¥ frontiers | Frontiers in

:') Check for updates

OPEN ACCESS

EDITED BY
Kulvinder Kochar Kaur,

Kulvinder Kaur Centre For Human
Reproduction, India

REVIEWED BY

Ali Soleimanzadeh,

Urmia University, Iran

Ali El Ghazzaoui,

University of Toronto, Canada

*CORRESPONDENCE

Oluwaseun Samuel Hezekiah
oshezekiah@pgschool.lautech.edu.ng

Oladele Ayobami Afolabi
aoafolabi59@lautech.edu.ng

RECEIVED 16 September 2025
ACCEPTED 21 October 2025
PUBLISHED 18 November 2025

CITATION
Ajike RA, Ajayi AF, Oyekunle OS, Saka WA,
Hammed SO, Adedeji OJ, Ogunleye OD,

Hezekiah OS, Olayinka-Akinpelu OV, Alabi BA,

Ajao ID and Afolabi OA (2025) Potential
therapeutic targets in the prevention of
testicular ischemia-reperfusion injury.
Front. Reprod. Health 7:1706914.

doi: 10.3389/frph.2025.1706914

COPYRIGHT

© 2025 Ajike, Ajayi, Oyekunle, Saka, Hammed,

Adedeji, Ogunleye, Hezekiah, Olayinka-
Akinpelu, Alabi, Ajao and Afolabi. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Reproductive Health

Review
18 November 2025
10.3389/frph.2025.1706914

Potential therapeutic targets in
the prevention of testicular
ischemia-reperfusion injury

Richard Adedamola Ajike', Ayodeji Folorunsho Ajayi,
Olubunmi Simeon Oyekunle®, Waidi Adeoye Saka',

Sodiq Opeyemi Hammed', Oreoluwa Janet Adedeji’,
Olajumoke Deborah Ogunleye', Oluwaseun Samuel Hezekiah'*,
Oluwakemi Victoria Olayinka-Akinpelu’,

Babatunde Adebola Alabi®, Ishola David Ajao* and

Oladele Ayobami Afolabi'™

!College of Health Science, LAUTECH, Ogbomoso, Nigeria, ?Biology Department, Trinity Christian
College, Palos Heights, IL, United States, *Pan African Cancer Research Institute, University of Pretoria,
Prinshof Campus, Pretoria, South Africa, “Department of Nursing, Kings University, Ode Omu, Nigeria

Testicular ischemia-reperfusion injury (TIRI) is the outcome of the repair of
torsion of the testis. It has been reported to cause loss of testicular function
in both the ipsilateral and contralateral testes in the long run, thus resulting in
male infertility. Its prevention is complex due to activation of oxidative stress,
inflammation and apoptotic pathways in the ischemic and reperfusion phases.
Previous experimental studies have successfully mitigated TIRI by applying
ischemic preconditioning, ischemic postconditioning and pre-treatment
regimens, which may not be appropriate for humans due to limitations
associated with their application in real-life situations. However,
pharmacological postconditioning, which involves the use of drugs to block
key points in the TIRI pathway, can be proactively applied in humans, offering
a better TIRI management strategy. Pathophysiological events in the TIRI
pathway include activation of: xanthine oxidase (XO)-reactive oxygen species
(ROS) pathway in the ischemic phase, calcium-mediated apoptotic pathway
in the early reperfusion phase, and ROS-burst in the late reperfusion phase,
among others. Hence, this review recommends that blocking the XO-ROS
pathway with febuxostat after the onset of testicular torsion (TT), minimizing
the calcium-mediated apoptotic pathway and restoring the loss of vasomotor
tone with amlodipine on reperfusion, as well as blocking ROS-burst with
vitamin E in the later phase of reperfusion, may help to mitigate the effect of
TIRI in humans and thus prevent future infertility. Nevertheless, further
research is needed to verify this claim and delineate the possible drug-drug
interactions, as well as potential effects on other organs.

KEYWORDS

testicular ischemia/reperfusion injury, testicular torsion, pharmacological
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Ajike et al.

1 Testicular torsion and repair: a
dilemma akin to jumping out of the
frying pan into the fire

condition

Testicular Torsion (TT) is an

characterized by the twisting of the spermatic cord and its

emergency

content (1, 2). It has an annual incidence of about 1 in 4,000
males (3, 4). Previous studies have reported variation in the
incidence of TT from continent to continent, with Sub-Saharan
African, South American and North American regions reporting
annual incidences of 2.7, 1.4 and 3.8, respectively, per 100,000
men below the age of 40 (5). Although TT affects males of all
ages (6), the common age of occurrence is between 12 and 18
years, even up to 24 years and above (7). Symptoms of TT
include: severe scrotal pain, testicular swelling and reddening of
the scrotal skin (8, 9). Previous studies have also documented
that TT contributed about 1.8% to male infertility in Africa (7,
10, 11). Epidemiological studies further conducted in North-
Eastern Nigeria reported that TT accounts for about 5.8% of
(12).
predisposing factors to TT include bell clapper deformity (an

testicular insufficiency among other causes Some
anatomical abnormality present in about 12% of males),
increased testicular volume (at the onset of puberty), testicular
trauma (seen in accidents that cause impact on the scrotum),
intense sporting activities such as cycling, weight lifting,
testicular injuries during football or baseball, cryptorchidism,
hyperactivity of cremasteric muscle and during sleep without
any prior trauma (8, 13-18).

In clinical practice, when TT occurs, the main management
stratagem is surgical detorsion (SD), which has to be done
quickly to re-establish blood flow and prevent necrosis, as well
as ease the ischemic pain experienced (19, 20). While important,
SD should be regarded as a “necessary evil”. Because, despite
being done to prevent necrosis, testicular ischemia-reperfusion
injury (TIRI) still occurs (21), which exacerbates testicular
damage, causes late organ damage, and infertility in the long
run through oxidative stress, inflammation and apoptosis (22-26).

TIRI poses a serious risk in the long run, involving the later
loss of both the ipsilateral and contralateral testes, thereby
resulting in permanent infertility (27-29). Notably, this risk
might even be higher compared to the risk of losing only the
ipsilateral testes to necrosis when not repaired (30). Hence, both
conditions present as dilemmas, which can be tagged by the
phrase “jumping out of the frying pan into the fire”. The frying
pan, in this case, is the torsed testes becoming necrosed, with
no other option than to carry out orchiectomy, while the fire is
the outcome of TT repair. TIRI has been reported to affect male

Abbreviations

TIRI, testicular ischemia-reperfusion injury; XO, xanthine oxidase; ROS,
reactive oxygen species; TT, testicular torsion; SD, surgical detorsion; ATP,
adenosine triphosphate; SWOP, second window of protection; IRI, ischemia-
reperfusion injury; PPC, pharmacological postconditioning; I/R, ischemia-
reperfusion; MPO, myeloperoxidase; MDA, malondialdehyde; GSH-Px,
glutathione peroxidase; NO, nitric oxide; SOD, superoxide dismutase; IL-10,
interleukin-10; NSAIDs, non-steroidal anti-inflammatory drugs; eNOS,
endothelial nitric oxide synthase; PDES5, phosphodiesterase type 5.

Frontiers in Reproductive Health

10.3389/frph.2025.1706914

reproductive capacity by causing: degeneration of seminiferous
tubules (31-34), disruption of Sertoli cell protein (31, 35),
alteration of reproductive hormone production (36-38), loss of
vasomotor tone (32), testicular atrophy and ultimately infertility
2, 39, 40). The consequences of testicular torsion onset and its
repair are illustrated below (Figure 1).

Testicular torsion interrupts blood flow, resulting in ischemia
and reactive oxygen species (ROS) generation. In the absence of
surgical intervention (“frying pan”), prolonged ischemia causes
testicular necrosis and eventual testicular death. Surgical
detorsion (“fire”) restores blood flow but triggers an oxidative
burst and inflammatory response, leading to testicular ischemia-
reperfusion injury (TIRI). The analogy of “from the frying
pan into the fire” depicts the paradox wherein surgical
correction prevents necrosis yet induces reperfusion-mediated

oxidative damage.

2 Overview of testicular ischemia-
reperfusion injury (TIRI) and the
complexity involved in its prevention
Testicular ischemia-reperfusion injury (TIRI) generally
involves two phases: the ischemic and reperfusion phases (25).
The ischemic phase results in the build-up of xanthine oxidase
(XO) enzymes, a radical reactive oxygen species (ROS) generator
that may cause early organ damage (24, 41). This phase is also
accompanied by depletion of oxygen and nutrient supplies,
build-up of free radicals leading to increased oxidative stress

Normal testis Torsion of the testis

chemia of the testi

No surgery

Surgery

Testicular Necrosis  Testicular Salvage

No blood flow s Blood flow
restortion

“Frying
pan”

Testicular Death

reperfusion injury

FIGURE 1
Diagram illustrating the pathophysiological outcomes of testicular
torsion and subsequent detorsion.
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(42), decreased intracellular ATP, glycogen and calcium overload
due to damage to the ATPase pump (39). The second phase is
the reperfusion phase, and it is characterized by the activation
of inflammatory and calcium-induced apoptotic pathways and
production of peroxynitrite radicals, which interfere with
cellular structures such as proteins, lipids and DNA and further
cause severe oxidative damage to the testes (22-24).

The prevention of TIRI may be complex for the following
reasons. The first is that the two phases involved contribute to
testicular damage together. For instance, there is a build-up of
xanthine oxidase (XO) enzymes in the ischemic phase that trigger
(ROS) production that can inflict
). The

ROS produced in the ischemic phase also form complexes with

reactive oxygen species

immediate oxidative injury to the testicular tissue (20,

other molecules and proteins to cause massive damage to the
testes during reperfusion. The XO-ROS production in the
ischemic phase also serves as a basis for the formation of
peroxynitrite complexes that can cause long-term damage to the
testicular tissue throughout the entire period of reperfusion (44).
Secondly, other pathophysiological pathways are activated during
), which have to be
addressed urgently. These events include the disruption of the

the reperfusion phase (25, 27, 28,

sodium-calcium ATPase pump, which results in excess calcium
influx into the cell to initiate the calcium-mediated apoptotic
pathway that triggers germ cell loss (45-47). There is also loss of
vasomotor tone after torsion repair, which does not return to
normal until after 7 days of reperfusion (48). This, of no doubt,
blood flow to the thereby

spermatogenesis. Furthermore, the events of reperfusion include

disrupts testes, affecting
an increased inflammatory response. This is typically due to the
activation of toll-like receptors that increase the release of tumor
alpha and

macrophages and dendritic cells into the blood (49-51, ).

necrosis  factor interleukin-1-beta  from the
These cytokines facilitate the mobilization of neutrophils to the
site of injury and feed back into different ROS pathways to
increase their production. Consequently, this storm of activated
cytokines and ROS trigger the intrinsic and extrinsic apoptotic
). This effect is referred to as ROS-burst, which

occurs in the later phase of reperfusion (46,

pathways (32,
). The pathway in
denotes the pathway of TIRI-induced testicular damage.

Hence, having identified different points on the TIRI pathway
which contribute significantly to testicular damage, there is a need
to investigate therapeutic drugs best suited to block these key points
in the ischemic and reperfusion phases (53, 54). This may require
the administration of the drugs in a sequence or pattern, such that
damage in each phase is targeted. That is, the administration of a
therapeutic drug in the ischemic phase and in the early reperfusion
phase to prevent necrosis, as delayed or inappropriate management
may result in the loss of testicular cells and function (55, 56).

The initial ischemic event leads to the generation of uric acid via
xanthine oxidase (XO). Subsequent reperfusion triggers a significant
burst of reactive oxygen species (ROS), which initiates parallel
damaging cascades. These include the upregulation of Toll-like
receptor 4 (TLR-4) and lipid peroxidation, leading to the
release of pro-inflammatory cytokines (TNF-o, IL-1B) and
subsequent myeloperoxidase (MPO)-mediated intracellular
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ROS production. This inflammatory cascade, along with direct
ROS-induced damage to
mitochondrial dysfunction affecting Leydig cells, culminates in

spermatogenic  genes  and
germ cell apoptosis, disruption of steroidogenesis, increased
DNA fragmentation index (DFI), and damage to testicular

structures, ultimately leading to global testicular dysfunction.

Due to the risk of future infertility associated with testicular
ischemia-reperfusion injury (24, 128), studies have recommended

four general management options, which are: ischemic
preconditioning, pretreatment, ischemic postconditioning and

pharmacological postconditioning (57).

3.1 Ischemic preconditioning

Ischemic preconditioning is a process whereby a short period of
ischemia and reperfusion is induced in a tissue to make the tissue
). It
confers protection against tissue damage, most especially when
) and Valen and Vaage
(129) reported that the essence of ischemic preconditioning is to

resistant against the ischemic insult that is about to occur (
ischemic insult is predictable. Murry et al. (

enable mammals to adapt to the ischemic insult, thereby reducing
infarct size and limiting the severity of ischemia-reperfusion injury.
Ischemia preconditioning has been tested in diverse organs in the
literature, but conflicting results were observed among various tissues
in animal models based on the cycle of ischemia and reperfusion
that was induced before the exact ischemia insult or stress. Studies
have reported the protective role of ischemia preconditioning
protocol in the heart, liver, and kidney (130-132). In other studies,
the efficacy of ischemia preconditioning has been established in
cardiac surgery and percutaneous coronary interventions in humans
(133). Under the ischemia-preconditioning protocol, it was observed
that the protective role of ischemia is biphasic. In the first phase, the
window of protection lasts less than 2h before the sustained
ischemia insult, while the second phase is the second window of
protection (SWOP), which occurs 24-72h after the sustained
insult  (129).
preconditioning can be induced locally to monitor the local function

ischemia Apart from the fact that ischemic
of a particular organ, it can also be induced to observe its effect on
distant organ which is referred to as remote preconditioning or by
pharmacological treatment before initial ischemia known as
pharmacological preconditioning (131, 134-136). Studies have shown
that ischemia preconditioning is capable of improving distant organ
function and local function of preconditioned organs (137-139).
Ambros et al. (

utilized both local and distant mechanisms in the brain, skeletal

) further explained that ischemia preconditioning

muscle, liver, lungs, kidney and intestine in animal models to protect
against ischemia-reperfusion injury. However, despite the reported
application in its use to prevent local and distant damage in other
organs, it is not appropriate for the treatment of testicular ischemia-
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FIGURE 2
Diagram illustrating cascades of events activated during testicular ischemia-reperfusion injury.

reperfusion injury due of the unpredictability in the occurrence of TT
(59, 60). Ischemia preconditioning is only effective in organ transplants
such as the kidney and the heart, where ischemia reperfusion injury is
predictable, unlike the case of torsion of the testes, which
is unpredictable.

3.2 Pretreatment before the induction of
testicular ischemia-reperfusion injury
of various

This concept involves the application

pharmacological agents before the induction of testicular torsion

Frontiers in Reproductive Health

(TT). Ischemia preconditioning entails a brief cycle of ischemia
and reperfusion to make the tissue resistant against damage
before the occurrence of the real ischemic insult (57). The
pretreatment strategy requires administration of various agents
that possess antioxidant, anti-inflammatory and anti-apoptotic
properties, as well as calcium channel blockers, before the
occurrence or onset of testicular torsion. The essence of this
strategy is to confer protection or neutralize the activities of any
impending stress to the testicular tissue before the onset of
testicular torsion. Even though, several experimental studies
have reported the protective effects of antioxidant pretreatments
with superoxide dismutase, catalase, melatonin and imvastatin

frontiersin.org
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against testicular ischemia-reperfusion injury (61, , ), yet
this strategy is perceived unpopular among the clinicians for the
treatment of TT in humans due to unpredictability in the
occurrence of TT (3). This option could only serve as a
prophylactic measure in tissues where the onset of tissue injury,
such as kidney and liver transplants, is predictable, unlike the
case of TT onset in humans, which is unpredictable. Based on
this, its application in the treatment of TT in real-life situations
is unrealistic. Thus, it cannot be applied for the treatment of TT
in humans. In addition to this, because the exact time of onset
of TT is not known, the application of this strategy may not be
effective in preventing the activities of debilitating factors that

accompany the onset of TT.

3.3 Ischemic postconditioning

Ischemic postconditioning is a protective strategy employed to
reduce the injury caused by ischemia (obstruction in blood flow)
and reperfusion (restoration of blood flow) in tissues. This
technique has been applied primarily in the cases of heart
attacks or cardiac surgery. It also involves induction of a brief
cycle of ischemia and reperfusion at the start of reperfusion
after sustained ischemia stress (143, ). It also involves
intermittent obstruction of blood flow at the early phase of
). This

protocol has been reported to reduce infarct size and is more

reperfusion to reduce the risk of reperfusion injury (
effective than ischemic preconditioning (143, ). The concept
of ischemic postconditioning as a management strategy after
cardiac tissue transplant showed that induction of a brief cycle
of coronary ischemia for 30s, followed by reperfusion for 30 s
for three consecutive cycles at the onset of reperfusion, reduced
the size of the infarction. Skyschally et al. (146) also reported
that factors such as delay after the first re-occlusion is
established, duration and number of re-occlusions and duration
of interspersed reperfusion must be considered for ischemic
postconditioning to be effective.

Another controversial aspect of ischemic postconditioning is
targeting the exact time the brief cycle of ischemia and
reperfusion must be done at the onset of reperfusion to avoid
delay of any kind. Studies have documented that ischemia
postconditioning may still reduce infarct size when there is a
delay to the first re-occlusion within 1-3 min, while other studies
reported that delay had no impact on reducing infarction size
when ischemia postconditioning was initiated at the onset of
reperfusion (144, R ). However, the long-term cycle of
ischemia and reperfusion at the onset of reperfusion does not
prevent the damaging effect of ischemia-reperfusion injury (144,

). Thereby, suggesting the significance of the brief cycle of
occlusion and re-occlusion of the vessels after the onset of
reperfusion and also, it seemed that the potency of this protocol
in reducing infarct size is dependent on establishing the protocol
at the right or specific time during the onset of reperfusion.

The application of ischemic postconditioning in the
management of testicular ischemia-reperfusion injury in humans
is perceived to be less important because it does not account for
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or take care of certain events that occur in the ischemic phase,
which could inflict injury on testicular cells. Also, this protocol
may result in damage to the testicular artery when practiced on
humans due to the need for occlusion and re-occlusion of the
vessels at the onset of reperfusion several times. This protocol
may be accompanied by complications that may exacerbate
testicular damage. Based on the emergency nature of testicular
torsion and the urgent need for treatment, the basis of ischemic
been effective for the

post-conditioning may not have

management of TIRI in humans.

3.4 Pharmacological postconditioning

Pharmacological postconditioning refers to the use of
pharmacological agents to mimic or enhance the effects of
ischemic postconditioning, which helps protect tissues from

ischemia-reperfusion injury (IRI) (62). Unlike ischemic
postconditioning, which involves physical interventions like brief
cycles of blood flow restriction after reperfusion,

pharmacological postconditioning uses specific drugs to activate
cellular protective pathways that reduce injury caused by the
restoration of blood flow after ischemia (62).

(PPC)
application of drugs during the period of ischemia or at the

Pharmacological postconditioning involves the
onset of reperfusion to block key points on the ischemia-
reperfusion injury pathway (63, ). In an attempt to mitigate
the effect of TIRI in experimental studies, conventional
prevention strategies, including the use of anti-inflammatory
medications, apoptosis inhibitors, and antioxidants, have been
applied (64,

limitations (66). Though there were evidences of improvement

), but their effectiveness is hindered by significant

in testicular function, these conventional prevention strategies
do not properly take care of the multifactorial nature of the
TIRI pathway. The multifactorial nature supports the need for
the use of two or more therapeutic drugs to block key points on
the TIRI pathways. Due to these aforementioned factors,
pharmacological postconditioning may be effective for the
management of TIRI due to the practicability in its use for the
treatment of TIRI in humans, less risk associated with its
application and possibilities of increasing the chances of
treatment by blocking key points on the TIRI pathways through
the use of different therapeutic drugs (63). PPC exhibited
remarkable superiority in reducing inflammation and oxidative
stress (67), inhibiting apoptosis (68), and enhancing endothelial
function (69). Moreover, PPC has consistently demonstrated its
ability to minimize testicular damage and improve fertility in
animal models by inhibiting key pathways of inflammation,
apoptosis, and oxidative stress (60, 66, 67).

Although, this concept is not currently in use in clinical
practice for the management of TIRI in humans, reports on its
effectiveness in minimizing TIRI in rats have been established
(57, ). Therefore, investigating the application of PPC in
experimental studies may help to improve the treatment of TIRI
The multifaceted benefits of PPC make it an
attractive alternative to traditional preventive strategies.

in humans.
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The use of ischemic preconditioning, postconditioning and
pre-treatment regimen for the treatment of testicular ischemia-
reperfusion injury (TIRI) remains largely impractical in humans.
Exposing tissue to short periods of ischemia and immediate

reperfusion before the onset of ischemia (ischemic
preconditioning) renders the tissue flexible against the
impending ischemic events (70). The wuse of ischemic

preconditioning strategy helps the tissue to develop a balance
between free radicals generated and tissue defense system to
prevent oxidative stress and inflammation to prevent IRI (71).
This protocol is only effective in pre-arranged procedures like
cardiac surgery, where the occurrence of ischemia is predictable,
but not in the case of torsion of the testes, where the onset of
ischemia is not predictable. Therefore, the unpredictability in
the occurrence of testicular torsion in humans, which results in
testicular ischemia, makes ischemic preconditioning totally
unreliable in managing TIRI following a successful detorsion
(72). In tissue like the heart, ischemic preconditioning helps to
), but in
tissue that constantly undergoes aerobic metabolism like the

significantly reduce necrosis by about 30%-40% (
testis, a little period of ischemia adversely triggers the
production of free radicals, oxidative stress and ROS-induced
apoptosis (74), causing the testis to experience cessation of
spermatogenesis (the primary function of the testis) even with a
short period of ischemia (17). Application of ischemic
preconditioning on the testis may deprive testicular cells,
especially the Sertoli and Leydig cells, of oxygen and required
nutrients, causing abnormal sperm qualities or total cessation of
spermatogenesis (75).

In addition to this, exposure of tissue to repeated sequences of
short
reperfusion after a prolonged period of ischemia lessens

ischemic periods (ischemic postconditioning) and
ischemia-reperfusion injury via the activation of several anti-
apoptotic mechanisms at the mitochondrial level (62). The
clamping and unclamping of the spermatic cord may inflict
injury to the testicular artery, which makes the technique unfit
for the treatment of TIRI in humans. In addition, the clamping
and unclamping of the vessel done in ischemic postconditioning
cannot mimic the real clinical case of TT onset in humans, as
testicular torsion is presented as a twisted spermatic cord and
not as a result of clamping. Despite the shortcomings of both
protocols in the treatment of TIRI in humans, experimental
studies have shown that ischemic postconditioning is more
protective effect than preconditioning because it does not only
prevent free radicals’ production, but also activates the activities
of endogenous antioxidants and anti-apoptotic proteins to
prevent oxidative damage and apoptosis, respectively (76).
Ischemic postconditioning also activates reperfusion-injury
rescue kinase (RISK) and JAK-STAT pathways as defense
mechanisms to lessen (77).

ischemia-reperfusion injury
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Nevertheless, increased mobilization and activation of the RISK
or JAK kinases in prolonged testicular ischemia is considered
injurious as it may induce tissue hypertrophy (78).

Finally, the pretreatment strategy for the management of
ischemia-reperfusion injury (IRI) involves the administration of
pharmacological agents before exposure to the periods of
ischemia (79). Similar to ischemic preconditioning, pretreatment
is done to increase tissue resilience to IRI (80). This includes the
use of agents like cysteine, vitamin C and E, xanthine oxidase
inhibitors (febuxostat), calcium channel blockers (amlodipine)
and so on to minimize oxidative stress, inflammation and
apoptosis. With a pretreatment strategy, several experimental
studies on TIRI have reported lessened injury after the repair of
induced testicular torsion (81). Similar to ischemic
preconditioning and postconditioning, alleviation of testicular
ischemia-reperfusion injury (TIRI) with a pre-treatment strategy
is assumed to be unrealistic in clinical settings due to the
unpredictability in the occurrence of testicular torsion in humans
(82). However, some research has shown that application of
pretreatment and ischemia preconditioning strategies may serve
as prophylactic measures in conditions where IRI can be

predicted, especially during organ transplant (83, 84).

Pharmacological post-conditioning has great potential to be an
effective approach in minimizing the harmful effects of ischemia-
reperfusion (I/R) injury in testicular tissue (85). Protocols like
ischemic preconditioning, postconditioning and pretreatments
have been explored to alleviate ischemia-reperfusion injury, yet
each approach has specific limitations (86). Ischemic
preconditioning involves the induction of ischemia before the real
ischemic event, making it unsuitable for sudden incidents, and its
protective effects are often short-lived (87). Its efficacy also varies
across tissues, and in some cases, it may increase damage,
especially in patients with inflammatory or immune conditions
(88). Postconditioning, meanwhile, must be applied immediately
after reperfusion, limiting its use in emergencies, and its impact
can vary based on patient-specific factors (89). Both approaches
require precise timing and may benefit from a combination with
other treatments for optimal results.

In recent years, there has been considerable research aimed at
identifying effective strategies and pharmacological treatments to
reduce or prevent testicular I/R injury. However, aside from
scrotal cooling, no other methods have successfully transitioned
into clinical practice. While the exact pathophysiological
behind testicular I/R fully

understood, it is clear that the ROS generated during this

mechanisms injury are not
process play a significant role. I/R injury has been shown to
produce various toxic substances in the microcirculation of
different tissues, along with potential damage to vascular
endothelial
reperfusion, leading to organ dysfunction (90).

cells and microcirculation disorders during
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Following ischemia-reperfusion (I/R) injury, the physiological
environment undergoes significant changes, characterized by a
halt in aerobic metabolism, metabolic acidosis, mitochondrial
dysfunction, intracellular calcium overload, and the generation
of reactive oxygen species (ROS) at the onset of reperfusion
(83). Specifically, reperfusion injury leads to anoxia, which
results in the excessive production of ROS, pro-inflammatory
cytokines, cell adhesion molecules, and lipid peroxidation. This
cascade activates necrosis and apoptosis pathways, causing
further severe damage to ischemic tissues. The initial surge of
ROS and the infiltration of pro-inflammatory neutrophils during
the early stages of reperfusion are critical to the development of
post-ischemic injury, highlighting the importance of -early
intervention to mitigate I/R damage (83).

In pharmacological postconditioning, drugs target pathways
associated with reperfusion injury, such as oxidative stress and
inflammation, to protect cells and promote tissue repair. Unlike
preemptive treatments, it can be applied after the ischemic event,
making it suitable for emergencies. This strategy has shown promise
in reducing damage and improving recovery across various organs,
including the heart, brain, kidneys, and testes (62, 91).

Unlike preconditioning, pharmacological postconditioning can
be initiated after the ischemic event, making it applicable in
emergencies where testicular torsion has already occurred (92).
Additionally, pharmacological agents can be chosen to specifically
counteract the pathways activated during reperfusion, such as
inflammation, oxidative stress, and apoptosis (93). This targeted
intervention allows for reduced damage to testicular tissue and
fewer side effects compared to broader strategies. By directly
influencing molecular damage mechanisms at the injury site,
pharmacological postconditioning could support the preservation
of fertility, hormone balance, and testicular structure in cases of
testicular I/R injury (94). Its flexibility in application, potential for
integration with other therapies, and tissue-specific action make
pharmacological post-conditioning a valuable tool in clinical
efforts to protect testicular health following ischemic events.
Ongoing research is focused on refining drug selection, dosing,
and timing to establish pharmacological post-conditioning as a
superior approach for managing testicular ischemia-reperfusion
injury and improving patient outcomes.

Although pharmacological postconditioning has shown
substantial promise in experimental studies, claims of its
superiority over ischemic conditioning protocols remain largely
theoretical and based on preclinical findings. Most available data
are derived from rodent or small-animal models in which drugs
such as antioxidants, anti-inflammatory agents, phosphodiesterase
inhibitors, and mitochondrial stabilizers demonstrated improved
histological and biochemical recovery following testicular I/R
injury (62, R ).
consistently validated in large-animal or human studies. The

However, these findings are yet to be

diversity of experimental models, differences in ischemia duration,
reperfusion time, and drug pharmacokinetics can contribute to
inconsistent outcomes across studies (93). Furthermore, almost no
studies have directly compared pharmacological postconditioning
standardized

to ischemic pre- or postconditioning under

conditions, making it difficult to establish clear superiority.
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Turner et al. (150) previously indicated that excessive free
radical production occurs during testicular detorsion, suggesting
that testicular torsion and detorsion represent classic examples
of I/R injury. The mammalian testis is especially sensitive to
oxidative damage from free radicals, making it essential to
prevent the oxidative stress caused by the sudden influx of free
radicals. This approach is crucial for minimizing damage to the
likelihood  of
fertility.

pharmacological agents have been suggested and researched for

ischemic area and reducing the serious

consequences, such as decreased Various
their potential therapeutic applications in TIRI cases ( )

some of which are discussed below.

5.1 Anti-oxidant drugs and free radical
scavengers

Decreasing oxidative stress resulting from ischemia-reperfusion
(I/R) is a critical target for pharmacological intervention, leading to
investigations into various potential pharmaceutical agents,
including Taurine, edaravone, melatonin, and apocynin (18, 95).
) demonstrated that adult rats

subjected to 4 h of ischemia followed by 3 h of reperfusion and

For instance, Bilommi et al. (

treated with exogenous glutathione at the onset of reperfusion
exhibited significantly lower levels of malondialdehyde (MDA)
and reduced histopathological damage.

5.2 Taurine

Taurine, an organic acid found in mammalian tissues known
for its antioxidant properties, has been utilized in models of
testicular I/R. It has been shown to positively impact the ischemic
testis by significantly reducing histopathological damage,
apoptosis, and MDA levels, as well as markers for neutrophils
(MPO), and

spermatogenesis caused by Ischemia-reperfusion injury (97, 98).

and myeloperoxidase reversing damage to

5.3 Edaravone

Tamamura et al. (99) created a short-term rat model of
testicular I/R, where animals experienced unilateral torsion for
30 min followed by 1 h of reperfusion. In this study, a high dose
of the free radical scavenger, edaravone, significantly decreased
MPO levels, lowered HSP-70 protein activity, and partially
of NO,-NOs;, MDA,
deoxyguanosine (a marker of oxidative DNA damage). It also

reduced levels and  8-hydroxy-2’-

diminished histological changes such as vacuolation and necrosis.

5.4 Melatonin

Melatonin, a potent antioxidant present in various tissues, has
the potential to protect against I/R injury in the testes (100).

According to Kurcer et al. (101) melatonin treatment
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significantly ~ improved  spermatogenesis and  reduced
histopathological damage, as well as lowered lipid and protein
oxidation, indicated by decreased levels of MDA and MPO,
along with reduced protein carbonyl groups. Kanter highlighted
melatonin’s protective effects against germ cell-specific apoptosis
due to I/R and its ability to normalize proliferating cell nuclear
antigen and testosterone levels (102). Additionally, melatonin
treatment improved bilateral sperm concentration and positively

affected sperm morphology.

5.5 Ebselen

Ebselen, a synthetic antioxidant that mimics the properties of
glutathione peroxidase (GSH-Px), reacts with peroxynitrite and
inhibits several enzymes, including lipoxygenase and nitric oxide
synthase (103). Rifaioglu et al. (104) induced torsion-detorsion
in adult rats for 2 h each and showed that ebselen had beneficial
effects in reducing histopathological damage and enhancing
spermatogenesis while increasing MDA and nitric oxide (NO)
levels, suggesting its capability to scavenge reactive oxygen species.

5.6 Alpha-lipoic acid

Alpha-lipoic acid, important for mitochondrial dehydrogenase
reactions, was studied by Ozbal et al. (105) who treated rats
undergoing 2 h of ischemia and 2 h of reperfusion with alpha-
lipoic acid administered 30 min before detorsion. Their results
indicated the positive effects of alpha-lipoic acid on the activities
of GSH-Px and superoxide dismutase (SOD),
reductions in MDA levels, histopathological damage, germ cell

as well as

apoptosis, and caspase-3 detection via immunohistochemistry.
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5.7 Simvastatin

Simvastatin, widely known as a lipid-lowering drug, also
possesses significant antioxidant properties. Yang et al. (61)
developed a model involving 4 h of testicular torsion followed
by 24 h of detorsion, administering simvastatin at the onset of
reperfusion. This treatment led to a significant reduction in
bilateral histopathological damage, decreased MPO activity, and
lowered levels of NO and MDA, as well as concentrations of
pro-inflammatory cytokines TNF-a, IL-1f, and IL-6, and protein
expression of NF-kB in both testes. The mechanisms behind
these beneficial effects likely involve reducing NF-«xB activation
and mitigating I/R-induced oxidative stress.

Other antioxidants, such as resveratrol and apocynin, have also
shown promising results in alleviating I/R-induced testicular
damage. Yulug et al. (106) found that administering resveratrol
intraperitoneally 30 min before reperfusion in a model of 4-hour
ischemia followed by 24-hour reperfusion significantly reduced
oxidative stress and total oxidative status, as well as decreasing
histopathological damage and apoptosis in the torsion-detorsion
group. Apocynin, extracted from the roots of the plant Apocynum
cannabinum, inhibits nicotinamide adenine dinucleotide phosphate
oxidase and has been shown to enhance the antioxidant enzyme
system, promote reductions in glutathione, and regulate ischemia-
induced cellular stress. Apocynin exerts its protective effects against
I/R-induced oxidative damage by scavenging free radicals and
boosting the antioxidant defenses of testicular tissue (107).

5.8 Vitamin E

Endogenous vitamins are vital for the antioxidant protection
of various organs, including the testes (108). Vitamin E has

frontiersin.org
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been used in treating testicular torsion detorsion. Studies
) and Ranade et al. (110)
indicated that administering a hydrophilic vitamin E-like

conducted by Romeo et al. (

antioxidant, raxofelast, 15 min before and after reperfusion in a
model involving 3 h of ischemia followed by 4 h of reperfusion
improved the structure of seminiferous tubules and reduced
edema and hemorrhage in the affected testis. Furthermore,
raxofelast significantly decreased levels of conjugated dienes,
which are markers of lipid peroxidation, in both testes,
suggesting its potential as a therapeutic agent for alleviating
I/R-induced oxidative damage in the testes (111).

5.9 Ascorbic acid

Ascorbic acid has also been evaluated for its efficacy in treating
testicular torsion-detorsion in comparison with dopamine.
Research demonstrated that ascorbic acid was more effective
than the vasodilator dopamine, leading to significant restoration
of spermatogenesis and seminiferous tubule diameter, as well as
a notable reduction in serum MDA levels. These results
highlight the benefits of addressing oxidative stress to facilitate
recovery in testes affected by I/R injury (112).

Considering the involvement of pro-inflammatory cytokines in
testicular torsion—detorsion, some researchers have investigated the
effects of anti-inflammatory drugs. Lysiak et al. (48) pointed out the
importance of neutrophil recruitment to subtunical venules in germ
cell-specific apoptosis linked to testicular I/R injury. In a study
conducted in 2011, the neutrophil elastase inhibitor sivelestat in a
protocol that involved 90 min of ischemia followed by 48 h of
reperfusion in rats was employed. The findings revealed that
sivelestat significantly reduced lipid peroxidation, germ cell-
specific apoptosis, vacuolation, and necrosis in both the ischemic

and contralateral testes (113).

5.10 Epigallocatechin-3-gallate

Epigallocatechin-3-gallate, a polyphenol found in green tea, has
demonstrated the ability to inhibit
associated with carcinogenesis and reduce cell proliferation and

inflammatory ~ processes
oxidative stress (114). In a model involving 1 h of testicular torsion
followed by 4h of detorsion, epigallocatechin-3-gallate was
administered intraperitoneally 30 min after ischemia. This treatment
effectively reversed histopathological alterations and the decline in
spermatogenesis, inhibited germ cell apoptosis, normalized pro-
apoptotic gene expression (such as p53 and Bax), and reduced
mRNA expression of inflammatory markers like inducible nitric

oxide synthase and monocyte chemoattractant protein-1.

5.11 Interleukin-10 (IL-10)

Interleukin-10 (IL-10) is a cytokine known for regulating
inflammatory responses by
cytokines such as TNF-q, IL-1, IL-6, and IL-8 (

suppressing  pro-inflammatory
). Ozturk
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et al. (
reperfusion, administering IL-10 intraperitoneally 10 min prior

) developed a rat model of 6 h of ischemia and 1 h of

to reperfusion. Their results indicated that IL-10 treatment
significantly lowered MDA levels, MPO activity, and histological
damage while increasing GSH-Px activity. This study
underscored IL-10’s protective effects against testicular damage

and its direct influence on seminiferous tubules.

5.12 Non-steroidal anti-inflammatory drugs
(NSAIDs)

NSAIDs are commonly utilized to treat inflammation-related
conditions, primarily by inhibiting cyclooxygenase, the key
enzyme involved in the inflammatory process (
Dokmeci et al. (
orally to prepubertal rats 40 min before the end of a 5-hour

). Research by
) demonstrated that administering ibuprofen

ischemia model resulted in significantly reduced levels of
malondialdehyde (MDA) bilaterally and decreased endothelial
(eNOS) immunoreactivity in the
while the exhibited
heightened eNOS immunoreactivity. Additionally, ibuprofen

nitric oxide synthase

contralateral testis, ipsilateral testis
showed protective effects against mitochondrial degeneration in
both Sertoli cells and spermatids.

Dexketoprofen, an active enantiomer of ketoprofen within the
NSAID category, was tested in a 5-hour testicular ischemia model.
It was administered intraperitoneally twice 40 min prior to
reperfusion and again 12 h afterward. By 24 h post-reperfusion,
dexketoprofen significantly lowered lipid peroxidation levels
in both

disorganization, and desquamation of testicular tissue compared

testes and mitigated degeneration, necrosis,

to control animals (119).

5.13 Nitric oxide (NO)

In a study, a short model involving 30 min of ischemia
followed by 30 min of reperfusion to examine nitric oxide (NO)
levels relative to blood flow. Results indicated that while blood
flow plummeted to 5%-10% of normal after ischemia onset, NO
levels gradually increased, peaking at the end of ischemia. Upon
reperfusion, blood flow returned to normal within 5 min, but
Additionally,
administration of the NO donor, l-arginine, elevated NO,-NO;

NO  concentrations continued to rise.
concentrations and decreased MDA levels in a rat testicular
ischemia-reperfusion model. Increased eNOS expression was
also observed in the testis following torsion and detorsion,
that NO effects

ischemia-reperfusion events (120).

suggesting exerts cytoprotective during

5.14 Phosphodiesterase type 5 (PDE5)
inhibitors

Phosphodiesterase type 5 (PDE5) inhibitors, widely recognized
for treating erectile dysfunction, pulmonary hypertension, and
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benign prostatic hyperplasia, have also demonstrated protective
effects against ischemia-reperfusion injury in the heart. They do
this by opening mitochondrial potassium channels and inhibiting
calcium influx, thereby reducing cell death rates (121). Following
the introduction of sildenafil citrate, several new PDES5 inhibitors
have been evaluated for their effects in testicular ischemia-
reperfusion models. The results have generally indicated that
sildenafil, tadalafil, and udenafil offer protection against oxidative
damage in the testis, although findings regarding vardenafil have
been mixed. In a study involving testicular torsion (2 h) followed
by detorsion (8 h) in pigs, vardenafil did not show any beneficial
effects and instead worsened histopathological changes related to
oxidative stress (122). Conversely, in a rat model of testicular
torsion (1 h) followed by detorsion (4 h), vardenafil administered
30 min after ischemia induction reduced levels of apoptosis-
related factors, eNOS, and inducible nitric oxide synthase,
ultimately alleviating cellular damage and suggesting a potential
cytoprotective effect.

Sildenafil citrate has consistently demonstrated protective
effects against oxidative stress and histological alterations across
various studies. Tadalafil has recently shown promise in
preserving antioxidant capacity, as evidenced by increased
superoxide dismutase (SOD) levels and decreased MDA content
in a rat model (123). Finally, research by Ozgiir et al. (124)
indicated that udenafil
changes when administered before reperfusion in a rat model of

significantly improved biochemical

testicular torsion (2 h) followed by detorsion (4 h), reducing
edema and hemorrhage and restoring germ cell organization in
the seminiferous tubules. These PDE5 inhibitors seem to exert
their positive effects by mitigating oxidative stress and
enhancing the tissue’s antioxidant capacity. Future studies may
uncover more details about the mechanisms of action for PDE5
inhibitors, further elucidating their potential as therapeutic agents.

The timeline illustrates the progression from normal testis to
torsion-induced ischemia, followed by surgical detorsion and
reperfusion. Drug administration for  pharmacological
postconditioning is timed around the detorsion phase, aiming to
mitigate reperfusion-mediated oxidative stress, inflammatory
activation, and apoptosis. The use of antioxidant drugs (taurine,
melatonin, eblasin), vitamins, NSAIDs, nitric oxide donors, and
PDES5 inhibitors immediately before or after reperfusion may

improve testicular salvage and reduce fertility impairment.

Based on the multi-factorial nature of the TIRI pathway (20),
pharmacological postconditioning may help to limit testicular
damage by blocking key points on the TIRI pathways through
the use of different drugs. In addition to this, pharmacological
postconditioning helps to enhance treatment options that can be
applied to human subjects seeking medical help after testicular
torsion onset and repair, unlike other treatment regimens that
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cannot be applied for the treatment of TIRI in humans in real-
life situations. From careful investigation of TIRI pathways,
events that contributed to testicular damage occur sequentially
or in a specific pattern. Firstly, there is a build-up of xanthine
oxidase (XO) enzymes in the ischemic phase of testicular
torsion, which activates reactive oxygen species that can inflict
injury on testicular cells within a short period or form
complexes with other radicals to form peroxynitrites that can
cause long-term damage to the testes (151, 152). This event may
serve as a basis for tissue damage during reperfusion. For this
reason, blocking the XO-ROS pathway in the ischemic phase of
testicular torsion (TT) could serve as a means of reducing
testicular damage that may exacerbate testicular damage during
reperfusion (60). Blocking this pathway should be done
immediately after testicular torsion is diagnosed to limit XO-
ROS-driven testicular damage during reperfusion.

From previous studies, febuxostat, a xanthine oxidase (XO)
inhibitor has been reported to exhibit a superior antioxidant
protection over other XO inhibitors (153). It has been reported
to block the reduced and oxidised form of xanthine oxidase.
Febuxostat has been documented to exhibit antioxidant, anti-
inflammatory, anti-apoptotic and cytoprotective properties (41)

(153,

and renal ischemia-reperfusion injury (155-

). It has been previously used to attenuate myocardial
). It is therefore
speculated that administration of febuxostat a few minutes
before surgical detorsion may limit XO-driven ROS production
that may inflict injury on the testes during reperfusion.

In addition to this, another event during reperfusion is calcium
overload due to disruption of the sodium-calcium ATPase pump
(45). This may result in activation of the calcium-mediated
apoptotic pathway, which may result in loss of testicular cells.
Also, there is altered vasomotor tone after testicular torsion
repair, which does not return to normal even after 7 days, and
may disrupt the spermatogenesis (158). To impede this pathway,
amlodipine, a third-generation calcium channel blocker, is
). It
has been reported to be effective in minimizing vascular-induced

capable of blocking the lipid peroxidation process (159,
damage in organs (161). It has been reported to protect against
TIRI and other forms of ischemia-reperfusion injury (162, 163).
Administration of amlodipine immediately after TT repair may
help to limit the calcium-mediated apoptotic pathway and
regulate the loss of vasomotor tone. The final sequence of events
following TIRI is the activation of ROS-burst in the later phase of
reperfusion due to leukocyte recruitment to the site of injury
(50). This event occurs hours after testicular torsion repair and
intra-testicular ROS, which tends
apoptotic pathways (32).

increases the to trigger
Vitamin E, a lipid-chain-breaking
antioxidant known for its ability to improve reproductive
function, may help to block this event. Administration of vitamin
E 30 min after reperfusion may help to limit the ROS-burst in
the later phase of reperfusion that may inflict injury on the
testicular cells.

It is important to note that while these pharmacological
candidates demonstrate protective potential in preclinical models,
their translational applicability to human testicular ischemia-
reperfusion injury remains uncertain. Most reports supporting the
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use of febuxostat, amlodipine, and vitamin E derive from rodent
studies employing experimental ischemia protocols and dosages
that do not necessarily reflect safe or effective human exposure
levels (60, 85, R ). Pharmacokinetic variables, including drug
bioavailability in testicular tissue, blood-testis barrier permeability,
and metabolism under ischemic conditions, are often poorly
characterized. For example, the optimal timing and systemic
concentration of febuxostat required to inhibit xanthine oxidase in
the human testis remain unknown, and excessive dosing may
impair purine metabolism or hepatic function (154, 155). Similarly,
while amlodipine exhibits antioxidative and vasomodulatory effects
in animals, its testicular tissue penetration and potential influence
on systemic blood pressure in acute torsion cases require further
clinical evaluation.

At present, there are no controlled clinical trials or
pharmacodynamic studies assessing these drugs specifically in
patients with testicular torsion or related ischemia-reperfusion
contexts. Therefore, while preclinical findings support their
mechanistic potential, claims of therapeutic superiority or clinical
readiness remain premature. Future translational research should
focus on establishing safe dosing windows, evaluating
pharmacokinetic behaviour in gonadal tissue, and integrating
these agents into combinatory or adjunctive regimens under
standardized experimental and clinical frameworks.

However, targeting this series of events with febuxostat,
amlodipine, and vitamin E sequentially may still help to limit

testicular damage following TIRI.

This review highlighted that TIRI is accompanied by cascades
of pathophysiological events that cause testicular damage. With
the application of pharmacological postconditioning, there is the
possibility of blocking the TIRI pathways with multiple
interventions (febuxostat, amlodipine and vitamin E) to limit
events that contribute to testicular damage. This suggests that
pharmacological postconditioning could serve as a treatment
strategy that allows febuxostat, amlodipine and vitamin E to be
administered in a sequence to reduce the risk of TIRI after TT
onset and repair.

Based on the multifaceted nature of TIRI pathway, this review
recommends administration of febuxostat in the ischemic phase
to block XO-ROS pathway, administration of amlodipine on
detorsion to block calcium-mediated apoptotic pathway and
administration of vitamin E in the later phase of detorsion to
reduce TIRI-induced testicular damage. This review recommends
a pattern of application of therapeutic drugs that can be applied
in humans to treat TIRI-induced testicular damage after TT repair.

It must, however, be noted that, while pharmacological
postconditioning offers practical advantages, such as feasibility in
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unpredictable clinical events like testicular torsion and the potential
for targeted molecular modulation, its current evidence base does not

yet
pharmacological agents remain in the exploratory stage, with

support definitive claims of clinical superiority. Most
uncertain safety profiles, optimal timing, and long-term fertility
outcomes in humans. In contrast, ischemic conditioning strategies,
despite logistical limitations, have undergone limited but more direct
testing in clinical or surgical contexts, particularly in cardiac and
renal reperfusion models. Therefore, a rigorous head-to-head
evaluation of pharmacological vs. ischemic conditioning across
comparable experimental frameworks, followed by controlled
fully
pharmacological postconditioning as a superior therapeutic strategy
for TIRL

translational ~ studies, is necessary before asserting
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