
TYPE Original Research
PUBLISHED 30 October 2025
DOI 10.3389/frobt.2025.1426676

OPEN ACCESS

EDITED BY

Dongbing Gu,
University of Essex, United Kingdom

REVIEWED BY

Barış Can Yalçın,
University of Luxembourg, Luxembourg
Ruiheng Zhang,
Beijing Institute of Technology, China

*CORRESPONDENCE

Samantha Chapin,
sglassner@vt.edu

William Chapin,
wchapin@vt.edu

RECEIVED 01 May 2024
ACCEPTED 04 July 2025
PUBLISHED 30 October 2025

CITATION

Chapin S, Chapin W and Komendera E (2025)
Semantic and fiducial-aided graph
simultaneous localization and mapping
(SF-GraphSLAM) for robotic in-space
assembly and servicing of large truss
structures.
Front. Robot. AI 12:1426676.
doi: 10.3389/frobt.2025.1426676

COPYRIGHT

© 2025 Chapin, Chapin and Komendera. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Semantic and fiducial-aided
graph simultaneous localization
and mapping (SF-GraphSLAM) for
robotic in-space assembly and
servicing of large truss structures

Samantha Chapin*, William Chapin* and Erik Komendera

Field and Space Experimental Robotics (FASER) Laboratory, Mechanical Engineering Department,
Virginia Polytechnic Institute and State University, Blacksburg, VA, United States

This article proposes amethod that uses information aboutmodules and desired
assembly locationswithin a large truss structure to create a semantic and fiducial
aided graph simultaneous localization and mapping (SF-GraphSLAM) algorithm
that is better tailored for use during robotic in-space assembly and servicing
operations. This is achieved by first reducing the number of modules using
a mixed assembly method vs. a strut-by-strut method. Then, each module is
correlated to a visual tag (in this article, an AprilTag) to reduce the number
of elements being observed further from the number of sub-struts in that
module to a single AprilTag marker. Two tags are required to ensure proper
deployment of most deployable modules. Subsequently, we are able to use
semantic information about the desired transformation matrix between any
two adjacent module AprilTags within the desired assembly structure. For our
experimentation, we expanded a factor graph smoothing and mapping model
and added the semantic information, looking at the smaller number of landmark
AprilTags, with a camera representing the robot for simplicity. The mathematical
approach to arrive at this newmethod is included in this article, as are simulations
to test it against the state of the art (SOA) using no structural knowledge.
Overall, this research contributes to the SOA for both general SLAM work and,
more specifically, to the underdeveloped field of SLAM for in-space assembly
and servicing of large truss structures. It is critical to ensure that as a robot is
assembling themodules, eachmodule is within the desired tolerances to ensure
the final structure is within the design requirements. Being able to build a virtual
twin of the truss structure as it is being assembled is a key tent pole in achieving
large space structures.

KEYWORDS

simultaneous localization and mapping, semantic, fiducial, vision, metrology, robotics,
in-space servicing assembly and manufacturing, in-space structures

1 Introduction

This article describes the creation of the semantic and fiducial aided graph simultaneous
localization and mapping (SF-GraphSLAM) method that is tailored for robotic assembly
and servicing of large truss structures, including deployable modules. This research is
novel because it will be the first to integrate the semantic input of truss modules, relative

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1426676
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1426676&domain=pdf&date_stamp=
2025-10-30
mailto:sglassner@vt.edu
mailto:sglassner@vt.edu
mailto:wchapin@vt.edu
mailto:wchapin@vt.edu
https://doi.org/10.3389/frobt.2025.1426676
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1426676/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1426676/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1426676/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1426676/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1426676/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

goal positioning of modules to create the desired end structure,
and fiducials into a SLAM algorithm to greatly reduce the state
vector for robotic assembly of large structures. Working on the SF-
GraphSLAM algorithm in parallel with the development of a space
truss methodology focused on mixed assembly of deployable and
close-out assembled modules allowed for the development of a test
case scenario. The built on-orbit robotically assembled gigatruss
(BORG) uses an array of deployable modules that are arranged in
a checkerboard pattern and connects them with strut and square
close-out elements. Using this approach reduces the number of
unique modules required to assemble a given truss structure. This
greatly benefits the SF-GraphSLAM case because there are fewer
structure state vectors due to the fewer modules, which results
in quicker processing speeds when analysis is performed between
assembly steps. For testing purposes, a 3 × 3 × 3 truss structure
was developed, but the state vector reduction benefit increases as the
structure is scaled.

The SF-GraphSLAM goal is to combine methods of focusing
measurements on sparsely placed fiducials and using knowledge
about the structure’s deployment mechanisms and assembled
component relationships to be able to quickly predict the structure’s
state and add robustness to pose and measurement errors. This new
method was based on the existing GraphSLAM approach, which
is the state-of-the-art (SOA) method chosen to compare against.
First, mathematical derivations for how semantic knowledge could
be added to a GraphSLAM base were completed. Then, simulations
of the GraphSLAM SOA and SF-GraphSLAM algorithms were
created in order to test the effectiveness on an example BORG truss
model. Creating a SLAM method tailored to the robotic assembly
of truss structures allows this research to contribute greatly to the
SOA of the larger field of robotic in-space servicing, assembly, and
manufacturing (ISAM). Although space robotic operations have
heritage, there are unique challenges presented by working on the
problem of robotically assembling large space trusses. Providing a
SLAM method for aiding with the autonomous robotic assembly of
movablemodules to create larger structures will be critical for future
missions, such as robotically assembling a large antenna structure
or a space telescope. The core methodology examined how to best
utilize information in a large-scale structure environment, including
non-static flexible or deployable modules. Adequately mapping the
structure environment could have broader applications to the field of
robotic operations dealing with terrestrial structures such as bridge
surveying.

This article focuses on the description and simulated
validation of the SF-GraphSLAM algorithm; for details on
the physical implementation and validation, please refer to
Chapin et al. (2024).

2 Materials and methods

2.1 In-space assembly and servicing
background

The in-space servicing, assembly, and manufacturing (ISAM)
field is vast and has promises to revolutionize the space
ecosystem (Cavaciuti et al., 2022) by allowing space assets to
be created in new ways and maintained over longer lifetimes.

Robotic ISAM enables the construction of structures on scales
never seen before in space. No longer constrained by the size
and mass limits of a single launch vehicle transit to space,
multiple launches could be utilized to send the raw material for
manufacturing or modules for assembly to create a variety of large
space structures. Furthermore, designing structures to be assembled
inherently provides an avenue for more servicing opportunities.
Robotically servicing existing space assets can be extremely useful,
and structures designed to be maintained robotically can offer
robustness to unexpected failure during and after beginning
operation.

Manufacturing, assembling, and servicing large structures have
specific challenges, such as thermal robustness, feasibility of scaling,
determining the size of modularization, and interfaces, that need
to be addressed to attain even larger structures in space. We are
focusing on addressing the concern of ensuring that the final
assembled structuremeets the requirements necessary for operation.
To date, the biggest structures assembled or serviced in space,
the International Space Station (Garcia, 2022) and the Hubble
Space Telescope (Garner, 2018), were built through astronaut
extravehicular activities with aid from large robotic manipulators.
As the scale of structures in space increases, the reliance on
astronaut-aided operations is less practical, and more autonomous
robotic solutions are crucial. To build the next generation of large
space telescopes and other structures, such as antennas, the ability
to autonomously robotically assemble structures to the required
precision will be crucial.

When trying to assemble large space structures, a robotic system
is required to handle the very large quantity of states resulting
from each strut being able to be represented by six state variables.
As the structure scales, this problem only increases, as do the
physical limitations of being able to properly collect data from
cameras viewing a possibly dense collection of struts simultaneously.
Additional complexity is introduced when the structure is actively
being assembled because the struts are then not static, and their
overall state of being in storage, being manipulated, or being placed
in the final structure must be considered. In addition, for large
structures, the smaller assembly robots will need to either move
along the structure or around it to be able to fully assemble themuch
larger structure. The work described here evolves from an earlier
study using multiple robots and EKF-SLAM to assemble and deploy
a prototype solar array (Komendera et al., 2017).

Due to the broad interest in autonomously assembled structures,
there is a wide range of previous and current related autonomous
ISAM studies covering the full breadth of research challenges. The
following list is a small selection of articles covering a range of
areas of research needed to enable autonomous ISAM but is by no
means complete. Precision autonomous truss assembly is performed
by robots that move over the structure and mechanically join each
truss cell (Gregg and Cheung, 2024). A novel pose estimation
approach via sensor fusion for autonomously assembled space
structure elements is described by Moser et al. (2024). A method
for autonomously planning and verifying the assembly sequences
of large space structures is described by Rodríguez et al. (2021).
Multiple current ISAM studies and activities at the Jet Propulsion
Laboratory are described by Mukherjee (2023). Many approaches
for ISAM favor modularity in the assembling agents and in the
structure (Post et al., 2021).

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

2.2 Space vision background

Space robotics utilizes machine vision algorithms that allow a
robotic system to understand its environment with imaging sensors
to achieve two main objectives: (1) pose estimation of the robots
relative to their environment and (2) locations of important features
within the environment (Henshaw et al., 2022).TheOrbit Servicing,
Assembly and Manufacturing (OSAM) State of Play recorded
space inspection and meteorology projects and differentiated them
by sensor type (visual or other), operation mode (free-flying or
anchored), and flight status (Dale Arney andMulvaney, 2023).There
were six recorded free-flyers utilizing vision sensors, all previously
flown, and one other sensor method in development. Two anchored
examples utilized vision sensors, one flown and one in development,
while three other examples used a different type of sensor
(Dale Arney and Mulvaney, 2023). In 2007, the Orbital Express
Demonstration System (OEDS) performed a flight demonstration
servicing the NextSat spacecraft (Ogilvie et al., 2008). This included
an autonomous free-flying capture with a robotic arm and is enabled
with Vis-STAR, a machine vision system (Henshaw et al., 2022).
This flight test had two modes of vision operation depending on
the range of the spacecraft. When the NextSat was more than 10 m
away, the outline of the spacecraft was compared to an outline
database generated from a 3D model to estimate the range and
orientation (Leinz et al., 2008). NextSat had difficulty performing
this estimation with spacecraft that were rotationally symmetric.
When the spacecraft was within 10 m, and the camera’s field of
view could no longer see the entire outline, optical fiducials on
the client satellite were relied upon. This is only one example of
flight heritage for the use of AprilTag-like, black and white, square-
patterned fiducial decals. It has been proposed to equip satellites
with fiducials to enable the possibility of easier future robotic
servicing for the low cost of some vestigial mass (Reed et al., 2017).
The planned On-Orbit Servicing, Assembly and Manufacturing
(OSAM)-1 and Robotic Servicing of Geosynchronous Satellites
(RSGS) satellite servicing missions both plan to utilize machine
vision to allow for autonomous grappling of the client spacecraft’s
Marman ring (Obermark et al., 2007). There has also been
work on exploiting map landmark-based simultaneous localization
and mapping (SLAM) for the purpose of relative navigation
in space applications for tasks such as rendezvous proximity
operations (RPO) (Ticozzi and Tsiotras, 2025; Bettens et al., 2024;
Schlenker et al., 2019). This includes efforts to use known models
of spacecraft to be able to identify and track them in complex
scenarios, including uncontrolled tumbling (Tweddle et al., 2015;
Asri1 and Zhu, 2025).

2.3 Simultaneous localization and mapping
background

SLAM describes the methodology of using sensor data to
map a robot’s surroundings while localizing itself in those
surroundings. The state of the art is to use visual SLAM
(VSLAM) with either cameras or LIDAR to collect data on all
elements surrounding a robot (Abaspur Kazerouni et al., 2022).
SLAM can also combine sensors to add additional data into
the estimation, such as an inertial measurement unit (IMU) to

help track a robot’s movement. Often, it is assumed the robot is
mobile and the observed objects are static (Chen et al., 2022).
Some limitations include slow processing for real-time operations
(Chen et al., 2022).

This work expands on the use of factor graphs (Dellaert and
Kaess, 2017), which are a commonly used framework in modern
SLAM approaches. An early implementation in SLAM of factor
graphs is the GraphSLAM algorithm (Thrun and Montemerlo,
2006). GraphSLAM, and factor graphs in general, solve for the
optimal posterior of the state estimate by treating the posterior as
a least squares problem. In a typical SLAM problem, factors are
one of three types: a prior estimate of the state of the environment
and agents, a measurement generally linking some aspect of the
environment with the time and state of the agent taking the
measurement, and a state transition probability linking an agent’s
state with its prior state. When visualized as a graph, each factor
represents an edge, and each estimated state is a node. Each factor is
also represented by a function ϕ(x) that represents a conditional or
prior probability of either ameasurement or a state transition.When
the conditional or prior probabilities are assumed to beGaussian, the
posterior can be reduced to the sum of the negative log conditional
probability functions.

In this work, the addition of factors representing the
mechanisms of the structure is a novel contribution. The name
“SF-GraphSLAM” acknowledges the origin of this approach with
the GraphSLAM algorithm. Although other, newer algorithms
branch from the GraphSLAM approach, such as factor graph-based
formulations, SF-GraphSLAM is compared directly to GraphSLAM
to determine its performance increases against the method it was
based on as a control.

2.3.1 Semantic SLAM background
Semantic SLAM can detect and identify target objects in a scene

using semantic information provided beforehand (Chen et al., 2022).
Semantic information includes any environmental information that
can aid a robot in determining what it is sensing. Often, semantic
SLAM has a segmentation step where observed data are labeled
in a map based on the semantic information related to them
(Chen et al., 2022) The data used to identify what should fall within
the different map types vary on the application, which can include
identifying an object based on shape outline, color, 3D model, size,
etc. (Xia et al., 2020;Mahmoud andAtia, 2022)Research into quickly
identifying and classifying semantic imagery information during
SLAM operations is crucial to this method’s success (Zhang et al.,
2025; Zhang et al., 2024; Zhang et al., 2022). For SF-GraphSLAM,
fiducials were selected to allow for quicker identification and
pose estimation, and then the semantic relationships between the
fiducials were identified.

2.3.2 Fiducial SLAM background
The aid of fiducials is often used to provide identification,

pose, and orientation of a marker attached to a known
position/orientation on an object (Fiala, 2010). Many types of
fiducials are available via open-source software.They are commonly
formed with black and white contrast with arrays of cells that
can have either value to attribute a different identifier (Kostak
and Slaby, 2021). They are often in the shape of a square for
corner identification, but there are also circular (Lightbody et al.,

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

2017) and other variants. Fiducials can provide faster pose and
orientation data than via SLAM (Pfrommer and Daniilidis, 2019)
but are sensitive to problems such as variations in lighting, motion
blur, and partial covering (Fiala, 2010). In addition, fiducials
are often attached on a flat surface and are viewed best from
particular angles. Their accuracy can be expressed as a function
of relative camera distance and angle (Abawi et al., 2004). Fiducials
can be used to augment SLAM, such as being placed around a
building corridor being traversed and mapped to improve the
estimation output (DeGol et al., 2018). For this experimentation,
the AprilTag fiducial (Olson, 2011) was selected due to the vast
amount of open-source resources for it and ease of integration
into testing.

2.3.3 Filtering
The position and orientation of assembly components relative

to robots can be determined with SLAM. Filtering or smoothing
architectures can be utilized to allow for position and orientation
determination and target model generation to be carried out
simultaneously. Some popular filters include the Kalman filter,
which can be applied to implement the Bayes estimator optimally
when a system is linear (Kal, 2019), and its many derivations, such
as the extended Kalman filter (EKF) and the unscented Kalman
filter (UKF) (Chen, 2003).

2.3.4 SF-GraphSLAM’s combination of
state-of-the-art approaches and innovations for
highly controlled applications, such as in-space
assembly

The application of SLAM for in-space assembly is unique
due to the controlled nature of the operations and the ability to
have a large amount of prior knowledge. SLAM is often used to
map unknown environments, and even with semantic SLAM, the
prior knowledge is often generalized to common but not specific
structures, such as identifying the general shape of a chair to
maneuver around it. For in-space assembly, the structure is known
beforehand, including the desired sequence of assembly steps, the
module dimensions, the expected final structure, etc. This gives
SF-GraphSLAM a unique opportunity to leverage this plethora of
semantic information to better estimate the poses of the modules
being assembled and ensure they are accurate compared to the
ideal model before continuing assembly. This article will show
how SF-GraphSLAM uses semantic knowledge of the module’s
kinematics, assembly tolerances, and degrees of freedom to enable
the repeated verification of the structure’s accuracy throughout
its dynamic assembly. Additionally, SF-GraphSLAM reduces the
difficulty of the estimations by leveraging fiducials and minimizes
the effect of increased complexity as the size of the structure state
vector increases by only using the minimum required fiducials to
define modules. SF-GraphSLAM can leverage the highly controlled
nature of in-space assembly and resulting semantic information
to achieve higher accuracy pose estimations irrespective of
introduced sensor and measurement errors. This article focuses
on in-space assembly, but this SF-GraphSLAM approach could
extend to other highly controlled applications where the structure
and sub-modules are well known and manufactured to a
high accuracy.

2.4 Built on-orbit robotically assembled
gigatruss (BORG)

The “Built On-orbit Robotically Assembled Gigatruss (BORG):
Mixed Assembly Architecture Trade Study” (Chapin, 2023) mixed
assembly approach truss structure was used as the reference
structure for this SF-GraphSLAM simulation. It comprises three
types of modules: (1) deployable modules; (2) close-out strut; (3)
close-out square. These modules are assembled in a checkerboard
pattern to create structures of N × N × N dimensions. This analysis
is completed on an example 3 × 3 × 3 BORG truss. The assembly,
measurement, and correction process are shown in Figure 1a, and
the modules and the assembled BORG truss are shown in Figure 1b.

2.5 Model derivation

2.5.1 Benefit of using a mixed assembly method
with sparse fiducials

The SOA approach to solving vision for this application would
be to assume all struts have six state variables and use either
semantic SLAM or fiducials for each strut (Lynch and Park, 2017).
The six state variables would include three states for Cartesian
coordinates for position (xit y

i
t z

i
t) and three states for angular

orientation (Ψi
t θ

i
t Φ

i
t) to define each strut in the structure state

vector, Xs shown in Equation 1, where i = 1,2,n, and t is the
time index.

Xs = […xit y
i
t z

i
t Ψ

i
t θ

i
t Φ

i
t …]
′ (1)

For the state of the art, n would be the number of struts, which
in our 3x3x3 truss would be 252, including diagonals. Therefore,
the structure state vector would have 1,512 states. All these added
modules will continue to be viewed as individual entities instead
of a newly formed structure. This will further be added to the state
vectors of the robots in the scene,Xr, to create the entire state vector,
X, shown in Equation 2.

X = [Xr Xs]
′ (2)

Figure 2a shows an example module that requires 12
measurements to define the pose of all the struts. Figure 2b shows
the new approach using sparingly placed fiducials to reduce the
number of measurements to only 2 to fully define the deployable
module. Figure 2c shows that as the number of cells in an assembled
example n× n× n cube truss structure increases, the disparity of the
number of markers needed for an SOA strut-by-strut approach, in
black, is larger than the new approach, in pink. Both the number
of measurement points (solid lines) and the overall structure state
vectors (dotted lines) are plotted. The number of measurements
required to define the structure is calculated with Equation 3 for
the strut-by-strut assembly approach and with Equation 4 for the
mixed assembly with sparsely placed fiducials. The breakdown of
how these numbers of struts and modules are calculated is further
explained by Chapin et al. (2023) when calculating the scalability
of the mixed assembly method. The difference in this calculation is
that a single measurement is calculated for each strut in the strut-
by-strut approach, while the mixed assembly method calculates a

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 1
(a) Flowchart showing the use of SF-GraphSLAM in a robotic in-space assembly application. (b) Example of an in-space assembly truss structure on
which SF-GraphSLAM will be tested to aid simulated assembly. The 3 × 3 × 3 BORG truss comprises three module types: deployables, close-out
squares, and close-out struts.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 2
(a) State-of-the-art observation of each strut of the truss structure. (b) Proposed approach to simplify by observing sparse AprilTag fiducials (Olson,
2011) on the structure. (c) Comparing the scalability of the strut-by-strut and mixed assembly with sparse fiducial methods and how it affects the
number of metrology measurements and resulting state vector size.

measurement for each close-out strut and close-out square and two
measurements for the deployable modules.

Msbs = 6n3 + 9n2 + 3n (3)

Mma =
1
2
(n3 − 3n2 + 21n− 23) (4)

These two equations show that the number of measurements
needed are O(n3) for an n× n× n truss structure, only differing
by a constant. That said, mathematical optimization algorithms
are super-linear in the dimension of the problem, where the
complexity depends on the linearity of the problem and the

constraint types [Jamieson et al. (2012) give an example of a
derivative-free optimization algorithm that is O(n3/2) in state
dimension]. Any reduction in the state dimension will result in a
computational time reduction greater than the constant difference
in the number of measurement points, which is highly beneficial in
ISAM scenarios where time is critical and energy consumptionmust
be limited.

Many types of VSLAM could be used as the SOA reference that
do not account for structure-specific information. However, if the
structure is treated as being composed of non-static agents, it loses
the benefits associated with eliminating the static states from the
filter. Overall, the prediction is that this SOAmethodwill prove to be

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

very slow in handling the very large state vector resulting from all the
struts of the large structure, in addition to difficulties dealing with
so many dynamic elements due to the components being robotically
assembled. The mixed assembly with sparse fiducials decreases the
complexity of the analysis by minimizing the state vector. The
complexity does increase as the number of fiducials and associated
semantic relationships increases but is still less complex than the
alternative SOA approach. In addition, if point-cloud mapping were
used for this approach, even more measurement points would need
to be utilized to be able to identify the module being observed, and
it would not yield the benefit of identification that AprilTag fiducials
can provide in addition to pose estimation.

2.5.2 Identifying the factor graph basis for
SF-GraphSLAM

Factor graphs are used in offline SLAM problems, such
as GraphSLAM (Thrun and Montemerlo, 2006), meaning the
computation is completed after all robotic movements are done.
This results in increased computation time because the entire robot
operation is evaluated, but assuming the initial conditions are good,
offline SLAM tends to be more accurate than online SLAM, which
is active during robotic operation.

First, we will establish the notation that will be used throughout
this article. The time index is labeled with t, and in SLAM, time is
usually discrete. At time t, the robot pose is xt. For the purposes of
our system, we will let the robot pose and camera pose be equal
to simplify the math. To show all the poses from time 1 to t,
we will use x1:t. The world is represented by the map, m, which
is a set of landmarks mj. For this application, the landmarks are
described by Asri1 and Zhu (2025). We assume the map is time-
invariant because our measurements will be completed after an
assembly deployment or placement is completed, and the truss is in
a static state.

Cameras are used in our application, and the main sensor
measurement is the pose and orientation calculation of the AprilTag
relative to the camera or robot. At time t, zt represents the
measurement. Because the robot must be able to have multiple
AprilTags in view in any camera frame to better estimate their
relationship to each other, each individual measurement can be
specified as zit. A measurement function, h, is used to describe how
the measurement is generated in Equation 5 with added noise using
a Gaussian random variable ϵit ∼N (0,Qt) and the map feature mj
measured at time t by the i-th measurement:

zit = h(xt,mj, i) + ϵ
i
t (5)

For our application, the camera will measure the AprilTags’
relative positions and orientations with respect to the camera’s
or robots’ position. The AprilTag represents a single 6-degree-of-
freedom reference point for the truss structure it is attached to,
and therefore, its location relative to the camera can be expressed
with the position (p1it, p2

i
t, p3

i
t) and Euler angles orientation

(r1it, r2
i
t, r3

i
t). This is shown in Equation 6, in the form of the i− th

AprilTag’s measurement pose with respect to the camera at time t.
This measurement is generated by running an AprilTag detection
algorithm on the saved camera video, and the AprilTag number is
used to identify the map featuremj being measured.

zit = [p1
i
t, p2

i
t, p3

i
t, r1

i
t, r2

i
t, r3

i
t] (6)

Equation 5 suggests a multivariate Gaussian distribution, with
Qt representing the zero mean and covariance, the logarithm of
which is as follows in Equation 7:

log p(zit|xt,m) = const.exp−
1
2
(zit − h(xt,mj, i))

TQ−1t (z
i
t − h(xt,mj, i)) (7)

Because the robot is changing its pose as it is taking
measurements, the control commands of the robot between time
intervals t− 1 and t can be represented by ut. The state transition
of robot poses, Equation 8, is controlled by the function g,
the kinematic model of the robot, where the model command
noise is modeled by δt ∼N (0,Rt) [Equation 4 from Thrun and
Montemerlo (2006)]:

xt = g(ut,xt−1) + δt (8)

Similar to the h function, the g function for our application is
simply the position and orientation of the robot with respect to the
previous position. This can be calculated by applying the known
robot control ut to the last known robot position, xt−1, to calculate
the camera position at time t, xt. This can also be represented
by a 6-degree-of-freedom (DOF) pose, shown in Equation 9. For
simulation, we are simplifying the scenario for the camera to be
representative of the robot and assuming we know its motion from
measurement to measurement. In testing, this can be modified
to incorporate the actual kinematics of the robot performing the
camera measurements, in this case, a Stewart platform, and it can
also be compared against an external global metrology system with
markers on the robot.

xt = [p1t, p2t, p3t, r1t, r2t, r3t] (9)

Equation 8 can be used to determine the state transition
probability, as shown in Equation 10:

log p(xt|ut,xt−1) = const.exp−
1
2
(xt − g(ut,xt−1))

TR−1t (xt − g(ut,xt−1))
(10)

Equation 11 shows the posterior probability over the map m
and robot path x1−t to create the offline SLAM posterior. Note the
probability is not only at a single pose, xt, but over the full robot
path, x1:t.

p(x1:t,m|z1:t,u1:t) (11)

An additional element must be added for SF-GraphSLAM: a
semantic relationship between two map measurements to compare
against an expected relationship between them in the ideal map.
For this, the measurement of the k-th AprilTag map feature at time
t, ai,kt , can be estimated by measuring a related feature seen at the
same time step, zit, and applying the expected relation between the
two map features, ri,k. This is shown in Equation 12. Similar to the
measurement function, noise can be accounted for using a Gaussian
random variable ϵit ∼N (0,St). The form of ai,kt is the same 6-DOF
AprilTag measurement as zit, only for another AprilTag, but the
lettering is distinguished to make the derivation easier to follow.

ai,kt = s(z
i
t, ri,k) + ϵ

i
t (12)

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

AprilTag location comparisons can only be made locally due to
visibility limitations and slices of time, so in practice, the number
of ai,kt comparisons that can be made will be a constant factor of the
number of AprilTags, instead of the worst-case scenario of total time
slices × total possible AprilTag pairs.

How this additional relation is derived for the full SLAM
posterior is further explained below.

2.5.3 Deriving the full posterior for
SF-GraphSLAM

Let Equation 13 be the state variable, y, as the concatenation of
all the camera poses, x, from time 0 to t, robot path x0:t, and the
map, m. A momentary state yt can be defined with robot position
and the map:

y0:t =
((((

(

x0
x1
⋮

xt
m

))))

)

and yt = (
xt
m
) (13)

In a traditional SLAM problem, the posterior can be
defined by Equation 14 as an implementation of Bayes’ theorem,
where the familiar normalizer is represented by η, the controls are
u1:t, and the familiar measurements are z1:t with correspondences
c1:t.

p(y0:t|z1:t,u1:t,c1:t) = ηp(zt|y0:t,z1:t−1,u1:t,c1:t)p(y0:t|z1:t−1,u1:t,c1:t)
(14)

For SF-GraphSLAM, we modify the full SLAM posterior by
adding an additional semantic step, as shown in Equation 15.

p(y0:t|z1:t,u1:t,c1:t,a1:t, r1:t) = ηp(zt|y0:t,z1:t−1,u1:t,c1:t,a1:t, r1:t)

× p(at|z1:t−1,u1:t,c1:t,a1:t, r1:t)

× p(y0:t|z1:t−1,u1:t,c1:t,a1:t, r1:t) (15)

Due to the Markov property, measurements only depend on
the current location of the sensing agents and the environment.
The current agent state only depends on the previous state, and
the positional relationship between two tags only depends on the
measurement linking them and the knowledge of the structure.
Thus, the posterior can be simplified:

p(y0:t|z1:t,u1:t,c1:t,a1:t, r1:t)

= ηp(y0)∏
t
p(xt|xt−1,ut)∏

i
∏
t

× p(zit|yt,c
i
t)∏

i
∏
k
∏
t
p(ai,kt |z

i
t, ri,k) (16)

The prior p(y0) can be factored into p(x0) and p(m). Normally,
SLAM does not have prior map m knowledge, but there is prior
knowledge in the SF-GraphSLAM case. Therefore, the factor p(m)
cannot be subsumed into the normalizer η and must be taken
into account along with p(x0) within p(y0). Again, z

i
t is the i-th

measurement taken at time t. This nomenclature is carried over
for the relation of the k-th map element at time t for the semantic
information, ai,kt .

Logarithmic form can be used to represent the probabilities
in information form. Equation 17 shows the log-SF-GraphSLAM
posterior.

log p(y0:t|z1:t,u1:t,c1:t,a1:t, r1:t)

= const. + log p(x0)

+∑
i
∑
t
log p(xt|xt−1,ut) +∑

t
log p(zit|yt,c

i
t)

+∑
i
∑
k
∑
t
log p(ai,kt |z

i
t, ri,k) (17)

The sum of terms is the simple form of this posterior. This
includes a prior for control ut and measurement zit.

Next, the measurement, motion, and semantic models can be
approximated using linear functions with error distributions that
are Gaussian. The deterministic motion function, g, and a motion
error covariance, Rt, can be used to create a normally distributed
robot motion of N(g(ut,xt−1),Rt). Similarly, N(h(yt,c

i
t),Qt) is used

to generate measurements zit using the measurement function h
and the covariance error Qt. Semantic information uses a similar
N(s(ai,kt , ri,k),St) function with a semantic function s and covariance
matrix St. These equations are shown in Equation 18.

p(xt|xt−1,ut) = η exp{−
1
2
(xt − g(ut,xt−1))

TR−1t (xt − g(ut,xt−1))}

p(zit|yt,c
i
t) = η exp{−

1
2
(zit − h(yt,c

i
t))

TQ−1t (z
i
t − h(yt,c

i
t))}

p(ai,kt |z
i
t, ri,k) = η exp{−

1
2
(ai,kt − s(z

i
t, ri,k))

TS−1t (a
i,k
t − s(z

i
t, ri,k))}

(18)

The prior, p(x0), sets x0, the initial pose, to the global coordinate
system’s origin x0 = (0 0 0)T. The prior can be expressed as a
Gaussian-type distribution, shown in Equation 19.

p(x0) = η exp{−
1
2
xT0Ω
−1
0 x0} (19)

Ω0 is shown in Equation 20. The value of∞ can be substituted
by a very large positive number to make the posterior equivalent to
a likelihood.

Ω0 =
[[[[

[

∞ 0 0

0 ∞ 0

0 0 ∞

]]]]

]

(20)

This can be used to create the quadratic form of the log-SF-
GraphSLAM posterior, shown in Equation 21. This information
form of the full SLAM posterior is composed of quadratic terms for
the prior, controls, measurements, and semantic relations.

log p(y0:t|z1:t,u1:t,c1:t,a1:t, r1:t)

= const. − 1
2
[xT0Ω
−1
0 x0

+∑
t
(xt − g(ut,xt−1))

TR−1t (xt − g(ut,xt−1))

+∑
i
∑
t
(zit − h(yt,c

i
t))

TQ−1t (z
i
t − h(yt,c

i
t))

+∑
i
∑
k
∑
t
(ai,kt − s(z

i
t, ri,k))

TS−1t (a
i,k
t − s(z

i
t, ri,k))] (21)

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

2.5.4 Factor graph formulation
Equation 16 can also be restated in terms of factors in the factor

graph formulation, where each conditional and prior probability has
an associated factor ϕ, as shown in Equation 22:

ϕ(y0:t,z1:t,u1:t,c1:t,a1:t, r1:t)

= ϕp (y0) × ∏
t
ϕg (xt,xt−1,ut)∏

i
∏
t
ϕh

× (zit,yt,c
i
t)∏

i
∏
k
∏
t
ϕs (a

i,k
t ,z

i
t, ri,k) (22)

The factors ϕ are generalizations of the Gaussian probability
distributions, which eliminate the normalizing constant, and do not
change themaximumaposteriori estimate, as shown in Equation 23:

ϕp (x0) =
1
η
p(x0)

ϕg (xt,xt−1,ut) =
1
η
p(xt|xt−1,ut)

ϕh (z
i
t,yt,c

i
t) =

1
η
p(zit|yt,c

i
t)

ϕs (a
i,k
t ,z

i
t, ri,k) =

1
η
p(ai,kt |z

i
t, ri,k)

(23)

2.5.5 GraphSLAM graph, information matrix, and
summation function extended to SF-GraphSLAM

The goal of the factor graph formulation is to minimize
the maximum a posteriori estimate. Our implementation of the
SF-GraphSLAM algorithm modifies the GraphSLAM algorithm
described byThrun andMontemerlo (2006). To illustrate the general
structure of the algorithm, see Figure 3. This graph shows we have
two map features, m1 and m2, and three robot poses, x1, x2, and
x3. In our case, the map features are AprilTags, and the robot pose
also represents that camera pose. There are two types of lines in this
diagram: (1) motion lines and (2) measurement lines. Motion lines
link consecutive robot poses, while measurement lines link to the
map features visible for each measurement. This shows an example
measurement cycle between assembly steps where the robot will
move the camera to view two AprilTags within the same camera
frame, either on a single deployable or from two adjacent modules
in the larger structure, to allow for measurement of their relative
positioning.

The GraphSLAM_initialize algorithm starts by initializing the
mean pose vector, u1:t. Each edge is a nonlinear constraint
that represents the negative log likelihood of the motion and
measurement models. A nonlinear least squares problem results
from the sum of the constraints. GraphSLAM linearizes these
sets of constraints in order to compute the map posterior. This
GraphSLAM_linearize algorithm creates an information vector
and a sparse information matrix. The sparseness allows the
GraphSLAM_reduce algorithm to apply variable elimination to
result in a smaller graph only defined by robot poses. The
path posterior is updated using the GraphSLAM_solve algorithm
using standard interference techniques. The GraphSLAM_known_
correspondence algorithm combines all these previous algorithms
to return the best guess of the map, the robot’s path, and the mean μ.
Note that the full map posterior is not usually recovered because it is
quadratic with respect to the size of themap.Therefore, GraphSLAM
normally only computes somemarginal posteriors over themap and
the map itself.

2.5.6 GraphSLAM: building the graph
If we take a set of measurements z1:t, correspondence variables

c1:t, and controls u1:t, GraphSLAM can build a graph with these data.
As seen in Figure 3, the map featuresm =mj and the robot poses x1:t
are graph nodes. Edges and lines are events due to the motion of the
robot, solid lines connect robot poses or measurements, and dotted
lines connect the robot pose and measurements taken with respect
to the visible map features. These edges are soft constraints between
the features and poses in GraphSLAM.

If a system is linear, the constraints can be directly input into the
information matrix, Ω, and the information vector, ξ, of a system
of equations. Each control and measurement locally updates Ω and
ξ, and results in adding an edge to the GraphSLAM graph. Figure 4
shows the process of creating the graph step by step and updating
the information matrix. The measurement zit gives us information
at time t between the robot pose xt and the feature location j =
cit. This maps to the constraint between mj and xt in GraphSLAM.
This edge can also be thought of like a spring-mass model’s
“spring.”Themeasurement constraint can be formulated as shown in
Equation 24:

(zit − h(xt,mj, i))
TQ−1t (z

i
t − h(xt,mj, i)) (24)

Qt is the measurement noise covariance, while h is the
measurement function. An example of this measurement constraint
being added is shown in Figure 4a, with the resulting updating
of the GraphSLAM graph on the left and the information matrix
on the right.

Pose constraints are added to the information matrix and
vector in information form by adding values between the grid
rows and columns between consecutive robot poses xt−1 and xt.
In this case, the motion model has uncertainty covariance Rt,
and the magnitude corresponds to the constraint stiffness. This
is shown in Figure 4b, where the motion from robot pose x0 to
x1 is updated in the information matrix. For this robot motion,
the control ut gives information about the pose from time t−
1 relative to t. This creates the pose constraint shown below in
Equation 25:

(xt − g(ut,xt−1))
TR−1t (xt − g(ut,xt−1) (25)

Above Rt is the motion noise covariance, and g is the robot’s
kinematic motion model. This is shown in Figure 4b between t = 0
and t = 1 and updates the informationmatrix betweenmeasurement
zit and pose xt. Because this is additive, the less noisy the sensor
is, the higher magnitude will be added to the information matrix
and vector because it reflects Rt, the residual uncertainty, of the
measurement noise.

Finally, once all the soft constraints are collected from the
completed controls u1:t and measurements z1:t, shown in Figure 4c,
they can be incorporated into the graph. This graph is sparse
because the number of constraints is linear within the elapsed time.
A function JGraphSLAM can be formed by summing all the graph
constraints, shown in Equation 26:

JGraphSLAM =xT0Ω
−1
0 x0 +∑

t
(xt − g(ut,xt−1))

TR−1t (xt − g(ut,xt−1))

+∑
t
∑
i
(zit − h(yt,c

i
t, i))

TQ−1t (z
i
t − h(yt,c

i
t, i))

(26)

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 3
SF-GraphSLAM diagram. Black elements represent the existing map based on GraphSLAM, and pink elements represent the additional information
utilized in SF-GraphSLAM. There are three robot poses. These also represent the camera poses and two map features, which represent the AprilTag
markers. Solid black lines indicate motion between consecutive robot poses, while dashed black lines represent measurements from those robot poses
of the map elements in view of the camera. The pink solid line and equation represent the additional semantic information of the desired
transformation matrix between the two AprilTag markers. For best results, it is ideal to have at least two AprilTags visible to the camera at any
given pose.

This function is defined over all the map m features
and poses x1:t. The function starts with the anchoring
constraint, xT0Ω

−1
0 x0, which initializes the first robot pose

as (0 0 0)T, therefore constraining the absolute coordinates
of the map.

The information matrix Ω is populated with zeros for all the
off-diagonal elements except for where either a measurement
or pose link was created, between two consecutive poses or
between a map element observed at a given pose, respectively.
The Ω is sparse with all elements being zero, including between
pairs of different features, except for a linear number of
constraints generated from the graph. The SLAM measurements
only constrain the map features relative to the robot pose,
but we never collect information about the features relative to
each other.

2.5.7 SF-GraphSLAM: incorporating semantic
information into the graph

The SF-GraphSLAM approach builds off of GraphSLAM
and adds additional semantic components to the

JGraphSLAM function to create JSF−GraphSLAM, shown in
Equation 27:

JSF−GraphSLAM =xT0Ω
−1
0 x0 +∑

t
(xt − g(ut,xt−1))

TR−1t (xt − g(ut,xt−1))

+∑
t
∑
i
(zit − h(yt,c

i
t, i))

TQ−1t (z
i
t − h(yt,c

i
t, i))

+∑
t
∑
k
∑
i
(ai,kt − s(z

i
t, ri,k))

TS−1t (a
i,k
t − s(z

i
t, ri,k))

(27)

This is equivalent to the double negative log of the product of
factors, as shown in Equation 28:

−2 log ϕ(y0:t,z1:t,u1:t,c1:t,a1:t, r1:t) = JSF−GraphSLAM (28)

Here, ai,kt and zit are the candidate poses for the two AprilTag
markers connected by a single deployable or assembly relation. For
all measurement times, t, the number of AprilTags detected from the
camera, k, is compared against every other observable tag, i, if they
are connected by a single relation. For example, ai,kt could be on the

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 4
Illustration of how the information matrix, on the right, gets built out in SF-GraphSLAM using our example with three robot poses each viewing two
map features shown on the left dependence graphs. Note that the information in solid lines/boxes represents what GraphSLAM already establishes,
while the dotted lines and hashed boxes represent the added semantic information SF-GraphSLAM utilizes. (a) Observation at t = 0 of both AprilTags.
Additional semantic information of the desired relative pose of two AprilTags. (b) Robot moves from x0 to x1. (c) The robot completes its motion and
measurements at each time step, incorporates new semantic information of adjacent AprilTags, and updates the information matrix. Note that using
the two sets of semantic knowledge between m1 and m2 and m2 and m3 also allows us to add to the information matrix between m1 and m3. Note that
to generate an information matrix with enough overlapping features, the camera must be able to view adjacent markers in at least one robot pose.

bottom plane of a deployable truss, and zit could be on the top plane.
Additionally, they could represent markers of adjacent modules
within the larger assembled BORG structure. In either case, based
on either knowledge of the module structure, in the deployable case,
or knowledge of the assembled structure, in the BORG truss case,
there is semantic information known about what the desired relative
poses of these AprilTags are and what the expected error should
be, based on the physical deployment and assembly constraints.The
lowercase s(zit, ri,k) function is used to determine where the marker
mj should be with respect to mk based on their relation. The error
between the candidate ai,kt and where the model predicts it should
be, s, is represented by ai,kt − s(z

i
t, ri,k). Uppercase function S is the

covariance matrix.
The covariance matrix S can be described by Equation 29:

St =

[[[[[[[[[[[[[

[

σx 0 0 0 0 0

0 σy 0 0 0 0

0 0 σz 0 0 0

0 0 0 σr1 0 0

0 0 0 0 σr2 0

0 0 0 0 0 σr3

]]]]]]]]]]]]]

]

(29)

2.5.8 Ideal relation for deployable and assembled
modules

The following explains how the ideal s semantic function relation
is determined using the deployable module as an example. The
truss is first stowed in a compressed state where the AprilTags are
closer together, 0.1575 m, and then, when deployed, they should

ideally be 0.5 m apart. Throughout, the deployment path of the
second AprilTag is constricted by the physical constraints of the
deployable module.

We considered adding time indices to the map marker
features m in order to account for the different states of the
module, such as stowed or deployed. For simplicity, we decided
to conduct the SF-GraphSLAM after each deployment step or
assembly step is fully complete to remove the need to add
the additional time element because GraphSLAM maps are
time-invariant.

Therefore, we focus on the semantic information we know
about the two AprilTags only in their fully deployed state.
We know that if the deployment was successful, we would
expect the transformation matrix between m1 and m2 to be
what is shown in Equation 30, where there is a perfect 0.5 m
transform along the z-axis and no other positional or rotational
differences.

r1,2 = [0, 0, 0.5, 0, 0, 0] (30)

Similar transforms can be specified for all adjacent AprilTags
because the order of assembly steps is known, the final desired
location of modules within the structure is known, and their
desired relative positions are known. This is why being able to
use AprilTags that also have identifying numbers is crucial to be
able to properly keep track of which modules are being measured
to query the desired relationships of AprilTags as they are being
viewed by the camera. This ideal relationship is one reference, but
the next section describes more specific relations for the deployable,
close-out strut, and close-out square mechanism and assembly
relationships.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

2.5.9 Flexible relationship based on deployable
kinematics

We must consider the kinematic model of the deployable to be
able to compare the AprilTag measured positions with all possible
deployable states, including stowed and partially and fully deployed.

Grübler’s formula [Lynch andPark, (2017); Equation 2.4], shown
in Equation 31, can be used to calculate the degrees of freedom
(DOF) of the deployable truss because it is a mechanism based on
joints and links. If we look at half of the deployable truss, it can be
characterized as an 8-bar linkage. The number of links, N, is eight,
including the ground, which in the case of the deployable truss is
the bottom strut.The number of joints, J, is also eight, and each joint
has one degree of freedom, fi because they are all revolute joints.
Finally, the DOF of the rigid body, m, in this case, is 3 because
it is a planar mechanism. Therefore, the DOF of the deployable
truss is 5.

do f =m (N− 1− J) +
J

∑
i=1

fi = 3 (8− 1− 8) +
8

∑
i=1

1 = 5 (31)

If all joints are cylindrical with an f of 2, and we consider it
a spatial mechanism with an m of 6, the equation calculates the
DOF to be 10.

do f =m (N− 1− J) +
J

∑
i=1

fi = 6 (8− 1− 8) +
8

∑
i=1

2 = 10 (32)

While Equation 32 is more accurate to the error possible in real-
world hardware due to wiggle in the rotational shafts, the equation
result of 5 DOF is used to simplify the analysis.

The s function can incorporate the kinematic model of whatever
deployable truss is in use. For the example, we can define the
corners of the truss using A, B, D, and E, respectively, and the
mid nodes, C and F. There are measurable thetas between each
deployable strut and the bottom and top, respectively, θ1, θ2, θ3,
and θ4. θ5 could represent any of the opposite side’s angles. This
is shown in Figures 5a,b.

The following set of equations in Equation 33 represents
the locations of the nodes based on the kinematic model.
This is set up similarly to another deployable structure
described by Qi et al. (2016).

{{{{{{{{{
{{{{{{{{{
{

A = (0 0 0)
B = (0 0 −Lstrut)
C = (0 Lhalfstrut sin (θ2) Lhalfstrut cos (θ2) − Lstrut)
D = (0 Lhalfstrut ⁢ (sin (θ2) + sin (θ3)) Lhalfstrut ⁢ (cos (θ2) + cos (θ3)) − Lstrut)
E = (0 Lhalfstrut ⁢ (sin (θ1) + sin (θ4)) −Lhalfstrut ⁢ (cos (θ1) + cos (θ4)))
F = (0 Lhalfstrut sin (θ1) −Lhalfstrut cos (θ1))

(33)

From measuring the positions of the lower AprilTag, AT1, and
the upper AprilTag, m1, we can get a transform for m2 relative to
m1, Tm1,m2

. Therefore, we can focus on node E’s position because
it is adjacent to m2 while node A is adjacent to m1, which we
can make the origin of the local coordinate system to analyze
Tm1,m2

. There is a minimum and maximum allowable angle of
4.69° and 90° respectively, for all θs based on the minimum and
maximumheight of the deployable truss.Therefore, in the algorithm
to check whether the Tm1,m2

is a valid configuration, we can solve
the equations in Equation 33 and see whether they reach valid θ
values. We can focus on checking node E’s validity, and to simplify

the equations, we can assume that θ1 = θ4 because a possible valid
configuration is their being equal. We do not need to determine the
exact intermediate state; we only need to determinewhether the final
measurement is valid.

2.5.10 Relation for assembled close-out struts
An image of a close-out strut fully inserted, along with the

geometry of the node’s interface, is shown in Figures 5c,d. In both
cases, the strut is inserted into capturing features on two adjacent
nodes. This information about the example truss node and strut
geometry can be used to create bounds for whether the strut is
considered “captured,” within the physical geometric bounds of the
node, or “final assembly,” when the ball plungers internal to the
node deploy into the strut end hole feature to constrain the DOF
of the strut. The relation condition zones for “captured” and “fully
assembled” are outlined in Figure 5g.

2.5.11 Relation for assembled close-out squares
The assembled close-out square relation is similar to that for the

strut. Figure 5e shows an example of the close-out square inserted
between the top four deployable corners, as well as a (Figure 5f)
top view of the node geometry that interfaces with the close-out
square. This information about the example truss node and close-
out square geometry can be used to create bounds for whether
the close-out square is considered “captured” or “final assembly,”
as shown in Figure 5g.

2.6 Generating BORG truss ideal model

The BORG truss can be simplified to four nodes along each axis
connected by 0.5 m struts. For easy transition from simulation to
hardware testing, each module in the 3 × 3 × 3 BORG truss example
was given an identification number with respect to the order of
assembly. Figure 6a below shows this module numbering scheme.
In addition, each module has unique AprilTag identification, two
tags for deployables, and a single tag for close-out struts and
close-out squares. Those are also numbered in ascending order,
shown for the four sides of the truss in Figures 6b–e. Each side
has the AprilTags grouped on the right edge in order for easy
camera panning for measurements. There is also a turntable, which
has 12 tags spaced around to help connect the grouped edges
of AprilTags.

The offset of the AprilTag to the rightmost adjacent node center
is uniform, excluding the special case of the vertical close-out
struts, which have the same transform simply rotated around the
x-axis. In addition, all AprilTags are positioned facing outward
from the face they are on, which adjusts the local transform
within the global coordinate frame, but each AprilTag maintains
the same coordinate frame of x-axis to the right, y-axis up,
and z-axis pointing outward from the truss face. Table 1 lists
the AprilTag numbers, their respective module, and the location
of the node that the AprilTag is adjacent to for the case of
the ideal BORG truss structure, where each node is 0.5 m away
in each direction.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 5
(a) Deployable truss side view with lengths of main elements labeled. (b) Deployable truss kinematic model with nodes and angles labeled. (c) A
close-out strut is inserted in the vertical orientation. (d) Node geometry of the close-out strut to calculate capture and final assembly zones. (e) A
close-out square is inserted in the horizontal orientation. (f) Top view of node close-out square geometry to calculate capture and final assembly
zones. (g) Close-out strut and close-out square capture vs. assembly zone definitions.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 6
(a) BORG truss with labeled modules and axis at the outermost corner node on the first deployable truss, 2D (red). Qualifiers are used after the
assembly number order to indicate whether the module is a close-out square (P), deployable (D), close-out strut (S), or the center truss deployable
(CT). In addition, the corner deployable modules are color-coded in rainbow order to aid in quick identification during hardware trials. (b) Side 1 of the
BORG truss. (c) Side 2 of the BORG truss. (d) Side 3 of the BORG truss. (e) Side 4 of the BORG truss.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

TABLE 1 AprilTag relationship map: red, deployable; blue, close-out strut; green, close-out square.

Tag number Opti name Tags w/single
mechanical
relationship

Tag number Opti name Tags w/single
mechanical
relationship

0 1P 1 37 24 17D-T 23 32

1 2D-B 0 2 9 36 25 18S 6 23

2 2D-T 1 17 21 26 19P 4 18

3 3D-B 4 10 39 27 20S 19

4 3D-T 3 20 26 28 21D-B 29 30 33

5 4D-B 6 11 42 29 21D-T 28 34

6 4D-T 5 25 31 30 22S 8 28

7 5D-B 8 12 45 31 23P 6 23

8 5D-T 7 30 33 32 24S 24

9 6S 1 37 33 25P 8 28

10 7S 3 40 34 26S 29

11 8S 5 43 35 27P 16

12 9S 7 46 36 TT1 1 37 47

13 10CT-B 14 2 37 TT2 0 9 36 38

14 10CT-T 13 15 38 TT3 37 39

15 11D-B 16 17 21 39 TT3 3 38 40

16 11D-T 15 22 40 TT4 10 39 41

17 12S 2 15 41 TT5 40 42

18 13D-B 19 20 26 42 TT5 5 41 43

19 13D-T 18 27 43 TT6 11 42 44

20 14S 4 18 44 TT7 43 45

21 15P 2 15 45 TT7 7 44 46

22 16S 16 46 TT8 12 45 47

23 17D-B 24 25 31 47 TT1 36 46

2.7 Creating a map of the deployable
mechanism and assembled joint
relationships

In order for the relationships of all the deployable and assembled
modules to be generated and accessible for the SF-GraphSLAM
approach, amapwas created that records the numbers of adjacent tags
that sharea single typeof relationship toeach listedAprilTag.Toclarify,
there are more adjacent tags for each number, which is observable by
the camera, but to be able to reduce the map to connections with
only one type of relationship, the following map was generated in

Table 1. The deployable relationships are highlighted in red and are
governed by the relationship described in Section 2.5.9. The close-
out strut relationships are highlighted in blue, and their relationship
is dictated in Section 2.5.10. The close-out square relationships are
highlighted in green and outlined in Section 2.5.11.

2.8 Simulation structure

The hardware used in the simulation trials consisted of a
desktop PC running an AMD Ryzen 9 5900 × 12 core processor

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 7
(a) Python simulation of the BORG truss structure. (b) Diagram of how the simulation is used to compare the GraphSLAM and SF-GraphSLAM methods.

at 3.7 GHz, coupled with 64 GB of DDR4 RAM. The operating
environment for the simulationwas Python 3.11, with basic-robotics
1.0.2. A Python-plotted simulation was created for the BORG truss
example shown in Figure 7a.

The simulation utilized the basic-robotics Python library heavily
on the basic-robotics infrastructure Chapin (2023). The simulation

has spheres centered at the nodes, in pink, with line elements to
represent the struts. There are three types of modules: deployables
(shown with blue struts), close-out struts (shown as a single yellow
line), and close-out squares (shown as four yellow struts with a
diagonal).The turntable is shownwith red lines. AprilTags are drawn
as green squares and labeled with the tag name and coordinate

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

 Input: State Vector y

 Output: Summation JGraphSLAM

1 JGraphSLAM = initial_state_estimate() +

sum_pose_estimate(y) +sum_measurement_estimate(y)

Algorithm 1. JGraphSLAM.

frame.The camera is shown with its own coordinate frame off to the
left, and the tags that are viewable from its position are highlighted
in bright green. The axis is in units of meters.

Thediagram in Figure 7b showswhat is input into the simulation
by the user, what components are used for the GraphSLAM and SF-
GraphSLAM, and the process that generates results to compare.

Depending on the structure, the truss model and tag map
need to be updated. For the BORG truss structure, there are ideal
node locations, 0.5 m displacement between nodes in an array of
four nodes along each axis. The BORG truss has three types of
modules, nine deployables, 12 close-out struts, and six close-out
squares, and those locations are all stored in the truss model. In
addition, the truss model has the positions and orientations of the
AprilTags for each module and their unique tag names. The tag
map is another file that defines the relationships between tags with
a single relationship type of deployable mechanism, close-out strut
assembly, or close-out strut assembly, as shown in Table 1. The
relationship definitions are also stored in this file and are accessed by
the “sum_semantic_estimation” function within SF-GraphSLAM,
which iswhat differentiates it from the state of the art.Thedeployable
close-out strut and close-out square relationships are detailed in
Sections 2.5.9–2.5.11, respectively.

Depending on the simulation trial, the number of modules
assembled, camera positions and trajectories, truss damage or non-
fully deployed or assembled cases, and measurement errors can
be adjusted.

The truss and trial inputs listed above influence the simulation
run, and the results can then be used to perform GraphSLAM
and SF-GraphSLAM calculations. “Scipy.optimize.minimize” is the
optimizing function selected for both SLAM cases, using the
“Powell” method option and inputting an array of zeros the length
of the state vector, the 6-DOF pose of all the camera positions, and
a 6DOF pose for each AprilTag being analyzed in the trial. The state
vector is then adjusted from zero by the optimizer to minimize the
sum of the functions within the SLAM variants to produce its best
guess of the locations of all the camera poses andAprilTag poses.The
GraphSLAM and SF-GraphSLAM optimizations are run separately
and then comparedwith each other and the ground truth of the truss
structure’s state in that trial’s case.

Within the GraphSLAM (Thrun and Montemerlo,
2006) function are three sub-functions: initial_state_
estimate, sum_pose_estimate, and sum_measurement_estimate,
which mirror the summations shown in the JGraphSLAM
Equation 26, shown in Algorithm 1.

The initial_state_estimate function is shown in Algorithm 2.
The sum_pose_estimate function is shown in Algorithm 3.
Algorithm 4 represents the g function, a sub-function for sum_

pose_estimate.

 Input: N/A

 Output: Summation init_state

1 init_state = xT
0
Ω−1
0
x0

Algorithm 2. Initial_state_estimate.

 Input: State Vector y

 Output: Summation sum_pose_est

1 Set degree of freedom (dof) value based on data

type, 6 for Euler.

2 dof = 6

3 Set value for state covariance matrix, R

[dof, dof].

4 Check the state vector guess for every

camera position.

5 for t in range(len(camera_positions)) do

6   Extract the current guess camera pose from

the state vector.

7   xt = y[t∗dof : t∗dof+dof]

8   if t = 0 then

9    If it is the first position guess

compare it to an array of zeros the

length of dof since the

camera is supposed to have an initial

state of zero.

10    pose_diff = xt − [0,0,0,0,0,0]

11   else

12    Extract the previous guess camera

pose from the state vector.

13    xt−1 = y[(t−1) ∗dof : (t−1) ∗dof+dof]

14    Get the known controls of the

camera between t−1 and t, index i

15    ut = camera_controls[i]

16    Compare the guess of the current

pose with the g function guess

based on the previous guess pose

and known camera control.

17    pose_diff = xt −g(ut,xt−1)

18   end if

19   At each time step add the new pose_diff

to the previous sum_pose_est.

20   sum_pose_est+ = pose_diffT ∗R−1 ∗pose_diff

21 end for

Algorithm 3. Sum_pose_estimate

 Input: New Control ut and Previous Guess Pose xt−1

 Output: Current Pose Guess Based on Previous Pose

and Control g

1 g = xt−1 ∗ut

Algorithm 4. Pose Guess Based on Previous t Guess and Movement
Since Then: g.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

 Input: State Vector y

 Output: Summation sum_meas_est

1 Set degree of freedom (dof) value based on data

type, 6 for Euler.

2 dof = 6

3 Set value for measurement covariance matrix, Q

[dof, dof].

4 Check the state vector guess for every

measurement from each camera position.

5 for t in range(len(camera_positions)) do

6   Extract the current guess camera pose from

the state vector.

7   xt = y[t∗dof : t∗dof+dof]

8   Create a list of AprilTags that are

observed, AprilTags_Observed, by the

camera at this time’s position.

9   for j in range(len(AprilTags_Desired)) do

10    Cycle through all the AprilTags_Desired

and check if they are within

the AprilTags_Observed list.

11    if AprilTags_Desired[j] is within

AprilTags_Observed then

12     Extract the current guess AprilTag

pose from the state vector, yTagJ.

13     Calculate the difference between the

guess of TagJ pose and where the

predicted pose of TagJ would be

based on the current position and

measurement at that time, calculated

using function h.

14     meas_diff[j][t] = yTagJ −h(xt,z
j

t)

15    else

16     Do not update sum_meas_est

for that tag.

17    end if

18    At each time step add the new meas_diff

to the previous sum_meas_est.

19    sum_meas_est+ = meas_diff[j][t]T ∗Q−1 ∗

meas_diff[j][t]

20   end for

21 end for

Algorithm 5. Sum_measurement_estimate.

The sum_measurement_estimate function is shown in
Algorithm 5.

Algorithm 6 represents the h function, a sub-function for sum_
measurement_estimate.

Within the SF-GraphSLAM function are four sub-functions: the
first three are the same as the GraphSLAM summation, and a final
function called sum_semantic_estimate.Thismirrors the summation
shown in the JSF−GraphSLAM Equation 27, shown in Algorithm 7.

The sum_semantic_estimate function is shown in Algorithm 8.

 Input: Guess Pose xt and Measurement of AprilTag

j at Time t, z
j

t

 Output: Guess Pose of AprilTag j

1 h = xt ∗z
j

t

Algorithm 6. AprilTag j Guess Pose Based on Camera Guess Pose and
Measurment: h.

 Input: State Vector y

 Output: Summation JSF−GraphSLAM

1 JSF−GraphSLAM =

initial_state_estimate() +sum_pose_estimate(y) +

sum_measurement_estimate(y) +sum_semantic_estimate(y)

2 return JSF−GraphSLAM

Algorithm 7. JSF−GraphSLAM.

Algorithm 9 represents the s function, a sub-function for sum_
semantic_estimate.

2.9 Simulation implementation

The simulation is set up to be able to focus on any number
of desired AprilTags based on the stage of the assembly process at
which this analysis is completed and how much of the structure has
been assembled. Ideally, this SF-GraphSLAMwould be run between
assembly steps to verify that the previous deployment or assembly
step was completed within the acceptable bounds before continuing
assembly to avoid stacking up errors over time.This system can also
be run at the end of a full assembly to get the state of each AprilTag
and, by relationship, the truss nodes.

3 Results

3.1 Testing tag relationship types with
simulation

To test the SF-GraphSLAM approach and compare it
against the SOA GraphSLAM approach, we first provided a
single example of the camera moving between three positions
and observing two AprilTags representing the bottom and
top markers of a single deployable module. The results of
the GraphSLAM and SF-GraphSLAM of this simulation are
shown below.

In this case, two tags are being compared, “Tag_1″ and
“Tag_2,″ from the first deployable module to be assembled. This
simulation has 0.01 m of translational camera view noise and
0.01∗ π/180 radian rotational noise per axis. In addition, there was
a 0.1 camera distance noise multiplier, measured as a percentage
increase inmeasured noise permeter from the camera. Finally, there
was a 0.05 m camera-reported translation and 0.01∗ π/180 radian
rotational noise per axis, also known as camera pose error. Random
Gaussian noise was included in the pose control update and the

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

 Input: State Vector y

 Output: Summation sum_sem_est

1 Set degree of freedom (dof) value based on data type, 6 for Euler.

2 dof = 6

3 Set value for measurement covariance matrix, S [dof, dof].

4 Check the state vector guess for every measurement from each camera position and compare with other

observed AprilTags with known relations.

5 for t in range(len(camera_positions)) do

6   Extract the current guess camera pose from the state vector.

7   xt = y[t∗dof : t∗dof+dof]

8   Create a list of AprilTags that are observed, AprilTags_Observed, by the camera at this

time’s position.

9   for j in range(len(AprilTags_Desired)) do

10    Cycle through all the AprilTags_Desired and check if they are within the AprilTags_Observed list.

11    for k in range(len(AprilTags_Desired)) do

12     Check tag map to see if TagJ has any known relations, TagK and then check if they are also

within the AprilTags_Observed list.

13     if AprilTags_Desired[j] is within AprilTags_Observed then

14      if AprilTags_Desired[k] is within AprilTags_Observed then

15       Extract the current guess AprilTag pose from the state vector, yTagJ.

16       Calculate the difference between the guess of TagJ pose and where the predicted pose

of TagJ would be based on the current guess of related TagK pose,yTagK, and the known

relationship between the tags, calculated using function s.

17       sem_diff[j][t] = yTagJ −s(TagJ,TagK)

18      else

19       Do not update sum_meas_est for that tag.

20      end if

21     else

22      Do not update sum_meas_est for that tag.

23     end if

24    end for

25    sum_sem_diff[j] + = sem_diff[j][t]T ∗S−1 ∗sem_diff[j][t]

26   end for

27   At each time step add the new sum_sem_diff for each j to the previous sum_sem_est.

28   for j in range(len(AprilTags_Desired)) do

29    sum_sem_est+ = sum_sem_diff[j]

30   end for

31 end for

Algorithm 8. Sum_semantic_estimate.

AprilTag measurement for the measurement function. The
covariance matrices Q,R,S are diagonal matrices with the diagonal
values given as squared standard deviations in meters and radians
and are shown in Equations 34–36. This data set was generated
with 50 trial runs, which had their data and plots saved for
analysis. The mean square error, root mean squared error, mean,
standard deviation, and maximum error are plotted in Table 2,
and one of the trial plots is shown below in Figure 8. These data
show that the SF-GraphSLAM, on average, has a lower MSE than
GraphSLAM for all translation and rotation categories. Therefore,

for the deployable example with camera view and reported noise
error, the SF-GraphSLAM consistently produces results closer to
the ground truth.

Q = diag[(1m)2, (1m)2, (1m)2, (0.1rad)2, (0.1rad)2, (0.1rad)2]
(34)

R = diag[(0.1 m)2, (0.1 m)2, (0.1 m)2, (0.01 rad)2, (0.01 rad)2, (0.01 rad)2]
(35)

S = diag[(0.1m)2, (0.1m)2, (0.1m)2, (0.1rad)2, (0.1rad)2, (0.1rad)2]
(36)

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

 Input: Tag J and K

 Output: Guess Pose of AprilTag j with Respect to

AprilTag k and Known Relation

1 This function relies on the tag relationship map

and relationship designations for deployable

mechanisms and close-out strut and close-out

square assembly relations.

2 s = yTagK +relationship(TagJ,TagK)

Algorithm 9. Semantic Association: Update ApriTag Guess Pose Based on
Adjacent Tag and Known Relation Type: s.

3.2 Testing the partially deployed module
simulation case

Because the deployable truss modules could have the potential
to not be fully deployed before assembly, as shown in Figure 9 we
tested a case where this happened to show howwe can identify that it
is not a fully deployed case and not assume the ideal transformation.
In this scenario, the SF-GraphSLAM reverts to GraphSLAM when
the AprilTags are outside the bounds of an expected deployed case.
Table 3 below shows that both perform equally.This result would be
flagged during an assembly step as it is not a complete deployment,
and it should be re-deployed or another module swapped out
before continuing assembly. Figure 10a shows the simulated partially
deployed truss, and Figure 10b shows the results of running
GraphSLAM and SF-GraphSLAM, with Figure 10c showing the
offset of tag 1 relative to tag 2, and Figure 10d showing both tag 1 and
tag 2 together.

3.3 Testing a larger BORG truss simulation
case

After verifying all three relational types worked as intended, a
larger AprilTag set test was performed with the BORG structure.
This example analyzes the first face of the BORG truss structure.
Figure 11 shows the GraphSLAM and SF-GraphSLAM results for
this experiment. The pose estimate errors for SF-GraphSLAM
are listed in Table 4. This simulation has 0.01 m of translational
camera view noise and 0.01∗pi/180 rotational noise. In addition,
there was a 0.1 camera distance noise multiplier, measured
as a percentage increase in measured noise per meter from
the camera. There was a 0.05 m camera-reported translation
and 0.01∗ π/180 rotational noise, also known as camera pose
error. Finally, random Gaussian noise was included in the
pose control update and the AprilTag measurement for the
measurement function.

Due to the computational time involved in processing all the tags
for the BORG cube, only a single face was analyzed. The concept of
implementing SF-GraphSLAM is to run it often between assembly
steps with smaller sets of AprilTags and then update the simulated
truss reference, which is carried over into the next inspection task.

Therefore, an ideal and guess state vector for all the tags can be
maintained locally and referenced instead of having to re-calculate
it from guesses of zero each implementation.

3.4 Testing tag elimination

This test case is used to show that if an AprilTag is incorrectly
placed, a verification step can be used to determine that this tag
result is erroneous and can be eliminated if the rest of the assembly
is valid. The standard concept of operations entails running SF-
GraphSLAM at the end of each assembly step and ensuring that the
deployable and assembled modules are placed properly. Therefore,
this verification step is only for checking whether a tag has been
moved or obscured later, causing bad results. The process entails
taking the output of SF-GraphSLAM, x, and attempting to best fit
all the AprilTag values to the ideal truss. This test was performed
with tags on the first face of the BORG structure. A base tag was
selected to be the first tag, “Tag_1,″ to use its pose as a guess and try
to minimize the other tag guess error with respect to it, assuming
an ideal truss structure. An error of a 0.3 m tag displacement was
simulated on “Tag_17″ in the y− axis. This test runs through the
guess positions of the observed tags based on the base tag and ideal
transforms and then calculates the distance between the guessed
location and themeasured location.Then, the distances are sorted in
descending order, with the worst fit tags (with the largest distances)
at the beginning. A removal cutoff, maximum distance allowable,
and a maximum number of tags to remove can be specified. Each
tag distance is evaluated, and if it is above the allowable cutoff, the
tag is thrown out.This test found that Tag_17 was outside the cutoff,
and it was removed from the tag list. This is allowable because,
since the surrounding structure is compared against and is within
expected bounds, a deduction can be made that the tag’s position
would be impossible to return for a properly placed AprilTag, while
the rest of the structure does not also show cascading damage error.
This can be done with a minimum of three tags and up to as many
tags as desired.

3.5 Quantifying measurement accuracy
requirements for space structures and
robustness against sensor and
measurement error

Based on the introduced error in the trials above, we can
quantify the robustness against sensor and measurement error of
SF-GraphSLAM compared to the SOA GraphSLAM due to its
higher accuracy. Structures developed for in-space assembly by
NASA Langley Research Center (Dorsey et al., 2021; Hedgepeth,
2012) were used for reference of root mean squared error (RMSE)
and compared against. In a critical requirements document for
the design of large space structures (Hedgepeth, 2012), it was
noted that an accuracy of 0.1 mm would be required for a
10-m-long member. A 102-member tetrahedral truss structure
example with 0.14 mm RMSE and a 14-m diameter truss with
a surface precision of 0.0719 mm RMSE (Dorsey et al., 2021;
Hedgepeth, 2012) was used as a reference, and an average goal
RMSE was calculated. Then, the RMSE values from various trial

Frontiers in Robotics and AI 20 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

TABLE 2 Deployable example with camera view and reported noise error: mean squared error, root mean squared error, mean, standard deviation, and
maximum error for GraphSLAM offset, SF-GraphSLAM offset, and the comparison of the two with the SF-GraphSLAM offset divided by the
GraphSLAM offset.

Method Evaluation X_Trans (m) Y_Trans (m) Z_Trans (m) X_Rot (rad) Y_Rot (rad) Z_Rot (rad)

GraphSLAM

Mean squared
error (MSE)

5.02E−04 3.13E−03 1.28E−04 5.97E−07 1.55E−06 3.73E−07

Root mean
squared error
(RMSE)

2.241 E−02 5.59E−02 1.13E−02 7.73E−04 1.24E−03 6.11E−04

Mean 2.24E−02 5.59E−02 1.12E−02 7.61E−04 1.24E−03 6.00E−04

Standard
deviation

1.251 E−03 1.19E−03 1.31E−03 1.34E−04 1.30E−04 1.161 E−04

Max error −2.26E−02 −5.62E−02 −1.07E−02 −1.03E−03 1.57E−03 −4.25E−04

SF-GraphSLAM

Mean squared
error (MSE)

4.21E−07 1.16E−06 5.65E−08 3.851 E−07 9.53E−07 2.92E−07

Root mean
squared error
(RMSE)

6.49E−04 1.08E−03 2.38E−04 6.21E−04 9.76E−04 5.41E−04

Mean 6.26E−04 1.06E−03 1.84E−04 6.03E−04 9.71E−04 5.32E−04

Standard
deviation

1.71E−04 2.03E−04 2.38E−04 1.46E−04 1.041 E−04 9.71E−05

Max error −7.63E−04 −9.65E−04 7.57E−04 −5.45E−04 1.16E−03 −5.66E−04

Ratio Between
SF-GraphSLAM
and GraphSLAM

Mean squared
error (MSE)

8.37E−04 3.72E−04 4.42E−04 6.45E−01 6.16E−01 7.83E−01

Root mean
squared error
(RMSE)

2.89E−02 1.93E−02 2.10E−02 8.03E−01 7.85E−01 8.85E−01

Mean 2.80E−02 1.89E−02 1.64E−02 7.93E−01 7.85E−01 8.87E−01

Standard
deviation

1.37E−01 1.70E−01 1.82E−01 1.09E+00 7.98E−01 8.36E−01

Max error 3.38E−02 1.72E−02 −7.07E−02 5.30E−01 7.38E−01 1.33E+00

runs, with different levels of introduced error, were averaged for
translation (m) and rotation (rad) error and compared against
the reference average to see whether they were higher or lower.
These results are shown in Table 5. RMSE values that are above
the reference are highlighted in red, while values below are
highlighted in green. For these trials, both the GraphSLAM and
SF-GraphSLAM rotational values are above the average, but more
trials could be done with less introduced rotational error. In
terms of translation error, the SF-GraphSLAM performs better
and has all values below the reference’s average. This is significant
because it shows SF-GraphSLAM’s increased accuracy allows
for robustness against sensor and measurement errors. This is
because even though there is a variety of introduced errors, SF-
GraphSLAM can still estimate the positions of the tags within
error margins that are smaller than the error of the reference
truss. This is required to be able to measure anomalies in the truss
structure itself.

4 Discussion

SF-GraphSLAM was shown to reduce the mean squared error
of fiducial pose estimation attached to an example modular space
truss structure compared to the state-of-the-art GraphSLAM. The
SF-GraphSLAM method successfully combined the fast detection
andmeasurement of fiducials, AprilTags, with semantic information
about the truss structure being assembled to aid in estimating
module poses, even when there was considerable noise from both
the camera’s simulated pose and measurement.

The previous work in the BORG mixed assembly
trade study (Chapin et al., 2023) explained the mixed assembly
method, reducing the number of unique assembly components by
using amixture of deployable and assembledmodules. It then proves
how the mixed assembly method can be used to minimize the state
space due to the reduction of components tracked. This benefit is
only increased by using sparsely placed fiducials on the modules to

Frontiers in Robotics and AI 21 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 8
Deployable truss simulation test example. This plots the results of one of the trial runs. Red indicates the ideal marker positions, blue indicates the
SF-GraphSLAM guess poses, and green indicates the GraphSLAM guess tag poses. The top two plots are AprilTag positions with respect to the camera;
(a) tag 1 on the left and (b) tag 2 on the right. (c) Plots the offset between tag 2 with respect to tag 1 for the respective ideal, SF-GraphSLAM, and
GraphSLAM values. (d) Plotting both tags in the camera frame.

FIGURE 9
Partially deployed truss test simulation setup.

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

TABLE 3 Partially deployed truss test case: mean squared error, root mean squared error, mean, standard deviation, and maximum error for GraphSLAM
offset, SF-GraphSLAM offset, and the comparison of the two with the SF-GraphSLAM offset divided by the GraphSLAM offset.

Quantity X_Trans (m) Y_Trans (m) Z_Trans (m) X_Rot (rad) Y_Rot (rad) Z_Rot (rad)

GraphSLAM offset MSE 0.000823202 4.07E−06 0.000497053 8.88E−08 5.72E−08 1.18E−07

GraphSLAM offset RMSE 0.028691503 0.002016924 0.022294694 0.000297956 0.000239212 0.000343207

GraphSLAM offset mean 0.02843751 0.001515303 0.02219467 0.000256795 0.000201602 0.00032011

GraphSLAM offset stdev 0.003809247 0.001758544 0.002109508 0.000165152 0.00019409 0.000123777

GraphSLAM offset max_error 0.032634787 0.00035341 −0.025219943 0.000524758 0.000452405 0.00053455

SF-GraphSLAM offset MSE 0.000909264 1.27E−05 0.000492483 7.76E−08 3.50E−08 3.40E−07

SF-GraphSLAM offset RMSE 0.030154006 0.003565644 0.022191951 0.000278536 0.00018711 0.000583429

SF-GraphSLAM offset mean 0.030147366 0.003058347 0.02186321 0.00026789 0.00014472 0.000508247

SF-GraphSLAM offset stdev 0.000632779 0.001833122 0.003805622 7.63E−05 0.000185967 0.000286485

SF-GraphSLAM offset max_error 0.031189212 −0.000758613 −0.024521632 0.000397442 0.000430115 0.000921899

SF/G MSE 1.10E+00 3.13E+00 9.91E−01 8.74E−01 6.12E−01 2.89E+00

SF/G RMSE 1.050973386 1.767862025 0.995391594 0.93482168 0.782191311 1.699932567

SF/G mean 1.06E+00 2.02E+00 9.85E−01 1.04E+00 7.18E−01 1.59E+00

SF/G stdev 1.66E−01 1.04E+00 1.80E+00 4.62E−01 9.58E−01 2.31E+00

SF/G max_error 9.56E−01 −2.15E+00 9.72E−01 7.57E−01 9.51E−01 1.72E+00

remove the need to track the states of sub-components other than
the deployable top and bottom planes.

The mathematical approach shows how the SF-GraphSLAM
approach is derived by adding a semantic element of known
relationships between map elements and adding that to the
state-of-the-art GraphSLAM approach. Improvements in the
completeness of the graph relationships and information matrix
are shown.

The simulation results show the construction of a built on-
orbit robotically assembled gigatruss (BORG) simulation, based on
the mixed assembly method. This allows for the comparison of
SF-GraphSLAM and GraphSLAM on a structure with controllable
noise. A series of tests were conducted with both methods,
attempting to optimize for the best guess of the AprilTag poses
based on simulated camera control and measurement input. The
trials had a range of introduced camera poses and measurement
simulated errors.Themaximum camera measurement error used in
the simulation was 0.01 m of translational camera view noise, 0.01∗
π/180 rotational noise, and a 0.1 camera distance noise multiplier.
The maximum camera pose noise was a 0.05 m translation and
0.01∗ π/180 rotational noise. In addition, when a series of trial
runs was completed for use in finding the mean squared error
and other evaluation criteria, there was random Gaussian noise
on the pose control update and the AprilTag measurement for the
measurement function. In these tests, SF-GraphSLAM consistently
performed better at utilizing the semantic relationship map to
find better fit AprilTag poses that were able to counteract some

of the error and provide a better pose estimate. The simulation
environment was also used to test tag rejection; when a single or
a small number of tags have large errors, while the surrounding
structure fits the model well, the tag can be eliminated and
assumed to be a tag placement error. Finally, the robustness of the
system was considered and compared well to other space structure
examples of required root mean squared error across the large
truss surface.

Overall, this comparative experimental data shows increased
performance of the SF-GraphSLAM approach compared to the
GraphSLAM algorithm on which it was based. The consistency
of this improved performance depends on the accuracy of the
imputed semantic knowledge of the modules, fiducial locations,
fiducial relations, and overall structure assembly. If these inputs
are not accurate, then it could lead to the SF-GraphSLAM
approach biasing the pose estimates to incorrect locations.
Initial hardware testing of SF-GraphSLAM was conducted
and documented by Chapin et al. (2024) and Chapin (2024),
but the error in the hardware was too great to see the same
increased performance over the GraphSLAM approach as was seen
in simulation.

4.1 Potential drawbacks

While the use of semantic information is shown to provide
an improved estimate of the evolution of the structure, there are

Frontiers in Robotics and AI 23 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 10
Partially deployed truss results. (a) Tag 1 plot. (b) Tag 2 plot. (c) Offset of tag 1 to tag 2 plot. (d) Tags 1 and 2 plotted together.

potential areas of concern. Because SF-GraphSLAM is a factor graph
algorithm that considers the entire history of the states of the
assembly robots and the structure elements, the time required to find
a local minimum will increase, consuming more and more energy
as the assembly time goes on. This can be countered by using an
incremental factor graph method. If time is a critical resource, this
can be further mitigated by using a filtering approach that does not
retain the full state history (e.g., EKF-SLAM), which further ensures
that computation time per step is not dependent on how long the
system has been in operation.

This work also assumes that visual markers are not hindered by
sunlight, which may not always be possible. Without mitigation, a
reduction in sensor information (and sensor quality) will result in
a reduction in accuracy and may possibly lead to scenarios where
there is not sufficient information to find a single optimal estimate
for one or more components. In such cases, SF-GraphSLAM can
be augmented with factors representing data from different sensor
types, including laser range finders and retro-reflective markers.
Furthermore, the strategic orientation of visual sensors, marker
placement, and assembly time to mitigate the influence of sunlight
will need to be part of the consideration for system design and
sequence planning.

4.2 Contribution to the state of the art

The SF-GraphSLAM method is a new way to focus on a
SLAM method that can handle tracking components used for
robotic assembly.The concept of the mixed assembly method, using
deployable and assembled modules, is novel and is shown to greatly
reduce the state vector of the assembly problem. This state vector
is further minimized by leveraging scarcely placed fiducials on the
truss modules. SF-GraphSLAM also shows a new way to create and
store relationships between map elements and integrate them in the
SLAM to create more connections in the graph that can generate an
updated summation to be optimized to find the most likely poses of
the moving camera and map elements. This novel method is shown
in mathematical derivation and simulation within this article and
will be shown in hardware trials in a subsequent article.

4.3 Future work

SF-GraphSLAM was compared against the GraphSLAM
algorithm it was originally derived from. Comparisons of
SF-GraphSLAM’s performance against other SOA factor graph-
based algorithms would allow for better analysis of its relative
performance. Similarly, the initial hardware testing (Chapin et al.,

Frontiers in Robotics and AI 24 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

FIGURE 11
The plot of the side of the BORG truss structure. GraphSLAM (green) and SF-GraphSLAM (blue) pose estimates are plotted against the ground truth
(red). (a) BORG Truss Side 1, with the plotted tags highlighted (b) Front view. (c) Top view. (d) Close-up view.

2024) also compared SF-GraphSLAM against GraphSLAM, so
further algorithm comparisons in hardware testing would be
beneficial. Additionally, it is crucial that more precise hardware
be utilized to allow for better testing so that the semantic inputs for
the SF-GraphSLAM are accurate and can lead to higher accuracy in
the pose estimates.

AprilTags were proposed in this experimentation because a
large amount of experimental data has been collected using them
across a wide variety of robotics experimentation, making them a
good fiducial candidate. We considered what an ideal fiducial for
this type of robotic ISAM-focused SLAM could be. Criteria for
an ideal fiducial include being viewable from more orientations

and perspectives; AprilTags can only be seen from a point of
view that is perpendicular to the tag. With this goal in mind, a
concept was generated of a cylindrical fiducial that wraps around
the strut cylinder and is viewable from many different vantage
points. Conceptually, it could look like a bar code with square
notches for angular identification. Additionally, this fiducial could
be scaled to be larger and seen from further away to enable
easier perception of larger structures. Another idea is to even have
some sort of embedded fiducial design that changes as you get
closer to the fiducial to allow for perception at varying distances.
Finally, integrating the fiducial into the strut itself would also

Frontiers in Robotics and AI 25 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

TABLE 4 Error of SF-GraphSLAM and GraphSLAM pose estimates with respect to ground truth for the test of the first side of the BORG truss structure.
Difference of the absolute (abs) errors of SF-GraphSLAM and GraphSLAM; a negative number means less SF-GraphSLAM error.

Tag Approach X_Trans (m) Y_Trans (m) Z_Trans (m) X_Rot (rad) Y_Rot (rad) Z_Rot (rad)

Tag 22

GraphSLAM −4.961E−02 −1.799E−02 2.942E−02 5.759E−04 −4.250E−04 −1.407E−03

SF-GraphSLAM −1.751E−02 −4.901E−04 1.097E−02 7.929E−04 −1.501E−03 −8.125E−04

Abs difference −3.210E−02 −1.750E−02 −1.844E−02 2.170E−04 1.076E−03 −5.943E−04

Tag 35

GraphSLAM −4.432E−02 −1.754E−02 2.156E−02 −3.262E−04 −1.170E−04 −4.423E−04

SF-GraphSLAM −1.688E−02 −5.926E−04 1.108E−02 −6.524E−05 −5.748E−04 3.565E−04

Abs difference −2.744E−02 −1.695E−02 −1.049E−02 −2.610E−04 4.577E−04 −8.585E−05

Tag 14

GraphSLAM −3.664E−02 −1.299E−02 2.390E−02 −7.051E−04 1.368E−04 −3.720E−04

SF-GraphSLAM −2.258E−02 1.712E−02 2.336E−03 −8.141E−04 −1.087E−03 5.969E−05

Abs difference −1.407E−02 4.130E−03 −2.157E−02 1.090E−04 9.503E−04 −3.123E−04

Tag 21

GraphSLAM −3.836E−02 −1.558E−02 2.669E−02 −1.489E−04 −3.949E−04 −1.224E−03

SF-GraphSLAM −2.181E−02 1.931E−02 3.057E−03 6.408E−04 −1.222E−03 3.722E−03

Abs difference −1.656E−02 3.731E−03 −2.364E−02 4.919E−04 8.267E−04 2.498E−03

Tag 13

GraphSLAM −3.993E−02 −1.139E−02 2.149E−02 −3.851E−04 −7.139E−04 −9.356E−04

SF-GraphSLAM 1.806E−02 2.474E−03 −1.247E−04 −1.278E−03 4.368E−03 −2.105E−02

Abs difference −2.187E−02 −8.916E−03 −2.137E−02 8.929E−04 3.655E−03 2.012E−02

Tag 9

GraphSLAM −1.632E−02 1.008E−03 7.035E−03 −7.723E−04 2.526E−04 6.063E−04

SF-GraphSLAM −4.086E−03 2.498E−02 3.459E−04 −6.323E−05 1.492E−04 4.321E−03

Abs difference −1.224E−02 2.397E−02 −6.689E−03 −7.091E−04 −1.033E−04 3.715E−03

Tag 0

GraphSLAM −4.377E−02 −9.908E−03 2.190E−02 1.554E−04 1.362E−04 −6.266E−04

SF-GraphSLAM −5.089E−03 2.477E−02 6.166E−04 −2.209E−04 −4.127E−04 1.078E−03

Abs difference −3.868E−02 1.486E−02 −2.128E−02 6.556E−05 2.765E−04 4.518E−04

eliminate concerns about the extra mass that fiducials add to
the structure.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

SC: Writing – original draft, Writing – review and editing.
WC: Writing – review and editing. EK: Writing – review and
editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This research was
supported by NASA Langley Research Center through a cooperative
agreement with the National Institute of Aerospace (C15-2B00-VT
sub-award 202101-VT) and a contract with Analytical Mechanics
Associates, Inc. (RSES.C2.09.00108.001).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Robotics and AI 26 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

T
A
B
LE

5
T
h
is
ta
b
le

sh
o
w
s
th
e
ro
o
t
m
ea

n
sq

u
ar
e
av

er
ag

e
fo
r
tr
an

sl
at
io
n
(m

)a
n
d
ro
ta
ti
o
n
al

(r
ad

)e
rr
o
r
fo
r
a
se
ri
es

o
f
tr
ia
ls
.S

et
ti
n
g
s
fo
r
th
e
er
ro
r
in

th
e
tr
ia
ls
ar
e
sp

ec
ifi
ed

o
n
th
e
le
ft
.T

h
e
re
su

lt
s
ar
e
co

m
p
ar
ed

ag
ai
n
st

an
av

er
ag

e
o
f
R
M
SE

fr
o
m

o
th
er

sp
ac

e
st
ru
ct
u
re

re
se
ar
ch

as
a
re
fe
re
n
ce

.R
M
SE

va
lu
es

th
at

ar
e
ab

o
ve

th
e
ex

am
p
le

ar
e
h
ig
h
lig

h
te
d
in

re
d
,a

n
d
va

lu
es

b
el
o
w

th
e
ex

am
p
le

ar
e
h
ig
h
lig

h
te
d
in

g
re
en

.

D
at
as
e
t

R
an

d
o
m

G
au

ss
ia
n

n
o
is
e

C
am

e
ra

vi
e
w

n
o
is
e
-

A
K
A
at

m
e
an

s
e
rr
o
r

C
am

e
ra

re
p
o
rt
e
d
n
o
is
e
-

A
K
A
p
o
se

e
rr
o
r

P
o
se

(m
)

M
e
an

s
(m

)
M
u
lt
ip
lie

r
Tr
an

s
(m

)
R
o
t
(r
ad

)
Tr
an

s
(m

)
M
u
lt
ip
lie

rR
o
t

(r
ad

)

D
ep
lo
ya
bl
e
te
st
-1

0
ru
ns

0.
00
00
1

0.
00
00
1

0
0

0
0

0

D
ep
lo
ya
bl
e
te
st
-x

0
G
ue
ss
-5

0
ru
ns

0.
00
00
1

0.
00
00
1

0.
01

0.
00
17
45
32
9

0.
01

0.
05

0.
00
17
45
32
9

D
ep
lo
ya
bl
e
te
st
-x

0
=
0–
50

ru
ns

0.
00
00
1

0.
00
00
1

0.
01

0.
00
17
45
32
9

0.
01

0.
05

0.
00
17
45
32
9

C
lo
se
-o
ut

sq
ua
re

te
st
-1

0
ru
ns

0.
00
00
1

0.
00
00
1

0.
01

0.
00
17
45
32
9

0.
01

0
0

C
lo
se
-o
ut

st
ru
tt
es
t-

10
ru
ns

0.
00
00
1

0.
00
00
1

0
0

0
0.
05

0.
00
17
45
32
9

D
at
as
e
t

G
ra
p
h
SL

A
M

R
M
SE

SF
-G

ra
p
h
SL

A
M

R
M
SE

Tr
an

s
(m

)
R
o
t
(r
ad

)
Tr
an

s
(m

)
R
o
t
(r
ad

)

D
ep
lo
ya
bl
e
te
st
-1

0
ru
ns

0.
02
99
43
84
1

0.
00
08
83
73
6

0.
00
06
56
13
4

0.
00
06
32
48

D
ep
lo
ya
bl
e
te
st
-x

0
G
ue
ss
-5

0
ru
ns

0.
02
98
81
71

0.
00
08
76
03
9

0.
00
06
54
88
9

0.
00
07
12
57
4

D
ep
lo
ya
bl
e
te
st
-x

0
=
0–
50

ru
ns

0.
16
47
72
15
2

0.
02
92
42
35
3

0.
00
06
77
43
3

0.
00
07
36
04
9

C
lo
se
-o
ut

sq
ua
re

te
st
-1

0
ru
ns

0.
00
72
24
85
3

0.
00
08
45
27

0.
00
03
07
99
3

0.
00
06
87
93
1

C
lo
se
-o
ut

st
ru
tt
es
t-

10
ru
ns

0.
00
46
82
95

0.
00
04
11
43
9

0.
00
02
49
97
6

0.
00
01
60
10
6

Av
er
ag
e
RM

SE
0.
04
73
01
10
1

0.
00
64
51
76
8

0.
00
05
09
28

5
0.
00
05
85
82
8

Frontiers in Robotics and AI 27 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Chapin et al. 10.3389/frobt.2025.1426676

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abaspur Kazerouni, I., Fitzgerald, L., Dooly, G., and Toal, D. (2022).
A survey of state-of-the-art on visual slam. Expert Syst. Appl. 205, 117734.
doi:10.1016/j.eswa.2022.117734

Abawi, D., Bienwald, J., and Dorner, R. (2004). Accuracy in optical tracking with
fiducial markers: an accuracy function for artoolkit. Third IEEE ACM Int. Symposium
Mix. Augmented Real., 260–261. doi:10.1109/ISMAR.2004.8

Asril, E. G., and Zhu, Z. H. (2025). Shape reconstruction of unknown tumbling target
using factor graph-based dynamic slam.AIAA SciTech 2025, SAR-01 In-Space On-Orbit
Serv. Robotics Sess. doi:10.2514/6.2025-0180

Bettens, A., Morrell, B., Coen, M., Wu, X., Gibbens, P., and Chamitoff, G. (2024).
Simultaneous localization and mapping architecture for small bodies and space
exploration. Adv. Space Res. 73, 1185–1197. doi:10.1016/j.asr.2023.10.048

Cavaciuti, A. J., Heying, J. H., and Davis, J. (2022). In-space servicing, assembly, and
manufacturing for the new space economy.Aerosp. Cent. Space Policy Strategy, 2022–07.

Chapin, S. (2024). Semantic and fiducial aided graph simultaneous localization and
mapping for robotic in-space assembly and servicing of large truss structures. Virginia
Tech.

Chapin, S., Everson, H., Chapin, W., and Komendera, E. (2024). Built on-orbit
robotically assembled gigatruss (Borg): ground robotic demonstration. Aerospace 11,
447. doi:10.3390/aerospace11060447

Chapin, S., Everson, H., Chapin, W., Quartaro, A., and Komendera, E. (2023). Built
on-orbit robotically assembled gigatruss (Borg): a mixed assembly architecture trade
study. Front. Robotics AI 10, 1109131. doi:10.3389/frobt.2023.1109131

Chapin, W. (2023). Gazebo garden. Available online at: https://github.com/64-
B1T/basic_robotics.

Chen, W., Shang, G., Ji, A., Zhou, C., Wang, X., Xu, C., et al. (2022). An overview on
visual slam: from tradition to semantic. Remote Sens. 14, 3010. doi:10.3390/rs14133010

Chen, Z. (2003). Bayesian filtering: from kalman filters to particle filters, and beyond.
Statistics 182. doi:10.1080/02331880309257

Dale Arney, Dr., and Mulvaney, J. (2023). Space servicing, assembly, and
manufacturing (ISAM) state of play. 2023 Edition. Available online at: https://
www.nasa.gov/wp-content/uploads/2023/10/isam-state-of-play-2023.pdf.

DeGol, J., Bretl, T., and Hoiem, D. (2018). “Improved structure from motion using
fiducial marker matching,” in European conference on computer vision.

Dellaert, F., and Kaess, M. (2017). Factor graphs for robot perception. Found. Trends
® Robotics 6, 1–139. doi:10.1561/2300000043
Dorsey, J., Doggett, W., McGlothin, G., Alexandrov, N., Allen, B., Chandarana,

M., et al. (2021). State of the profession: Nasa langley research center
capabilities/technologies for autonomous in-space assembly and modular persistent
assets. Bull. AAS 53. doi:10.3847/25c2cfeb.7707c9bf

Fiala, M. (2010). Designing highly reliable fiducial markers. IEEE Trans. Pattern
Analysis Mach. Intell. 32, 1317–1324. doi:10.1109/TPAMI.2009.146

Garcia, M. (2022). International space station. Available online at: https://www.nasa.
gov/mission_pages/station/main/index.html.

Garner, R. (2018). Hubble servicing missions overview. Available online at: https://
www.nasa.gov/mission_pages/hubble/servicing/index.html.

Gregg, C. E., and Cheung, K. C. (2024). “Precision in assembled discrete lattice space
structures for next-generation isam applications,” in 2024 IEEE aerospace conference
(IEEE), 1–9.

Hedgepeth, J. (2012). Critical requirements for the design of large space structures.
doi:10.2514/6.1981-443

Henshaw, C. G., Glassner, S., Naasz, B., and Roberts, B. (2022). Grappling spacecraft.
Annu. Rev. Control, Robotics, Aut. Syst. 5, 137–159. doi:10.1146/annurev-control-
042920-011106

Jamieson, K. G., Nowak, R., and Recht, B. (2012). Query complexity of derivative-free
optimization. Adv. Neural Inf. Process. Syst. 25. doi:10.48550/arXiv.1209.2434

Komendera, E. E., Adhikari, S., Glassner, S., Kishen, A., and Quartaro, A. (2017).
Structure assembly by a heterogeneous team of robots using state estimation, generalized
joints, and Mobile parallel manipulators. IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS, 4672–4679. doi:10.1109/IROS.2017.8206338

Leinz, M. R., Chen, C.-T., Scott, P., Gaumer, W., Sabasteanski, P., and Beaven,
M. (2008). “Modeling, simulation, testing, and verification of the orbital express
autonomous rendezvous and capture sensor system (ARCSS),”. Sensors and systems for

space applications II. Editors R. T. Howard, and P. Motaghedi (Bellingham, WA: SPIE),
6958. doi:10.1117/12.77959969580C

Lightbody, P., Krajník, T., and Hanheide, M. (2017). “A versatile high-performance
visual fiducial marker detection system with scalable identity encoding,” in Proceedings
of the symposium on applied computing (New York, NY, USA: Association for
Computing Machinery, SAC ’17), 276–282. doi:10.1145/3019612.3019709

Lynch, K. M., and Park, F. C. (2017). Modern robotics: mechanics, planning, and
control. 1st edn. USA: Cambridge University Press.

Mahmoud, A., and Atia, M. (2022). Improved visual slam using semantic
segmentation and layout estimation. Robotics 11, 91. doi:10.3390/robotics11050091

Moser, J. N., Wolf, J. H., Cresta, C. J., Guo, R., Rajaram, R., and Cooper, J. R. (2024).
“Pose estimation for autonomous in-space assembly,” inAiaa aviation forum and ascend
2024, 4909.

Mukherjee, R. (2023). “Survey of select recent in-space servicing assembly and
manufacturing related robotics projects at the jet propulsion laboratory,” in Ascend
2023, 4700.

Obermark, J., Creamer, G., Kelm, B. E., Wagner, W., and Henshaw, C. G. (2007).
“SUMO/FREND: vision system for autonomous satellite grapple,”. Sensors and systems
for space applications. Editors R. T.Howard, andR.D. Richards (Bellingham,WA: SPIE),
6555, 65550Y. doi:10.1117/12.720284

Ogilvie, A., Allport, J., Hannah, M., and Lymer, J. (2008). “Autonomous satellite
servicing using the orbital express demonstration manipulator system,” in Proceedings
of the 9th international symposium on artificial intelligence, robotics and automation in
space. Bellingham, WA: iSAIRAS.

Olson, E. (2011). “Apriltag: a robust and flexible visual fiducial system,” in
2011 IEEE international conference on robotics and automation, 3400–3407.
doi:10.1109/ICRA.2011.5979561

Pfrommer, B., and Daniilidis, K. (2019). Tagslam: robust slam with fiducial markers

Post, M. A., Yan, X.-T., and Letier, P. (2021). Modularity for the future in space
robotics: a review. Acta Astronaut. 189, 530–547. doi:10.1016/j.actaastro.2021.09.007

Qi, X., Huang, H., Li, B., and Deng, Z. (2016). A large ring deployable mechanism for
space satellite antenna. Aerosp. Sci. Technol. 58, 498–510. doi:10.1016/j.ast.2016.09.014

Reed, B. B., Bacon, C., and Naasz, B. J. (2017). Designing spacecraft to enable robotic
servicing. doi:10.2514/6.2017-5255

Rodríguez, I., Bauer, A. S., Nottensteiner, K., Leidner, D., Grunwald, G., and Roa, M.
A. (2021). “Autonomous robot planning system for in-space assembly of reconfigurable
structures,”IEEEAerosp. Conf. 50100. IEEE, 1–17. doi:10.1109/aero50100.2021.9438257

Schlenker, L., Moretto, M., Gaylor, D., and Linares, R. (2019). “Simultaneous
localization and mapping for satellite rendezvous and proximity operations using
random finite sets,” in AAS/AIAA space flight mechanics meeting.

Thrun, S., and Montemerlo, M. (2006). The graph slam algorithm with applications
to large-scale mapping of urban structures. Int. J. Robotics Res. 25, 403–429.
doi:10.1177/0278364906065387

Ticozzi, L., and Tsiotras, P. (2025). Factor graph-based active slam for spacecraft
proximity operations

Ting Goh, S., and Abdelkhalik, O. (2019). An introduction to kalman
filtering implementation for localization and tracking applications. 143–195.
doi:10.1002/9781119434610.ch5

Tweddle, B. E., Saenz-Otero, A., Leonard, J. J., and Miller, D. W. (2015). Factor graph
modeling of rigid-body dynamics for localization, mapping, and parameter estimation
of a spinning object in space. J. Field Robotics 32, 897–933. doi:10.1002/rob.21548

Xia, L., Cui, J., Shen, R., Xu, X., Gao, Y., and Li, X. (2020). A survey of image
semantics-based visual simultaneous localization and mapping: application-Oriented
solutions to autonomous navigation of Mobile robots. Int. J. Adv. Robotic Syst. 17,
1729881420919185. doi:10.1177/1729881420919185

Zhang, R., Cao, Z., Yang, S., Si, L., Sun, H., Xu, L., et al. (2025). Cognition-driven
structural prior for instance-dependent label transition matrix estimation. IEEE Trans.
Neural Netw. Learn. Syst. 36, 3730–3743. doi:10.1109/TNNLS.2023.3347633

Zhang, R., Tan, J., Cao, Z., Xu, L., Liu, Y., Si, L., et al. (2024). Part-aware
correlation networks for few-shot learning. IEEE Trans. Multimedia 26, 9527–9538.
doi:10.1109/TMM.2024.3394681

Zhang, R., Xu, L., Yu, Z., Shi, Y., Mu, C., and Xu, M. (2022). Deep-irtarget: an
automatic target detector in infrared imagery using dual-domain feature extraction and
allocation. IEEE Trans. Multimedia 24, 1735–1749. doi:10.1109/TMM.2021.3070138

Frontiers in Robotics and AI 28 frontiersin.org

https://doi.org/10.3389/frobt.2025.1426676
https://doi.org/10.1016/j.eswa.2022.117734
https://doi.org/10.1109/ISMAR.2004.8
https://doi.org/10.2514/6.2025-0180
https://doi.org/10.1016/j.asr.2023.10.048
https://doi.org/10.3390/aerospace11060447
https://doi.org/10.3389/frobt.2023.1109131
https://github.com/64-B1T/basic_robotics
https://github.com/64-B1T/basic_robotics
https://doi.org/10.3390/rs14133010
https://doi.org/10.1080/02331880309257
https://www.nasa.gov/wp-content/uploads/2023/10/isam-state-of-play-2023.pdf
https://www.nasa.gov/wp-content/uploads/2023/10/isam-state-of-play-2023.pdf
https://doi.org/10.1561/2300000043
https://doi.org/10.3847/25c2cfeb.7707c9bf
https://doi.org/10.1109/TPAMI.2009.146
https://www.nasa.gov/mission_pages/station/main/index.html
https://www.nasa.gov/mission_pages/station/main/index.html
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://www.nasa.gov/mission_pages/hubble/servicing/index.html
https://doi.org/10.2514/6.1981-443
https://doi.org/10.1146/annurev-control-042920-011106
https://doi.org/10.1146/annurev-control-042920-011106
https://doi.org/10.48550/arXiv.1209.2434
https://doi.org/10.1109/IROS.2017.8206338
https://doi.org/10.1117/12.779599
https://doi.org/10.1145/3019612.3019709
https://doi.org/10.3390/robotics11050091
https://doi.org/10.1117/12.720284
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1016/j.actaastro.2021.09.007
https://doi.org/10.1016/j.ast.2016.09.014
https://doi.org/10.2514/6.2017-5255
https://doi.org/10.1109/aero50100.2021.9438257
https://doi.org/10.1177/0278364906065387
https://doi.org/10.1002/9781119434610.ch5
https://doi.org/10.1002/rob.21548
https://doi.org/10.1177/1729881420919185
https://doi.org/10.1109/TNNLS.2023.3347633
https://doi.org/10.1109/TMM.2024.3394681
https://doi.org/10.1109/TMM.2021.3070138
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 In-space assembly and servicing background
	2.2 Space vision background
	2.3 Simultaneous localization and mapping background
	2.3.1 Semantic SLAM background
	2.3.2 Fiducial SLAM background
	2.3.3 Filtering
	2.3.4 SF-GraphSLAM’s combination of state-of-the-art approaches and innovations for highly controlled applications, such as in-space assembly

	2.4 Built on-orbit robotically assembled gigatruss (BORG)
	2.5 Model derivation
	2.5.1 Benefit of using a mixed assembly method with sparse fiducials
	2.5.2 Identifying the factor graph basis for SF-GraphSLAM
	2.5.3 Deriving the full posterior for SF-GraphSLAM
	2.5.4 Factor graph formulation
	2.5.5 GraphSLAM graph, information matrix, and summation function extended to SF-GraphSLAM
	2.5.6 GraphSLAM: building the graph
	2.5.7 SF-GraphSLAM: incorporating semantic information into the graph
	2.5.8 Ideal relation for deployable and assembled modules
	2.5.9 Flexible relationship based on deployable kinematics
	2.5.10 Relation for assembled close-out struts
	2.5.11 Relation for assembled close-out squares

	2.6 Generating BORG truss ideal model
	2.7 Creating a map of the deployable mechanism and assembled joint relationships
	2.8 Simulation structure
	2.9 Simulation implementation

	3 Results
	3.1 Testing tag relationship types with simulation
	3.2 Testing the partially deployed module simulation case
	3.3 Testing a larger BORG truss simulation case
	3.4 Testing tag elimination
	3.5 Quantifying measurement accuracy requirements for space structures and robustness against sensor and measurement error

	4 Discussion
	4.1 Potential drawbacks
	4.2 Contribution to the state of the art
	4.3 Future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

