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Global climate change and accelerating human disturbance may trigger biosphere 
tipping points across a range of scales and push the terrestrial ecosystem 
undergoing irreversible critical transitions toward alternative ecosystems. The 
resilience of these systems—their capacity to resist and recover from 
perturbations and maintain structure and function—is being eroded by multiple 
drivers, including land-use change, altered disturbance regimes, and 
biogeochemical imbalances. These drivers interact in nonlinear ways, generating 
cascading effects across scales and amplifying the risk of state shifts. Increasing 
evidence based on remote sensing time series shows that many forests are losing 
resilience, suggesting an early warning signal for approaching tipping points. Once 
tipping points are crossed, recovery is highly uncertain or even impossible on human 
timescales, with profound implications for biodiversity, ecosystem services, and the 
global carbon cycle. Understanding the mechanisms of resilience loss and 
identifying early-warning signals of approaching thresholds are therefore central 
to predicting future ecosystem stability. Due to its ability to monitor key parameters 
related to vegetation dynamics, remote sensing has emerged as a key tool for 
monitoring vegetation resilience. This can be done over large areas and with high 
spatial (about 10 m) and temporal (week-month) resolutions. This review 
synthesizes current advances on the drivers, evidence, tipping dynamics of 
terrestrial ecosystems in transition, and advantages of remote sensing in 
resilience study. We further highlight urgent action to anticipate and manage 
critical risks, and mitigate climate change in the Anthropocene.
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Introduction

Terrestrial ecosystems are fundamental to the functioning of the Earth system, 
regulating carbon and water cycles, maintaining biodiversity, and sustaining human 
societies. Yet, the Earth is increasingly exposed to unprecedented pressure from global 
warming, extreme droughts, floods, deforestation and fires. Mounting evidence 
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suggests that these ecosystems are entering a period of 
unprecedented instability under the combined pressures of 
climate change and human disturbance (Barnosky et al., 
2012). Such instability raises the risk of crossing tipping 
points, at which a small perturbation may cause an abrupt 
shift in the ecosystem state (Lenton et al., 2008), accelerated 
by land-atmosphere positive feedbacks (Flores and Staal, 2022), 
beyond which recovery becomes difficult or even impossible. 
Nine climate tipping points (Lenton et al., 2019) have been 
activated and teleconnections among tipping elements may have 
either destabilizing or stabilizing effects on other ecosystems 
(Liu et al., 2023), potentially leading to cascades of abrupt 
transitions. Such critical transitions represent a growing 
concern in global change science, as they may compromise 
the services on which human wellbeing depends and induce 
substantial carbon emissions. Thus, identifying the thresholds 
for such transitions has been a source of growing concern of 
policymakers and scientists.

A central challenge lies in understanding the drivers and 
mechanisms that propel ecosystems toward state shifts. 
Climate change, land-use intensification, and biogeochemical 
alterations interact across scales to destabilize ecological 
equilibria (Smith and Boers, 2023; Wang et al., 2024). As 
resilience declines, ecosystems become increasingly sensitive to 
disturbances, and early-warning signals of transition, such as 
critical slowing down (Dakos et al., 2008) and rising variability, 
begin to emerge (Scheffer et al., 2009). At the same time, 
accumulating empirical evidence from tropical forests (Boulton 
et al., 2022), high-latitude ecosystems, and drylands demonstrates 
that many ecosystems are approaching the tipping points 
(Forzieri et al., 2022; Smith et al., 2022). Identifying the 
climatic tipping points and other potential thresholds that 
delineate the boundaries of ecosystem stability has thus 
become a priority for predicting future trajectories and 
identifying current high-risk forests.

This review synthesizes current knowledge on the multiple 
dimensions of terrestrial ecosystem transitions. We first 
examine the primary drivers that erode resilience and 
accelerate nonlinear responses. We then evaluate progress in 
detecting early-warning signals, highlighting methodological 
advances and persistent uncertainties. Next, we synthesize 
empirical evidence of ecosystems already undergoing 
transitions across different biomes. Finally, we assess recent 
estimates of climatic thresholds and tipping points, emphasizing 
their implications for biodiversity conservation, carbon–climate 
feedbacks, and Earth system stability. Together, these 
perspectives aim to provide an integrated framework for 
understanding terrestrial ecosystems in transition and to 
inform strategies for anticipating and managing critical risks 
in the Anthropocene.

Early warning signals and empirical evidence 
for transitions

Detecting early-warning signals is a critical step toward 
anticipating ecosystem transitions before they become irreversible 
(Scheffer et al., 2009; Scheffer et al., 2001). Theoretical and empirical 

studies suggest that systems approaching a tipping point exhibit 
statistical signatures of declining resilience, often referred to as 
‘critical slowing down’ (CSD). For example, experimental studies 
show that imminent extinction is signaled by CSD after 
environmental deterioration induced by experimental decline in 
environmental conditions and before the critical transition (Drake 
and Griffen, 2010). CSD includes slower recovery rates after 
perturbations, increasing variance in key ecological variables, and 
rising temporal autocorrelation in time series data. In space, 
complex ecosystems evade tipping through spatial pattern 
formation (Rietkerk et al., 2021), in which Turing patterns 
(Turing, 1990) has been shown as a prominent early warning 
signal. That is, the spontaneous formation of regular vegetation 
patterns driven by self-organization in ecosystems (Rietkerk et al., 
2004). Other indicators in space, such as skewness, spatial lag-1 
correlation variance have also been viewed as CSD-based spatial 
indicators for ecosystem transitions (Rietkerk et al., 2021; Majumder 
et al., 2019; Eby et al., 2017). Ecological manifestations of resilience 
loss include declines in species diversity (Srednick and Swearer, 
2024) and slow shifts in functional group dominance to track 
climate change (Aguirre-Gutiérrez et al., 2025). With recent 
advances in remote sensing, machine learning, and network- 
based approaches, it has become possible to detect these early- 
warning signals at broader spatial and temporal scales, offering new 
opportunities for risk assessment. Nevertheless, challenges remain 
in distinguishing true warning signals from natural variability, 
scaling up from localized observations, and integrating diverse 
data sources into predictive frameworks.

Earth’s ecosystems have undergone regime shifts in the past at 
very long timescales, and they will happen in the future. Past critical 
transitions happen very quickly relative to their bracketing states, 
less than ~5% of the lasted time of previous states. For example, at 
the Cambrian explosion, both large and mobile predators became 
part of the food chain for the first time (Barnosky et al., 2012). 
During the last transition from the glacial into the present 
interglacial condition, spending over millennia (Wim, 2008), 
megafaunal biomass changed from being dominated by many 
species to being dominated by Homo sapiens (Barnosky, 2008). 
The Greenland ice sheet is melting at an accelerating rate, and it may 
commit the Greenland ice sheet to raising sea level by about 7 m over 
millennia once the threshold is crossed (Lenton et al., 2019).

Accumulating evidence indicates that many terrestrial 
ecosystems are approaching transitions or even already 
undergoing them. For example, Figure 1 shows that at the global 
scale, most natural ecosystems are losing resilience, indicated by lag- 
1 month autocorrelation. In the tropics, recurrent severe droughts, 
increasing tree mortality, and escalating forest fragmentation point 
toward a potential shift from closed-canopy rainforest to open- 
canopy savanna-like states (Staver et al., 2011; Van Passel et al., 2024; 
Lovejoy and Nobre, 2018). High-latitude ecosystems provide 
additional evidence of ongoing transitions: continental steppe 
grasslands can expand to boreal forest where soil moisture 
declines further along the arid timberline (Hogg and Schwarz, 
1997), while positive melt-elevation feedbacks drive the central- 
western Greenland Ice Sheet close to a critical transition, revealed by 
significant early warning signals (Boers and Rypdal, 2021). 
Collectively, these observations reveal that ecosystem transitions 
are not just theoretical projections but unfolding realities, with 
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significant implications for biodiversity, ecosystem services, and 
human livelihoods.

Drivers and mechanisms

Terrestrial ecosystems are increasingly impacted by multiple and 
interacting drivers that weaken their resilience and accelerate the 
likelihood of abrupt transitions. Humans now dominate Earth and 
change it in ways that destabilize the functions to sustain human- 
beings and other species (Curtis et al., 2018; Haberl et al., 2007). The 
shift from one state to another can be induced by a ‘threshold’, 
mainly driven from climate, and ‘sledgehammer’ effect, mainly 
driven by human land use change (Barnosky et al., 2012). The 
regime shift caused by threshold effect is usually difficult to simulate 
due to large uncertainties of Earth System Models and complex 
interaction between land and atmosphere. Threshold-caused regime 
shifts can result from ‘fold bifurcations’ and show hysteresis (Staal 
et al., 2020a). By contrast, a shift from a sledgehammer effect 
happens as no surprise, e.g., the clearing of a forest driven by 
agriculture. Sledgehammer effects represent abrupt, externally 
forced disturbances—such as deforestation, forest degradation, 
agricultural expansion, urbanization, and high-severity 
wildfires—that cause sudden structural collapse without passing 
through gradual climatic thresholds. Remote-sensing evidence 
supports their widespread occurrence: the Global Forest Change 

dataset (Hansen et al., 2013) reveals extensive forest loss across 
tropical regions; MODIS burned-area and fire-radiative-power 
products capture intensifying fire regimes; and global land-cover 
changes (Curtis et al., 2018) document rapid cropland and urban 
expansion. While these datasets provide robust spatial insights, 
uncertainties remain due to classification errors, mixed pixels, 
and temporal inconsistencies. Collectively, sledgehammer-type 
disturbances represent a dominant yet often underestimated 
pathway of structural ecosystem transformation, complementing 
the slower, climate-driven thresholds.

Climate change (Alley et al., 2003) plays a central role by rising 
temperatures, shifting precipitation patterns, and intensifying the 
frequency and severity of climatic stress from droughts (Van Passel 
et al., 2024; Wunderling et al., 2022), and wildfires. For example, 
severe drought and elevated temperatures significantly accelerated 
tree mortality by exacerbating hydraulic failure through increased 
water loss and, in Amazonian forests, by promoting high-intensity 
fires through drier fuels, higher fuel loads, and altered microclimatic 
conditions, despite some mitigating effects of elevated CO2 on 
carbon reserves (Duan et al., 2018; Brando et al., 2014). Rising 
atmospheric vapor pressure deficit (VPD), driven by long-term 
warming, has significantly increased tree mortality risk across 
tropical forests by pushing species closer to their upper hydraulic 
limits, even in the absence of strong drought trends in soil water 
deficit (Bauman et al., 2022). These changes are compounded by 
anthropogenic pressures (Curtis et al., 2018; Haberl et al., 2007; 

FIGURE 1 
Temporal changes of lag-1 month autocorrelation (TAC) at global scale during 1985–2019 based on time series of remote sensing. (a) Spatial 
distribution of Theil–Sen slope of TAC. Positive δTAC signify declining resilience, and vice versa. (b). Temporal changes of TAC over global terrestrial 
ecosystems, except for croplands. Higher TAC indicates lower resilience, and vice versa. TAC is calculated from PKU GIMMS kNDVI (Li et al., 2023) based 
on 60-month smoothing window. Points in a suggest the temporal trends are statistically significant.
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Sampaio et al., 2007), including deforestation, agricultural 
expansion, infrastructure development, and overgrazing, which 
disrupt natural disturbance regimes and fragment habitats. 
Biogeochemical perturbations, such as rising atmospheric CO2, 
enhanced nitrogen deposition, and altered nutrient cycles, further 
exacerbate stress on ecosystems by reshaping productivity and 
competitive interactions. Importantly, these drivers rarely act in 
isolation. Instead, they interact in nonlinear ways (Staal et al., 
2020b), creating feedbacks across spatial and temporal scales that 
progressively erode ecological stability. Understanding the 
combined impacts of these drivers is therefore essential to 
explaining why terrestrial ecosystems are increasingly vulnerable 
to state shifts.

Plausible transition trajectories and 
tipping points

Climate tipping points occur when tipping elements become 
self-perpetuating beyond a warming threshold. Tipping elements 
suggest large parts of climate system, changes in which become self- 
perpetuating beyond a warming threshold due to positive feedbacks, 
leading to considerable Earth system impacts. Notably, for 
slow-onset tipping elements, a threshold exceedance may not 
cause a change of system state if the overshoot time is shorter 
than the effective timescale of the tipping elements, such as, the 
collapse of the Atlantic Meridional Overturning Circulation 
(AMOC) (Ritchie et al., 2021). A potential collapse of the AMOC 
would similarly propagate terrestrial impacts through regional 
climate disruptions. Cooling over the North Atlantic and Europe, 
along with altered precipitation patterns in West Africa and South 
Asia, could shorten growing seasons, reduce soil moisture, and 

disrupt carbon storage in forests and grasslands. Heightened 
droughts and extreme rainfall events may induce vegetation 
shifts, for example, from grassland to semi-arid states, further 
increasing the likelihood of abrupt ecosystem transitions.

The recent identified tipping elements (Armstrong McKay et al., 
2022) and their projected global warming tipping points are given in 
Figure 2. Triggering climate tipping points induce significant 
impacts, i.e., dieback of biodiverse Amazonia forests, permafrost 
thawing, or substantial sea level rise. These events could cause 
devastating impacts on human societies. Modeling studies suggest 
that exceeding 1.5 °C warming above pre-industrial could trigger 
multiple climate tipping points (Armstrong McKay et al., 2022). 
Notably, current 1.1 °C warming already lies within the lower end of 
five uncertainty ranges of climate tipping points. Models show that 
abrupt collapse in Arctic sea ice occurs beyond about 3 °C–4.5 °C 
warming (Drijfhout et al., 2015; Hezel et al., 2014; Notz and 
Community, 2020). The tipping point is ~1.5 °C warming for 
collapse of West Antarctic ice sheet (Lenton et al., 2008). The 
best estimated threshold of Atlantic meridional overturning 
circulation is about 4 °C warming. Widespread Amazon dieback 
could occur at 3.5 °C warming (Armstrong McKay et al., 2022). 
Regime shifts may begin in boreal forests at ~1.5 °C and become 
widespread by ~3.5 °C (Gerten et al., 2013). By contrast, warming 
could result in abrupt increases in plants at 2 °C to 3.5 °C warming in 
Eastern Sahel in three Earth System models (Drijfhout et al., 2015). 
These thresholds are characterized by considerable spatial 
heterogeneity and uncertainty, but they consistently indicate that 
terrestrial ecosystems are approaching tipping points with 
potentially irreversible consequences. Quantifying these 
thresholds, while accounting for interacting drivers and 
feedbacks, is thus critical for predicting the future of 
Earth’s biosphere.

FIGURE 2 
The location of climate tipping elements in the cryosphere, the biosphere, and ocean/atmosphere, and global warming levels at which their tipping 
points will likely be triggered, based on ref. (Armstrong McKay et al., 2022).
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The capability of remote sensing time series 
on the quantification of critical 
slowing down

Previous research typically relies on the CSD theory and long- 
term observations of remote sensing data to assess changes in 
vegetation resilience (Forzieri et al., 2022; Smith et al., 2022). As 
forests approach a tipping point, CSD leads to an increase in the 
temporal autocorrelation coefficient and variance of the state 
variable. The mathematical principles are as follows:

Consider a system with periodic (Δt) repeated disturbances 
affecting the state variable (adding noise). During these 
disturbances, the system’s return to equilibrium follows an 
exponential function of λ, described by a simple 
autoregressive equation: 

Xn+1 − X̄ � eλΔt Xn − X̄( 􏼁 + σεn (1)

yn+1 � e
λΔtyn + σεn (2)

Here, yn denotes how much the state variable Xn deviates from 
the equilibrium X̄; εn represents random numbers from a standard 
normal distribution [εn ~ N(0, 1)]; σ denotes the 
standard deviation.

If λ and Δt are independent variables of yn, the equation can be 
formulated as a first-order regression equation: 

yn+1 � αyn + σεn (3)

The autocorrelation coefficient, α � eλΔt, represents white noise 
at α � 0 and red noise at α � 1. The mathematical expectation of the 
first-order regression equation yn+1 � c + ayn + σεn is: 

E yn+1( 􏼁 � E c( ) + aE yn( 􏼁 + E σεn( )⇒μ � c + au + o⇒μ �
c

1 − a
(4)

When c is 0 and the mean value is 0, the variance is calculated as: 

Var yn+1( 􏼁 � E y2
n( 􏼁− μ2 �

σ2

1 − a2 (5)

As the system approaches the critical point, the return to 
equilibrium slows down, with λ approaching 0, α converging to 
1, and the variance tending towards infinity.

In this study, based on the CSD theory, we utilized 60-month 
smoothing window to calculate the 1-lag time autocorrelation 
coefficients of the residual component of the kNDVI time series 
data from PKU GIMMS NDVI (Li et al., 2023), spanning from 
1982 to 2022 with an 8 km resolution (Figure 1). The dataset’s 
accuracy surpasses that of its predecessor, GIMMS NDVI3g, 
effectively addressing issues related to orbital drift and sensor 
degradation in tropical regions. Data points influenced by snow, 
ice, or cloud cover, identified through the quality-control band and 
NDVI values < 0.1, were considered missing. Areas with over 75% 
missing data across all 16-day time steps were excluded from the 
analyses. In this study, bi-weekly data was aggregated into monthly 
values using Maximum Value Compositing to eliminate the 
contamination from cloud, atmosphere and changes in solar 
altitude angle. The original kNDVI time series are decomposed 
by the Seasonal and Trend decomposition using Loess (STL) method 
to three parts: trend, seasonal, and residual components.

It is important to note that higher values of the TAC indicate 
lower resilience, and vice versa. The trend in TAC variations is 
employed to characterize changes in resilience. A positive δTAC 
indicates a decreasing trend in resilience, while a negative δTAC 
suggests an increasing trend in resilience. The Theil-Sen slope 
analysis method is a non-parametric test commonly employed to 
estimate trends in time series data (Sen, 1968). This method is less 
susceptible to the influence of outliers and is considered more 
accurate compared to linear regression.

To derive the time series of kNDVI data, a kernel function was 
applied to the PKU GIMMS NDVI. kNDVI is a vegetation index 
derived from kernel method theory, fundamentally linearizing 
NDVI using the equation (Camps-Val et al., 2021): 

kNDVI � tanh
NIR−Red

2σ
􏼠 􏼡

2
⎡⎣ ⎤⎦ (6)

In this equation, NIR represents the reflectance value in the 
near-infrared band, Red represents the reflectance value in the red 
band, and σ is the parameter controlling the distance between the 
near-infrared and red bands, simplified as σ = 0.5(NIR - Red). Thus, 
we have: 

kNDVI � tanh NDVI2( 􏼁 (7)

Discussions

We used TAC as a proxy for ecosystem resilience, based on the 
assumption that ecosystems near equilibrium exhibit linear recovery 
dynamics following perturbations. Higher TAC values indicate 
slower recovery and lower resilience, reflecting the phenomenon 
of critical slowing down as systems approach tipping points. 
However, the interpretation of TAC can be influenced by 
external drivers, non-stationary climate variability, observational 
noise, nonlinear dynamics, and the temporal or spatial scale of 
measurements. These factors can introduce potential artifacts, 
highlighting the need for careful consideration of method 
assumptions and appropriate sensitivity or robustness checks, 
such as detrending, or comparing across independent datasets.

The apparent tension between decreasing resilience (Forzieri 
et al., 2022; Smith et al., 2022) and vegetation greening (Piao et al., 
2020; Zhang et al., 2025a; Zhang et al., 2025b) in some regions, e.g., 
arid/semi-arid, temperate, and boreal zones can be explained by 
multiple mechanisms. Elevated CO2, phenological shifts, and 
human management may drive sustained increases in vegetation 
productivity or leaf area, producing a greening signal, while the 
underlying system still recovers slowly from perturbations, leading 
to higher TAC. In other words, ecosystems can gain biomass while 
dynamical stability declines, because TAC captures intrinsic 
recovery near equilibrium, which can decrease even under 
persistent positive productivity trends. This suggests that long-term 
greening does not necessarily indicate enhanced resilience, and that 
combined analysis of TAC, productivity trends, and management 
factors is crucial. Future work should focus on disentangling the 
contributions of natural variability, anthropogenic inputs, and 
climate-driven changes to better predict vulnerability and guide 
ecosystem management under global change.
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Concluding remarks

Looking forward, four priorities are essential to advance both 
science and policy. First, research must improve the integration of 
observations, models, and theory to capture the multi-scale 
feedbacks that govern transitions. This includes expanding long- 
term ecological monitoring, refining Earth system models, and 
developing methods that combine remote sensing, field data, and 
machine learning to better detect early-warning signals. Improving 
the ability of models to capture the known past regime shifts should 
increase the confidence to predict future critical transitions. Second, 
emphasis should be placed on quantifying thresholds and 
uncertainties, recognizing that ecological tipping points are 
context-dependent and shaped by socioeconomic drivers. 
Scenario-based approaches that couple ecological dynamics 
with human decision-making can help uncover cascading risks 
across systems. Third, management strategies should shift from 
reactive to anticipatory frameworks, focusing on resilience- 
building interventions, landscape connectivity, and adaptive 
governance to lower the risk of crossing undesirable 
thresholds. Fourth, satellite records are too short to provide 
early warnings in time (Lenton et al., 2024), yet their 
exceptional spatial coverage enables spatial indicators to detect 
resilience loss, while space-for-time substitution offers novel 
perspectives on potential transitions.

Looking ahead, advancing our understanding of ecosystem 
transitions requires moving beyond disciplinary silos toward a 
fully integrative framework. This entails linking empirical 
observations with mechanistic models and early-warning 
concepts to systematically identify vulnerable regions and critical 
thresholds, while building multi-scale monitoring networks and 
improving attribution of drivers and feedbacks. Embedding 
ecological tipping points within broader socioeconomic and 
policy pathways will be essential for assessing cascading risks and 
guiding effective responses. Ultimately, safeguarding terrestrial 
ecosystems in the Anthropocene will require bridging 
disciplinary boundaries and connecting ecological science with 
climate policy, conservation practice, and societal adaptation. By 
accelerating emissions reductions, strengthening resilience-building 
interventions, and enhancing our capacity to anticipate and manage 
critical transitions, we can lower the risk of crossing undesirable 
thresholds and ensure that ecosystems continue to regulate Earth’s 
climate, sustain biodiversity, and provide vital services for 
human wellbeing.
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