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Global climate change and accelerating human disturbance may trigger biosphere
tipping points across a range of scales and push the terrestrial ecosystem
undergoing irreversible critical transitions toward alternative ecosystems. The
resilience of these systems—their capacity to resist and recover from
perturbations and maintain structure and function—is being eroded by multiple
drivers, including land-use change, altered disturbance regimes, and
biogeochemical imbalances. These drivers interact in nonlinear ways, generating
cascading effects across scales and amplifying the risk of state shifts. Increasing
evidence based on remote sensing time series shows that many forests are losing
resilience, suggesting an early warning signal for approaching tipping points. Once
tipping points are crossed, recovery is highly uncertain or even impossible on human
timescales, with profound implications for biodiversity, ecosystem services, and the
global carbon cycle. Understanding the mechanisms of resilience loss and
identifying early-warning signals of approaching thresholds are therefore central
to predicting future ecosystem stability. Due to its ability to monitor key parameters
related to vegetation dynamics, remote sensing has emerged as a key tool for
monitoring vegetation resilience. This can be done over large areas and with high
spatial (about 10 m) and temporal (week-month) resolutions. This review
synthesizes current advances on the drivers, evidence, tipping dynamics of
terrestrial ecosystems in transition, and advantages of remote sensing in
resilience study. We further highlight urgent action to anticipate and manage
critical risks, and mitigate climate change in the Anthropocene.
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Introduction

Terrestrial ecosystems are fundamental to the functioning of the Earth system,
regulating carbon and water cycles, maintaining biodiversity, and sustaining human
societies. Yet, the Earth is increasingly exposed to unprecedented pressure from global
warming, extreme droughts, floods, deforestation and fires. Mounting evidence
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suggests that these ecosystems are entering a period of
unprecedented instability under the combined pressures of
climate change and human disturbance (Barnosky et al,
2012). Such instability raises the risk of crossing tipping
points, at which a small perturbation may cause an abrupt
shift in the ecosystem state (Lenton et al., 2008), accelerated
by land-atmosphere positive feedbacks (Flores and Staal, 2022),
beyond which recovery becomes difficult or even impossible.
Nine climate tipping points (Lenton et al., 2019) have been
activated and teleconnections among tipping elements may have
either destabilizing or stabilizing effects on other ecosystems
(Liu et al., 2023), potentially leading to cascades of abrupt
transitions. Such critical transitions represent a growing
concern in global change science, as they may compromise
the services on which human wellbeing depends and induce
substantial carbon emissions. Thus, identifying the thresholds
for such transitions has been a source of growing concern of
policymakers and scientists.

A central challenge lies in understanding the drivers and
that propel ecosystems shifts.
Climate change, land-use intensification, and biogeochemical

mechanisms toward state
alterations interact across scales to destabilize ecological
equilibria (Smith and Boers, 2023; Wang et al., 2024). As
resilience declines, ecosystems become increasingly sensitive to
disturbances, and early-warning signals of transition, such as
critical slowing down (Dakos et al., 2008) and rising variability,
begin to emerge (Scheffer et al, 2009). At the same time,
accumulating empirical evidence from tropical forests (Boulton
etal., 2022), high-latitude ecosystems, and drylands demonstrates
that many ecosystems are approaching the tipping points
(Forzieri et al., 2022; Smith et al, 2022). Identifying the
climatic tipping points and other potential thresholds that
delineate the boundaries of ecosystem stability has thus
become a priority for predicting future trajectories and
identifying current high-risk forests.

This review synthesizes current knowledge on the multiple
dimensions of terrestrial ecosystem transitions. We first
examine the primary drivers that erode resilience and
accelerate nonlinear responses. We then evaluate progress in
detecting early-warning signals, highlighting methodological
advances and persistent uncertainties. Next, we synthesize
already
transitions across different biomes. Finally, we assess recent

empirical evidence of ecosystems undergoing
estimates of climatic thresholds and tipping points, emphasizing
their implications for biodiversity conservation, carbon-climate
feedbacks, and Earth system stability. Together, these
perspectives aim to provide an integrated framework for
understanding terrestrial ecosystems in transition and to
inform strategies for anticipating and managing critical risks

in the Anthropocene.

Early warning signals and empirical evidence
for transitions

Detecting early-warning signals is a critical step toward

anticipating ecosystem transitions before they become irreversible
(Scheffer et al., 2009; Scheffer et al., 2001). Theoretical and empirical
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studies suggest that systems approaching a tipping point exhibit
statistical signatures of declining resilience, often referred to as
‘critical slowing down’ (CSD). For example, experimental studies
show that imminent extinction is signaled by CSD after
environmental deterioration induced by experimental decline in
environmental conditions and before the critical transition (Drake
and Griffen, 2010). CSD includes slower recovery rates after
perturbations, increasing variance in key ecological variables, and
rising temporal autocorrelation in time series data. In space,
complex ecosystems evade tipping through spatial pattern
formation (Rietkerk et al, 2021), in which Turing patterns
(Turing, 1990) has been shown as a prominent early warning
signal. That is, the spontaneous formation of regular vegetation
patterns driven by self-organization in ecosystems (Rietkerk et al.,
2004). Other indicators in space, such as skewness, spatial lag-1
correlation variance have also been viewed as CSD-based spatial
indicators for ecosystem transitions (Rietkerk et al., 2021; Majumder
et al,, 2019; Eby et al., 2017). Ecological manifestations of resilience
loss include declines in species diversity (Srednick and Swearer,
2024) and slow shifts in functional group dominance to track
climate change (Aguirre-Gutiérrez et al, 2025). With recent
advances in remote sensing, machine learning, and network-
based approaches, it has become possible to detect these early-
warning signals at broader spatial and temporal scales, offering new
opportunities for risk assessment. Nevertheless, challenges remain
in distinguishing true warning signals from natural variability,
scaling up from localized observations, and integrating diverse
data sources into predictive frameworks.

Earth’s ecosystems have undergone regime shifts in the past at
very long timescales, and they will happen in the future. Past critical
transitions happen very quickly relative to their bracketing states,
less than ~5% of the lasted time of previous states. For example, at
the Cambrian explosion, both large and mobile predators became
part of the food chain for the first time (Barnosky et al., 2012).
During the last transition from the glacial into the present
interglacial condition, spending over millennia (Wim, 2008),
megafaunal biomass changed from being dominated by many
species to being dominated by Homo sapiens (Barnosky, 2008).
The Greenland ice sheet is melting at an accelerating rate, and it may
commit the Greenland ice sheet to raising sea level by about 7 m over
millennia once the threshold is crossed (Lenton et al., 2019).
that
transitions or

Accumulating evidence indicates many terrestrial

ecosystems are approaching even already
undergoing them. For example, Figure 1 shows that at the global
scale, most natural ecosystems are losing resilience, indicated by lag-
1 month autocorrelation. In the tropics, recurrent severe droughts,
increasing tree mortality, and escalating forest fragmentation point
toward a potential shift from closed-canopy rainforest to open-
canopy savanna-like states (Staver et al., 2011; Van Passel et al., 2024;
Lovejoy and Nobre, 2018). High-latitude ecosystems provide
additional evidence of ongoing transitions: continental steppe
grasslands can expand to boreal forest where soil moisture
declines further along the arid timberline (Hogg and Schwarz,
1997), while positive melt-elevation feedbacks drive the central-
western Greenland Ice Sheet close to a critical transition, revealed by
significant early warning signals (Boers and Rypdal, 2021).
Collectively, these observations reveal that ecosystem transitions

are not just theoretical projections but unfolding realities, with
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FIGURE 1

Temporal changes of lag-1 month autocorrelation (TAC) at global scale during 1985-2019 based on time series of remote sensing. (a) Spatial
distribution of Theil-Sen slope of TAC. Positive §TAC signify declining resilience, and vice versa. (b). Temporal changes of TAC over global terrestrial
ecosystems, except for croplands. Higher TAC indicates lower resilience, and vice versa. TAC is calculated from PKU GIMMS kNDVI (Li et al., 2023) based
on 60-month smoothing window. Points in a suggest the temporal trends are statistically significant

significant implications for biodiversity, ecosystem services, and
human livelihoods.

Drivers and mechanisms

Terrestrial ecosystems are increasingly impacted by multiple and
interacting drivers that weaken their resilience and accelerate the
likelihood of abrupt transitions. Humans now dominate Earth and
change it in ways that destabilize the functions to sustain human-
beings and other species (Curtis et al., 2018; Haberl et al., 2007). The
shift from one state to another can be induced by a ‘threshold’,
mainly driven from climate, and ‘sledgehammer’ effect, mainly
driven by human land use change (Barnosky et al., 2012). The
regime shift caused by threshold effect is usually difficult to simulate
due to large uncertainties of Earth System Models and complex
interaction between land and atmosphere. Threshold-caused regime
shifts can result from ‘fold bifurcations’ and show hysteresis (Staal
et al, 2020a). By contrast, a shift from a sledgehammer effect
happens as no surprise, e.g., the clearing of a forest driven by
agriculture. Sledgehammer effects represent abrupt, externally
forced disturbances—such as deforestation, forest degradation,
agricultural  expansion, urbanization, and  high-severity
wildfires—that cause sudden structural collapse without passing
through gradual climatic thresholds. Remote-sensing evidence

supports their widespread occurrence: the Global Forest Change
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dataset (Hansen et al., 2013) reveals extensive forest loss across
tropical regions; MODIS burned-area and fire-radiative-power
products capture intensifying fire regimes; and global land-cover
changes (Curtis et al., 2018) document rapid cropland and urban
expansion. While these datasets provide robust spatial insights,
uncertainties remain due to classification errors, mixed pixels,
and temporal inconsistencies. Collectively, sledgehammer-type
disturbances represent a dominant yet often underestimated
pathway of structural ecosystem transformation, complementing
the slower, climate-driven thresholds.

Climate change (Alley et al., 2003) plays a central role by rising
temperatures, shifting precipitation patterns, and intensifying the
frequency and severity of climatic stress from droughts (Van Passel
et al,, 2024; Wunderling et al., 2022), and wildfires. For example,
severe drought and elevated temperatures significantly accelerated
tree mortality by exacerbating hydraulic failure through increased
water loss and, in Amazonian forests, by promoting high-intensity
fires through drier fuels, higher fuel loads, and altered microclimatic
conditions, despite some mitigating effects of elevated CO, on
carbon reserves (Duan et al, 2018; Brando et al, 2014). Rising
atmospheric vapor pressure deficit (VPD), driven by long-term
warming, has significantly increased tree mortality risk across
tropical forests by pushing species closer to their upper hydraulic
limits, even in the absence of strong drought trends in soil water
deficit (Bauman et al., 2022). These changes are compounded by
anthropogenic pressures (Curtis et al., 2018; Haberl et al., 2007;
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FIGURE 2

The location of climate tipping elements in the cryosphere, the biosphere, and ocean/atmosphere, and global warming levels at which their tipping

points will likely be triggered, based on ref. (Armstrong McKay et al., 2022).

Sampaio et al, 2007), including deforestation, agricultural
expansion, infrastructure development, and overgrazing, which
disrupt natural disturbance regimes and fragment habitats.
Biogeochemical perturbations, such as rising atmospheric CO,,
enhanced nitrogen deposition, and altered nutrient cycles, further
exacerbate stress on ecosystems by reshaping productivity and
competitive interactions. Importantly, these drivers rarely act in
isolation. Instead, they interact in nonlinear ways (Staal et al.,
2020b), creating feedbacks across spatial and temporal scales that
the
combined impacts of these drivers is therefore essential to

progressively erode ecological stability. Understanding
explaining why terrestrial ecosystems are increasingly vulnerable

to state shifts.

Plausible transition trajectories and
tipping points

Climate tipping points occur when tipping elements become
self-perpetuating beyond a warming threshold. Tipping elements
suggest large parts of climate system, changes in which become self-
perpetuating beyond a warming threshold due to positive feedbacks,
leading to considerable Earth system impacts. Notably, for
slow-onset tipping elements, a threshold exceedance may not
cause a change of system state if the overshoot time is shorter
than the effective timescale of the tipping elements, such as, the
collapse of the Atlantic Meridional Overturning Circulation
(AMOC) (Ritchie et al., 2021). A potential collapse of the AMOC
would similarly propagate terrestrial impacts through regional
climate disruptions. Cooling over the North Atlantic and Europe,
along with altered precipitation patterns in West Africa and South
Asia, could shorten growing seasons, reduce soil moisture, and
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disrupt carbon storage in forests and grasslands. Heightened
droughts and extreme rainfall events may induce vegetation
shifts, for example, from grassland to semi-arid states, further
increasing the likelihood of abrupt ecosystem transitions.

The recent identified tipping elements (Armstrong McKay et al.,
2022) and their projected global warming tipping points are given in
Figure 2. Triggering climate tipping points induce significant
impacts, i.e., dieback of biodiverse Amazonia forests, permafrost
thawing, or substantial sea level rise. These events could cause
devastating impacts on human societies. Modeling studies suggest
that exceeding 1.5 °C warming above pre-industrial could trigger
multiple climate tipping points (Armstrong McKay et al.,, 2022).
Notably, current 1.1 °C warming already lies within the lower end of
five uncertainty ranges of climate tipping points. Models show that
abrupt collapse in Arctic sea ice occurs beyond about 3 “C-4.5 °C
warming (Drijthout et al, 2015; Hezel et al,, 2014; Notz and
Community, 2020). The tipping point is ~1.5 “C warming for
collapse of West Antarctic ice sheet (Lenton et al., 2008). The
best estimated threshold of Atlantic meridional overturning
circulation is about 4 °C warming. Widespread Amazon dieback
could occur at 3.5 °C warming (Armstrong McKay et al., 2022).
Regime shifts may begin in boreal forests at ~1.5 °C and become
widespread by ~3.5 °C (Gerten et al., 2013). By contrast, warming
could result in abrupt increases in plants at 2 °C to 3.5 °C warming in
Eastern Sahel in three Earth System models (Drijthout et al., 2015).
These thresholds are characterized by considerable spatial
heterogeneity and uncertainty, but they consistently indicate that
terrestrial ecosystems are approaching tipping points with

potentially  irreversible  consequences.  Quantifying  these
thresholds, while accounting for interacting drivers and
feedbacks, is thus critical for predicting the future of

Earth’s biosphere.
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The capability of remote sensing time series
on the quantification of critical
slowing down

Previous research typically relies on the CSD theory and long-
term observations of remote sensing data to assess changes in
vegetation resilience (Forzieri et al., 2022; Smith et al., 2022). As
forests approach a tipping point, CSD leads to an increase in the
temporal autocorrelation coefficient and variance of the state
variable. The mathematical principles are as follows:

Consider a system with periodic (Af) repeated disturbances
affecting the

state variable (adding noise). During these

disturbances, the system’s return to equilibrium follows an

exponential function of A, described by a simple
autoregressive equation:

X1 — X = " (X, - X) + ae, (1)

Yur = €y, + o8, )

Here, y, denotes how much the state variable X,, deviates from
the equilibrium X; ¢, represents random numbers from a standard
normal distribution [e, ~ N (0,1)]; o denotes the
standard deviation.

If A and At are independent variables of y,, the equation can be
formulated as a first-order regression equation:

yn+1 = ‘X)’n + (o (3)

The autocorrelation coefficient, a = e*

At represents white noise
at « = 0 and red noise at &« = 1. The mathematical expectation of the

first-order regression equation y,,; = ¢ +ay, + o, is:

E(Yur1) :E(c)+aE(y,,)+E(0£n):>/4:c+au+o:>‘uzli
-a

(4)
When c is 0 and the mean value is 0, the variance is calculated as:

0.2

1-a?

Var(yun) =E(y,) -4’ = )

As the system approaches the critical point, the return to
equilibrium slows down, with A approaching 0, « converging to
1, and the variance tending towards infinity.

In this study, based on the CSD theory, we utilized 60-month
smoothing window to calculate the 1-lag time autocorrelation
coefficients of the residual component of the kNDVI time series
data from PKU GIMMS NDVI (Li et al, 2023), spanning from
1982 to 2022 with an 8 km resolution (Figure 1). The dataset’s
accuracy surpasses that of its predecessor, GIMMS NDVI3g,
effectively addressing issues related to orbital drift and sensor
degradation in tropical regions. Data points influenced by snow,
ice, or cloud cover, identified through the quality-control band and
NDVI values < 0.1, were considered missing. Areas with over 75%
missing data across all 16-day time steps were excluded from the
analyses. In this study, bi-weekly data was aggregated into monthly
values using Maximum Value Compositing to eliminate the
contamination from cloud, atmosphere and changes in solar
altitude angle. The original KNDVT time series are decomposed
by the Seasonal and Trend decomposition using Loess (STL) method
to three parts: trend, seasonal, and residual components.
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It is important to note that higher values of the TAC indicate
lower resilience, and vice versa. The trend in TAC variations is
employed to characterize changes in resilience. A positive 6TAC
indicates a decreasing trend in resilience, while a negative 6TAC
suggests an increasing trend in resilience. The Theil-Sen slope
analysis method is a non-parametric test commonly employed to
estimate trends in time series data (Sen, 1968). This method is less
susceptible to the influence of outliers and is considered more
accurate compared to linear regression.

To derive the time series of KNDVI data, a kernel function was
applied to the PKU GIMMS NDVI. kNDVI is a vegetation index
derived from kernel method theory, fundamentally linearizing
NDVTI using the equation (Camps-Val et al., 2021):
NIR - Red >2]

(6)

kNDVI = tanh [(
20

In this equation, NIR represents the reflectance value in the
near-infrared band, Red represents the reflectance value in the red
band, and o is the parameter controlling the distance between the
near-infrared and red bands, simplified as o = 0.5(NIR - Red). Thus,
we have:

KNDVI = tanh (NDVI?) )

Discussions

We used TAC as a proxy for ecosystem resilience, based on the
assumption that ecosystems near equilibrium exhibit linear recovery
dynamics following perturbations. Higher TAC values indicate
slower recovery and lower resilience, reflecting the phenomenon
of critical slowing down as systems approach tipping points.
However, the interpretation of TAC can be influenced by
external drivers, non-stationary climate variability, observational
noise, nonlinear dynamics, and the temporal or spatial scale of
measurements. These factors can introduce potential artifacts,
highlighting the need for careful consideration of method
assumptions and appropriate sensitivity or robustness checks,
such as detrending, or comparing across independent datasets.

The apparent tension between decreasing resilience (Forzieri
et al,, 2022; Smith et al., 2022) and vegetation greening (Piao et al.,
2020; Zhang et al., 2025a; Zhang et al., 2025b) in some regions, e.g.,
arid/semi-arid, temperate, and boreal zones can be explained by
multiple mechanisms. Elevated CO,, phenological shifts, and
human management may drive sustained increases in vegetation
productivity or leaf area, producing a greening signal, while the
underlying system still recovers slowly from perturbations, leading
to higher TAC. In other words, ecosystems can gain biomass while
dynamical stability declines, because TAC captures intrinsic
recovery near equilibrium, which can decrease even under
persistent positive productivity trends. This suggests that long-term
greening does not necessarily indicate enhanced resilience, and that
combined analysis of TAC, productivity trends, and management
factors is crucial. Future work should focus on disentangling the
contributions of natural variability, anthropogenic inputs, and
climate-driven changes to better predict vulnerability and guide
ecosystem management under global change.
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Concluding remarks

Looking forward, four priorities are essential to advance both
science and policy. First, research must improve the integration of
observations, models, and theory to capture the multi-scale
feedbacks that govern transitions. This includes expanding long-
term ecological monitoring, refining Earth system models, and
developing methods that combine remote sensing, field data, and
machine learning to better detect early-warning signals. Improving
the ability of models to capture the known past regime shifts should
increase the confidence to predict future critical transitions. Second,
emphasis should be placed on quantifying thresholds and
uncertainties, recognizing that ecological tipping points are
context-dependent and shaped by socioeconomic drivers.
Scenario-based approaches that couple ecological dynamics
with human decision-making can help uncover cascading risks
across systems. Third, management strategies should shift from
reactive to anticipatory frameworks, focusing on resilience-
building interventions, landscape connectivity, and adaptive
governance to lower the risk of crossing undesirable
thresholds. Fourth, satellite records are too short to provide
early warnings in time (Lenton et al, 2024), yet their
exceptional spatial coverage enables spatial indicators to detect
resilience loss, while space-for-time substitution offers novel
perspectives on potential transitions.

Looking ahead, advancing our understanding of ecosystem
transitions requires moving beyond disciplinary silos toward a
fully integrative framework. This entails linking empirical
observations with mechanistic models and early-warning
concepts to systematically identify vulnerable regions and critical
thresholds, while building multi-scale monitoring networks and
improving attribution of drivers and feedbacks. Embedding
ecological tipping points within broader socioeconomic and
policy pathways will be essential for assessing cascading risks and
guiding effective responses. Ultimately, safeguarding terrestrial
ecosystems in the Anthropocene will require bridging
disciplinary boundaries and connecting ecological science with
climate policy, conservation practice, and societal adaptation. By
accelerating emissions reductions, strengthening resilience-building
interventions, and enhancing our capacity to anticipate and manage
critical transitions, we can lower the risk of crossing undesirable
thresholds and ensure that ecosystems continue to regulate Earth’s
climate, sustain biodiversity, and provide vital services for

human wellbeing.
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