positive feedback Yes. f:e'e‘z‘ ‘:f"::“ii:‘ I ested Base (KB) fora f———».
P a the GUI suitable plans
= Receive aplan Dlueprint e i
matching plans
check the plan unsent request in the
executionfeedback i Knowedge Base (KBy? blueprint found?
from Robots feedback
Manager /\ 4 send failed
eauest execution
U feedback to
Operator

negative feedback

FIGURE 3
Centralized architecture:

Requests Manager activity diagram.

each Robot has the capabilities required to complete the task. We
assume that there must be more than one Robot for consideration to
increase the chance of having a capable Robot to assign the task to.
Likewise, having more than one capable Robot makes it possible to
execute tasks concurrently, hence reducing the request completion
time. If only one Robot is available for the request execution, a “failed
(Insufficient robots)” message is sent to the Requests Manager for
the chosen request. The capable Robots must also have sufficient

Frontiers in Robotics and Al

06

power (battery life) to complete the task. Battery life is crucial,
as, unlike industrial robots or those stationed in fixed locations
(Bolarinwa et al., 2019; Boschetti et al., 2021; Bolarinwa et al.,
2022), many robotic applications require mobility or deployment
in environments where tethered connections to alternating current
power sources are not feasible (Baniqued et al., 2024; Azpurua et al.,
2023). A Robot is not considered for a task if its battery life is lower
than that required to complete the task, even if the Robot has the

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

FIGURE 4
Centralized architecture: Planner activity diagram.

capabilities required to execute the task. If no capable Robot is found
for a task in the request, a ‘charging leeway’ timer is set. The charging
leeway timer is introduced for instances where a capable Robot is
not found due to the robot being deregistered for its battery to be
charged. The timer is chosen to be longer than the Robot’s charging
time. When the timer elapses, the process is repeated to identify
capable Robots.

We assume that the centralised architecture has complete
information about all the Robots and tasks. Therefore, for all the
tasks in the request, the chances of failure of all capable Robots
are calculated and stored in a KB. Task allocation then starts with
the Robot with the lowest chance of failure. When the Robot
with the lowest chance of failure is assigned to a task, all the
other robots considered for the allocated task and their calculated
chances of failure are removed from the catalogue. If more than one
Robot has the lowest chance of failure for a given task, a Robot is
randomly chosen. The next lowest chance of failure is selected for
the corresponding task and Robot. This process is repeated until all
the tasks are allocated to Robots. If at least one of the tasks could not
be assigned a Robot, a ‘failed (No sufficient capable Robots)’ message
will be sent to the Requests Manager.

Our task allocation algorithm ensures that the robot with the
lowest chances of failure is always allocated the task. However, there
is a chance that a robot may be allocated more than one task from
a request. The allocated tasks and corresponding Robots form the
verified plan that is then sent to the Robots Manager. The Planner
also waits for a ‘verified plan’ receipt message from the Robots
Manager to ensure that the plan is received.

Simultaneously, the Planner receives task reassignment
messages from the Robots Manager and stores the messages in the
KB. If a previously allocated task fails, and the request execution time
has not elapsed, the request is sent back to the planner to reassign the
task to another Robot. To reassign the task, if the number of capable
Robots is more than one, task allocation is done using the chances of
failure of the capable Robots. If more than one capable Robot has the

Frontiers in Robotics and Al

07

lowest chance of failure, a Robot is randomly chosen and sent to the
Robots Manager. If no Robot is found, a ‘no robots found’ message is
sent to the Robots Manager. If no capable Robots are found, a ‘failed
(No capable robot)’ message is sent to the Robots Manager.

Robots Manager: responsible for assigning tasks to the Robots
and also handles registering and deregistering of each Robot.
The different actions performed by the Robots Manager are
executed in separate threads for concurrent execution of actions,
as shown in Figure 5. The Robots Manager manages a KB of the
Robots’ information. The information stored in the KB include
Robot capabilities, Robot availability, number of tasks assigned to
each robot, battery power level of each Robot, radiation exposure
dosages of each Robot, status of each Robot. The simulation is
designed such that other agents can access and modify the KB
when needed.

The Robot capabilities KB contains information about the
capabilities of each Robot which makes it possible to assign each
Robot to tasks. The availability KB is updated as each Robot registers
or deregisters. A Robot may deregister from the team of Robots if it
needs to recharge its batteries, and registers when its batteries are
fully charged. When a Robot is deregistered, it cannot be assigned to
a task. We represent the battery power level with a range of numbers
from 0 (batteries depleted) to 100% (batteries fully charged). Each
task is assigned a number which represents the percentage of battery
power required to complete the task. This number is subtracted from
the Robot’s battery power level as the task is completed. When the
battery level drops to 14% (a value at which no task may be executed
in our simulation), the Robot deregisters to recharge its batteries.
We represent the charging process by setting a timer for 10 s, after
which the Robot’s battery power level is updated to 100 and the robot
sends a message to the Robots Manager to register it into the MRT.
The charging time of 10 s was chosen after repeated simulations, to
be just long enough for ongoing tasks to be completed but not too
long as to delay the request execution. In reality, calculations can be
made to determine how long it would take to charge the batteries.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

FIGURE 5
Centralized architecture: Robots Manager activity diagram.

The charging process may be designed to be fast enough to avoid
delays in request executions. As each Robot is assigned a task, the
KB of the number of assigned tasks is updated for each Robot. After
completing the task, the Robots Manager also updates the Robot’s
radiation exposure dosage KB based on the tasK’s assigned radiation
dosage. The minimum radiation dosage of a Robot is set to 0, while
the maximum is set to 100. When a Robot’s radiation dosage reaches
100, the Robot is decommissioned and can no longer be assigned a
task. Hence the Robot status KB will be updated from “active” to
“decommissioned”.

The Robots Manager also manages the task information KB. The
information managed include task completion time, task difficulty,
and task radiation dosage. The task completing time (TCT) varies for
different tasks. This was simulated by creating a timer using a loop.
The loop was used instead of a sleep function to make it possible
to interrupt the task execution when the request completion time
elapses. Task difficulty also varies from task to task as we assigned
values to tasks based on our perceived difficulty levels. For example,
we assume that a mapping task will have lower task difficulty than
a task which requires a robot to stack barrels as stacking up barrels
would require more sensing and actuating, as well as greater level
of precision. Higher numbers imply higher difficulty. Task radiation
exposure dosage also varies based on the task and has been defined
numerically as the amount of radiation exposure a robot is exposed
to as it carries out a task. Other agents can also access the task
specification KB.

The Robots Manager receives the verified plan from the Planner
and sends receipt feedback message to the Planner. The Robots
Manager splits the verified plan into tasks, assigned Robots, and
sends each task to its assigned Robot. The Robots Manager also
stores the task and assigned Robots info in a separate KB. As each
Robot completes its assigned task, its ID and assigned task are
removed from the KB. This makes it possible to keep tabs on busy
Robots. If the request completion time elapses before all the tasks
are completed, the information in the KB is used to send messages
to busy Robots to cancel their tasks and the request fails. The

Frontiers in Robotics and Al

08

Robots Manager updates its GUI after receiving task receipt feedback
message from the Robot.

the Robots
“Register/Deregister” messages from any of the Robots. If a Register

Simultaneously, Manager waits to receive
message is received, the Robots Manager adds the robot to the
MRT by changing the availability of the Robot to “Registered” and
the battery level to 100. If a ‘deregistered’ message is received, the
Robots Manager removes the Robot from the MRT by changing the
availability of the Robot to “Deregistered”

The Robots Manager also listens for task completion messages
from Robots. As each Robot completes the assigned task, its busy
status is changed from “busy” to “not busy”. The task completion
feedback message could show that the task succeeds or fails. When
a ‘task failed’ message is received, and the request completion time
has not elapsed, the Robots Manager sends the task to the Planner
to be assigned to another Robot. If the task fails, and the request
completion time has elapsed, the task is not reassigned but the
request fails. If a ‘task successful’ message is received, the number
of successful tasks is increased and the battery level, as well as
the radiation dosage of the robot is updated. Within the request
completion time, if the number of successful tasks equals the number
of tasks in the request, the request execution completes, and a request
execution feedback message is sent to the requests manager. The
Robot Manager also updates its GUI as messages are received and
actions are executed.

Robot: Each robot in the MRT is simulated using a separate
Robot agent. The different actions performed by the Robot are
executed in separate threads for concurrent execution of actions,
as shown in Figure 6. The Robot is responsible for executing
tasks that have been assigned to it based on its capabilities. The
Robot receives assigned tasks and sends a receipt message to the
Robots Manager. The Robot checks its properties KB and updates
its GUI. The GUI makes it possible to monitor processes going
on within each agent. The Robot sends messages to the Robots
Manager to deregister it from the MRT when its battery level
falls below a set value. The Robot receives tasks from the Robots

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

FIGURE 6
Centralized architecture: Robot activity diagram.

Manager, stores in its internal KB, and randomly selects the tasks for
execution.

If a Robot becomes deregistered, inactive, or the battery level
drops below a set level before it begins to execute a task, the task fails
and a “task failed message” is sent to the Robots Manager. However,
if not, the Robot proceeds to execute the task. If the Robot receives
a ‘time up message as it executes the task, the task execution is
cancelled and a “failed” message is sent to the Robots Manager. Tasks
execution is simulated using a while loop with 1 s sleep function. The
task execution result is simulated by calculating the chance of failure
using the task difficulty and cumulative radiation dosage as shown.
The chance of failure is then fed into a random number generator.
If the number generated is more than the chance of failure, the task
succeeds. However, if the number generated is less than the chance
of failure, the task fails. This makes it possible to dynamically vary
the success or failure of the task based on the task executed and the
task execution history of the Robot.

3.3 Decentralised architecture

In the decentralised architecture modelled in this paper, tasks are
put up for auction and each Robot bids for the task by calculating
its chance of failure of the auctioned task. This means that for
task allocation, there is no need for the task allocation agents
to be aware of the conditions or states of each robot. Tasks are
allocated based on the bid responses of the Robots. The Robot
with the lowest chance of failure bid is assigned the task. The main
difference between the centralised architecture and the decentralised
architecture with regard to task allocation is that, whilst the
centralised architecture considers all the tasks in a given request,
the centralised architecture does not. We have chosen to model
task allocation and execution, as well as resource management
and communication in this paper to reduce the complexity of

Frontiers in Robotics and Al

the system. The following paragraphs detail the implementation
of the decentralised architecture in comparison to the centralised
architecture.

Operator: the Operator is identical to the Operator of the
centralised architecture.

Requests Manager: the Requests Manager is identical to the
Requests Manager of the centralised architecture.

Planner: responsible for assigning tasks to Robots. This is done
by auctioning each task in the request. Figure 7 shows the activity
diagram of the Planner for the decentralised architecture. The
Planner splits the request into separate tasks and auctions each task
and its corresponding execution requirements. The development
of the verified plan fails if the MRT has fewer than two Robots.
In order to introduce redundancy into the system, we define
that there must be more than one Robot available for request
execution. Each Robot will either bid for the task or refuse to
bid. All the Robots that bid for the task will bid with chance
of failure values for the task. The task is therefore allocated to
the Robot with the lowest chance of failure. Information about
the Robot, allocated task, and the number of tasks in the request
are sent to the Robots Manager after each bidding process. The
bidding process is repeated until all the tasks in the request are
allocated.

The Planner also listens for ‘task reallocation’ messages. A task
may be reassigned if it fails or if the allocated Robot deregisters due
to low battery. To reassign the task, the planner puts the task up
for bidding and the process is repeated. After all tasks have been
reassigned, the Planner waits for the next Plan Blueprint to process.

Robots Manager: The Robots Manager in the decentralised
architecture is only responsible for registering and deregistering
robots, receiving task feedback from Robots, sending the reassign
task message to Planner and sending the request execution feedback
to the Requests Manager. The activity diagram in Figure 8 shows the
information flow and processes involved.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

FIGURE 7

Decentralized architecture: Planner activity diagram.

FIGURE 8
Decentralized architecture: Robots Manager activity diagram.

The Robots Manager receives information about the allocated
task and corresponding Robots from the Planner and stores the
details noting the Robots as busy. After completing a task, each
Robot sends task feedback to the Robots Manager which updates
the information received on its GUI and in the KB. If the task
execution is successful, the number of successful tasks count is
increased. However, if the task fails the number of failed tasks
is increased. If the request execution time has not elapsed, the
failed task is sent back to the Planner for reassignment. After
each task execution, battery levels and radiation exposure are
updated on the GUI and KB. If the battery level falls below the
minimum set value, the Robots Manager deregisters the robots
from the MRT. If the radiation exposure get higher than the
expected value, the robot is decommissioned and can no longer be
assigned a task.

Frontiers in Robotics and Al

10

Simultaneously, the Robots Manager also receives “time-up”
messages from the Requests Manager and raises the “time-up” flag.
Using the information in the “busy” Knowledge Base (KB), the
Robots Manager sends ‘time-up’ messages to all the currently active
robot to stop task execution and the task execution fails. If the “time-
up” flag is raised during request execution, all active task executions
are stopped and reported as failed to the Requests Manager.
However, if all tasks are executed before the request execution
elapses, a ‘successful’ message is sent to the Request Manager.

If the Robots Manager receives register/deregister messages
from any robot. It processes the registering and deregistering
processes by updating the KB and GUIs.

Robot: Unlike in the centralised architecture, each Robot is
involved with the allocation of the task it executes (Figure 9). After
receiving the proposal from the Planner, the Robot checks to ensure

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

——

FIGURE 9
Decentralized architecture: Robot activity diagram.

that it has enough battery power to complete the task. The Robot
also checks to confirm that it has the required capabilities to execute
the task before calculating its chance of failing to execute the task
successfully. The Robot then bids for the task if the calculated chance
of failure is less than 1. The proposal is refused if the robot is
unregistered, if it does not have the required capabilities, or if the
calculated chance of failure is more than 1. If the Robot wins the
bid, the Planner sends the task to the Robot. The robot subsequently
executes all the tasks it has been assigned. Task execution is
simulated using a timer. The duration of the timer varies with the
task. As the timer counts, the Robot checks if a ‘time up’ flag has been
raised. If the flag is raised before the completion of task execution,
the Robot aborts the task and sends a ‘task fail’ feedback to the
Robots Manager. When the timer elapses, the Robot calculates the
chance of failure and simulates task execution result. To simulate
the result, we use a random number generator to generate double
values between 0 and 1. The values were generated randomly as
random number generators are important in the simulation of real-
world processes. Also, each value generated has an equal chance of
being generated. If the number randomly generated is greater than
the chance of failure, the task succeeds, else the task fails and the
feedback is sent to the Robots Manager.

Simultaneously, the robot also frequently updates its details on
its GUI by retrieving those details from the KB. If the Robot’s
availability reads “Deregistered”, the “registered” flag is lowered and
a timer is started to simulate the charging process. When the timer
elapses, a “register” message is sent to the Robots Manager to add
the Robot to the MRT.

Table 1 shows the comparisons of the different components
for centralised and decentralised architectures. in Table 4, we
explain the simulation parameters and the rationale behind each
of them.

Frontiers in Robotics and Al

11

3.4 Use cases

We explored three different use cases for the two architectures.
These use cases were designed to model most real-world scenarios,
as different organizations and application areas have specific
human-in-the-loop requirements. Additionally, the presence or
absence of human-in-the-loop involvement can affect task execution
difficulty, thereby increasing or decreasing the chances of request
execution success.

Use case “No Human Interference”: the two architectures
described earlier are modelled without any human interference to
complete specific requests. For each task, we have defined task
attributes which include task completion time (in seconds), task
radiation dosage, and task difficulty. Task completion time was
simulated using the sleep function for the duration allocated to
completing the task. Since we are exploring the use of MRTs in
nuclear environments, we have also allocated radiation dosage to
each task based on the nature of the task (e.g., 5, 10). For example,
we assume that a mapping task will expose the robot to a lower
radiation dosage than a task which requires the robot to move
barrels from one place to the other. Lower and higher numbers
are assigned to tasks with lower and higher radiation exposures
respectively. The maximum cumulative radiation dosage a robot
should be exposed to in this simulation is 100, after which the robot
is decommissioned and can no longer be assigned any task. The
higher the task difficulty, the higher the numbers assigned (e.g. 20,
30, 40, ..., 80). We assume that a robot may fail to complete a task
due to operational failures caused by mechanical issues, software
glitches, environmental conditions, human interference, or control
system malfunctions, as well as challenges associated with the task
itself. The success of each task was therefore calculated as a function
of cumulative radiation exposure, which may contribute to the

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

TABLE 1 Comparing the system components for Centralised and decentralised architectures.

Component Centralised architecture Decentralised architecture
Overall Single control agent with knowledge of all the robots This does not operate as a single control agent because
and their states the planner does not have knowledge of all available
robots and their states
Operator Sends requests to Requests Manager and receives Same as in centralised architecture
request execution feedback
Requests Manager Identifies relevant plan blueprint for request execution Same as in centralised architecture
and sends to Planner with the request
Planner Develops a verified plan with the plans blueprint Responsible for assigning tasks to Robots by
received from the Requests manager. To develop a auctioning tasks and their corresponding execution
verified plan, the Planner retrieves information on all requirements from the plan blueprint. Robots bid for
available robots, including their capabilities. The each task with their self calculated chance of failure
information is used to calculate each robot’s chance of values. The robot with the lowest value is assigned the
failure when executing the task. The Robot with the task. Information about the Robot, allocated task, and
lowest chance of failure is assigned the task. Allocated the number of tasks in the request are sent to the
tasks and their corresponding assigned robots make Robots Manager. For tasks reassignments, the Planner
up the verified plan. The Planner also receives task puts each task up for auction
reassignment messages from the Robots Manager if a
task fails within the request execution time
Robots Manager The Robots Manager manages the KB of Robots Unlike the centralised architecture, the Robots
information. Receives the verified plan and assigns Manager is not responsible for allocating tasks to the
tasks to their corresponding robots. The Robots robot but is only responsible for registering and
Manager also manages the registering and deregistering Robots, receiving task feedback from
deregistering of robots from the MRT. Robots, sending the reassign task message to the
Planner, and sending the request execution feedback to
the Requests Manager
Robot The Robot executes tasks that it has been allocated by The robot partakes in the allocation of tasks it is
the planner based on its capabilities assigned to execute by biding for tasks with its chance
of failure for each auctioned task

causes of failure highlighted and task difficulty which may both be
reduced with the introduction of a human collaborator.

As shown in Equation 1, a new cumulative radiation exposure
o) Of a robot carrying out a task is calculated by
adding the radiation exposure dosage of the task (Dosage,) to the

dosage (Dosage

robot’s previous cumulative exposure dosages (Dosage,,,)-

Dosage,, = Dosage,,, + Dosage,

(1)

nce

Setting the maximum possible values of the cumulative exposure
dosage and task difficulty to 100 respectively, the sum of both
parameters should yield a maximum value of 200. We have
calculated the chance of failure for each task following Equation 2.

Dosage,, + Difficulty,,
200

Failure

2)

chance —

This means that the maximum value for the chance of failure will
always be 1. Therefore the chance of successfully carrying out each
change will be inputted into the simulation as

Success 1 - Failure

(©)

chance — chance

Use case “Human Collaboration”: in this use case, the operator
collaborates with the MRT by taking over a robot after the tasks
have been assigned to complete the task assigned to the robot
(Freedy et al., 2007; Desai et al, 2013; Xu and Dudek, 2015).

Frontiers in Robotics and Al 12

Taking over after the tasks have been assigned ensures that the
operator is not involved with task allocation but only collaborates
with the team of robots to execute a request. The difference with
the chance of failure in tasks executed in this use case however is
that task difficulty is lowered to a third. We assume that having
the operator tele-operate a robot in executing a task reduces
the task difficulty, and in this case, making it a third of the
difficulty. Therefore the chance of failure is calculated as shown in
Equation 4.

Dosage,,., + (Difficulty,) /3
chance = 200

“)

Failure

The chance of success remains as defined in Equation 3.

The Operator in this use case only receives the information about
the paired robots and their allocated tasks from the Robots Manager
and sends a reply with a randomly selected robot and its allocated
task. The Operator also sends a ‘take over’ message to the selected
robot. The changes described for the human collaboration use
case also applies to the decentralised architecture for the Operator,
Robots Manager, and Robot.

Use case 'Human Intervention: for the human intervention use
case, an operator takes over a robot after tasks have been allocated
for an entirely different purpose, causing the task to fail as a result.
The task is therefore reassigned to another robot or put out for
auction (dependent on architecture). We have also assumed that all

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

TABLE 2 Evaluation setup. Robot capabilities, tasks, and link between both.

10.3389/frobt.2025.1526287

Capability Task Task-capability link
C, proximity sensor T, map an area T,: {C,, Cy, Cg)

C, radiation sensor T, identify locations of high radiation T,:{C,, C,, Cy, Cg>

C, gripper T, move barrels T;: (C,, C,, C5, C,, Cs, Gy
C, camera T, connect device to power source T,:{C,, G5, Cy, Cs, Gy

Cs gyroscope

Cs lidar

C, bump sensor

tasks execution must be successful for the request execution to be
successful.

4 Evaluation

In order to evaluate the impact of human collaboration, human
intervention, and number of robot on MRTs with centralised
and decentralised architectures, we set up 4 simulation runs
(i.e. each scenario with different numbers of robots in the
MRT). Each scenario (centralised architecture with no human
involvement (C), centralised architecture with human collaboration
(C_HCQ), centralised architecture with human intervention (C_
HI), decentralised architecture with no human involvement (D),
decentralised architecture with human collaboration (D_HC), and
decentralised architecture with human intervention (D_HI)) is a
combination of MRT architecture and human involvement. Each
simulation run was repeated 40 times for all scenarios which are
combinations of system architectures and use cases (2 architectures
x 3 use cases), as well as different numbers of robots in the MRT (4, 6,
8,and 10 robots). In this Section we first show how robot capabilities,
tasks, request to MRT, plan blueprints, and robots were set up
for the evaluation (Section 4.1). We then present the dependent
measures used to measure the simulation runs (Section 4.2), and the
evaluation results (Section 4.3).

4.1 Evaluation setup

We begin by defining capabilities for the robots based on the
tasks to be executed. We also define robot tasks that are commonly
executed in nuclear facilities. Finally, we link each task with the
capabilities required for each robot to be able to execute it. Table 2
shows capabilities, tasks, and how they are linked.

Additionally, we define a number of requests issued to the MRT.
In each simulation attempt, nine requests are executed. Each request
comprises of several combinations of tasks to be executed. We
also define plan blueprints that describe how each request may be
executed by listing the tasks the MRT needs to execute. Finally,
we assigned different capabilities to a set of robots that represent a

Frontiers in Robotics and Al 13

TABLE 3 Requests, plan blue prints, and MRT composition.

Request Plan blueprint Robot (capabilities)
RQ,: (T}, Ty) PB: (T,,T,) Ry:{C,, Cyy Cg)

RQ,: (T, T,, T,) PB,: (T, T,,Ty) R,: (C,,C,,C,, Cy)

RQ;: (T, T;, Ty) PB;: (T,, T;) R;: (C,,C,,G5,Cy, Cs, C))

RQ: (T}, T,) PB,: (T, Ty, T,) Ry (C,Cy,Cpy Cs, Cy)
RQs: (T}, T3) PBg: (T}, Ty) Ry (C,,Cy,Cy,Cyy Cs, Cer Co)
RQg: (T}, T, T) PBg: (T, T,) Rg: (C,Cpy Cs, Cg)

RQ;: (T, T5) R;:(C,, G, G5, C Cg)

RQy: (T, Ty, T,) Ry: (C,,C;,C,,Cs,Cy)

RQyi (T, T,) Ry: (C}, G5, C3, G, G5, G C7)

Ry (C},Cs,Cyy G5, Co, Cr)

possible MRT. The team composition was developed such that there
will always be enough robots to execute all tasks in a given request
unless a robot leaves the MRT to charge its batteries, or has been
decommissioned having being exposed to the maximum radiation
dose it can withstand. Table 3 shows all requests, plan blueprints, and
robots with their capabilities.

In order to make the system behaviour dynamic, we also
introduced variations into the system. The variations ensure that the
results of each simulation varies based on the characteristics of the
agents in the system. The variations include:

Plan blueprint: the plan blueprint provides information on the
capabilities a robot must possess to execute tasks in a request, and
could be available or unavailable. If no plan blueprint is found for
a specific request, the request execution fails. We implemented the
simulation to demonstrate the two possible scenarios.

Varying numbers of registered/unregistered robots in the MRT:
the simulation was designed to allow robots to dynamically register
and deregister themselves from the MRT. A robot deregisters itself

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

from the MRT if its battery level drops below a certain level and
registers when the battery is charged. For every task executed, a
robot’s battery level drops. The amount of drop depends on the
task executed.

Varying numbers of active robots: the dynamic behaviours of
the robots in the MRT imply that we could have varying numbers
of active robots as requests are executed. This is because robots can
either temporarily deregister themselves when their battery levels
are low or get decommissioned if their radiation exposure exceeds
the allowed level. This creates the possibilities of having varying
numbers of active robots in the MRT as requests are executed. The
number of robots in the MRT are the same at the beginning of each
simulation instance.

Capabilities of each robot: in real-world scenarios, different
robots may have different capabilities to make them suitable for
varying tasks. We have modelled the robots in our study to have
varying capabilities.

Operator involvement: three scenarios of operator involvements
were explored. The first scenario involves the robots executing tasks
with no human operator involvement. In the second scenario, the
human collaborates with the robots to execute tasks after the tasks
have been allocated. In the third scenario, the human intervenes by
taking over a robot to execute a separate task than was allocated
to the robot.

Different architectures (task allocation differences): centralised
and decentralised architectures were explored. In the centralised
architecture, the system has access to all the information about all
robots in the MRT and allocates tasks based on the information. In
the decentralised architecture, tasks are auctioned and each robot
bids for the task with its calculated chance of failure.

Varying request compositions: requests are made up of two or
more different tasks. The task composition in each request also vary,
creating different request execution outcomes.

4.2 Dependent measures

In order to compare the different scenarios, we identified
dependent measures with which comparisons can be made to
examine the performance of scenarios. Table 4 gives detailed
information about the measures used in our simulations.

4.3 Results

‘We conducted the simulation 40 times for each scenario, which
included the independent variables: MRT architecture (centralised
and decentralised), number of robots (4, 6, 8, 10) in the MRT,
and level of human involvement (no human involvement, human
collaboration, and human intervention). Table 5 shows the results
across scenarios for the request outcome (no. of successful requests),
task outcome (no. of successful tasks and failed tasks), and request
completion time.

4.3.1 Request execution outcome

By design, each scenario can have a maximum of 7
successful requests. From the 9 requests the Operator sends,
2 request executions fail because there are no plan blueprints

Frontiers in Robotics and Al

14

10.3389/frobt.2025.1526287

for their execution. The descriptive statistics of the average
number of successful requests for each scenario are shown in
Table 5. Figure 10A shows the average number of successful requests
for all scenarios. Since each request execution involves the execution
of tasks within the request, it is important to likewise examine task
execution outcomes.

4.3.2 Task execution outcome

The overall number of tasks in each simulation run was
consistent across all scenarios, but the number of successfully
executed tasks varied between scenarios (Figure 10B). Given
sufficient time, and provided there are capable robots, all tasks in
a request will eventually be successfully completed provided there
are plan blueprints for their execution. However, since real-world
applications do not allow for indefinite time or an unlimited number
of capable robots to execute tasks, the number of successful task
executions varied across scenarios. Table 5 shows the descriptive
statistics of the average number of successful tasks for all scenarios.
It is therefore important to examine the number of task execution
failures in each scenario, as this can serve as a key metric for
differentiating between the scenarios. Table 5 also shows descriptive
statistics of the average number of failed tasks. Figure 10C shows the
boxplots of failed tasks for all scenarios.

Shapiro-Wilk test of normality was conducted on the
average number of failed task executions under both architecture
conditions (centralised (W(480) =.979,p < .001) and decentralised
(W(480) =.946,p <.001), number of robots in the MRT
condition (4(W(240) =.972,p < .001), 6(W(240) =.923,p < .001),
8(W(240) = .920,p < .001), 10(W(240) = .944,p < .001)), and levels
of human involvement (none (W(320)=.978,p <.001), human
collaboration (W(320) =.918,p <.001), and human intervention
(W(320) =.976,p <.001))). The results indicated a significant
deviation from normality. A Mann-Whitney U test was conducted to
investigate the effect of the MRT architecture on the number of failed
tasks. The difference in the number of failed tasks between the two
architectures was not statistically significant U= 109,961.000,Z =
—1.22,p = .222. We conducted a Kruskal-Wallis H test to examine
the differences in the number of failed tasks for different numbers of
robots (4,6,8,10) in the MRT. The results show that the distribution
of failed tasks was significant between the groups H(3) = 20.86,p <
.001. For different levels of human involvement, the Kruskal-Wallis
H test showed a statistically significant difference in failed tasks
between groups H(2) = 646.46,p < .001.

We conducted Mann-Whitney test to compare the number
of failed tasks between different number of robots in the MRT.
Results as follows: 4 and 6 robots in the MRT (U = 26,108.00,Z =
—1.77,p = .076, indicating that there is no significant difference
in failed tasks), 4 and 8 robots in the MRT (U =23,438.00,Z =
—3.53,p <.001, indicating that there is a statistically significant
difference in the number of failed tasks), 4 and 10 robots in the
MRT (U =22,188.00,Z = —4.36,p <.001, indicating that there is
a statistically significant difference in the number of failed tasks),
6 and 8 robots in the MRT (U =26.560.50,Z= —1.48,p =.140,
indicating that there is no significant difference in the number
of failed tasks), 6 and 10 robots in the MRT (U = 25,593.50,Z =
—2.11,p = .035, indicating that there was a statistically significant
difference in the number of failed tasks), 8 and 10 robots in the
MRT (U =27,756.50,Z = —0.69,p = .491, indicating that there no

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

TABLE 4 Dependent measures for MRT Simulation.

Component Centralised architecture

Request outcome

The execution of a request can either be a “success” or “failure”. A request may fail due to various factors, some of which we have examined in
this paper. The first factor is the unavailability of plan blueprints to execute the tasks in the request. A second factor is the unavailability or low
number of sufficient and capable robots in the MRT to handle the tasks. Robots in the MRT may be unavailable having been de-registered for
charging or decommissioned due to excessive exposure to radiation. The chance of robots getting de-registered or decommissioned may
increase if there is a low number of robots in the MRT, or due to continuous task failure and the need for task reassignment. As requests have to
be executed within a specific time, a request execution may also fail if all the tasks in the request are not successfully executed within the given
time frame. Finally, different levels of human involvement may also affect request execution outcomes since there is no guarantee that human
involvements will always lead to successful request execution. Advantages of using request outcomes as a performance metric include scenario
analysis, system improvement and resource management

Task outcome

Each request to be executed contains tasks, and each task execution can result in either failure or success. Since we are simulating the behaviours
of each agent, no actual tasks are performed; instead, a loop is used to count down the task execution time. After each countdown, a new chance
of failure is calculated, and a random number generator is used to produce values between 0 and 1. These values are appropriate because the
chance of failure cannot exceed 1 or be less than 0. If the generated random number is greater than the calculated chance of failure, the task
succeeds. This method ensures that a higher chance of failure makes it more difficult for the task to succeed. The number of failed and successful
tasks within each request execution is recorded. If not all tasks in a request are successfully executed before the specified request execution time
elapses, the request execution fails. Additionally, within that time frame, a task may fail, be reassigned to another robot, and then be successfully
executed after reassignment. This is why the number of successful and failed task executions is recorded for all scenarios examined

Request completion time

This metric measures the time taken to complete the execution of a request. A request fails if the timer runs out before all tasks in the request are
completed or if there are no plans blueprint to execute the request. If a request fails due to the unavailability of plans blueprint, RCT is recorded

measure the duration required to execute requests

as zero. However, if a request fails due to the timer running out, the allocated request execution time is recorded. Since the task allocation
process varies across different architectures, and varying levels of human involvement can impact task execution outcomes, it is crucial to

significant difference in the number of failed tasks). Figure 11
shows the plot of the mean failure number for varying numbers
of robots and scenarios. Only significant differences are shown.
Increasing the number of robots is advantageous, but only up to
a certain point. Post hoc pairwise comparisons of the number of
failed tasks for different levels of human involvement (no, HC, and
HI), using Bonferroni adjustment, showed a significant difference
between all pairs of groups. Trials without human involvement had
more failed tasks than the trials with human collaboration (Mean
difference = 2.77, SE = 0.26, p <.001), but fewer than trials with
human intervention (mean difference = -9.11, SE = 0.26, p < .001).
Furthermore, the human collaboration group had fewer failed tasks
than the human intervention group (mean difference = -11.88, SE =
0.26, p < .001)

For the combination of system architecture and levels of human
involvement (C, C_HC, C_HI, D, D_HC, and D_HI), normality
tests using the Shapiro-Wilk test indicated that the assumption
of normality was violated for all six groups. A Kruskal-Wallis
test revealed a statistically significant difference in failed tasks
among the six architecture - human involvement role groups,
1*(5) = 648.21,p < .001. Mann-Whitney U tests were carried out on
failed tasks between the groups. Figure 11B shows the significant
comparisons.

4.3.3 Request completion time

We define the Request Completion Time (RCT) as the time
taken to complete each request. RCT depends on the number of
task execution failures, which could be another significant factor
distinguishing each scenario. An ideal scenario would involve all
tasks being successfully executed on first attempt, in which case RCT
should be identical across all scenarios. However, this is not the case
since scenarios affect task execution outcomes. We set the maximum

Frontiers in Robotics and Al

15

allowable value for RCT at 60 s; requests exceeding this time limit
are considered failed. Figure 12 shows the boxplots of the request
completion time for all scenarios.

Test of normality shows that the average request completion time
for the different scenarios explored followed a normal distribution.
Mauchly’s test, ¥*(5)=6.212, p=0.286 did not indicate any
violation of sphericity for the number of robots in the MRT.
However, Mauchly’s test, X2(14) =30.095, p=0.008 indicated
violation of sphericity for the scenarios. The interaction between
the number of robots and scenario also violated the assumption of
sphericity y*(119) = 163.662, p = 0.006.

A linear mixed-effects model was used to examine the effects
of architecture, human involvement, the number of robots in the
MRT and their interactions on requests completion time. The
analysis revealed a significant main effect of different levels of
human involvement (F(2,936) = 322.778,p < .001), and the number
of robots in the MRT (F(3,936) = 68.037,p < .001). However, there
was no significant effect of architecture on request completion time
(F(1,936) = .067,p = .796).

The interaction between architecture and levels of human
involvement (scenarios) (F(2,936)=3.131,p=.044), as well as
between human involvement and number of robots in the
MRT (F(6,936) =9.830,p <.001) was significant. However, the
architecture by number of robots in the MRT interaction was
not significant (F(3,936) = 1.529,p = .205). In addition, the three-
way interaction between system architecture, levels of human
involvement, and the number of robots in the MRT was significant
(F(6,936) = 3.676,p = .001). This indicates that the combined effect
of human involvement and number of robots in the MRT on the
completion time of requests depended on the architecture.

Pairwise comparisons of estimated marginal means (with
Bonferroni correction) showed significant difference in requests

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

TABLE 5 Evaluation results for all scenarios.

10.3389/frobt.2025.1526287

Scenario Robots No. No. No. failed Request
successful successful IENS completion
requests tasks time
mean SD mean SD an SD n SD

4 5.85 0.700 14.73 0.877 9.50 3.566 273.93 36.544
6 6.32 0.764 15.23 0.947 7.40 3.622 251.28 39.491
C: centralised architecture
8 6.45 0.597 15.40 0.709 6.20 2.653 244.38 28.556
10 6.45 0.677 15.32 0.971 6.33 2.965 236.38 33.695
4 6.37 0.705 15.15 1.210 5.25 3.028 246.68 32.904
6 6.75 0.439 15.75 0.439 4.18 2.135 222.10 23.872
C_HC: centralised architecture human collaboration
8 6.65 0.483 15.53 0.784 4.55 2.353 229.55 23.834
10 6.88 0.404 15.83 0.675 3.55 2.207 211.73 25.211
4 3.85 1.122 11.22 1.874 17.90 2.790 315.95 42.888
6 5.57 0.874 14.33 1.207 18.55 4.266 301.25 36.060
C_HI: centralised architecture human intervention
8 6.35 0.700 15.17 1.010 15.00 3.382 271.65 29.955
10 6.20 0.992 14.90 1.297 14.18 3.551 263.35 33.388
4 5.85 0.700 14.65 1.122 8.35 3.527 251.60 31.740
6 6.22 0.660 14.98 1.209 6.55 3.071 243.60 29.828
D: decentralised architecture
8 6.50 0.679 15.45 0.846 5.55 2.669 239.55 27.852
10 6.32 0.656 15.18 0.984 6.45 3.021 243.53 32.429
4 6.45 0.714 15.43 0.747 6.00 3.623 245.55 34.127
6 6.68 0.526 15.67 0.526 3.90 3.463 216.52 30.277
D_HC: decentralised architecture human collaboration
8 6.68 0.526 15.58 0.781 3.30 2.198 226.48 25.919
10 6.60 0.545 15.57 0.594 345 2.396 219.13 23.724
4 4.63 1.295 10.03 2.537 14.53 2.582 343.17 47.132
6 5.60 1.033 14.35 1.388 17.60 3.380 290.20 35.691
D_HI: decentralised architecture human intervention
8 5.95 0.749 14.58 1.217 16.78 2.815 282.77 29.052
10 6.10 0.810 14.98 0.974 14.68 3.562 259.63 30.628

completion time across all levels of human involvement. Simulation
trials with human intervention condition (HI) had significantly
longer completion times than trials in human collaboration
condition (HC) (mean difference = 63.78, SE = 2.56, p <.001, 95%
CI [57.64, 69.92]). The condition without any form of human
involvement had significantly shorter completion time than the HI
condition (mean difference = 42.97, SE = 2.56, p <.001, 95% CI
[36.83, 49.11]). The human collaboration condition (HC) resulted
in significantly faster request completion time than both HI (mean

Frontiers in Robotics and Al

16

difference = —63.781, SE = 2.56, p <.001, 95% CI [-69.92,-57.64])
and the scenario without human involvement (mean difference =
~20.812, SE = 2.56, p < .001, 95% CI [-26.953, —14.672])

A post hoc pairwise comparison using the Bonferroni correction
was also carried out between the different instances of number
of robots and scenarios. Figures 13A,B show the plot of average
request completion time for varying numbers of robots and
scenarios respectively. They also show the significance of pairwise
comparisons. Only the significant differences are shown.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al. 10.3389/frobt.2025.1526287

Average number of Successful Requests per Scenario

w
(%) 7 *
L4
[T}
g 6 ® 0
g
o<
-5 L] U
3 »
a
© 5 m
3
n 3 2 o 3
u
5]
@
a?
E
Z1
< < < < < < © © © © © © © © © @ © ® o o =) =) o
| | | | | | { | | | | \ { { \ 1 { oA a8 8 A A
Q - - — — — — - (=]
2 I o Q I, © e S e g e © g £ ° g I o z o | z
o v o o o o a o o o o o gu o Z| a
Scenarios

Average number of Successful Tasks per Scenario

a e s 0 58 = 5 w3 a1 @z 2
© °, o 5 S o o o s o Zdt
3 2 o # g g e D T R
[0} 5 »
0 o o
B 8 10.0 had T » 2
Y 100
=]
a
Y—
19
v 715
@
a
£
=]
Z 50
< < <« < < < © © © © © © © © © © ©, 0 =] =} =) = =3 o
1 I | 1 | | U 1 I 1 I 1 | | 1 I | | — - — - —
(8] = [=} = () = a = = = -
g| II g| II ¥| :I g II °© ¥| II e % II UI Ul EI QI %I EI
o v o o J o o o oo o o 3: o oo
Scenarios
Average number of Failed Tasks per Scenario
40
@ 30 !
° ») 2
K] S | o] 8,
8 2 I
C ““c_; - & -
g | | I I
J .| T A 1 o
g * ’ ! + ! * ! * g i I
3
0
<, < < < < < © © © © © © © © © © © © o o o =] o o
! ! | ! |] ! | | ! | | 1 1 | 1 | = — = — a
o = [a] = o = [=] = = = —
g T g I g2 I 2 I o g I a9 e o il o z
oo o a o v o o J o o o S0 g
Scenarios
FIGURE 10

Simulation outcome. (A) Average number of successful requests. (B) Average number of successful tasks. (C) Average number of failed tasks. Labels
follow the convention: [architecture type (C / D)]_[use case (NO/HI/HC)]_[number of robots (4/6/8/10)].

We further compared all the scenarios using a paired samples 5 Discussion
t-test for the different numbers of robots in the MRT and their

corresponding scenarios. Figures 12A,B show the paired samples Results show that the number of robots in the Multi-Robot Team
t-test carried out to compare all the scenarios for the different ~ (MRT) was a significant factor influencing task execution success or
categories of robots in the MRT. failure, and in return request execution success. By increasing the

Frontiers in Robotics and Al 17 frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

12

Changes in the number of failed tasks for different numbers of robots in the MRT

p<.001

p<.001

10

p=.035

Number of failed tasks
o

4 6

18
16
14

12
p=.015

10
p=.015

Number of failed tasks

6 p=.015

C C_HC

C_HI

FIGURE 11

Number of robots in the MRT

Changes in the number of failed tasks for different scenarios

Mean number of failed tasks. (A) between different numbers of robots in the MRT (B) between different scenarios.

8 10

p=.015

p=.015

p=.015

D D_HC

D_HI

Scenarios

number of robots in the MRT, we were able to consistently reduce
task failures. This may be due to the cumulative effects of radiation
exposure on robots, which impacts their success in task execution,
as radiation dosage is factored into calculating each robot’s failure
probability. As the number of robots increases, especially with the
addition of those with similar capabilities, tasks are assigned to
robots with a lower chance of failure, thereby reducing the number
of failed tasks. With the introduction of human collaboration and
human intervention, results showed that they had different effects on
the number of failed tasks. While human collaboration reduced the
number of failed tasks, human intervention significantly increased
the number of failed tasks. The significant difference in the number

Frontiers in Robotics and Al

18

of failed tasks between scenarios with human collaboration and
human intervention is as a result of the human operator taking over
robots to execute tasks different from their originally assigned tasks,
leading to the failure of the assigned tasks.

Similarly, number of robots in the MRT significantly affected
the request completion time (RCT). Generally, increasing the
number of robots in the MRT reduced the RCT. As the number
of robots in the MRT increases, task execution failures decrease,
which in turn reduces the request completion time, as tasks will not
need to be reallocated to other robots for completion. Specifically,
for centralised architectures, increasing the number of robots
significantly reduced the RCT, whereas this effect was not observed

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

10.3389/frobt.2025.1526287

Request Completion Time (RCT) per Scenario

450
O
© 400
£ :
E ox —
s T —_— %
8
Q
A 3 300 T
&
O 250
o
[T}
8 200
z - 1 - 1 L 1 1
o
150
c4 C6 cs8 c10 D 4 D_6 D8 D_10
Scenarios
Request Completion Time (RCT) per Scenario
450 T
0) N T —
O 400 2 I
E — - "
'E 350 T e — — T
£ - — T
% 300 T [o — H
B § T F] . I
O 250 T
2 1 I 1
3 20 °
o l I | S— - i T T
g) _») [A —
150 ° - i
< < <« © © © o © © = o o < < < © © © © © © o o o
I | I (| | - - 1 I 1 | 1 —
v oQ E: o %I E: S E: o o ;. a g E: o g E: a %l s o :| =
o 1) o o J o 2:)| o a o a o a' o' z| §|
Scenarios

Black: There is no significant statistical difference in the average request completion time between scenarios

Brown: There is significant statistical difference in the average request completion time between scenarios

FIGURE 12

Paired Samples t-test (A) scenarios without human involvement for request completion time (B) scenarios with human involvement for request

completion time.

in decentralized architectures. Human collaboration reduced
the request completion time (RCT), while human intervention
increased the RCT, regardless of the number of robots in the
MRT. Keeping the number of robots in the MRT constant, there
was a significant difference in request completion times between
centralised and decentralised architectures when the number
of robots was low. However, as the number of robots in the
MRT increased, the request completion times for centralised and
decentralised architectures became similar. The reason for the
differences in RCT between the two architectures with lower number
of robots in the MRT may be because centralised architecture has
more access to system data and may be able to allocate tasks better,
especially when more than one task has to be allocated to a robot.
This may be investigated further in future studies.

Given sufficient time and an unlimited number of capable robots
in the MRT, all requests will eventually be successfully executed.
However, in real-world scenarios, MRTs do not have indefinite

Frontiers in Robotics and Al

19

request execution time and unlimited numbers of capable robots.
As such, decisions must be made regarding system architecture,
number of robots in the MRT, and different levels of human
involvement. As the number of robots in the MRT increases, the
number of successful request executions also increases. Request
executions fail if all tasks within a request are not successfully
executed within the allocated time.

Since task allocations are made by calculating the robot’s chance
of failure, which depends on factors such as radiation exposure,
task difficulty, and the level of human involvement, having a higher
number of robots in the MRT ensures that only robots with higher
chances of success are assigned tasks. Conversely, if the number of
robots in the MRT is low, tasks will be allocated to the available
robots that can execute the tasks, leading to significantly increased
radiation exposure for the robots. This increased exposure raises the
chances of robots getting decommissioned or having to leave the
MRT to recharge their batteries. When this happens, if the MRT does

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al. 10.3389/frobt.2025.1526287

Reduction in Request Completion Time as Number of Robots Increase
p<0.001
| 1
p<0.001
290 J L
—_ p<0.001
< 280 S e !
L)
E a0
p<0.001
[
A O 260 r 1
5 p=0.005
o 250 r 1
g
O 240
L4
o
g 230
o
& 220
210
4 6 8 10
Number of Robots in the MRT
Average Request Completion Time for Scenarios
p<0.001
! p<0.001 !
[1
p<0.001
[|
p<0.001
350 I 1
O p<0.001 p<0.001
; 300 p<0.001
—p<0.00l =
£ |
=
c 250
B =
o]
5 200
g
S 150
L
]
g 100
9
£ 50
0
C C_HC C_HI D D_HC D_HI
Scenarios
FIGURE 13
Mean request completion time (A) between different numbers of robots in the MRT (B) between different scenarios.

not have capable robots to whom the task would be assigned to, the ~ was low. This is because when the number of robots in the MRT
request fails. is low, there are fewer robots to assign task to, which may lead to

Human collaboration reduces the number of failed tasks by ~ having to assign more than one task to a robot. When tasks fail,
reducing the chances of failure. The effect of different levels of human task reassignment will also be more difficult with fewer number
involvement was significant when the number of robots in the MRT of robots in the MRT. Our results showed that having more than

Frontiers in Robotics and Al 20 frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

8 robots did not further increase the number of successful task
executions in our simulation as that was found to be the limit of
redundancies introduced in our simulation by having robots with
similar capabilities.

5.1 Design recommendations

The simulation results discussed may be used in the formulation
of design guidelines for developing human robot interaction - MRTs
(HRI-MRT) systems:

1. If one wants to reduce task failures, increase number of robots, up
to a point. As shown in the results from Section 4.3.2, regardless
of the architecture used, a higher number of task failures was
observed when fewer robots were involved in the multi-robot
team (MRT). However, after a certain threshold, increasing the
number of robots in the MRT does not have any significant
effect on reducing no of failed tasks.

. If you can, avoid human intervention. As shown in Table 5,
scenarios involving human intervention had the highest
number of failed tasks and the least number of successful tasks
and requests.

3. Human collaboration decreases task failures and request
completion time. As described in the study, human collaboration
reduces the chance of failure in the execution of a task, hence
resulting in decreased task failures and request completion time.

. Simulations shows problems will occur, so plan for it. The
different scenarios and the number of robots in the MRT
will introduce different problems in the system. For instance,
human intervention, where a human operator takes control of a
robot to perform a task other than its assigned one, can lead to
an increase in task failures. This may result in longer request
completion times and more failed task executions. Running
the simulation can therefore reveal the possible problems that
may arise as a result of the different scenarios and no of robots
in the MRT.

5. Redundancies should be implemented to prevent system failures.
We introduced redundancies into the system by increasing
the capabilities of each robots and adding robots with similar
capabilities into the MRT. Increasing the capabilities of each
robot ensures that each robot may be assigned a higher number
of tasks, which increases the chance that each request will
be executed. Likewise, in increasing the number of robots in
the MRT, we introduced robots with similar capabilities to
reduce the rate at which robots deregister to recharge or get
decommissioned.

. Impact of system architecture is higher with lower number of robots
in the MRT. Comparing results for centralised and decentralised
architectures in Table 5; Figure 12, the number of failed tasks
and the request completion time were significantly higher in
centralised architecture than decentralised architecture with 4
robots in the MRT. As the number of robots in the MRT was
increased, there was no significant differences in the measured
performance parameters between the 2 architectures. Therefore,
in order to compare the effect of different architectures, reduce
the number of robots in the MRT.

Frontiers in Robotics and Al

21

10.3389/frobt.2025.1526287

5.2 Limitations and future work

Our study was limited by the simulation environment, which
does not capture all real-world variables. For example, the
simulation environment did not take into account potential
hardware challenges that may affect system performance. We
suggest that this is taken into account in future research and
real-world implementations. In addition, more real-world variables
may also be simulated and accounted for. The operator cognitive
load may also be simulated to provide better understanding of
the interaction between the human and team of robots from
the human point of view. Furthermore, to enhance realism, the
simulation may incorporate decision variability or the likelihood
of errors. To effectively address the research questions posed in
this paper, we limited the number of parameters included in the
simulation and made assumptions where necessary. Additionally,
due to computational constraints, certain behaviors were abstracted
and treated as black boxes.

In this paper, we also assumed the effect of factors such as
radiation exposure. However, the effects of radiation exposure
on real robot hardware are not fully understood and should be
further investigated to ascertain how radiation exposure would
affect robot performance and the electronic circuitry of the MRT
components. This paper also does not explicitly simulate other
failure modes such as communication failures, task execution
faults, sensor degradation, or timing jitters which are all relevant
in real-world multi-robot teams. Although some of these modes
were considered when we introduced the chance of failure in the
simulation, additional parameters may be introduced to account for
these failure modes.

Another limitation of this research is with regard to
the system architectures examined. Other architectures of
interest may also be simulated in future research for thorough
comparisons. In addition, the types of tasks and the level of human
involvement were controlled, which may not reflect all operational
scenarios.

To improve simulation efficiency, it is important to account for
variability in task execution and request completion times, as similar
tasks may not be performed identically in real-world settings due
to a range of influencing factors. These real-world uncertainties
can significantly impact both task execution and task completion
times. Variability in task execution and completion times may be
introduced into the simulation via stochastic task durations or
execution of delay variability.

While we hope that the design and results presented in
this paper are applicable to other contexts, it is important
to acknowledge the contextual limitations of our approach.
Certain simulation design decisions were tailored to the
specific requirements of our application domain. Although the
overall agent-based design is transferable, adaptations may be
necessary to align with the characteristics and constraints of
other domains.

6 Conclusion and outlook

The need to simultaneously execute tasks in application
scenarios where robotic solutions are employed necessitates the

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

use of MRTs. This requirement is also driven by the fact that it
is challenging to have individual robots capable of performing all
possible tasks, hence the need to employ a team of robots with
specialized functionalities. Additionally, robots are designed with
features that allow them to operate in specialized terrains with
varying levels of autonomy.

Although different levels of autonomy may be employed as
robots execute tasks, some use-cases insist on having human
involvement in the task execution process. This introduces the
possibility of human intervention when there is system failure.
One such application that requires a human in the loop is nuclear
decommissioning and operations in nuclear power stations, where
robot teleoperation is employed to reduce worker exposure to
radiation. The safety requirements in such environments necessitate
different levels of human involvement, even when teams of robots
are employed. Describing how a team of robots would perform with
the introduction of a human operator remains a challenging task.
Therefore, it is important to investigate how this may affect the task
execution performance of MRTs.

We implemented a simulation framework using the Java Agent
DEvelopment (JADE) framework to compare the request execution
performance of centralised and decentralised architectures, as well
as different levels of human involvement (no human involvement,
human collaboration, and human intervention). We also compared
performance based on different numbers of robots (4, 6, 8, 10) in the
MRT. The performance metrics employed include request execution
outcomes (success or failure), number of successful tasks, number of
failed tasks, and request completion time (RCT).

All relevant components of the human-in-the-loop MRT were
modeled as agents with defined functionalities and behaviors. Each
agent is able to communicate with all other agents, simulating real-
world functionalities. The different agents in our framework include
the Human Operator, Requests Manager, Planner, Robots Manager,
and Robots.

The design guidelines and findings outlined in Sections 4, 5 can
assist researchers and system developers aiming to deploy MRTs in
human-in-the-loop scenarios, helping guide their decision-making
processes. Additionally, we have shown that simulating different use
cases can significantly reduce the cost and time otherwise spent on
purchasing robots and implementing MRTs to obtain results.

Future research should focus on exploring varying task
complexities and more diverse operational environments. Examining
different coordination and task allocation algorithms could also offer
valuable insights into optimizing the performance of robot teams.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

JB: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Visualization, Writing -

Frontiers in Robotics and Al

22

10.3389/frobt.2025.1526287

original draft, Writing - review and editing. MG: Conceptualization,
Methodology,
Resources, Supervision, Validation, Visualization, Writing - review

Funding acquisition, Project administration,
and editing. PB: Conceptualization, Methodology, Resources,
Supervision, Validation, Visualization, Writing - review and editing,

Funding acquisition.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was
supported by UK Engineering and Physical Sciences Research
Council (EPSRC) for the Robotics for Nuclear Environments
Programme Grant (grant no. EP/P01366X/1).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member
of Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material
The this

found online at: https://www.frontiersin.org/articles/10.3389/
frobt.2025.1526287/full#supplementary-material

Supplementary Material for article can be

SUPPLEMENTARY FIGURE S1
BPMN Notations used for modelling different architectural scenario.

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://www.frontiersin.org/articles/10.3389/frobt.2025.1526287/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2025.1526287/full#supplementary-material
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

References

Agmon, N, Kraus, S., and Kaminka, G. A. (2008). “Multi-robot perimeter patrol in
adversarial settings,” in 2008 IEEE international conference on robotics and automation,
2339-2345. doi:10.1109/ROBOT.2008.4543563

Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schaffer, A., Kosuge, K., and Khatib,
0. (2017). Progress and prospects of the human-robot collaboration. Aut. Robots 42 (5),
957-975. d0i:10.1007/S10514-017-9677-2

Al-Hussaini, S., Gregory, J. M., Dhanaraj, N., and Gupta, S. K. (2021). “A simulation-
based framework for generating alerts for human-supervised multi-robot teams in
challenging environments,” in 2021 IEEE International Symposium on Safety, Security,
and Rescue Robotics, SSRR 2021, 168-175. doi:10.1109/SSRR53300.2021.9597684

An, X., Wu, C,, Lin, Y,, Lin, M., Yoshinaga, T., and Ji, Y. (2023). Multi-robot systems
and cooperative object transport: communications, platforms, and challenges. IEEE
Open J. Comput. Soc. 4, 23-36. doi:10.1109/0JCS.2023.3238324

Azpurua, H., Saboia, M., Freitas, G. M., Clark, L., akbar Agha-mohammadi, A.,
Pessin, G., et al. (2023). A survey on the autonomous exploration of confined
subterranean spaces: perspectives from real-word and industrial robotic deployments.
Robotics Aut. Syst. 160, 104304. doi:10.1016/J. ROBOT.2022.104304

Baniqued, P. D. E., Bremner, P, Sandison, M., Harper, S., Agrawal, S., Bolarinwa, J.,
etal. (2024). Multimodal immersive digital twin platform for cyber-physical robot fleets
in nuclear environments. J. Field Robotics 41, 1521-1540. doi:10.1002/ROB.22329

Becker, L. B., Downs, A., Schlenoff, C., Albrecht, J., Kootbally, Z., Ferrando, A.,
et al. (2023). Using a bdi agent to represent a human on the factory floor of the ariac
2023 industrial automation competition. Lect. Notes Comput. Sci. Incl. Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinforma. 14282 LNAI, 214-227. doi:10.1007/978-3-031-
43264-4_14

Bellifemine, E L., Caire, G., and Greenwood, D. (2007). Developing multi-agent
systems with jade, 286.

Bolarinwa, J., Eimontaite, I., Dogramadzi, S., Mitchell, T., and Caleb-Solly, P. (2019).
“The use of different feedback modalities and verbal collaboration in tele-robotic
assistance,” in IEEE International Symposium on Robotic and Sensors Environments,
ROSE 2019 - Proceedings. doi:10.1109/ROSE.2019.8790412

Bolarinwa, J., Smith, A., Aijaz, A., Stanoev, A., Sooriyabandara, M., and Giuliani,
M. (2022). “Haptic teleoperation goes wireless: evaluation and benchmarking
of a high-performance low-power wireless control technology, in Ssrr 2022 -
IEEE international symposium on safety, security, and rescue robotics, 300-307.
doi:10.1109/SSRR56537.2022.10018764

Borshchev, A. (2014). Multi-method modelling: anylogic. Discrete-Event Simul. Syst.
Dyn. Manag. Decis. Mak., 248-279. doi:10.1002/9781118762745.ch12

Boschetti, G., Bottin, M., Faccio, M., and Minto, R. (2021). Multi-robot multi-
operator collaborative assembly systems: a performance evaluation model. J. Intelligent
Manuf. 32, 1455-1470. doi:10.1007/s10845-020-01714-7

Camunda (2025). Camunda modeler: process modeling using bpmn.

Cao, Y. U, Fukunaga, A. S., and Kahng, A. B. (1997). Cooperative mobile robotics:
antecedents and directions. Aut. Robots 4, 7-27. d0i:10.1023/a:1008855018923

Carlin, A., Ayers, J., Rousseau, J., and Schurr, N. (2010). “Agent-based coordination of
human-multirobot teams in complex environments” in AAMAS 10: Proceedings of the
9th International Conference on Autonomous Agents and Multiagent Systems: Industry
track. 1747-1754.

Chakraa, H., Guérin, E, Leclercq, E., and Lefebvre, D. (2023). Optimization
techniques for multi-robot task allocation problems: review on the state-of-the-art.
Robotics Aut. Syst. 168, 104492. doi:10.1016/]. ROBOT.2023.104492

Chang, Y, Tian, Y., How, J. P, and Carlone, L. (2021). “Kimera-multi: a system for
distributed multi-robot metric-semantic simultaneous localization and mapping,” in
2021 IEEE international conference on robotics and automation (ICRA), 11210-11218.
doi:10.1109/ICRA48506.2021.9561090

Chen, L, Liang, C., Yuan, S., Cao, M., and Xie, L. (2025). Relative localizability
and localization for multi-robot systems. IEEE Trans. Robotics 41, 2931-2949.
doi:10.1109/TRO.2025.3544103

Cummings, M., Clare, A., and Hart, C. (2010). The role of human-automation
consensus in multiple unmanned vehicle scheduling. Hum. Factors 52, 17-27.
doi:10.1177/0018720810368674

Darmanin, R. N., and Bugeja, M. K. (2017). “A review on multi-robot
systems categorised by application domain,” in 2017 25th mediterranean
conference on control and automation (MED), 701-706. doi:10.1109/MED.2017.
7984200

Dawson, S., Wellman, B. L., and Anderson, M. (2010). “Using simulation to predict
multi-robot performance on coverage tasks,” in IEEE/RS] 2010 International Conference
on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 202-208.
doi:10.1109/TR0OS.2010.5650679

Desai, M., Kaniarasu, P., Medvedev, M., Steinfeld, A., and Yanco, H. (2013). Impact
of robot failures and feedback on real-time trust. ACM/IEEE Int. Conf. Human-Robot
Interact., 251-258. doi:10.1109/HRI.2013.6483596

Frontiers in Robotics and Al

10.3389/frobt.2025.1526287

Dorri, A., Kanhere, S. S., and Jurdak, R. (2018). Multi-agent systems: a survey. IEEE
Access 6, 28573-28593. doi:10.1109/ACCESS.2018.2831228

Du, H,, Li, S., and Ding, S. (2013). Bounded consensus algorithms for multi-agent
systems in directed networks. Asian J. Control 15, 282-291. doi:10.1002/asjc.533

Duan, Y., Cui, B., and Xu, X. (2012). A multi-agent reinforcement learning approach
to robot soccer. Artif. Intell. Rev. 38, 193-211. doi:10.1007/s10462-011-9244-8

Freedy, A., DeVisser, E., Weltman, G., and Coeyman, N. (2007). “Measurement
of trust in human-robot collaboration,” in Proceedings of the 2007 international
symposium on collaborative technologies and systems, CTS, 106-114.
doi:10.1109/CTS.2007.4621745

Fu, J, and Wang, J. (2014). Adaptive coordinated tracking of multi-agent
systems with quantized information. Syst. and Control Lett. 74, 115-125.
doi:10.1016/j.sysconle.2014.08.009

GAMA (2023). Gama platform — gama platform. Available online at: https://
gama-platform.org/.

Gao, E, Cummings, M. L., and Solovey, E. T. (2014). Modeling teamwork in
supervisory control of multiple robots. IEEE Trans. Human-Machine Syst. 44, 441-453.
doi:10.1109/THMS.2014.2312391

Gao, L, Liao, X,, Li, H., and Chen, G. (2016). Event-triggered control for multi-agent
systems with general directed topology and time delays. Asian J. Control 18, 945-953.
doi:10.1002/asjc.1166

Garcia, A., Oliver, J., and Gosch, D. (2010). “An intelligent agent-based distributed
architecture for smart-grid integrated network management,” in IEEE local computer
network conference, 1013-1018.

Giachetti, R. E., Marcelli, V., Cifuentes, J., and Rojas, J. A. (2013). An agent-based
simulation model of human-robot team performance in military environments. Syst.
Eng. 16, 15-28. d0i:10.1002/SYS.21216

Gielis, J., Shankar, A., and Prorok, A. (2022). A critical review of communications in
multi-robot systems. Curr. Robot. Rep. 3, 213-225. doi:10.1007/s43154-022-00090-9

Gu, D., and Wang, Z. (2009). Leader—follower flocking: algorithms and experiments.
IEEE Trans. Control Syst. Technol. 17, 1211-1219. doi:10.1109/TCST.2008.2009461

Guo, G., Ding, L., and Han, Q.-L. (2014). A distributed event-triggered transmission
strategy for sampled-data consensus of multi-agent systems. Automatica 50, 1489-1496.
doi:10.1016/j.automatica.2014.03.017

Harbin, J., Gerasimou, S., Matragkas, N., Zolotas, A., and Calinescu, R. (2021).
“Model-driven simulation-based analysis for multi-robot systems,” in Proceedings - 24th
international conference on model-driven engineering languages and systems, MODELS
(Fukuoka, Japan). IEEE, 331-341. doi:10.1109/MODELS50736.2021.00040

Hjorth, S., and Chrysostomou, D. (2022). Human-robot collaboration in industrial
environments: a literature review on non-destructive disassembly. Robotics Computer-
Integrated Manuf. 73, 102208. doi:10.1016/].RCIM.2021.102208

Humann, J.,, and Pollard, K. A. (2019). “Human factors in the scalability of
multirobot operation: a review and simulation,” in Conference proceedings - IEEE
international conference on systems, man and cybernetics 2019-October, 700-707.
doi:10.1109/SMC.2019.8913876

Humann, J,, Fletcher, T. L., and Gerdes, J. (2023). Modeling, simulation, and
trade-off analysis for multirobot, multioperator surveillance. Syst. Eng. 26, 627-640.
doi:10.1002/SYS.21685

Inigo-Blasco, P, Diaz-del Rio, E, Romero-Ternero, M. C., Cagigas-Muniz, D., and
Vicente-Diaz, S. (2012). Robotics software frameworks for multi-agent robotic systems
development. Robotics Aut. Syst. 60, 803-821. doi:10.1016/j.robot.2012.02.004

Jade (2023). Jade site — java agent development framework. Available online at:
https://jade-project.gitlab.io/.

Kaufmann, M., Sheridan, K., and Beltrame, G. (2021). “Towards human-
in-the-loop autonomous multi-robot operations,” in Companion publication of
the 2021 international conference on multimodal interaction (New York, NY,
USA: Association for Computing Machinery), 341-343. ICMI 21 Companion.
doi:10.1145/3461615.3486573

Kim, Y, and Matson, E. T. (2016). A realistic decision making for task
allocation in heterogeneous multi-agent systems. Procedia Comput. Sci. 94, 386-391.
doi:10.1016/j.procs.2016.08.059

Kwa, H. L., Kit, J. L., and Bouffanais, R. (2022). Balancing collective exploration and
exploitation in multi-agent and multi-robot systems: a review. Front. Robotics AI 8,
771520. doi:10.3389/frobt.2021.771520

Lein, A., and Vaughan, R. T. (2009). “Adapting to non-uniform resource
distributions in robotic swarm foraging through work-site relocation,” in 2009 IEEE/RS]
international conference on intelligent robots and systems, 601-606. doi:10.1109/IROS.
2009.5354693

Li, S, Du, H,, and Lin, X. (2011). Finite-time consensus algorithm for multi-
agent systems with double-integrator dynamics. Automatica 47, 1706-1712.
doi:10.1016/j.automatica.2011.02.045

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://doi.org/10.1109/ROBOT.2008.4543563
https://doi.org/10.1007/S10514-017-9677-2
https://doi.org/10.1109/SSRR53300.2021.9597684
https://doi.org/10.1109/OJCS.2023.3238324
https://doi.org/10.1016/J.ROBOT.2022.104304
https://doi.org/10.1002/ROB.22329
https://doi.org/10.1007/978-3-031-43264-4_14
https://doi.org/10.1007/978-3-031-43264-4_14
https://doi.org/10.1109/ROSE.2019.8790412
https://doi.org/10.1109/SSRR56537.2022.10018764
https://doi.org/10.1002/9781118762745.ch12
https://doi.org/10.1007/s10845-020-01714-7
https://doi.org/10.1023/a:1008855018923
https://doi.org/10.1016/J.ROBOT.2023.104492
https://doi.org/10.1109/ICRA48506.2021.9561090
https://doi.org/10.1109/TRO.2025.3544103
https://doi.org/10.1177/0018720810368674
https://doi.org/10.1109/MED.2017.7984200
https://doi.org/10.1109/MED.2017.7984200
https://doi.org/10.1109/IROS.2010.5650679
https://doi.org/10.1109/HRI.2013.6483596
https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1002/asjc.533
https://doi.org/10.1007/s10462-011-9244-8
https://doi.org/10.1109/CTS.2007.4621745
https://doi.org/10.1016/j.sysconle.2014.08.009
https://gama-platform.org/
https://gama-platform.org/
https://doi.org/10.1109/THMS.2014.2312391
https://doi.org/10.1002/asjc.1166
https://doi.org/10.1002/SYS.21216
https://doi.org/10.1007/s43154-022-00090-9
https://doi.org/10.1109/TCST.2008.2009461
https://doi.org/10.1016/j.automatica.2014.03.017
https://doi.org/10.1109/MODELS50736.2021.00040
https://doi.org/10.1016/J.RCIM.2021.102208
https://doi.org/10.1109/SMC.2019.8913876
https://doi.org/10.1002/SYS.21685
https://doi.org/10.1016/j.robot.2012.02.004
https://jade-project.gitlab.io/
https://doi.org/10.1145/3461615.3486573
https://doi.org/10.1016/j.procs.2016.08.059
https://doi.org/10.3389/frobt.2021.771520
https://doi.org/10.1109/IROS.2009.5354693
https://doi.org/10.1109/IROS.2009.5354693
https://doi.org/10.1016/j.automatica.2011.02.045
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Bolarinwa et al.

Li, Z., Ren, W,, Liu, X., and Fu, M. (2012). Consensus of multi-agent systems with
general linear and lipschitz nonlinear dynamics using distributed adaptive protocols.
IEEE Trans. Automatic Control 58, 1786-1791. doi:10.1109/tac.2012.2235715

Li, H., Ming, C., Shen, S., and Wong, W. K. (2014). Event-triggered control for multi-
agent systems with randomly occurring nonlinear dynamics and time-varying delay. J.
Frankl. Inst. 351, 2582-2599. doi:10.1016/j.jfranklin.2014.01.004

Liu, Z., You, X, Yang, H., and Zhao, L. (2015). Leader-following consensus of
heterogeneous multi-agent systems with packet dropout. Int. J. Control, Automation
Syst. 13, 1067-1075. d0i:10.1007/s12555-014-0298-7

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005).
MASON: a multiagent simulation environment. Simulation 81 (7), 517-527.
doi:10.1177/0037549705058073

Maoudj, A., Bouzouia, B., Hentout, A., and Toumi, R. (2015). “Multi-agent approach
for task allocation and scheduling in cooperative heterogeneous multi-robot team:
simulation results,” in Proceeding - 2015 IEEE international conference on industrial
informatics, INDIN 2015, 179-184. doi:10.1109/INDIN.2015.7281731

McKendrick, R., Shaw, T., de Visser, E., Sager, H., Kidwell, B., and Parasuraman, R.
(2014). Team performance in networked supervisory control of unmanned air vehicles:
effects of automation, working memory, and communication content. Hum. Factors 56,
463-475. doi:10.1177/0018720813496269

Mendonga, R., Marques, M. M., Marques, F, Lourengo, A., Pinto, E., Santana, P,, et al.
(2016). “A cooperative multi-robot team for the surveillance of shipwreck survivors at
sea,” in OCEANS 2016 MTS/IEEE Monterey, 1-6. doi:10.1109/OCEANS.2016.7761074

Miao, G., and Ma, Q. (2015). Group consensus of the first-order multi-
agent systems with nonlinear input constraints. Neurocomputing 161, 113-119.
doi:10.1016/j.neucom.2015.02.058

Mota, L., Reis, L. P, and Lau, N. (2011). Multi-robot coordination using
setplays in the middle-size and simulation leagues. Mechatronics 21, 434-444.
doi:10.1016/].MECHATRONICS.2010.05.005

North, M. J., Collier, N. T, and Vos, J. R. (2006). Experiences creating three
implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput.
Simul. (TOMACS) 16, 1-25. doi:10.1145/1122012.1122013

Object Management Group (2025). Unified modeling language (uml).

Olfati-Saber, R., and Murray, R. M. (2004). Consensus problems in networks of
agents with switching topology and time-delays. IEEE Trans. Automatic Control 49,
1520-1533. doi:10.1109/tac.2004.834113

Ota, J. (2006). Multi-agent robot systems as distributed autonomous systems. Adv.
Eng. Inf. 20, 59-70. doi:10.1016/j.2€1.2005.06.002

Panasetsky, D., and Tomin, N. (2013). “Using of neural network technology and
multi-agent systems to preventing large-scale emergencies in electric power systems,”
in 2013 4th international youth conference on energy (IYCE) (IEEE), 1-8.

Parker, L. (1998). Alliance: an architecture for fault tolerant multirobot cooperation.
IEEE Trans. Robotics Automation 14, 220-240. doi:10.1109/70.681242

Parker, L. E. (2008). Multiple Mobile robot systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 921-941. doi:10.1007/978-3-540-30301-5_41

Patel, J., and Pinciroli, C. (2020). “Improving human performance using mixed
granularity of control in multi-human multi-robot interaction,” in 2020 29th IEEE
international conference on robot and human interactive communication (RO-MAN),
1135-1142. doi:10.1109/RO-MAN47096.2020.9223553

Phanichnitinon, R., Hemwarangkoon, T., Polvichai, J., Boonpromma, T., and
Jarutekumporn, K. (2014). “Multi modular robots maneuver for geometry
formation control,” in 2014 IEEE 7th international workshop on computational
intelligence and applications (IWCIA), 195-200. doi:10.1109/TWCIA.2014.
6988105

Sadik, A. R., Taramov, A., and Urban, B. (2017). “Optimization of tasks
scheduling in cooperative robotics manufacturing via johnson’s algorithm case-study:
one collaborative robot in cooperation with two workers,” in Proceedings - 2017

Frontiers in Robotics and Al

24

10.3389/frobt.2025.1526287

IEEE conference on systems, process and control, ICSPC 2017 2018-January, 36-41.
doi:10.1109/SPC.2017.8313018

Sadik, A. R, Goerick, C., and Muehlig, M. (2019). “Modeling and simulation
of a multi-robot system architecture,” in Proceedings of the 2019 International
Conference on Mechatronics, Robotics and Systems Engineering, MoRSE 2019, 8-14.
doi:10.1109/MORSE48060.2019.8998662

Simmons, R., Singh, S., Hershberger, D., Ramos, J., and Smith, T. (2001). “First
results in the coordination of heterogeneous robots for large-scale assembly,” in
Experimental robotics VII. Editors D. Rus, and S. Singh (Berlin, Heidelberg: Springer
Berlin Heidelberg), 323-332.

Soriano, A., Bernabeu, E. J., Valera, A., and Vallés, M. (2013). “Multi-agent systems
platform for mobile robots collision avoidance,” in Advances on practical applications of
agents and multi-agent systems: 11th international conference, PAAMS 2013, Salamanca,
Spain, May 22-24, 2013. Proceedings 11 (Springer), 320-323.

Stancovici, A., Micea, M. V,, and Cretu, V. (2016). “Cooperative positioning system
for indoor surveillance applications,” in 2016 international conference on indoor
positioning and indoor navigation (IPIN), 1-7. doi:10.1109/IPIN.2016.7743584

Street, C., Mansouri, M., and Lacerda, B. (2023). Formal modelling for multi-robot
systems under uncertainty. Curr. Robot. Rep. 4, 55-64. d0i:10.1007/s43154-023-00104-0

Tisue, S., and Wilensky, U. (2004). Netlogo: a simple environment for modeling
complexity. Int. Conf. Complex Syst. (Citeseer) 21, 16-21.

Valenchon, N., Bouteiller, Y., Jourde, H. R., CHeureux, X., Sobral, M., Coffey, E. B.
J., et al. (2022). The portiloop: a deep learning-based open science tool for closed-loop
brain stimulation. PloS One 17, €0270696. doi:10.1371/journal.pone.0270696

Villani, V., Capelli, B., Secchi, C., Fantuzzi, C., and Sabattini, L. (2020). Humans
interacting with multi-robot systems: a natural affect-based approach. Aut. Robots 44,
601-616. doi:10.1007/s10514-019-09889-6

Vrancken, J., and Soares, M. D. S. (2009). A real-life test bed for multi-agent
monitoring of road network performance. Int. J. Crit. Infrastructures 5, 357-367.
doi:10.1504/ijcis.2009.029114

Wang, C., Xie, G., and Cao, M. (2014). Controlling anonymous mobile agents with
unidirectional locomotion to form formations on a circle. Automatica 50, 1100-1108.
doi:10.1016/j.automatica.2014.02.036

Wang, Y., Cheng, L., Hou, Z.-G., Yu,], and Tan, M. (2016). Optimal formation of
multirobot systems based on a recurrent neural network. IEEE Trans. Neural Netw.
Learn. Syst. 27, 322-333. doi:10.1109/TNNLS.2015.2464314

Wen, G., Hu, G.,, Yu, W, Cao,], and Chen, G. (2013). Consensus tracking
for higher-order multi-agent systems with switching directed topologies and
occasionally missing control inputs. Syst. and Control Lett. 62, 1151-1158.
doi:10.1016/j.sysconle.2013.09.009

Wooldridge, M. (2009). An introduction to multiagent systems. West Sussex, England:
John Wiley & Sons.

Xu, A., and Dudek, G. (2015). Optimo: online probabilistic trust inference model for
asymmetric human-robot collaborations. IEEE/ACM Int. Conf. Human-Robot Interact.
2015-March, 221-228. doi:10.1145/2696454.2696492

Yang, Q., and Parasuraman, R. (2020). “Needs-driven heterogeneous multi-robot
cooperation in rescue missions,” in 2020 IEEE international symposium on safety,
Security, and Rescue Robotics (SSRR), 252-259. doi:10.1109/SSRR50563.2020.9292570

Zhang, D., and Wang, L. (2007). “Target topology based task assignment for multiple
mobile robots in adversarial environments,” in 2007 46th IEEE conference on decision
and control, 5323-5328. doi:10.1109/CDC.2007.4434010

Zhang, K., Collins, E. G., and Shi, D. (2012). Centralized and distributed task
allocation in multi-robot teams via a stochastic clustering auction. ACM Trans. Aut.
Adapt. Syst. 7, 1-22. doi:10.1145/2240166.2240171

Zhao, Y., Wen, G., Duan, Z., Xu, X., and Chen, G. (2013). A new observer-type
consensus protocol for linear multi-agent dynamical systems. Asian J. Control 15,
571-582. doi:10.1002/asjc.572

frontiersin.org

https://doi.org/10.3389/frobt.2025.1526287
https://doi.org/10.1109/tac.2012.2235715
https://doi.org/10.1016/j.jfranklin.2014.01.004
https://doi.org/10.1007/s12555-014-0298-7
https://doi.org/10.1177/0037549705058073
https://doi.org/10.1109/INDIN.2015.7281731
https://doi.org/10.1177/0018720813496269
https://doi.org/10.1109/OCEANS.2016.7761074
https://doi.org/10.1016/j.neucom.2015.02.058
https://doi.org/10.1016/J.MECHATRONICS.2010.05.005
https://doi.org/10.1145/1122012.1122013
https://doi.org/10.1109/tac.2004.834113
https://doi.org/10.1016/j.aei.2005.06.002
https://doi.org/10.1109/70.681242
https://doi.org/10.1007/978-3-540-30301-5_41
https://doi.org/10.1109/RO-MAN47096.2020.9223553
https://doi.org/10.1109/IWCIA.2014.6988105
https://doi.org/10.1109/IWCIA.2014.6988105
https://doi.org/10.1109/SPC.2017.8313018
https://doi.org/10.1109/MORSE48060.2019.8998662
https://doi.org/10.1109/IPIN.2016.7743584
https://doi.org/10.1007/s43154-023-00104-0
https://doi.org/10.1371/journal.pone.0270696
https://doi.org/10.1007/s10514-019-09889-6
https://doi.org/10.1504/ijcis.2009.029114
https://doi.org/10.1016/j.automatica.2014.02.036
https://doi.org/10.1109/TNNLS.2015.2464314
https://doi.org/10.1016/j.sysconle.2013.09.009
https://doi.org/10.1145/2696454.2696492
https://doi.org/10.1109/SSRR50563.2020.9292570
https://doi.org/10.1109/CDC.2007.4434010
https://doi.org/10.1145/2240166.2240171
https://doi.org/10.1002/asjc.572
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Multi-agent systems
	2.2 Human-in-the-loop multi-robot teams
	2.3 Simulated MultiRobot teams applications
	2.4 Modelling and simulation environments for agent-based systems

	3 Materials and methods
	3.1 Simulation framework
	3.2 Centralised multi-robot team architecture
	3.3 Decentralised architecture
	3.4 Use cases

	4 Evaluation
	4.1 Evaluation setup
	4.2 Dependent measures
	4.3 Results
	4.3.1 Request execution outcome
	4.3.2 Task execution outcome
	4.3.3 Request completion time

	5 Discussion
	5.1 Design recommendations
	5.2 Limitations and future work

	6 Conclusion and outlook
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

