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Introduction: Coffee, a vital beverage and cultural symbol, significantly
influences global economic and cultural development. Due to the
characteristics of agricultural production activities, such as areas, significant
differences, and relatively low economic benefits per unit area, Traditional
ground surveys often fail to accurately capture coffee crop distribution due to
the large-scale, regionally varied, and economically modest nature of agricultural
production. Remote sensing offers a promising alternative but faces challenges in
distinguishing coffee from vegetation with similar spectral characteristics,
especially in areas with complex land cover and dense canopies.
Methods: This study focuses on Pu’er City in Yunnan Province, China, renowned
as the ‘golden belt’ of global coffee cultivation. Using Sentinel-2 remote sensing
imagery, we analyzed key phenological features through time-series curves of
the Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI),
and Difference Vegetation Index (DVI). To ensure a balanced and representative
dataset, interpretation keys were established from 1,617 field-measured sampling
points, yielding a total of 4,000 coffee and non-coffee samples. Employing the
Random Forest (RF) algorithm, we constructed a refined coffee crop extraction
model incorporating spectral, texture, terrain, and regional pattern features.
Results: The findings indicate: (1) Incorporating administrative division features
and using a larger texture window size (5 × 5) enhances model accuracy,
achieving an overall accuracy (OA) of 93.92% and a Kappa coefficient of
0.8783. (2) The four-period segmentation approach significantly improved
accuracy, with the highest OA reaching 94.80%, identifying October to
December (coffee fruiting season) as the most critical period for classification.
(3) Administrative Division Features (ID), Topographical features (SLOPE) and
vegetation indices (NDVI and DVI) were the most crucial for coffee
classification, while texture features, except for Sum Average (SAVG), generally
had lower importance.
Discussion: This study validates the effectiveness of remote sensing in
monitoring and mapping coffee cultivation. The proposed feature input
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strategy shows strong potential for application in other regions with similar agro-
ecological conditions, supporting precision agricultural management and
promoting sustainable coffee farming practices.
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1 Introduction

Remote sensing technology has gained widespread application
in agricultural research, offering robust technical support for crop
planting information extraction (Hunt et al., 2020). As one of the
most important cash crops worldwide, coffee provides livelihoods
for more than 125 million people across over 70 producing
countries, particularly in tropical and subtropical regions
(Krishnan, 2017). Its economic value extends far beyond primary
production, supporting large downstream industries such as
processing, trade, and retail. However, despite its global
economic significance, coffee has received relatively limited
attention in remote sensing-based studies concerning its
cultivation information. The unique characteristics of coffee
cultivation—including its extensive growing areas, pronounced
regional variations, and relatively low economic returns per unit
area—present significant challenges for traditional ground-based
survey methods in accurately mapping coffee distribution to meet
practical demands (Zhang et al., 2015). From a phenological
perspective, coffee exhibits distinct growth stages—including
flowering, fruit development, ripening, and harvesting—that vary
by region and are strongly influenced by climatic factors such as
temperature and precipitation (DaMatta et al., 2007). These
phenological variations directly affect canopy structure and
spectral reflectance characteristics, thereby influencing the
performance of remote sensing-based identification and
classification of coffee plantations. Consequently, implementing
timely remote sensing monitoring of coffee cultivation areas and
precisely acquiring planting information and spatial distribution
patterns of coffee hold substantial importance for advancing the
global coffee industry’s development.

In recent years, remote sensing technology has demonstrated
significant potential in both coffee plantation monitoring and yield
prediction. Regarding plantation monitoring, Ortega-Huerta et al.
achieved successful differentiation between distinct coffee plantation
types (“open-canopy” and “closed-canopy”) and other land cover
categories through hybrid classification of multi-temporal Landsat
TM satellite imagery (Ortega-Huerta et al., 2012). Building upon this
foundation, Martins et al. identified the critical importance of red,
red-edge, and near-infrared spectral bands in distinguishing healthy
coffee plants from those with varying infection levels, effectively
mapping the spatial distribution of healthy, moderately infected, and
severely infected coffee plants, thereby highlighting the capability of
remote sensing in plant health assessment (Martins et al., 2017).
Chemura et al. employed VIS/NIR bands coupled with random
forest (RF) algorithms to investigate water stress effects on coffee
plants, demonstrating that selected reflectance-sensitive bands
exhibited strong predictive capabilities for detecting coffee water
content (Chemura et al., 2017). Tridawati et al. integrated multi-
resolution, multi-temporal, and multi-sensor remote sensing data to
derive 29 variables, subsequently utilizing RF algorithms to map

Indonesian coffee plantations and identify 12 key predictive
variables (Tridawati et al., 2020). From an ecological perspective,
Zhang Mingda et al. conducted a sophisticated ecological suitability
analysis and zoning study for Yunnan’s small-grain coffee
cultivation areas (Zhang et al., 2020). Their methodology, based
on the ArcGIS platform, incorporated climatic, soil, and topographic
factors through Analytic Hierarchy Process (AHP) analysis.
Velásquez et al. developed an innovative cyber-physical data
collection system that synergized remote sensing data with
wireless sensor networks, enabling early detection of coffee leaf
rust (CLR) and providing novel technical solutions for disease
control (Velásquez et al., 2021). Escobar-López et al. conducted a
comprehensive review of remote sensing applications in identifying
Coffee Agroforestry Systems (AFS) from 2000 to 2020 (Escobar-
López et al., 2024). Their work emphasized the influence of shade
tree density and species composition on classification accuracy,
providing valuable insights for sustainable coffee
cultivation practices.

Although remote sensing technology has made some
achievements in coffee monitoring, there are still problems such
as how to solve the problem of coffee sample concentration, how to
accurately extract key information of coffee production, how to deal
with the fusion of data from different sources and resolutions, and
how to combine temporal and geographic information to improve
the accuracy of prediction (Bernardes et al., 2012; Kouadio et al.,
2021; de Carvalho Alves et al., 2022; Van Viet and Thuy, 2023). In
China, Yunnan Province serves as the country’s primary coffee-
growing region, accounting for more than 98% of the national coffee
production, with Pu’er City recognized as its core production area
(Lv et al., 2025). This study uses Sentinel-2 as the primary remote
sensing data source for the study area, supplemented by vector
boundary data, land use data, and topographic data of the region.
Spectral, texture, terrain, and township features are extracted and
combined with field survey data to construct a fine-extraction model
for coffee crops in Pu’er City, resulting in a thematic map of coffee
planting information.

The objective of this study is threefold: (1) assess the importance
of various features in coffee crop classification, and develop
strategies to mitigate misclassification errors; (2) develop a high-
accuracy coffee crop extraction model leveraging phenological
features and high-resolution remote sensing data; and (3)
construct a fine coffee crop mapping framework by incorporating
multi-scale spatial and temporal features, ultimately generating a
detailed spatial distribution map of coffee plantations in Pu’er City.
Through this approach, we aim to systematically assess the relative
importance of different features, optimize feature extraction
strategies, and determine the optimal time periods for accurate
classification, producing a replicable approach for mapping coffee
plantations that can be applied to other regions with similar agro-
ecological conditions, thereby supporting sustainable coffee
cultivation and precision agricultural management.
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2 Materials and methods

2.1 Study area

Pu’er City is located in southwestern Yunnan Province, China,
spanning latitudes 22°02′N to 24°50′N and longitudes 99°09′E to
102°19′E (Zhang et al., 2020). With a total area of 44,300 km2, the
city governs Simao District and nine autonomous counties. This
region features a subtropical highland monsoon climate,
characterized by a combination of low-latitude, monsoon, and
plateau climatic attributes (Chen et al., 2018). It is characterized
by pronounced diurnal temperature variations, warm winters, cool
summers, abundant rainfall, and ample sunlight, all of which
provide an optimal environment for coffee cultivation.

Pu’er exhibits a diverse topography, with elevations decreasing
from north to south, leading to a broad altitudinal range (Li et al.,
2002). The forest coverage in Pu’er exceeds 64.9%. The region’s soil
types are diverse, primarily comprising red soil, lateritic red soil, and
latosol, with pH values ranging from 5.5 to 6.5 (Zhang et al., 2020).
These environmental factors collectively create optimal conditions
for coffee cultivation.

2.2 Data source

Arabica coffee cultivation in Yunnan is primarily concentrated
in the southern and western regions, including Pu’er,
Xishuangbanna, Wenshan, Baoshan, Dehong, and Lincang.
Although Pu’er is renowned for its tea production, it has a 150-
year history of coffee cultivation. Since the late 1990s, Pu’er has
prioritized coffee cultivation as a key industry to adjust its industrial
structure to promote economic development and enhance farmers’
incomes. Coffee cultivation spans 54 townships across nine counties
and one district in Pu’er City (Zhang et al., 2017; Lamquin et al.,

2018). In Pu’er, coffee cultivation is primarily concentrated along the
Lancang River and in mountainous areas, particularly in Menglian
County, Lancang County, Ximeng County, Simao District, and
Mojiang County. As the core coffee-producing region in China,
Pu’er plays a vital role in supporting the country’s coffee supply
chain and promoting rural industrial transformation. In recent
years, the coffee industry has emerged as a crucial driver of rural
revitalization and industrial development in Pu’er City. In 2022, in
Menglian Dai, Lahu, andWa Autonomous County of Pu’er City, the
coffee industry increased the income of local people by 150 million
yuan (Thao et al., 2022), attracting a large number of talented
individuals to return home to start businesses, and promoting
the sustainable development of the local economy and society.
Figure 1 illustrates the geographical location of the study area.
Data Sources.

2.2.1 Selection of sample points
Field surveys were conducted to collect representative samples of

key land surface features in Pu’er City, Yunnan Province (Figure 2).
The sampling routes covered major transportation corridors,
including Provincial Road 221, National Highway 215, the
Kunming-Mohei Expressway, the Jiangcheng-Menglian
Expressway, the Cemeng Line, and the Kadong Line.

A total of 1,617 field-measured sampling points were collected
during field surveys, including 421 coffee points and 1,196 non-
coffee points. In conjunction with high-resolution Google Earth
imagery, visual interpretation keys were developed, as presented in
Table 1. Based on these interpretation keys, Regions of Interest
(ROIs) were subsequently delineated, comprising 251 coffee ROIs
and 437 non-coffee ROIs (including forest, cropland, buildings,
water bodies, etc.). To reduce the potential bias caused by class
imbalance, a balanced dataset was constructed by randomly
selecting 2,000 coffee points and 2,000 non-coffee points within
the delineated ROIs. The detailed statistics of field-measured

FIGURE 1
Location map of the study area.
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sampling points, ROIs, and input samples are summarized in
Table 2. These balanced samples were subsequently used as the
input dataset for model training and validation, with their spatial
distribution depicted in Figure 3. In this study, the classifier was
trained using 80% of the samples, with the remaining 20% reserved
for validation, following a standard random split to ensure that both
training and validation sets adequately represent the main features
of the study area (Melichar et al., 2023; Schulthess et al., 2023; Zhang
et al., 2024).

2.2.2 Satellite imagery data
The Sentinel-2 satellite system, a key component of the

European Space Agency’s Copernicus program, comprises two
satellites: Sentinel-2A and Sentinel-2B (Li and Roy, 2017). It is
equipped with a multispectral imager comprising 13 bands that span
various wavelength ranges, including visible, near-infrared, and
short-wave infrared, with spatial resolutions of 10 m, 20 m, and
60 m (Liu et al., 2018). The multi-spectral and multi-resolution
imaging capabilities of Sentinel-2 make it widely utilized for land
cover classification, change detection, and environmental
monitoring.

Sentinel-2 provides a range of product levels, each with varying
degrees of data processing and correction, tailored for different
applications (Xiong et al., 2017). This study selected Sentinel-2
Level-2A satellite imagery from 2023 (2023-01-01 to 2023-12-31)
as the optical data source. The imagery, referenced as
“COPERNICUS/S2_SR_HARMONIZED” in Google Earth
Engine, was first filtered by the study area and cloud coverage,
excluding scenes with “CLOUDY_PIXEL_PERCENTAGE” greater
than 35%. Cloud and cirrus pixels were then masked using the

“QA60” band, effectively mitigating the influence of clouds and
cloud shadows, and pixel values were scaled from integers (0-10000)
to actual reflectance (0-1). This processing resulted in a Sentinel-2
image dataset for the study area, comprising 472 scenes in total. The
number of images utilized in this study is presented in Table 3. For
feature calculation, median aggregation was applied across all valid
observations within each time period to reduce the influence of
outliers and residual cloud contamination.

2.2.3 Auxiliary data
2.2.3.1 Topographic data

Digital Elevation Models (DEMs) are essential for classification
tasks, particularly in fields such as land use, vegetation types, and
geomorphological classification (Claverie et al., 2018). The terrain
information they provide effectively complements the limitations of
optical remote sensing data, enhancing both the accuracy and detail
of classification and, ultimately, improving overall classification
performance (Maurya et al., 2021).

NASADEM (NASA Digital Elevation Model), a reprocessed
version of SRTM (Shuttle Radar Topography Mission) data,
offers advantages, including high resolution, multi-source data
fusion, extensive coverage, and superior data quality (Olofsson
et al., 2014). This study utilizes NASADEM as auxiliary data for
classification.

2.2.3.2 Land use data
The Esri 10 m Land Use data (https://livingatlas.arcgis.com/

landcoverexplorer) provides a global land cover map at a spatial
resolution of 10 m, encompassing nine land cover classes: water,
trees, flooded vegetation, cropland, built-up areas, bare ground,

FIGURE 2
Sampling routes and typical coffee photo points.
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TABLE 1 Visual interpretation key for typical ground features.

Type Image example Features for interpretation

Coffee Evergreen, typically planted on hillsides, with a relatively smooth surface and distinct gaps, exhibiting clear textural
features

Forest Large-area continuous distribution, with a dense dark green color and rough texture

Cropland Regular blocky shapes, with colors varying depending on the season and crop type, possibly appearing as green, yellow, or
brown

Buildings Regular geometric shapes with complex and diverse colors, often connected to roads

Water bodies Appears as dark blue or black, with a smooth surface and irregular shape

Tea Regularly arranged strip-shaped green plots with larger intervals than coffee

TABLE 2 Statistics of field-measured sampling points, ROIs, and input samples for classification model.

Category Field-measured sampling points ROIs Input samples for model

Coffee 421 251 2,000

Non-coffee 1,196 437 2,000

Total 1,617 688 4,000
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snow/ice, clouds, and rangeland (Karra et al., 2021). To improve
classification performance, this study utilizes the data to generate a
mask by extracting forest land, flooded vegetation, cropland, and
rangeland, using the actual coffee distribution as a reference.

2.2.3.3 Vector boundary data
The administrative division data utilized in this study is sourced

from the China Admin Division SHP-master dataset, in ESRI
Shapefile format, and comprises four levels of administrative
divisions: country, province/municipality, city, and district/county.

2.3 Feature selection

2.3.1 Spectral features
The vegetation index is employed as a spectral feature for

extracting coffee plantation information, primarily due to the
significant differences in spectral reflectance characteristics
between coffee crops and other land cover types (e.g., bare soil,
water bodies, buildings) (Moguel and Toledo, 1999). It effectively
differentiates vegetated areas from non-vegetated areas and reflects
the growth conditions of the crops. As a typical form of green

vegetation, coffee crops exhibit distinctive spectral response
characteristics (Rizvi et al., 2013). The application of vegetation
indices enhances classification accuracy and facilitates the precise
extraction of coffee plantation areas.

Among the various vegetation indices, the Normalized
Difference Vegetation Index (NDVI), Ratio Vegetation Index
(RVI), and Difference Vegetation Index (DVI) were
incorporated as spectral features in the information extraction
model (Hailu et al., 2015; Hunt et al., 2020; Tridawati et al., 2020;
Arteaga-López et al., 2022), selected for their complementary
strengths in coffee plantation mapping. NDVI is highly sensitive
to chlorophyll content and overall vegetation vigor (Chen et al.,
2021; Tian et al., 2023), RVI enhances contrast in areas with
dense canopies (He et al., 2023), and DVI mitigates soil
background effects (Zeng et al., 2021), together providing
robust discrimination of coffee crops across heterogeneous
landscapes. Compared to NDVI, both RVI and DVI are more
suitable for areas with dense vegetation coverage. The
calculation formulas are shown in Equations 1–3.

NDVI � ρNIR − ρRED
ρNIR + ρRED

(1)

FIGURE 3
Distribution of sample points (Coffee points:2,000; Non-coffee points:2,000)

TABLE 3 The statistics of the number of images for different months.

Month 1 2 3 4 5 6 7 8 9 10 11 12 Total

Number of images 67 73 68 79 62 5 12 0 11 5 58 32 472
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RVI � ρNIR

ρRED
(2)

DVI � ρNIR − ρRED (3)

Here, ρNIR represents the reflectance of the near-infrared band,
and ρRED represents the reflectance of the red band.

The temporal characteristics of vegetation indices reflect growth
conditions and seasonal variations over different periods, thereby
enhancing the model’s capacity to capture long-term trends and
seasonal fluctuations. This approach also minimizes errors induced
by environmental changes or temporary anomalies (e.g., cloud
cover) in single-date data, offering more precise criteria for
distinguishing various crop types and enhancing classification
accuracy and robustness.

The growth period of coffee in Yunnan is influenced by factors
such as altitude, variety, and annual climatic conditions, leading to
some variations. In the primary coffee-producing areas of Pu’er City,
Yunnan, the flowering period typically spans from March to May.
However, this period can be influenced by the timing of the rainy
season and temperature, which may cause variations in its onset.
Flowering typically concentrates following several rainfall events,
leading to multiple flowering periods. After the flowers wither, the
coffee plants enter the young fruit (or pinhead) period, which
typically lasts from April to June. The fruit expansion period,
during which the fruit rapidly grows and increases in size,
primarily occurs from May to September. The maturation period
typically spans from October to March of the following year. During
this period, the coffee fruit begins to change color, transitioning
from green to yellow, orange, and eventually red (or deep red, with
some varieties turning yellow). Areas with lower altitudes and higher
temperatures typically mature earlier, while areas at higher altitudes
and lower temperatures mature later. The harvesting period
significantly overlaps with the maturation period, typically
beginning in late October and lasting until March or April of the
following year, or even later.

This study comprehensively considered the image coverage
within the study area and proposed two approaches: (1) To
maximize temporal resolution, image data from seven time
periods—January, February, March, April, May–June,
July–September, and October–December—were included in the
classification analysis; (2) To identify seasonal patterns, image
data from four time periods—January–March, April–June,
July–September, and October–December—were included in
the analysis.

2.3.2 Texture features
Texture features are quantified by statistically analyzing the

variations in gray levels across multiple pixel regions in an
image. Unlike features based on individual pixel values, texture
features reflect the structural information of pixel arrangements
within local spatial areas (Gomez et al., 2010). In the context of
coffee plantation mapping, texture features are particularly useful
because coffee canopies exhibit distinct spatial patterns and
structural characteristics that differ from surrounding vegetation,
bare soil, or built-up areas. They effectively describe differences in
coarseness, density, and other image characteristics, possess rotation
invariance, and demonstrate strong resistance to noise. Texture

features are widely applicable to tasks such as land cover
classification, object recognition, and more (Gaertner et al., 2017).

In 1973, Haralick et al. introduced the Gray-Level Co-
occurrence Matrix (GLCM) as a method to describe texture
features (Haralick et al., 1973). They proposed calculating the co-
occurrence matrix by statistically analyzing the gray level
combinations of adjacent pixels in an image. The GLCM is a
matrix where each element represents the frequency of specific
gray level combinations occurring at certain directions and
distances. Based on this matrix, multiple texture features can be
derived. A total of 18 texture feature quantities (referred to as
second-order statistics) can be derived using the Gray-Level Co-
occurrence Matrix.

The B3, B4, and B8 bands of the Sentinel-2 imagery are selected,
and a weighted linear combination is performed to obtain the
grayscale image Gray, which serves as the input image for the
Gray-Level Co-occurrence Matrix (GLCM). This approach
simplifies the calculation complexity and avoids the high
computational load associated with directly processing multi-
band data. It is also consistent with the GLCM framework
established by Haralick et al. (1973), which requires a single-
channel grayscale image as input for texture feature extraction.
The formula is as follows Equation 4:

Gray � 0.3ρNIR + 0.59ρRED + 0.11ρGREEN (4)

Here, ρNIR represents the reflectance of the near-infrared band,
ρRED represents the reflectance of the red band, and ρGREEN
represents the reflectance of the green band.

Using the GLCM, nine statistical features are extracted,
including angular second moment (ASM), contrast (CON),
correlation (CORR), entropy (ENT), variance (VAR), inverse
difference moment (IDM), sum average (SAVG), sum entropy
(SENT), and sum variance (SVAR). These features were chosen
to comprehensively capture various aspects of texture, such as
homogeneity, contrast, linear dependencies, randomness, and
variability in gray-level distributions, allowing the model to
effectively distinguish coffee plantations from other land cover
types, particularly in areas with complex spatial patterns or
heterogeneous vegetation structures. The definitions of each
statistical feature are provided in Table 4.

2.3.3 Topographic features
Slope reflects the steepness of the terrain, directly influencing

water runoff rates and soil retention capacity, and plays a significant
role in determining crop suitability (DaMatta, 2004; Wang et al.,
2023). Field surveys indicate that Pu’er coffee is primarily grown on
steep mountainous slopes, while flatlands are mainly used for
cultivating crops such as corn, tobacco, and sugarcane. Aspect
indicates the orientation of a plot of land and influences the
duration and intensity of sunlight exposure. Coffee plants are
sensitive to light conditions, and an optimal aspect can provide
sufficient sunlight, thereby promoting photosynthesis and overall
plant vigor (Bernardes et al., 2012; Tridawati et al., 2020). Slope and
aspect were incorporated as topographic features due to their direct
influence on microclimatic conditions and coffee growth suitability.
This study employs NASADEM elevation data to extract slope and
aspect information for classification feature construction. Slope
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represents the rate of vertical height change at any point on the
terrain surface, typically expressed in degrees (0°–90°). It is estimated
by analyzing the elevation differences between neighboring pixels
(Equation 5). Aspect is calculated as shown in Equation 6.

Slope � arctan
Δh
d

( ) (5)

where Δh represents the elevation change between adjacent pixels
and d represents the horizontal distance between them.

Aspect � arctan
∂h
∂y

,
∂h
∂x

( ) (6)

Where
∂h
∂y

and
∂h
∂x

represent the elevation changes along the

Y-axis and X-axis, respectively.
To facilitate subsequent analysis, slope aspect values ranging

from 0° to 360° are normalized to a range between −1 and 1 using the
following Equation 7:

Aspect norm � sin
Aspect
180°

× π( ) (7)

Where Aspect represents the result calculated from Equation 6.

2.3.4 Administrative division feature
Coffee cultivation typically follows a distinct regional clustering

pattern (Zhang et al., 2017; Thao et al., 2022). To capture these
spatially structured variations, a unique identifier (ID) was assigned
to each of the 145 townships in the region and incorporated as an
administrative division feature in the model. Including township-

level information helps the model account for regional differences
that may not be fully represented by spectral, texture, or topographic
features alone. This feature enables the classification model to better
reflect localized environmental and socio-economic influences on
coffee cultivation, improving the precision and robustness of coffee
plantation mapping.

2.4 Random forest classification

The RF algorithm, a typical Bagging ensemble learning
technique, is based on decision tree models. Its design aims to
improve the model’s performance and generalization ability by
constructing multiple decision trees (each trained and predicted
independently) and combining their results through voting or
averaging, using the “wisdom of the crowd” to handle
classification and regression tasks (Hao et al., 2015; Hadavand
et al., 2017). The algorithm uses random sampling to generate
multiple decision trees from the original dataset, with each tree
trained and predicted independently. The final classification result is
determined through a voting mechanism. The core advantage of this
method lies in reducing the risk of overfitting that may result from a
single model. By integrating decisions from multiple models, it
improves classification accuracy and robustness (Bourgoin et al.,
2020; Fu et al., 2023).

In coffee planting information extraction research, the RF
classifier has been shown to effectively handle high-dimensional
feature data, including spectral, terrain, and texture features
(Chemura et al., 2017). By inputting relevant features into the RF

TABLE 4 Types and definitions of texture features based on GLCM.

Feature names Formula Definition

ASM (Angular second
moment) ASM � ∑N

i�1
∑N
j�1
P(i, j)2 Measures the uniformity of the gray level distribution in an image and the coarseness or fineness of the

texture

CON (Contrast)
CON � ∑N

i�1
∑N
j�1
(i − j)2P(i, j) Measures the local changes in an image, reflecting the sharpness and the depth of texture patterns

CORR (Correlation)
CORR � ∑N

i�1
∑N
j�1

(i−μi )(j−μj)P(i,j)
σiσj

Measures the similarity of gray levels in the row or column direction of an image, reflecting the local gray
level correlation

ENT (Entropy)
ENT � −∑N

i�1
∑N
j�1

P(i, j)log (P(i, j))
Measures the randomness of the information content in an image

VAR (Variance)
VAR � ∑N

i�1
∑N
j�1

(i − μ)2P(i, j) Measures the degree of dispersion of pixel gray values. Higher variance indicates greater dispersion in
pixel values

IDM (Inverse difference
moment) IDM � ∑N

i�1
∑N
j�1

P(i,j)
1+(i−j)2

Reflects the clarity and regularity of the texture

SAVG (Sum average)
SAVG � ∑2N

i�2
i · Px+y(i)

The average value of all elements in the gray-level co-occurrence matrix is calculated to reflect the overall
brightness of the image

SENT (Sum entropy)
SENT � −∑2N

i�2
Px+y(i)log (Px+y(i))

Measures the randomness of gray levels and their combinations

SVAR (Sum variance)
SVAR � ∑2N

i�2
(i − SAVG)2 · Px+y(i)

Measures the degree of dispersion of gray levels and their combinations, reflecting the range of brightness
variations in the image

In the formula, i represents the row position and j represents the column position.N is the number of gray levels, P(i,j) is the value at the ith row and jth column in the gray-level co-occurrence

matrix, μ, μi, μj are the means, σi , σ j are the standard deviations, and Px+y (i) is the probability of gray-level sums equal to i in the gray-level co-occurrence matrix.
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model, it accurately identifies coffee planting areas. The number of
trees was set to 30, while all other parameters were kept as the default
settings of Google Earth Engine.

2.5 Accuracy assessment

The validation samples were used to generate the confusionmatrix,
andmultiple performance evaluationmetrics were calculated, including
overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA),
F1 score, and Kappa coefficient (Kawakubo and Pérez Machado, 2016;
Jia et al., 2023; Zhang et al., 2026). These metrics provide
complementary insights into classification performance: OA
measures the overall proportion of correctly classified samples
(Equation 8), UA indicates the reliability of a class from the user’s
perspective (Equation 9), PA reflects the completeness of correctly
identifying each class (Equation 10), F1 score balances precision and
recall for a robust assessment (Equation 11), and Kappa coefficient
accounts for chance agreement, providing a more stringent evaluation
of classification accuracy (Equation 12). The formulas for these
calculations are as follows:

OA � TP + TN
N

(8)

UA � TP
TP + FP

(9)

PA � TP
TP + FN

(10)

F1 � 2 · UA · PA
UA + PA

(11)

Kappa � p0 − pe
1 − pe

(12)

Where, N is the total number of samples, TP is true positive,
representing the number of samples correctly classified as positive;
TN is true negative, representing the number of samples correctly
classified as negative; FP is false positive, representing the number of
samples incorrectly classified as positive; FN is false negative,
representing the number of samples incorrectly classified as
negative; p0 is overall accuracy; pe is the expected accuracy
under random classification. The calculation formula is as follows
Equation 13:

pe � ∑n
i�1

A · B
N2( ) (13)

Where A is the number of samples predicted as category i, B is
the number of samples actually belonging to category i, and N is the
total number of samples.

3 Results

3.1 Accuracy analysis

To comprehensively evaluate the contribution of different input
features and phenological divisions to classification performance, a
series of comparative analyses were designed following the concept
of ablation experiments. Table 5 presents the evaluation metrics of
the classification model, which uses spectral index temporal features
divided into seven time periods. The model considers different
texture feature window sizes (5 × 5 and 3 × 3) and whether
administrative division features are incorporated. The analysis
reveals that when administrative division features are
incorporated, the classification results improve regardless of
whether the window size is 3 × 3 or 5 × 5. The OA reaches the
highest value of 93.92%, and the Kappa coefficient is 0.8783. When
the texture window size increases from 3 × 3 to 5 × 5, other than a
decrease in UA, the remaining indicators show a slight
improvement, regardless of whether administrative division
features are included. In summary, using a larger window (5 × 5)
in combination with administrative division features enhances both
the overall accuracy and consistency of the model.

The analysis results indicate that the OA of the classification
models varies across different synthetic months (Table 6). The
highest OA is obtained when the spectral features are divided
into four periods, achieving an accuracy of 94.80%. This is
followed by the October-December period, which achieves an OA
of 92.26%. UA and PA also vary across different periods. The highest
UA is achieved when the spectral features are divided into four
periods, reaching an accuracy of 89.86%. The highest PA is achieved
in the October-December period, reaching an accuracy of 93.35%.
The F1 score and Kappa coefficient show similar trends, with the
highest values achieved when the spectral features are divided into
four periods. The annual composite model achieves an OA of
91.46%, which is lower than the OA obtained when the spectral
features are divided into four periods. Overall, the results suggest
that dividing the spectral features into four periods enhances the
classification model’s accuracy, with the October-December period
being the most critical for classification.

Comparing Table 6 with Table 5, it is evident that dividing the
spectral features into four periods yields better classification
performance than dividing them into seven periods. This is likely

TABLE 5 Classification evaluation metrics under different sliding window sizes and whether administrative division features are included.

Texture feature
window size

Whether administrative division
features are included

OA (%) UA (%) PA (%) F1 Kappa

5 × 5 Yes 93.92 93.72 94.17 0.9395 0.8783

3 × 3 Yes 93.89 96.05 91.48 0.9371 0.8777

5 × 5 No 92.73 91.40 94.18 0.9277 0.8547

3 × 3 No 92.25 92.84 91.67 0.9225 0.8450
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due to the four-period division’s better alignment with seasonal
patterns, which leads to more consistent and accurate classification.
In contrast, the seven-period division may introduce unnecessary
noise and complexity without providing a significant improvement
in the results.

3.2 Feature importance analysis

Based on the provided data, we analyzed the importance scores
of various features across different time periods and the annual
composite (Figure 4). The DVI shows peak importance during
January-March (Score = 82.61) and July-September (Score =
82.86), with an annual composite score of around 75.84. NDVI
exhibits the highest importance during the April-June period
(Score = 87.05), with an annual composite score of 79.78,
highlighting its critical role in the vegetative growth phase. RVI,
in contrast, exhibits notably lower scores across all periods,
indicating lower significance compared to other indices. SLOPE
and ASPECT both demonstrate considerable importance. SLOPE

achieving the highest score in July-September (Score = 98.10) and a
relatively high score in January-March (Score = 90.72), with an
annual composite score of 90.36. ASPECT maintains consistently
high importance throughout the year, with an annual composite
score of 77.22, underscoring its importance in landscape analysis.
ASM, CONT, CORR, ENT, VAR, IDM, SAVG, SENT, SVAR, and
ID each exhibit varying levels of importance across different periods,
with some, such as SAVG and ID, demonstrating particularly high
annual composite scores. For example, SAVG achieves the highest
score during January-March (Score = 95.72) and has an annual
composite score of 91.84, which suggests its usefulness in early-
season analysis and overall trend assessment.

In summary, certain features, such as DVI, NDVI, ASPECT,
SLOPE, SAVG and ID, consistently exhibit high importance across
various periods, while others, such as RVI and ENT, maintain
relatively low importance. Among terrain features, SLOPE shows
particularly high importance, reflecting its influence on soil moisture
retention and light conditions, which are critical for mountain coffee
cultivation. Among texture features, statistical measures such as
SAVG also achieve relatively high scores, indicating that these

TABLE 6 Comparison of model accuracy with input divided into four periods versus annual composite input.

Synthetic months OA (%) UA (%) PA (%) F1 Kappa

January-March 90.35 80.65 90.33 0.9126 0.9079

April-June 91.52 83.00 91.32 0.9081 0.9106

July-September 89.63 79.28 92.16 0.8721 0.8962

October-December 92.26 84.52 93.35 0.9125 0.9229

Annual Composite 91.46 82.93 91.14 0.9184 0.9149

Divided spectral features into four periods 94.80 89.86 94.83 0.9483 0.9471

FIGURE 4
Feature importance scores for individual four periods and annual composite inputs.
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second-order texture features can effectively complement spectral
information and play a key role in distinguishing land cover types
with similar spectral characteristics.

The analysis of feature importance scores, divided into four
periods, reveals several key findings (Figure 5). Based on the
criterion that importance scores exceed 35, 13 of the most
important variables can be identified, including SLOPE, ID,
SAVG, and others. SLOPE and ID consistently rank highly,
with SLOPE having an importance score of 60.84 and ID at
58.63. This suggests that topographical features play a significant

role in the analysis. Among the vegetation indices, NDVI
demonstrates varied importance across periods, with the
highest score in the April-June period (Score = 42.72) and the
lowest in the January-March period (Score = 36.66). DVI follows
a similar pattern, with the highest score in the July-September
period (Score = 43.67) and the lowest in the October-December
period (Score = 36.94). RVI, on the other hand, consistently
exhibits low importance scores across all periods, suggesting it
may not be a critical feature for this analysis. Texture features,
such as ASM, CONT, and CORR, have relatively low importance

FIGURE 5
Feature importance scores for inputs divided into four time periods.

FIGURE 6
Classification result map.

Frontiers in Remote Sensing frontiersin.org11

Huang et al. 10.3389/frsen.2025.1696570

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1696570


scores, ranging from approximately 27–29, suggesting that they
may not contribute significantly to the overall analysis. However,
SAVG stands out among the texture features, with a higher
importance score of 50.44, suggesting that it could be a
valuable addition to the analysis.

In summary, topographical features such as SLOPE and ID,
along with vegetation indices like NDVI and DVI, appear to be the
most crucial features. With the exception of SAVG, texture features
generally have lower importance. These insights can inform feature
selection and prioritization for more effective monitoring and
management strategies.

3.3 Classification results and local analysis

By inputting spectral features, texture features (with a sliding
window size of 5 × 5), terrain features, and administrative
division features into the RF model, the coffee planting
situation in Pu’er, Yunnan, is obtained, as shown in Figure 6.
The total coffee plantation area extracted in this study is
approximately 795,527 mu, slightly higher than the officially
reported figure of 679,000 mu, which may result from minor
misclassifications of spectrally or structurally similar vegetation
such as tea trees and shrubs. Among the counties, extracted coffee
areas are highest in Lancang, Jinggu, Menglian, and Simao, while
Mojiang and Jingdong show relatively smaller areas, which is
generally consistent with the results obtained from our field and
online surveys. These comparisons support the overall reliability
of our extraction results.

A local magnification analysis was conducted on select areas and
compared with Google Earth images, as shown in Figure 7. Figures
7A,B represent coffee-intensive planting areas, while Figure 7C

represents a tea tree-intensive planting area. The comparison of
Figures 7A,B reveals that in coffee-intensive planting areas, coffee
plants are well distinguished from surrounding shrubs, forests,
cropland, and other land cover types. However, in Figure 7C, tea
tree features are similar to coffee, leading to many tea trees being
misclassified as coffee.

3.4 Error analysis

Figure 8 illustrates coffee plantations under different planting
patterns and densities: (a) low-density, (b) medium-density I, (c)
medium-density II, and (d) high-density. Each pattern exhibits
distinct spatial and textural characteristics in remote sensing
images, reflecting variations in canopy coverage and planting
arrangement, which complicates accurate extraction. The
distinction between medium-density I and medium-density II
arises from the presence of more shrubs in the former and fewer
shrubs in the latter, representing two typical configurations observed
in medium-density coffee-growing areas. In addition, coffee and
evergreen shrubs share similar spectral and textural features, making
it difficult to distinguish coffee plantations from surrounding shrub
vegetation.

4 Discussion

4.1 Drivers of coffee classification
performance

The classification results highlight several key factors
influencing model performance. Topographic and administrative
division features consistently demonstrate high importance scores,
reflecting their direct influence on coffee cultivation patterns
(Tridawati et al., 2020; Sovann et al., 2025). Steeper slopes in
mountainous regions affect soil moisture, drainage, and sunlight
exposure, which are critical for coffee growth (Pereira et al., 2021).
Administrative boundaries often correspond to human
management practices, land tenure, and plantation layouts,
providing spatial context that improves discrimination between
coffee and surrounding vegetation.

The highest overall accuracy and Kappa coefficient obtained
when spectral indices are divided into four seasonal periods indicate
a pronounced seasonality in coffee growth. Analysis of each seasonal
period separately reveals that the October-December period
achieves the highest classification accuracy, suggesting that coffee
plants are most spectrally and structurally distinguishable during
this phase. This pattern is likely attributable to the fruit maturation
stage, when canopy structure, leaf density, and spectral reflectance
exhibit greater contrast with surrounding vegetation, such as shrubs
and other crops, thereby facilitating more accurate discrimination
(Parreiras et al., 2025). Conversely, periods corresponding to
vegetative growth or early fruit development show lower
discriminability due to more subtle spectral contrasts. These
findings underscore the value of incorporating seasonally
segmented spectral features to capture coffee phenology and
enhance the performance of remote sensing-based classification
(Hunt et al., 2020).

FIGURE 7
Comparison of Google Earth imagery (left) with classification
results (right). (a) Coffee cultivation demonstration zone 1, (b) Coffee
cultivation demonstration zone 2, (c) Tea cultivation
demonstration zone.
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4.2 Future perspectives

As remote sensing technology continues to advance, the use
of remote sensing imagery for extracting and monitoring coffee
crops has emerged as a research area with substantial practical
value (Kawakubo and Pérez Machado, 2016). While the
integration of multi-source features and temporal
segmentation significantly enhances classification, challenges
remain. Acquiring high-quality remote sensing data, obtaining
representative training and validation samples, and managing
computational demands of advanced models remain key
constraints (Hunt et al., 2020; Nogueira Martins et al., 2023;
Escobar-López et al., 2024). Future research should explore high-
resolution and multi-sensor imagery, semi-supervised or transfer
learning approaches, and collaborative sample-sharing networks
to further improve accuracy, generalization, and applicability.
These strategies will support more effective monitoring and
sustainable management of coffee plantations under complex
environmental and socio-economic conditions (Sott et al., 2020;
Maskell et al., 2021; Zhang et al., 2023).

5 Conclusion

This study employs 472 scenes of 2023 Sentinel-2 2A remote
sensing imagery as the primary data source, supplemented by
NASADEM, vector boundary data, and published land use
datasets. On the Google Earth Engine platform, three spectral
time series features (NDVI, RVI, DVI), were extracted, alongside
nine texture features (e.g., ASM, CON, and ENT), two terrain
features (slope and aspect), and administrative division features
(ID). Furthermore, 1,617 field-measured sampling points in
Pu’er City, Yunnan, were integrated with high-resolution
Google Earth imagery for visual interpretation, creating a
spatial dataset of coffee and non-coffee sample points. A
refined coffee crop extraction model for Pu’er City was
developed using the RF algorithm.

The results demonstrate that incorporating administrative
division features and adopting a larger texture window size (5 ×
5) significantly enhances the accuracy and consistency of the coffee
classification model. Moreover, segmenting spectral features into
four distinct periods optimally captures phenological variations in
coffee plantations, addressing the limitations of annual composite
approaches that may obscure temporal differences while avoiding
excessive fragmentation and noise introduced by a finer seven-
period division. The highest OA achieved was 94.80%, with a

Kappa coefficient of 0.9471, underscoring the robustness and
reliability of the classification model.

This study highlights the potential of remote sensing technology
in accurately mapping and monitoring coffee cultivation in complex
agricultural landscapes. The proposed approach provides valuable
insights for enhancing precision agriculture and regional land
management strategies while supporting the sustainable
development of coffee farming. Moreover, the method is
lightweight and easy to implement, requiring only simple input
and output parameters. It can be readily transferred and applied to
other regions with similar agro-ecological conditions by adjusting a
few key parameters, demonstrating strong scalability and
practical value.
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