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Since estimating the encountered sea wave is particularly important, retrieving
significant wave height (SWH) from ship motion response (SMR) and X-band
marine radar images is investigated. Although SMR and radar images have been
widely utilized separately for estimating SWH, the retrieving accuracy and
reliability under complex nonlinear sea conditions should be further
enhanced. In this paper, the features of SMR and the radar images are
investigated. A feature fusion method based on the statistical characteristic
extracted from SMR historical data and the signal-to-noise ratio (SNR) feature
achieved from radar images is proposed for estimating SWH. The feature vector
and observation matrix are constructed using the significant values extracted
from SMR historical data and the wave SNR extracted from radar images. Then,
the weight coefficient of the feature vector, which is used to estimate SWH, is
determined based on the least-squares fitting algorithm. Using the simulated SMR
historical data and radar images, the experimental results demonstrate that the
proposed feature fusion approach has better retrieval accuracy than the SNR-
based approach; the colorization coefficient (CC) of the retrieved SWH
approximately approaches 1, and the root mean square error (RMSE)
decreases to 0.14 m.
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1 Introduction

Estimating the sea states around a ship is particularly important, and external
information on the waves encountered is needed as input for the shipboard decision
support system to enhance accuracy and reliability. In ocean engineering and ocean science,
precise wave height measurement has always been a major research focus (Dankert et al.,
2005; Liu et al., 2017).

The traditional wave height measurement tool mainly includes a wave buoy, X-band
marine radar, high-frequency radar, and satellite remote sensing (Majidian et al., 2022;
Huang et al., 2017). Although the wave buoy is highly accurate, continuous observation of a
large sea area cannot be achieved because of layout, recovery, and cost limitations. The radar
and satellite remote sensing can cover a large sea area. However, the accuracy of satellite
remote sensing is relatively low, and it is affected by environmental factors such as cloud
cover. The high-frequency radar requires fewer installation and startup conditions due to
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the limited installation size in the ship and the fingerprint exposure
problem (Chen et al., 2019; Zhao et al., 2022).

X-band marine radar is commonly deployed for ship navigation
and marine environment monitoring as it can accurately reflect
changes in the sea surface due to its high spatial and temporal
resolution (Chen et al., 2017; Wang et al., 2025, Wang et al., 2023;
Yang and Huang, 2022). Therefore, significant wave height (SWH)
can be derived by analyzing the X-band radar images, and the study
on estimating wave parameters from radar images has received
significant attention.

Currently, according to the acquired X-band radar images, SWH
inversion technology mainly includes methods based on spectrum
analysis, the shadow statistical method, and machine learning (Yang
et al., 2022; Wu et al., 2022).

The Fourier transform of the radar image sequence, a designed
band-pass filter based on the dispersion relation, and the
modulation transfer function (MTF) are used to derive the wave
spectrum and the signal-to-noise ratio (SNR). The SWH is
determined by using a linear relation with the square root of the
SNR (Nieto-Borge et al., 2004; Nieto-Borge et al., 2008; Qiu et al.,
2017). As a result, external equipment is essential for calibrating the
image spectrum and deriving the coefficient of the linear relation.
The classical Fourier transform-based method yields good results,
but the inversion accuracy is greatly affected by the non-
homogeneous and non-stationary characteristics of ocean waves
in the nearshore area (Atkinson et al., 2021).

Instead of using the SNR feature of the wave signal, the shadow
statistical method is developed, which analyzes the illumination
ratio of the shadow area based on the principles of geometric optics
(Plant and Farquharson, 2012; Gangeskar, 2014; Wei et al., 2023a).
However, the estimated wave slope and wave height are sensitive to
the non-wave targets in the observed area of interest. The estimation
accuracy depends on the angle between the wind direction and the
emitted electromagnetic wave, and the performance of the shadow
statistical method should be further verified under different sea
conditions (Navarro et al., 2019; Ludeno and Serafino, 2019; Wei
et al., 2023b).

Methods based on wavelet transform and neural networks have
received more attention. These methods can better adapt to the non-
stationary characteristics of ocean waves and improve the accuracy
of SWH inversion (Chuang et al., 2008; An et al., 2015).
Furthermore, the technique, combined with the traditional SNR
feature and machine learning technology, is proposed to improve
the estimation accuracy (Salcedo-Sanz et al., 2015; Cornejo-Bueno
et al., 2016). Deep learning techniques can automatically learn
features from large amounts of data to model complex wave
environments, which is anticipated to improve the precision and
efficiency of wave height inversion (Chen and Huang, 2022; Huang
et al., 2021; Wang et al., 2022; Yang and Huang, 2024). By utilizing
extracted multi-scale deep spatial features, a method is proposed to
effectively improve the accuracy of wave height and wave period
using a convolutional neural network model and a self-attention
mechanism (Zuo et al., 2024).

In addition, the sea state parameter, such as SWH, can be
estimated from the ship motion response (SMR) by considering
the ship a large wave buoy. The ship’s motion is used to retrieve
encounter wave information, a method known as the ship analogy to
a wave buoy (SAWB). With its low cost and reduced sensitivity to

weather conditions, the SAWB has attracted considerable attention
for estimating the sea state (Majidian et al., 2022). When the ship
moves under the action of waves, SMR reflects the wave encountered
by the ship. Therefore, the wave parameters could probably be
extracted from the recorded SMR historical information, such as
pitching and heaving. With the development of SAWB technology,
real-time estimation of wave height based on SMR has gradually
received more attention.

Retrieving encounter wave information from SMR is an
essential means of wave monitoring and has the advantage of
low cost. Real-time estimation of sea states could be obtained
from SMR without installing additional sensors for the SAWB
method. By developing the relation between SMR and the wave
spectrum, the 6-degree-of-freedom (DOF) SMR data are used to
construct a parameterized model for direct sea state analysis (Sun
et al., 2025).

Wave height measurement based on the SAWB is divided into
model-based frequency-domain analysis and data-driven time-
domain analysis. Based on the wave spectrum parameter model,
the wave spectrum is estimated by combining the SMR spectrum
and the transfer function (Nielsen, 2006; Pascoal and Soares, 2008).
An iterative process and Bayesian optimization approaches are
commonly used to establish the matching spectrum. Both
strategies manipulate the gauged response function to map from
sea state to vessel motion, which has been further optimized through
sailing experiments (Iseki and Ohtsu, 2000) and more efficient sea
state computation (Nielsen et al., 2018).

The frequency-domain analysis is separated into parametric
and non-parametric inversion approaches. A method for
calculating the actual wave direction spectrum is proposed
based on the ship’s roll, pitch, and heave historical data over a
short time period (Tannuri et al., 2003; Pascoal et al., 2007).
Traditional model-based spectrum analysis methods rely mainly
on empirical formulas and have limitations in describing the
non-linear characteristics of ocean waves (Hinostroza and
Guedes Soares, 2016, Hinostroza and Guedes Soares, 2020).
The results show that the inversion of SMR has good
consistency with the Joint North Sea Wave Project
(JONSWAP) spectrum at low sailing speeds (Montazeri et al.,
2016). Research on the problem of wave inversion under high
sailing speeds should be further developed.

The SMR is analyzed based on the combined statistical features
extracted from the obtained historical data and spectrum features
using the wavelet transform. The cross-spectrum is obtained using
the Fourier transform on SMR data in the model-based frequency-
domain analysis method. The frequency-domain method relies on
the assumption of linearity between SMR and the wave, which
makes it less applicable to non-linear wave conditions under
medium and high sea states (Nielsen, 2017; Pascoal et al., 2017).
In addition, the inversion accuracy significantly depends on the
transfer function.

Since the non-linear relationship between the wave and the ship
motion is complex to model, instead of optimization in the spectral
domain, data-driven models such as Kalman filtering (Kim et al.,
2019; Pascoal and Guedes Soares, 2009) and the stepwise method
(Atkinson et al., 2021) are developed for estimating SWH. The
Kalman filter method is widely used to estimate hull models and
pose, improving the accuracy and stability of the inversion result.
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Then, the constructed features and machine learning models are
used to verify the performance based on wave height and wave peak.
To compensate for the limited data within a narrow range of sea
states, a hybrid approach that integrates machine learning with a
model-based method is proposed (Han et al., 2022). To better
generalize the data-driven model, a semi-supervised transfer-
learning approach with two attention mechanisms for estimating
SWH is proposed (Cheng et al., 2024). Based on SMR data, a class-
imbalanced cross-scale model, which can learn abundant coarse-
and fine-level features from the imbalanced state, is designed (Cheng
et al., 2023). To prevent performance degradation directly in the
target system, a supervised transfer learning-based framework,
which focuses on determining the relationship between the target
and the source marine system, is proposed (Cheng et al., 2022).
Although the proposed inversion model uses an artificial neural
network to extract features from the non-stationary and non-linear
SMR historical data (Qin et al., 2022), deviations at peaks and
troughs have been observed in validation against the ship model
water tank experiment data from the same study.

Although marine radar images and SMR historical data have
been used separately to retrieve SWH, the fusion method using both
SMR and radar data is rare. Currently, marine radar images are
combined with the SAWB algorithm to enhance the estimation
accuracy of wave frequency and direction (Stredulinsky and
Thornhill, 2011). Since the X-band marine radar provides
accurate wave frequency and direction information, a data fusion
method using the pitching and heaving information recorded by the
motion response to correct the wave spectrum extracted from radar
images is proposed to refine shipboard wave height measurement.

For the SAWB technology, the SWH can be estimated using the
SMR without installing additional sensors. To improve the accuracy
and reliability of SWH, the statistical characteristics obtained from
SMR historical data are integrated into the wave measurement
process based on X-band marine radar images in this paper. By
combining the ship motion features obtained using SAWB
technology and the extracted SNR from marine radar images, a
feature fusion method is proposed for estimating SWH. The
remainder of this paper is organized as follows: in Section 2, the
simulation of SMR historical data and the extraction of significant
values are described. The simulation of radar images and the SNR
extraction are also presented. Subsequently, the feature fusion model
is proposed, and the SWH is estimated using the constructed feature
vector and obtained weight coefficients. In Section 3, the
performance of the proposed feature fusion method is
demonstrated and analyzed.

2 Feature fusion method proposed for
estimating the SWH

To establish a more accurate and reliable SWH measurement
model, the main idea of estimating wave height is to combine the
statistical characteristics extracted from the SMR and the SNR
feature of radar images. In this paper, the SWH is derived by
fusing the SNR obtained from non-coherent radar images with
the significant values of the pitching and heaving historical data. The
flowchart of estimating SWH using the feature fusion method is
illustrated in Figure 1.

2.1 Simulation of SMR historical data and
extraction of statistical characteristics

2.1.1 Historical data simulation
Currently, nonlinear ship motion simulation methods are

mainly based on the potential flow dynamic analysis model and
the sticky water dynamic analysis model (Qin et al., 2022). The
sticky water method has an advantage in ship force calculation
since the viscosity between the water and the hull is considered.
However, it relies on a large number of iterative calculations, and
the computational efficiency is very low. The potential flow
method has a high level of accuracy and efficiency and can
accurately simulate the nonlinear motion analysis of a ship
under harsh sea conditions. It is suitable for multi-sea-
condition, multi-speed, and multi-wave calculations in
optimizing ship type selection and evaluating hydrodynamic
performance. The potential flow method can finely simulate the
SMR under external excitation and has high computational
efficiency. The two-dimensional (2D) half-theory is a classical
potential flow calculation method that performs motion
calculations in three dimensions (3D) to achieve a balance
between calculation efficiency and accuracy (Duan and Ma,
2004; Ma et al., 2004).

2.1.1.1 Solution condition for the unsteady
perturbation potential

In view of the linear potential flow theory in the time domain,
the flow field velocity around a moving ship in sea waves is
composed of both steady and unsteady potentials, as presented in
Equation 1 (Qin et al., 2022; Duan and Ma, 2004).

ϕ x, y, z, t( ) � −Ux + ϕS x, y, z( )[ ] + ϕT x, y, z, t( ), (1)

FIGURE 1
Flowchart of SWH estimation using the data fusion of the multi-sensor.
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where U is the ship speed and ϕS is the steady wave potential.
The unsteady potential, which contains incident potential
ϕI(x, y, z), diffraction potential ϕ7(x, y, z), and radiation
potential ϕR(x, y, z), is described in Equation 2:

ϕT x, y, z( ) � ϕI x, y, z( ) + ϕ7 x, y, z( ) + ϕR x, y, z( )
� ϕI x, y, z( ) + ϕ7 x, y, z( ) +∑6

j�1
ϕj x, y, z( ), (2)

where ϕj(j � 1, 2, . . . , 6) represents the radiation potential in which the
shipmoves in jthmode unit of amplitude. Using the 2D half-theory, the
solution condition satisfied by the unsteady disturbance potential around
the hull could be established. According to the theoretical assumptions of
the conventional slicing method and the fact that the flow field at the
position of the linear free surface satisfies the free-surface condition, the
problem of solving ϕj can be transformed into the problem of solving
ψj(t, y, z) � eiωetϕj(t, y, z), as presented in Equation 3:

∂2ψj

∂y2 + ∂2ψj

∂z2
� 0 In the fluid domain( )

∂2ψj

∂t2
+ g

∂ψj

∂z
� 0 z � 0

∂ψj

∂n
�

iωenj +Umj( )eiωet j � 2, 3, . . . , 6

−∂ψI

∂n
eiωet j � 7

⎧⎪⎪⎪⎨⎪⎪⎪⎩ On the average wet surface of the hull( )

ψj �
∂ψj

∂t
� 0 t � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where ωe is the encounter frequency.

2.1.1.2 Numerical solution of the unsteady
perturbation potential

The solution of Formula 3 can be considered a 2D time-surface
problem. When the flow field potential is solved in the time step, the
perimeter of the column section varies from the bow to the stern, and the
flow field for each transverse section is determined by the step solution
method. The 2D time-domain Green function is used to construct a
distributed source boundary integral equation to calculate ψj(t, y, z)
and the spatial derivative in the transverse section, which improves the
efficiency and stability of the 2D half-theory to solve high-speed ship
hydrodynamic problems (Duan and Ma, 2004; Ma et al., 2004).

2.1.1.3 Steady-state SMR in regular wave
The ship motion in the wave belongs to the rigid body 6-DOF

movement, which can be represented by the line displacement along
the three axes of the ship translation frame and the three angular
displacements around the origin. Considering the hydrodynamic
load and hydrostatic recovery force acting on the ship, the motion
equation of the ship in the wave is presented in Equation 4 as follows
(Qin et al., 2022; Ma et al., 2004):

∑6
i�1

Mji€ηj � FI
j + FD

j + FR
j + FS

j, (4)

where M is the ship mass matrix and ηj(j � 1, 2, . . . , 6) is the ship
motion displacement in the jth mode, which corresponds to the
three linear and three angular displacements, namely, surging,
swaying, heaving, rolling, pitching, and yawing. FI

j, F
R
j , F

D
j , and

FS
j are the Froude–Krylov force caused by the incident potential,

radiation force, diffraction force, and hydrostatic recovery force

caused by the ship’s jth mode, respectively. Based on the linear
theory, the hydrostatic recovery force can be expressed using the
hydrostatic coefficient Cji, as presented in Equation 5:

FS
j � −∑6

i�1
Cjiηj. (5)

After solving the unsteady disturbance potential, the hydrodynamic
calculation of radiation and diffraction can be carried out. Then, the
oscillatory displacement of the ship motion ηj can be computed
using the motion equation of the ship.

2.1.2 Extraction of statistical characteristics from
SMR historical data

According to the real ship model, under the typical sea
conditions with different wave periods and wave heights, the ship

FIGURE 2
Calculated height and angle for each waveform in heaving and
pitching data. (a) Waveform height of heaving data. (b) Waveform
angle degree of pitching data.
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motion is simulated to obtain the historical data on the ship heaving
and pitching. When ships sail on the waves, the actions of wind and
waves will produce the 6-DOF movement, among which the rolling,
pitching, and heaving movements on the ship are more prominent
(Wang, 2020). In addition, the reliability of simulated pitching and
heaving is higher than that of rolling. Thus, the historical data on
pitching and heaving are mainly considered in this paper.

Based on the recorded historical data on ship heaving and
pitching, the corresponding statistical characteristics, such as
maximum wave height, maximum wave period, 1/3 wave height,
and 1/3 wave period, can be extracted. After obtaining the
historical data on heaving, the height of each waveform could
be calculated based on the peak extreme points and the cross-
zero axis. Based on the determined number of heaving
waveforms and the height, the single height value of the
waveform is arranged in descending order. Using the
generated data on ship motion under different sea wave
periods and SWH, the corresponding 1/3 significant value is
extracted as a statistical characteristic for retrieving SWH in this
paper, as presented in Equations 6, 7:

lh � 1
Q
∑Q
q�1

hq k � 1, 2, . . . , Q( ), (6)

lp � 1
R
∑R
r�1

hr r � 1, 2, . . . , R( ), (7)

where lh and lp are the significant values extracted based on the
heaving and pitching historical data in the ship motion response,
respectively. Q represents the number of the first 1/3 large
waveforms in the heaving historical data, and hq corresponds to
the height of a single waveform. Similarly, R represents the number
of the first 1/3 large waveforms in the pitching historical data, and hr
corresponds to the height of a single waveform.

Based on the historical data on heaving and pitching for ships
under level 6 sea conditions with an SWH of 4.2 m and a wave peak
period of 11.5 s, the calculated height and angle for each waveform of
heaving and pitching are presented in Figure 2. The horizontal axis
in Figure 2a represents the waveform number of the heaving data,
and the vertical axis represents the height of each waveform in the
heaving data. The horizontal axis in Figure 2b represents the
waveform number of the pitching data, and the vertical axis is
the waveform angle of the pitching data. Based on the calculated
height and angle, the 1/3 significant values of heaving and pitching
are presented in Table 1.

In this paper, the 1/3 significant value extracted from historical
data is used as the statistical characteristic for estimating SWH. For
convenience of description, the significant value indicates the 1/3
significant value of the pitching and heaving data in the following
sub-section.

2.2 Radar image simulation and extraction of
the SNR

2.2.1 Simulated radar images
According to the operating conditions in practice and the

corresponding wave parameters of the SMR, the simulation of
the radar images is performed. Based on the input sea state
conditions and the characteristics of a typical sea area, the wave
spectrum and sea surface elevation are obtained. By combining the
installation height of the radar with the imaging mechanism of radar
images, the sea surface elevation data are used to generate an
approximate actual radar image.

For the typical sea states and radar antenna height of the ship,
the simulation of the sea clutter image in the effective observation
area is carried out. Sea waves are a complex natural phenomenon
with apparent spatial and temporal randomness. Commonly, the
Longuet–Higgins model is selected to simulate the sea surface field,
as presented in Equation 8 (Huang et al., 2017; Wei et al., 2020).

ηs r, θ, t( ) �∑N
n�1
∑M
m�1

A ωn, θm( ) · cos ωnt − rkncos θ − θm( ) − ϵmn( ),

(8)
where N andM are the number of frequency component and wave
direction, respectively, A(ωn, θm) �
















2S(ωn, θm)ΔωΔθ
√

is the
amplitude of the cosine wave component, S(ωn, θm) is the
directional wave spectrum, ωn and θm are the angular frequency
and wave direction of single wave component, respectively, kn is the
module of wave number, and ϵmn ∈ [−π, π] is the initial phase with a
uniform random distribution. The directional wave number
spectrum is provided in Equation 9:

S ω, θ( ) � S ω( )G ω, θ( ), (9)
where S(ω) is the wave spectrum and G(ω, θ) is the directional
propagation function. To simulate sea clutter radar images, the
JONSWAP spectrum is commonly used to model the wave
spectrum, as shown in Equation 10:

S ω( ) � αg2ω−5 exp −1.25 ωm

ω
( )4( )γexp − ω−ωm( )2

2σ2ω2m
[ ]

, (10)

where g is the acceleration of gravity, α is the non-dimensionless
energy scale parameter, γ is the spectral peak factor, ωm is the
spectral peak frequency, and the parameter σ depends on the
spectral peak frequency.

Since the sea wave energy is distributed within a certain
frequency range and has different propagation directions, the
directional propagation function G(ω, θ), which is used to
describe the multi-directional propagation characteristic of the
sea wave, is presented in Equation 11 as follows:

TABLE 1 Calculated significant value of heaving and pitching using the historical data.

Significant value Maximum value 1/10 value 1/3 value Average value

Heaving (m) 6.66 4.63 3.70 2.36

Pitching (degree) 8.48 6.26 5.01 3.19
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G ω, θ( ) � 22s−1

π
· Γ

2 s + 1( )
Γ s + 1( ) · cos

2s θ − θ0
2

( ), (11)

where θ0 is the dominant wave direction, Γ is the gamma function,
and s is the angular diffusion coefficient.

In practice, marine radar performance is restricted by its
installation height, resulting in a low-grazing-angle observation
geometry. Under this specific configuration, although sea surface
backscattering is theoretically influenced by tilt and hydrodynamic
modulation, their effects on image contrast are significantly less
dominant than those of shadow modulation. The radar image is,
therefore, primarily governed by the shadowing effect. This is
because the wave undulations cause significant occlusion,
generating decisive bright and dark structures in the image that
directly correlate with the macroscopic geometric profile of the
waves (e.g., wavelength and wave height). Since the primary goal of
this study is wave height inversion, capturing these geometric
features is essential. Consequently, focusing on shadow
modulation represents a reasonable and effective simplification
for our retrieval objective. Owing to the undulating movement of
the sea surface along the incident direction of the electromagnetic
wave, the lower wave would be blocked by the higher wave in front of
it, making it impossible for the radar to detect the blocked sea
surface. For convenience, the binary shadow mask is denoted by
σsh(r, θ, t). The shadowmask is 1 when the sea surface is illuminated
and vice versa. Thus, the simulated radar images are defined as
presented in Equation 12:

η r, θ, t( ) � ηs r, θ, t( ) · σsh r, θ, t( ). (12)

A simulated radar image under level 4 sea conditions is
presented in Figure 3. The radar antenna height is 25 m, and the
image resolution in distance is 7.5 m. The SNR feature could be
extracted based on the simulated radar image sequence.

2.2.2 Extraction of the SNR feature of the wave
signal based on the Fourier transform

Currently, the Fourier transform on the radar image sequence is
used to gain the image spectrum, which is filtered and corrected to
achieve the wave spectrum and its SNR. Assuming that the wave
field on the sea surface is homogeneous in the spatial domain and
stationary in the temporal domain within the selected area, the 3D
Fourier transform technology is currently a mainstream method for
extracting the wavenumber frequency spectrum using radar images
in practice (Nieto-Borge et al., 2004, Nieto-Borge et al., 2008). The
non-wave signal is filtered out based on the dispersion band-pass
filter, and the wave spectrum is obtained using the modulation
transfer function. Finally, the wave SNR is derived from the obtained
wave spectrum, and SWH is calculated using the linear empirical
relationship with the SNR.

The ocean wave is a typical non-stationary random process, and
the radar echo intensity decreases non-linearly with increasing
distance to the radar antenna. Since the sea wave is usually
regarded as a stochastic process of smooth states in engineering
applications, an analysis region is selected when using the 3D
Fourier transform. By using X-band marine radar images, the
classical approach for retrieving SNR and SWH is presented in
the following sub-sections (Nieto-Borge et al., 2004, Nieto-Borge
et al., 2008).

2.2.2.1 Coordinate transform
Since the original images collected using the marine radar are in

the polar coordinate system η(r, θ, t) and the 3D Fourier transform
on the radar image sequence η(x, y, t) is executed in the Cartesian
coordinate system, the original radar images are preprocessed to
meet the requirements of the 3D Fourier transform.

2.2.2.2 3D Fourier transform
By performing a 3D Fourier transform on the selected analysis

area of the radar image sequence η(x, y, t), an obtained 3D
wavenumber frequency image spectrum F(kx, ky,ω) is presented
in Equation 13 (Lund et al., 2014; Lund et al., 2016).

F kx, ky,ω( ) �∑Lx
0

∑Ly
0

∑T
0

η x, y, t( )exp −2πi kxx

Lx
+ kyy

Ly
+ ωt

T
( )[ ],

(13)
where kx and ky are the wavenumbers in the x and y directions,
respectively, Lx+Ly indicates the selected analysis area, ω is the
angular frequency, and T is the total time of the radar image
sequence. The expression of the 3D wavenumber frequency
energy spectrum is shown in Equation 14:

W kx, ky,ω( ) � 1
LxLyT

∣∣∣∣∣∣F kx, ky,ω( )∣∣∣∣∣∣2. (14)

2.2.2.3 Extracting wave energy
Under the assumption that waves are consistent with the linear

wave theory, the wave energy in the image spectrum should be
distributed near the dispersion relation surface. The 3D
wavenumber frequency energy spectrum is filtered using the
band-pass filter.

FIGURE 3
Simulated X-band marine radar image.

Frontiers in Remote Sensing frontiersin.org06

Liu et al. 10.3389/frsen.2025.1693042

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1693042


In general engineering practice, a dispersion band-pass filter
with the maximum surface currentUmax is used to filter out the non-
wave energy, as shown in Equation 15 (Lund et al., 2014; Lund
et al., 2016).

I kx, ky,ω( ) � W kx, ky,ω( ) k ∈ Bn, Bp[ ]
0 otherwise

{ , (15)

where Bn and Bp are the upper and lower boundaries of the filter,
respectively, which depend on the maximum surface current speed.
After obtaining the 3D wavenumber frequency energy spectrum
I(kx, ky,ω), the 2D image spectrum I(kx, ky) is achieved by
integrating the frequency, as shown in Equation 16:

I kx, ky( ) � ∫
ω>0

I kx, ky,ω( )dω. (16)

2.2.2.4 Determination of the wave spectrum using the MTF
Due to the nonlinearity of sea clutter imaging, the real wave

spectrum varies slightly from the 2D image spectrum obtained. The
empiricalMTF is utilized to achieve the conversion betweenE(kx, ky)
and the image spectrum I(kx, ky), as presented in Equation 17:

E kx, ky( ) � ∣∣∣∣∣∣M kx, ky( )∣∣∣∣∣∣2 · I kx, ky( ), (17)

where |M(kx, ky)|2 ≈ k−β is the MTF and β is the empirical
coefficient.

2.2.2.5 Calculation of the SNR and SWH
Based on the linear relationship between wave height and the

square root of the SNR extracted from sea clutter images, the SWH can
be obtained by determining the coefficient of the linear relationship, as
shown in Equation 18 (Lund et al., 2014; Lund et al., 2016).

Hs � A + B





SNR

√
, (18)

whereA and B are the linear relationship coefficients, and the SNR is
calculated as shown in Equation 19:

SNR � ∑Nx
ky�1∑Ny

kx�1E kx, ky( )dkxdky
∑Nx

ky�1∑Ny

kx�1∑Nt

i�1Q kx, ky,ωi( )dωdkxdky −∑Nx

ky�1∑Ny

kx�1I kx, ky( )dkxdky,
(19)

where dω is the frequency resolution, dkx and dky are the
wavenumber resolutions, Nx and Ny are the number of pixel
points, and Nt is the number of radar image sequences.

2.3 Feature vector construction based on
extracted statistical characteristics and SNR

Amodel for estimating SWH using the SMR and radar images is
established in this paper. Different sea conditions are used as the
truth value to simulate radar images and generate SMR historical
data. The feature vector is constructed using the SNR extracted from
the non-coherent radar image and the statistical feature obtained
from SMR historical data, as presented in Equation 20:

f v � SNR lh lp( ). (20)

2.4 Solving weight coefficients of the
combined feature vector

Amethod that fuses the significant value of SMR historical data,
such as pitching and heaving, with the wave SNR from radar images
is proposed to estimate SWH. The feature vectors constructed under
different sea conditions are divided into two parts: training and test
sets. Figure 4 displays the flowchart of estimating the weight
coefficients of each feature based on the training set data.

The wave feature parameters under different sea conditions,
which are input to simulate radar images and the historical data of
SMR, are taken as the true value. The feature matrix A and the wave
measurement model are constructed using the combined feature
vectors f v under different sea conditions. The features in each row of
the matrix are the SNR and the significant value of heaving and
pitching extracted from single-experiment data. The number of rows
corresponds to the number of observed groups of the experimental
data. Wave height under different working conditions is constructed
into the column vector, and each dataset in the vector corresponds to
the true value of a single experiment. Suppose that the weight
coefficient between the observed feature data and the true value
is the column vector; the constructed measured wave measurement
model is provided in Equation 21:

Ax � b, (21)
where the observation matrix A, the weight coefficient vector x, and
the truth value b are defined as presented in Equation 22:

A �







SNR1

√
lh1 lp1 1






SNR2

√
lh2 lp2 1

..

. ..
. ..

. ..
.






SNRu

√
lhu lpu 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ x �

x1

x2

x3

x4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ b �
b1
b2
..
.

bu

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where u is the number of experimental data samples. In the
observation matrix A, the first three columns are the features




SNR

√
, lh, and lp, while the final column introduces a constant

intercept x4 into the regression model. This term accounts for a
baseline wave height, ensuring that the prediction is not forced
through the origin when features are zero, which enhances the
model’s physical plausibility. Since the root mean square of SNR
extracted from radar images is approximately linearly related to the
SWH,






SNR

√
is used to establish the observation matrix, instead of

variable SNR. Based on the wave observation model constructed
using the training set, the weight coefficients are obtained by solving
the vector in the observation model. The least-squares algorithm is
used to fit the constructed feature vectors and determine the weight
coefficient of the feature vector using the reference value and the
feature matrix. The weight coefficient vector x, which is the unique
minimal-norm least-squares solution x0 � A+b based on the
solution of Equation 21 using the Moore–Penrose inverse, is
determined.

Commonly, the rank r of the matrix A ∈ Cu×4
r is greater than

zero, and suppose that the full rank decomposition is
A � FG(F ∈ Cu×r

r ,G ∈ Cr×4
r ). Thus, the Moore–Penrose inverse of

the matrix A is presented as shown in Equation 22 (Hochstenbach
et al., 2012).

A+ � GH GGH( )−1 FHF( )−1FH. (22)
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2.5 Estimation of the SWH based on the
obtained weight coefficient

The test set is used to verify the accuracy and effectiveness of the
multi-sensor information fusion model and method. According to
the weight coefficients x0 obtained from the training set, the
characteristic data in the test set are used to evaluate the
combined wave measurement scheme. The estimated significant
wave height Hs is presented in Equation 23:

Hs � Atx0 �







SNR1

√
lh1 lp1 1






SNR2

√
lh2 lp2 1

..

. ..
. ..

. ..
.






SNRt

√
lht lpt 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·

x1

x2

x3

x4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (23)

where t is the number of experimental data and At is the observation
matrix constructed based on the test set.

3 Experimental results and analysis

3.1 Description of simulation software and
the parameter configuration

According to the real ship model and the typical sea conditions,
the SMR is simulated to obtain the historical data on heaving and
pitching. The S175 container ship, which is one of the main vessel
types and has most of the characteristics of container ships, is

selected as an example ship to carry out the hydrodynamic
feature calculation and SMR simulation. The main scale
information of the S175 container ship is presented in Table 2.

In this paper, the simulated SMR data are achieved based on the
self-developed ship wave resistance calculation program, as
provided by Duan and Ma (2004) and Ma et al. (2004). The 2D
half-theory is used to develop the numerical simulation for the
S175 container ship under different regular sea conditions. Based on
the long-term distribution characteristics of standard sea conditions
in the International Maritime Organization in SDC 1/INF. 6.0, the
specific SWH and wave period are selected, which are presented in
Table 3. The ship speed is set to zero to simplify the simulation and
calculation under different working conditions. According to the
specific working conditions described in Table 3, the historical data
on heaving and pitching under seven working conditions are
obtained. The total time duration of the historical data is 3,600 s,
and the time resolution is 0.1 s.

3.2 Statistical characteristic analysis of
the SMR

The relationship between sea conditions and statistical
characteristics of historical heaving and pitching data is
investigated. The significant value of heaving and pitching under
the upward wave direction and a wave direction of 120° is presented
in Figures 5, 6. The horizontal and vertical coordinates denote the
working condition and the extracted significant value, respectively.

FIGURE 4
Flowchart of SWH estimation using the data fusion of the multi-sensor.
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The vertical axis represents the 1/3 significant value in meters (m),
while the horizontal axis represents the seven working conditions.
From Figures 5, 6, it can be observed that the significant value
extracted from both pitching and heaving data increase with
increasing sea state, and the significant values of the pitching
historical data are closer to the true value than those of the
heaving data.

Using the simulated historical data under the condition of an
SWH of 1.5 m and a wave period of 7.5 s, the significant value of
heaving and pitching changing with the wave direction is detailed in
Figure 7. The horizontal coordinate denotes the wave direction with
a 20° interval, while the vertical axis represents the 1/3 significant
value in meters (m) under the SWH condition of 1.5 m. The black
and red curves represent the heaving and pitching significant values,

respectively. The blue curve is the significant value extracted from
the input data, which is used to generate SMR historical data. From
Figure 7, it can be found that the significant values extracted from
the input data change slightly in different wave directions, and all are
close to 1.5 m. However, the significant values of the heaving and
pitching vary dominantly with the wave direction. The significant
value of heaving increases and then decreases, reaching the
maximum value at a near wave direction of 90°. The significant
value of pitching has two maximum values at wave directions of
approximately 60 and 120° and a minimum value at a wave direction
of approximately 90°.

When the SWH is 5.5 m and the wave period is 9.5 s, the
extracted significant value of heaving and pitching and the true
value, which changes with the wave direction, are provided in

TABLE 2 Main scale parameters of the S175 container ship.

Parameter Length Ship beam Draft Displacement Longitudinal center of gravity Block coefficient

Value 175.5 m 25.4 m 9.5 m 24742 t −2.43 0.572

TABLE 3 Specific working conditions and corresponding parameters.

Working condition SWH (m) Wave period (s) Wave direction (degree)

Case 1 0.5 6.5 0 ~ 180 with 20 interval

Case 2 1.5 7.5 0 ~ 180 with 20 interval

Case 3 2.5 8.5 0 ~ 180 with 20 interval

Case 4 3.5 8.5 0 ~ 180 with 20 interval

Case 5 4.5 9.5 0 ~ 180 with 20 interval

Case 6 5.5 9.5 0 ~ 180 with 20 interval

Case 7 6.5 10.5 0 ~ 180 with 20 interval

FIGURE 5
Significant value of heaving and pitching under an upward
wave direction.

FIGURE 6
Significant value of heaving and pitching under a wave direction
of 40°.
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Figure 8. As the SWH is 5.5 m, the vertical axis corresponds to the
1/3 significant value in meters (m). The significant value extracted
from the input data on SMR changes slightly in different wave
directions and is less than 5.5 m. However, the significant value of
pitching and heaving significantly changes with the wave direction.
The characteristics of significant values in different wave directions
are similar to those presented in Figure 7.

By investigating the extracted statistical characteristics
according to the historical data under different sea conditions, we
found that the significant values of pitching and heaving differ
considerably with wave directions. The significant value of heaving
increases, subsequently decreases, and reaches the maximum value
at a wave direction of approximately 90°. The significant value of
pitching is minimum when the course is perpendicular to the wave

direction and reaches the maximum at wave directions of
approximately 60 and 120°.

3.3 Performance of the proposed feature
fusion method

To verify the validity of the proposed multi-sensor fusion
method for estimating SWH, the simulated SMR historical data
and radar image sequences are used to extract features and conduct
experiments. The input sea condition parameters in the simulation
are used as the truth value.

The time resolution of the simulated radar image is 2.3 s.
According to the actual conditions of radar data acquisition, the
simulated radar image sequence contains 32 images, with an interval
of 4 min between consecutive images. Commonly, the estimated
SWH from radar image sequences is averaged over 20min. Thus, the
one-hour ship historical data are divided into three groups with 20-
min intervals. According to the seven different working conditions
with 10 different wave directions, 210 sets of experimental data
were generated.

In this paper, the generated historical data on SMR and radar
images under different sea conditions are randomly separated into
training and test sets with a ratio of 1:1. The training set is used to
determine the feature weight coefficients in different wave
directions, and the test set is used to verify the accuracy of the
multi-sensor fusion model of inversion SWH using the calculated
weight coefficients. The simulated SMR historical data and radar
images under an upward wave direction are used to verify the
effectiveness of the feature fusion method. The correlation
coefficient (CC) and root mean square error (RMSE) of the
SWH are used to evaluate the performance of the
proposed method.

Figure 9 shows the SWH extracted using the SNR feature. The
red solid line with crosses represents the true value, and the blue
dashed line with triangles represents the SWH estimated using only
the SNR feature obtained from radar image sequences. It can be

FIGURE 7
Significant values extracted from historical data under an SWH
of 1.5 m.

FIGURE 8
Significant values extracted from historical data under an SWH
of 5.5 m.

FIGURE 9
SWH estimated using the SNR feature.
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observed that the SWH estimated using the SNR increases with
increasing sea state, but it deviates greatly from the true value.
Figure 10 shows a scatterplot between the truth value and the
estimated SWH using the SNR feature, with a CC of 0.83 and an
RMSE of 1.08 m.

The calculated SWH based on the fusion of the significant value
extracted from historical data and SNR extracted from radar images
is illustrated in Figure 11. The red solid line with crosses represents
the true value, and the blue dashed line with triangles represents the
wave height estimated using the combined features. It can be
observed from Figure 11 that the SWH estimated based on the
combined feature also increases with the working condition, and the
estimated SWH is basically consistent with the change in the true
value. However, the large error still exists, especially when the
estimated SWH is less than 1 m.

Figure 12 shows a scatterplot between the true value and SWH
estimated using the feature fusion of significant values and SNR
extracted, with an RMSE of 0.22 m and a correlation coefficient of
0.99. Compared to the estimated SWH in Figure 9, the estimated
SWH based on the proposed fusion method can better follow the
true value. Using extracted features from SMR historical data and
radar images under the condition of the upward wave direction, the
CC of SWH estimated using the combined feature is 0.16 higher and
the RMSE error is 0.86 m lower than those obtained using the SNR-
based feature.

To further verify the effectiveness of the wave measurement
scheme based on data fusion, the features extracted from the
historical data in different wave directions are fused with the
SNR extracted from the radar images.

The wave height estimated using the significant value in the
wave direction of 20° is shown in Figure 13. The SWH estimated
based on the combined features increases with the increasing sea
conditions, but the estimated SWH deviates from the true value
under high sea conditions. When the SWH is less than 3.5 m, the
estimated SWH agrees reasonably well with the true value.
However, the deviation becomes larger when the wave height
exceeds 3.5 m. The scatterplot between the truth value and
SWH estimated based on combined features for a wave
direction of 20° is presented in Figure 14. The CC reaches 0.99,
and the RMSE is 0.24 m.

For a wave direction of 40°, the SWH estimated based on the
significant value derived from the historical data and SNR extracted
from radar images is shown in Figure 15. The SWH estimated based
on the combined features increases with the increasing sea
conditions, but the estimated SWH deviates from the true value
under high sea conditions. When the wave height is less than 4.5 m,
the estimated SWH is basically consistent with the true value.
However, the obvious deviation exists when the wave is higher
than 4.5 m.

The scatterplot of wave height between the truth value and
SWH estimated based on combined features for the wave direction

FIGURE 10
Scatterplot of wave height between the truth value and estimated
SWH using the SNR feature.

FIGURE 11
Estimated SWH using the feature fusion of the multi-sensor.

FIGURE 12
Scatterplot of SWH between the truth value and the information
fusion of the multi-sensor.
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of 40° is illustrated in Figure 16. The CC approaches approximately
1, and the RMSE decreases to 0.19 m. The experimental results
show that the SWH inversion method, which fuses ship motion
information and X-band radar images, not only achieves high
precision and small error but also offers low-cost marine
environment monitoring.

Based on the simulated SMR historical data and radar images,
the experimental results in different wave directions are presented in
Table 4. The results of the experiments showed that the proposed
fusion method using the radar images and SMR could improve the
accuracy of the estimated SWH under different wave directions.
However, the accuracy and performance of the fusion method still
need to be verified using real data in the future.

4 Discussion

Although this study relies on simulation-based validation where
both radar images and ship motion data were synthetically
generated, this approach provides an essential proof-of-concept
under controlled conditions. The ship motion data were
specifically obtained from high-fidelity hydrodynamic simulations
conducted using Harbin Engineering University’s digital towing
tank platform, ensuring physical credibility. The core innovation
of this work lies in the effective fusion of marine radar imaging and
ship motion dynamics—two distinct sensing domains. We
acknowledge that further validation with real-world
measurements is necessary, and conducting such field

FIGURE 13
Estimated SWH based on the combined features under a wave
direction of 20°.

FIGURE 14
Scatterplot of SWH between truth value and the estimated value
under a wave direction of 20°.

FIGURE 15
Estimated SWH based on the combined features under a wave
direction of 40°.

FIGURE 16
Scatterplot of SWH between the truth value and the estimated
value under a wave direction of 40°.
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experiments has been explicitly identified as a primary direction for
our future research.

The selection of zero-speed conditions in this study represents a
necessary simplification for initial validation, justified by both
methodological and practical considerations. Since the temporal
statistical features extracted from historical data for our fusion
framework are inherently robust to speed variations, the core
methodology remains applicable under normal sailing conditions.
Although the current implementation utilizes specialized filtering to
ensure physical authenticity in radar simulations at zero speed,
future work will focus on integrating motion compensation
algorithms to extend this approach to realistic sailing scenarios.

The fusion method for measuring SWH based on SMR and
radar images has broad application prospects with the continuous
advancement of technology. In this paper, the feature fusion method
requires estimating the weight coefficients in different wave
directions. The SWH is calculated using the derived weight
coefficients and the feature vector. Although the proposed fusion
method performs well for different wave directions, the wave
direction should be obtained in advance. Since feature weight
coefficients are different in different wave directions, the
performance of the proposed method depends on the accuracy of
the wave direction. To simplify the simulation of the SMR, the
historical data on pitching and heaving are generated under zero-
speed conditions. In the future, the effectiveness of the proposed
method should be further verified under sailing conditions. In
addition, more complex sea states, such as bimodal waves, should
be used to test the performance of the feature fusion method.

For complex sea states, in addition to heaving and pitching, the
historical data on other degrees of freedom may need to be
considered to achieve optimal performance. Meanwhile, the
influence of the significant value of the wave period on the
estimation accuracy should also be analyzed in practice.

Currently, estimating SWH in real time requires at least 8 min of
historical data based on the SMR (Majidian et al., 2022). However,
the SWH could be estimated from radar images, and the time
consumption can be reduced by tens of seconds. Although
20 min of SMR historical data are used to estimate SWH in this
paper, real-time performance is expected to improve further when
the radar images are introduced. The proposed feature fusion
method, based on the statistical characteristic of SMR and
features extracted from radar images can not only overcome the
limitations of traditional measurement methods but also provide
real-time and efficient access to sea state information.

5 Conclusion

Although this study uses specific radar and ship parameters, the
proposed methodology is inherently generalizable. Based on

established physics rather than empirical fitting, the framework
can adapt to different ship types by integrating their respective
parameters. Moreover, the reliance on shadow modulation, a
mechanism that persists across low grazing angles, ensures
robustness to variations in radar height. The adaptability of the
method will be quantitatively validated in future studies.

In this paper, the wave statistical characteristics extracted based
on the SMR are integrated into the process of conventional non-
coherent radar wave measurement. To enhance the reliability and
accuracy of the estimated SWH, a new multi-sensor information
fusion model is established. The significant value of heaving and
pitching extracted from SMR historical data and the SNR feature of
the radar images are combined to calculate a more accurate wave
height. The estimation results could accurately reflect the actual sea
state conditions. Using the simulated radar images and SMR
historical data, the CC reaches approximately 1, and RMSE is
0.14 m for the proposed multi-sensor fusion method.

Currently, SMR historical data and radar images have been used
separately to estimate SWH. However, research on estimating SWH
by synchronously using the SMR and radar images is rare. Since
simulated SMR data are used, simulated marine radar images are
also used in this paper. In practical applications, SMR and marine
radar images can be synchronously collected for course ships during
navigation. Thus, real SMR data and radar images could be used to
verify the method in the future.

Estimating SWH based on radar images can be further
investigated under low-wind speeds or rain-contaminated
conditions. When the significant value of SMR is considered, the
proposed fusion method is expected to improve the situation. The
complex relationship between SMR and SWH can be further
investigated to enhance the accuracy and adaptability of the
proposed algorithm in practice. In addition, artificial intelligence
technology can be used to achieve the fusion and analysis of multi-
source data under low-wind speed or heavy rainfall conditions,
providing more comprehensive and accurate wave information for
ocean engineering and navigation safety.
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