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The spectral information of each pixel in hyperspectral images contains valuable
information about object properties, although accurate labeling is required in
supervised classification to guide the model in distinguishing different land cover
types. However, labeling data for hyperspectral images is difficult to obtain,
especially in complex or remote areas. This results in a shortage of labeled
samples, which prevents the model from fully learning the features of different
classes. To overcome this challenge, this work proposes a hyperspectral image
classification method, called AU-Super, that combines adaptive superpixel scale
selection, superpixel label expansion, and data augmentation. First, an adaptive
method is developed to determine an appropriate superpixel segmentation scale
based on feature values, thereby ensuring that superpixel segmentation
effectively captures the spatiospectral information of the image. Second,
feature extraction is performed at the previously estimated superpixel scale.
Third, pixel labels are converted to superpixel labels to reduce the effects of
labeling noise during the training process. Furthermore, superpixel-level label-
based data augmentation techniques are introduced to mitigate the problem of
under-labeled patterns. The comparative results against various state-of-the-art
algorithms demonstrate that AU-Super-RF consistently achieves superior
performance across multiple accuracy metrics. Under few-shot training
scenarios (with only 1–10 samples per class) on the Indian Pines, Salinas, and
Pavia University datasets, it improves overall accuracy by 3%–7%, average
accuracy by 2%–6%, and the Kappa coefficient by 3%–8%, highlighting the
robustness and practical utility of the method.
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1 Introduction

Hyperspectral refers to an imaging technique that captures highly detailed spectral
information over a wide spectral range (Gan et al., 2024). Compared with traditional RGB
and multispectral images, hyperspectral images (HSI) scan the scene across hundreds of
narrow spectral bands (Lassalle et al., 2023), offering significant advantages in high-
precision feature identification and target detection because they provide richer spectral
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information than conventional images (Liu et al., 2023; Xie et al.,
2024). This unique property gives hyperspectral images a clear
advantage in remote sensing classification (O’Shea et al., 2023).
Regarding hyperspectral classification, the hyperspectral image is
analyzed and processed to assign each pixel or superpixel to a
specific class, using the spectral information of each pixel to
distinguish between different types of land cover or objects (Jia
et al., 2024). However, obtaining labeled data for hyperspectral
images can be challenging in complex or remote areas where
manual labeling is difficult and sample size is limited (Zhao
et al., 2023). Furthermore, annotators may struggle to accurately
identify certain land cover types, especially when the spectral
characteristics are very similar (Zhang Q. et al., 2022). This label
noise and annotation errors can negatively impact classification
performance. Researchers’ proposed solutions to address these
problems fall primarily into two categories: dimension reduction
and data augmentation.

Dimensionality reduction methods are often part of feature
extraction. Common methods include principal component
analysis (PCA) (Maćkiewicz and Ratajczak, 1993), linear
discriminant analysis (LDA) (Xanthopoulos et al., 2013), and
independent component analysis (ICA) (Lee, 1998). These
methods can effectively reduce dimensionality, extract important
spectral features, improve class separability, and optimize
classification performance. In the case of insufficient samples,
dimensionality reduction helps eliminate redundant and noisy
features, allowing the classification model to focus more on the
key features that distinguish land cover types, thereby improving
classification accuracy (Zhang et al., 2022d). Deep learning-based
feature extraction methods can also improve the adaptability of
classifiers to limited samples (Yasir et al., 2023; Maffei et al., 2020;
Liang et al., 2023). More recently, advanced architectures such as
graph neural networks (GNNs) and Transformers have been
introduced into hyperspectral image analysis (Zhang X.et al.,
2023; Scheibenreif et al., 2023; Sun et al., 2024), showing
promising performance in few-shot learning and lightweight
modeling scenarios. In addition, the introduction of attention
mechanisms offers new technical support for extracting and
integrating different features (Hu et al., 2022; Zhou et al., 2023;
Zhang et al., 2024). However, both traditional dimensionality
reduction methods and deep learning-based methods are pixel-
level approaches with high computational complexity that are
sensitive to noise and may not effectively capture spatial
contextual information and inter-pixel relationships, which are
crucial factors for improving classification accuracy in complex
scenes (Novelli et al., 2016; Aguilar et al., 2018).

On the other hand, data augmentation increases the diversity
and number of samples, which alleviates the problem of sample
imbalance, especially when minority class samples are missing.
Common data augmentation techniques include RCSMOTE
(Soltanzadeh and Hashemzadeh, 2021), which balances the class
distribution of the dataset by synthesizing minority class samples,
and generative adversarial networks (GANs) (Creswell et al., 2018),
which generates virtual samples similar to the real data to further
increase the number of minority class samples. Recent studies have
introduced zero-shot learning to hyperspectral image classification.
The SPECIAL framework leverages CLIP to generate pseudo-labels
and incorporates noisy label learning to enhance model

generalization (Pang et al., 2025). In addition, methods such as
generating pseudo-samples (Wang et al., 2020) and data mixing
(Zhou et al., 2022) can effectively expand the training set size,
thereby enhancing model’s generalization ability and stability. These
sample expansion methods can effectively address the problem of
data imbalance, improve the classifier’s ability to recognize land
cover types in minority classes, and ultimately increase classification
accuracy (Zhang Q. et al., 2023). However, most sample expansion
algorithms currently rely on pixel-level labels to generate new
samples. If the original labels are affected by labeling errors,
noise, or spectral variations, these disturbances will be carried
over to the samples generated during the expansion process. It is
important to note that noise in the labels can lead to mislabeling of
the expanded samples, which hinders model learning and
exacerbates classification errors.

To overcome the shortcomings of pixel-based data reduction
and enhancement methods, replacing pixels with super-pixels has
proven to be an effective solution (Liu et al., 2015). Superpixels,
sometimes called objects when focusing on multispectral images
(Blaschke, 2010), refer to irregular pixel regions with meaningful
visual features composed of adjacent pixels with similar textures,
colors, brightness, and other characteristics (Yan et al., 2022). By
grouping similar pixels within a local spatial domain, the
segmentation algorithm divides the 2D space into multiple
subregions that are internally similar, thus effectively reducing
computational complexity. Since the publication of the simple
linear iterative clustering (SLIC) algorithm (Achanta et al., 2012),
superpixel research has entered a period of rapid development due
to its simplicity and speed. For example, Zhao (Zhao et al., 2018)
proposed an improved SLIC search strategy called the fast linear
iterative clustering (FLIC) method. This method achieves rapid
convergence through active search based on prior information
and improves edge alignment through quick traversal. Ban et al.
(2018) proposed a Gaussian mixture model (GMM) based
superpixel method that uses a Gaussian distribution model to
describe superpixels and applies the expectation-maximization
(EM) algorithm to estimate the parameters of the Gaussian
distribution through maximum likelihood, finally assigning all
pixels to a specific Gaussian model. In recent years, many studies
have combined superpixel segmentation with other dimensionality
reduction methods to improve classification accuracy (Zhang et al.,
2025). In this way, multiscale superpixel principal component
analysis (MSuperPCA) (Jiang et al., 2018) performs principal
component analysis on superpixels at different scales using a
voting mechanism, while the superpixel hybrid discriminant
analysis (SHDA) method treats the spectral mean of superpixels
as nodes and combines linear discriminant analysis (LDA) with the
local linear embedding algorithm, improving classification accuracy
(Zhang Q. et al., 2022). Similarly, the unsupervised LDA framework
based on Gabor superpixels (Jia et al., 2021) and the decision fusion
method based on local binary patterns (LBP) (Huang et al., 2020)
also proved to enhance classification performance. Other
discriminant analysis methods (Fang et al., 2015a) and kernel
methods (Fang et al., 2015b) integrated with superpixels can also
effectively extract spatial-spectral features from hyperspectral
images. More recently, the band-by-band adaptive multi-scale
superpixel feature extraction (BAMS-FE) method (Li et al., 2023)
was shown to improve classification accuracy by exploring the
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various spatial structural features inherent in hyperspectral images
by combining spatial and spectral features. It also introduced the
entropy rate superpixel segmentation algorithm (Liu et al., 2011)
and explained variation (EV) evaluation metric.

It is worth noting that while superpixel segmentation methods
are widely used in hyperspectral image preprocessing, research
combining superpixels and data augmentation to address the
sampling problem in hyperspectral image classification is still
scarce. Furthermore, superpixel segmentation methods still face
the challenge of selecting the optimal superpixel scale when
processing images at different scales. The selection of superpixel
segmentation scales is often based on experience or manual tuning,
so continuous parameter adjustment is required in practice.
Particularly in hyperspectral image classification, due to image
complexity and high-dimensional features, automatically selecting
the optimal superpixel scale represents a challenge for
current research.

In summary, the method proposed in this work achieves a
systematic integration of the following three innovations:

1. An automatic superpixel scale selection strategy based on EV
trend analysis, which automatically determines the optimal
initial superpixel scale, avoiding dependence on manual
parameter settings and improving model adaptability.

2. A superpixel-level label generation mechanism with high
spatial consistency, which uses a majority voting strategy to
assign pixel-level labels to superpixels, thereby effectively
suppressing label noise caused by annotation errors and
spectral variability, thus improving stability in weak-
label scenarios.

3. A feature-level data augmentation strategy based on superpixel
labels, which integrates feature interval swapping, feature
smoothing, and Gaussian perturbation to increase the
diversity of the training data and improve the modeling of
intra-class variation, thereby optimizing generalization under
small sample sizes scenarios.

To the best of our knowledge, this is the first study focused on
integrating automatic superpixel scale selection, superpixel label
construction, and superpixel-based data augmentation into a
unified framework for hyperspectral image classification. It
systematically addresses three persistent challenges in small-
sample hyperspectral classification: i) the lack of automated
superpixel scale selection mechanisms; ii) the susceptibility of
pixel-level labels to noise and other disturbances; iii) the
difficulty of training robust models due to the limited number of
annotated samples.

2 Fundamentals

2.1 Entropy rate superpixel segmentation

Superpixel segmentation algorithms treat spatially adjacent
pixels as a subregion, thus achieving 2D image segmentation.
They employ local adjacency as a strong constraint and measure
the spectral similarity between pixels, typically implementing
optimal segmentation of 2D space through optimization

algorithms. In this work, we build on the entropy rate superpixel
segmentation (ERS) algorithm. ERS constructs an entropy rate-
based optimization process based on the graph segmentation
methodology. It is mainly applied to 2D grayscale images from
two fundamental theories: entropy and random walks. Compared
with conventional methods such as SLIC or LSC, ERS achieves
optimal segmentation by maximizing the graph entropy rate.
Consequently, it has demonstrated superior performance in
boundary preservation, compactness control, and spatiospectral
consistency management in hyperspectral images. Furthermore,
the superpixels generated by ERS exhibit improved structural
consistency and strong compatibility with the EV-based
segmentation quality-assessment criterion adopted in this study,
providing a more stable and reliable basis for further work.

2.1.1 Entropy and entropy rate
The definition of entropy was first proposed by Shannon

(Shannon, 1948), and it is thus also known as Shannon entropy.
In the field of information theory, the entropy of a random variable
is the average amount of information or uncertainty contained in
that random variable. For a discrete variable X whose values belong
to an Alphabet space and follow a 0–1 distribution (p: X → [0, 1]),
the entropy of the variable is given by Equation 1.

H X( ) � − ∑
x∈X

p x( )logb p x( )( ), (1)

Where p(x) represents the probability of the occurrence of each
variable value. The choice of the log base in the logarithmic function
has different meanings and applications. For example, when the base
is 2, the resulting unit of entropy is bits, while when the base is e, the
unit is nats. Finally, when the base is 10, the resulting units are called
dits, bans, or hartleys. An equivalent definition of entropy is the
expected value of the self-information of a variable.

The conditional entropy between two variables is defined in
Equation 2.

H X/Y( ) � − ∑
x,y∈X×Y

pX,Y x, y( )log pX,Y x, y( )
pY y( ) , (2)

Note that pX,Y(x, y) � P[X � x,Y � y] represents the probability of
x occurring given that y has occurred, while PY(y) � P[Y � y]
represents the probability of y occurring. This formula
characterizes the probability of the remaining random events
occurring, given that a certain random variable has occurred.

2.1.2 Random walk on graphs
A random walk is a stochastic process that describes a path

consisting of a series of random steps within amathematical space. A
one-dimensional random walk is also called a Markov chain. Let
X � {Xt\t ∈ T,Xt∈ V} denote a random walk process defined on a
graph G � (V,E). There is non-negative similarity (w) between the
vertices of the graph. If a random model is used to represent the
transition probability from one vertex to another, this probability is
given by Equation 3.

pi,j � Pr Xt+1 � vj
∣∣∣∣Xt � vi( ) � wi,j/wi (3)

This formula represents the probability of reaching vi from vj at the
next time step, where wi � ∑k: ei,k∈Ewi,k is the sum of the weights
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between all adjacent vertices of a vertex. The probability distribution
across all vertices is given by Equation 4.

μ � μ1, μ2, ..., μ V| |( )T � w1

wT
,
w2

wT
, ...,

w V| |
wT

( )T

(4)

where wT � ∑|V|
i�1wi is a constant.

Under these premises, the entropy rate of the random walk on
graph G is given by Equation 5.

H X( ) � H X2|X1( ) � ∑
i

μiH X2|X1 � vi( ) � −∑
i

μi ∑
j

pi,jlog pi,j

� −∑
i

wi

wT
∑
j

wi,j

wi
log

wi,j

wi

� −∑
i

∑
j

wi,j

wT
log

wi,j

wT
+∑

i

wi

wT
log

wi

wT
,

(5)
The ERS algorithm treats an image as a graph G � (V, E), with pixels
representing the vertices in the graph and the edge weights between
adjacent pixels determined by their similarity. The goal of ERS is to
obtain a graph that contains k subgraphs. The algorithm uses the
entropy rate of the random walk on the graph as the criterion to
obtain compact and homogeneous clusters.

This construction explained above maintains the stationary
distribution of the random walk unchanged
(i.e., μ � (μ1, μ2, ..., μ|V|)T � (w1

wT
, w2
wT
, ..., w|V|

wT
)T). The transition

probabilities within the vertex set are defined as Equation 6.

pi,j A( ) �

wi,j

wi
if i ≠ j and ei,j ∈ A

0 if i ≠ j and ei,j ∉ A

1-
∑j: ei,j∈Awi,j

wi
if i � j,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

Further, the entropy rate of the random walk on graph G � (V,A)
can be redefined as Equation 7.

H A( ) � −∑
i

μi ∑
j

pi,j A( )log pi,j A( )( ) (7)

Although adding any edge in set A will increase the entropy rate, the
largest increase in entropy occurs when compact and homogeneous
edges are selected. The reason for the monotonic increase in entropy
with the addition of any edge is that each edge increases the
uncertainty of the random walk. Figure 1 shows how graph
structure is affected by the addition of edges, influencing the
entropy rate and thus the effect of superpixel segmentation. It is
important to highlight that the higher the entropy rate, the greater

the uncertainty of the information in the graph, making the
segmentation more likely to be more accurate.

2.2 Explained variation value

The categorization of evaluation metrics is based on the
availability of ground-truth segmentation labels, resulting in two
main types: supervised and unsupervised metrics. Supervised
metrics include boundary recall (Rec), subsegmentation error
(UE), compactness (CO), achievable segmentation accuracy
(ASA), and mean boundary distance (MDE). All of these require
reference segmentation maps for their computation. In contrast,
unsupervised metrics leverage intrinsic properties of superpixels and
pixel distributions in the original image, with explained variation
(EV) and intra-cluster variation (ICV) being representative
examples. ICV quantifies the spectral variation within a
superpixel, while EV measures the adherence of the superpixel
boundary to the original image. Note that when developing
metrics to evaluate superpixel segmentation results, the similarity
between neighboring superpixel blocks needs to be considered. In
our approach, we choose the EV as the criterion to evaluate the
effectiveness of multi-level superpixel optimization. The EV
calculation formula is provided in Equation 8.

EV S( ) � ∑i μi − μ( )2
∑i xi − μ( )2 (8)

Where it is presented the sum over i pixels of an image I, being xi the
actual pixel value, µ is the global pixel mean for the image I, and µi is
the mean value of the pixels assigned to the superpixel that contains
xi. As a result, EV quantifies the image variation explained by
superpixels. Higher EV values imply greater explanation of the
image’s spectral variation.

2.3 Waveband-by-waveband adaptive
multi-scale superpixel feature
extraction algorithm

The hyperspectral image is represented as I (H × W × C), where
its length, width, and number of bands are denoted by H, W, and C.
After performing PCA on the hyperspectral image, the dataset is
represented as Ipca (H × W × P), where the number of retained
principal components is denoted as P. Each pixel of Ipca is
represented as xi = 1, 2, / n, with n = H × W and xi (c)
representing the grayscale value of the i pixel in the c principal

FIGURE 1
Entropy rate change diagram.
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component. The initial superpixel segmentation scale is denoted as
Ssize, while the relationship between the step and the number of
iterations is given by segsizestep = Ssize × step. The number of
superpixels to be segmented in each iteration is given by Equation 9.

m � H × W

segsizestep × segsizestep
(9)

The segmented superpixels are denoted as Si(with i � 1, 2,/m),
while |Si| represents the average grayscale value of the superpixel i.

The adaptive capability of the superpixel segmentation
algorithm to spatial and spectral features is crucial for joint
spatiospectral feature extraction from hyperspectral images.
Conventional algorithms usually apply superpixel
segmentation to the first principal component of the PCA-
transformed image and then compute the spectral mean of
each superpixel, but this approach fails to fully exploit spatial
information across bands. To address this, the proposed method
applies ERS segmentation to each band of the hyperspectral
image, either in the original feature space or in the PCA-
transformed space, with input dimensions ranging from one
to several bands. The core idea is to extract joint
spatiospectral features through multi-scale superpixel
segmentation, with the optimal segmentation scale determined
by the EV metric to improve feature extraction.

In this process, the hyperspectral image is represented as a three-
dimensional structure (length, width, and bands), then reduced by
PCA to a few principal components. Superpixel segmentation is
performed on the PCA-processed data, iteratively adjusting the
segmentation scale to produce multiple segmentation results.
Since a single scale can only capture features at one spatial
resolution, combining multiple scales allows extraction of more
comprehensive spatiospectral features. The EV metric serves as
the criterion for selecting the optimal segmentation scale by
measuring boundary adhesion between superpixels and the
original image. In summary, the algorithm integrates ERS-based
multi-scale superpixel segmentation with EV-based scale
optimization to efficiently extract joint spatiospectral features.
The integration of entropy rate superpixel segmentation and
adaptive multi-scale feature extraction for each band forms the
base module of this methodology, with implementation details
intentionally omitted.

3 Description of the proposed methods

As is well known, obtaining accurate labeling data is difficult in
hyperspectral classification, resulting in a shortage of labeled
samples and affecting classification performance. To address this
problem, this study proposes a comprehensive hyperspectral image
classification method that combines adaptive EV-based superpixel
scale selection, superpixel label expansion, and data expansion. This
section is divided into three parts.

It should be noted that in the feature extraction stage, this study
employs the existing BAMS-FE module without any modification,
using it solely as a stable baseline to provide spatial–spectral
consistent inputs for the subsequent modules of automatic
superpixel scale selection, superpixel label construction, and
superpixel-based augmentation. The novelty of this work does

not lie in improving BAMS-FE, but rather in proposing three
new modules within the AU-Super framework built upon it.

3.1 Automated search for the optimal initial
superpixel scale

In hyperspectral image classification, the choice of superpixel
scale directly affects the effectiveness of spatial–spectral feature
representation. An excessively large scale may mix pixels from
different classes into a single superpixel, while an overly small
scale can lead to over-segmentation, increased computational
cost, and the introduction of noise. Traditional approaches rely
on manual parameter tuning, which is subjective and lacks
consistency across datasets. To address this issue, we propose an
adaptive scale selection method based on explained variation (EV),
which enables more robust and generalizable superpixel
segmentation.

The ERS algorithm was used to segment the PCA-processed
images into superpixels of various scales, as it balances segmentation
accuracy with computational efficiency. Note that the scale range of
the superpixels can be adjusted to explore different levels of detail in
the images. To determine the optimal superpixel scale, the EV value
was calculated for each superpixel scale to assess the captured
variance. EV serves as a robust metric for feature information
retained at each scale; a higher EV indicates that the superpixel
segmentation explains more variance. To avoid potential overfitting
to specific datasets, the convergence trend of EV is used as the
selection criterion rather than the absolute EV value, ensuring the
selected scale reflects generalizable spatiospectral structures. In
addition, the proposed method was validated across three
heterogeneous datasets (Indian Pines, Salinas, and Pavia
University), and the consistent improvements demonstrate that
the automatic scale search does not overfit to a single dataset but
provides stable segmentation quality in diverse scenarios. We then
compared the EV values across successive iterations and selected the
optimal scale at the point where the EV value converges, indicating
that further increasing the number of superpixels yields diminishing

FIGURE 2
Automation diagram to find the optimal initial superpixel scale.
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returns in explained variance, thus achieving a balance between
detail preservation and computational efficiency. This stabilization
point was identified by monitoring changes in EV as the scale
increased and determining the scale at which further increases
yielded the least additional information. Finally, we selected the
scale that retained the most feature information as the initial optimal
superpixel scale.

As an example, suppose the candidate superpixel scales are 3, 5,
7, 9, 11, 13, 15, 20, 25, 30, and 35. As shown in Figure 2, the first
number in the notation (e.g., “3–10” or “5–13”) denotes the initial
scale, while the second indicates the number of iterations required
for the EV value to converge. The convergence is defined as the point
where the EV value approaches zero or stabilizes. For example, the
blue curve in Figure 2 corresponds to an initial scale of 3, with its first
point on the x-axis located at 3. This visualization allows for a
straightforward comparison of EV convergence across different
initial scales.

Continuing with the example depicted in Figure 2, we would
select an initial superpixel scale of 5 (13 iterations) based on the
following reasoning. The initial scale requiring more iterations
means that, at this scale, the image contains more complex
structural information and richer details during the superpixel
segmentation process. That is, the fact that the algorithm
requires more steps to reach stability (i.e., for the EV curve to
converge) indicates that this scale can capture more spatial-spectral
details of the image. It is worth noting that, although the initial scale
of 3 produces a higher final EV value, it requires fewer iterations.
This suggests that the information extracted at this scale is relatively
simple or too focused on fine details, lacking hierarchical variation.
In contrast, the scale of five can provide clearer feature layering and
more complex structural information throughout the processing,
making it more suitable as an initial scale for further analysis.

In summary, the proposed method for automatic superpixel
scale selection, based on the EV criterion, efficiently determines the
optimal initial scale for superpixel segmentation, thereby avoiding
the subjectivity and instability brought about by manual parameter
tuning. This module provides a stable and reliable structural
foundation for subsequent superpixel labeling and feature
enhancement strategies. The next section describes how to
construct robust superpixel labels based on segmentation results
to further mitigate the impact of label noise in small-sample
classification tasks.

3.2 Superpixel enhanced training data

Pixel-level annotations often suffer from noise and
inconsistency, especially in hyperspectral data where mixed pixels
and boundary pixels significantly reduce classification reliability.
Moreover, the limited number of pixel-level samples can make the
training process unstable. To overcome these challenges, we elevate
labels from the pixel level to the superpixel level, leveraging spatial
consistency to suppress annotation noise and construct a more
balanced and reliable training sample set.

In this section, a majority voting mechanism is used to map the
original pixel-level labels to spatially consistent superpixel-level
labels, significantly reducing labeling errors and noise
interference. These structurally consistent superpixel labels

provide a more stable supervisory signal for training with small
samples. Based on these labels, we develop a set of diversity
enhancement strategies to expand the distribution of limited
training samples, as presented in the next section. In this sense,
and after reducing the dimensionality of the hyperspectral image
using PCA and preserving the first principal component, the ERS
segmentation algorithm is applied to the previously determined
optimal superpixel scale (see Section 3.1). Superpixel segmentation
efficiently clusters spatially adjacent pixels with similar spectral
properties into coherent regions. Based on the segmentation
results, pixel-level ground-truth labels are mapped to superpixel-
level labels. Each superpixel is assigned the label of the majority class
within its region. This majority voting method ensures that the
superpixel label represents the dominant class, thereby reducing the
influence of noise and mislabeled pixels. Equation 10 defines this
mapping scheme.

Lsuperpixel i( ) � argmax
c

∑
j∈Si

∐ Lpixel j( ) � c( ) (10)

where Lsup erpixel(i) is the label of superpixel i, Si represents the set of
pixels in superpixel i, Lpixel(j) is the pixel-level label, c denotes the
class, and ∐ is the indicator function.

To address class imbalance and ensure diverse training data, a
fixed number of superpixels are sampled for each class. This
sampling process is controlled by parameter N, which specifies
the number of superpixels to be selected per class. The balanced
sampling ensures that each class is equally represented regardless of
its prevalence in the original ground truth data. The sampled
superpixel-level labels are then projected back to pixel-level
labels, creating an enriched and denoised training dataset that
preserves both spatial and spectral consistency.

Once the superpixel-level labels have been generated, the
corresponding features are extracted from the hyperspectral
image using the BAMS-FE algorithm. The extracted features
include spatial and spectral information, providing a robust
representation of each superpixel. These features are then scaled
and used as input for classifier training.

3.3 Data augmentation

Under small-sample conditions, models are often prone to
underfitting or over-reliance on a few specific samples.
Traditional pixel-level augmentation may disrupt the consistency
between spectral and spatial information. To better preserve
spatiospectral integrity, we propose superpixel-level feature
augmentation strategies, including feature interval swapping,
feature smoothing, and Gaussian perturbation. These strategies
not only increase intra-class diversity but also enhance the
robustness of the model under limited training data. To further
improve sample diversity and the classifier’s generalization ability,
multiple augmentation strategies are integrated while maintaining
the inherent spatiospectral relationships of hyperspectral data.

3.3.1 Feature interval swapping
This technique increases intra-class variability by randomly

exchanging a subset of features between two superpixels of the
same class. First, two distinct samples (sample1 and sample2) are
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selected randomly for each iteration. Second, half of the features are
randomly chosen and swapped between the two samples, ensuring
that the augmented data reflect plausible variations within the
same class.

The swapped features for each sample are mathematically
defined as given in Equation 11.

Faugmentation � Forig
1 , Forig

2 swap F1, F2( )∣∣∣∣{ } (11)

where F1 and F2 represent feature subsets of the two samples, and
Forig1 and Forig2 denote d-dimensional feature vectors of the selected
samples, being d the number of extracted spectral-spatial features
after preprocessing and dimensionality reduction.

3.3.2 Feature smoothing
To simulate local continuity and reduce noise in the training

data, smoothing is applied to the selected features. For each feature,
its value is replaced with the average of its neighboring features, if
available. This operation is applied with a 50% probability for
randomly selected features in the sample. This process ensures
that the augmented samples maintain spatial coherence, which is
crucial in hyperspectral image analysis.

3.3.3 Feature noise addition
Gaussian noise is added to the features that are not smoothed

during the augmentation process. This introduces subtle variability,
helping the model become more robust to noise in real-world data.
The noise follows a Gaussian distribution as expressed in
Equation 12.

Naugmentation � Forig + nN 0, σ2( ) (12)

where σ is the standard deviation that controls the intensity of the
Gaussian noise. In this study, σ is set as a fixed value (σ = 0.05) based
on empirical evaluation to ensure a balance between feature stability
and variability during augmentation.

By integrating feature interval swapping, smoothing operations,
and Gaussian perturbation, a multi-strategy augmentation
framework based on superpixel labels is constructed. This
framework effectively expands the spectral-spatial distribution of
training samples and improves the classifier’s ability to model intra-
class variability. At this point, the overall methodological framework
of this study is fully established.

As shown in the ablation experiment (Table 10), the
combination of these three types of enhancement methods has a
better effect, further verifying their synergistic role in improving the
generalization ability of the model.

3.3.4 Augmentation workflow
The augmentation process begins by pooling superpixel-level

samples by class. For each class, the algorithm iteratively applies the
above techniques to generate a specified number of augmented
samples. The steps include: i) randomly selecting two samples
from the class; ii) applying feature interval swapping, followed by
feature smoothing or feature noise addition with a 50% probability;
iii) repeating the process until the desired number of augmented
samples is reached.

The augmented samples are then combined with the original
training data, creating a richer and more diverse dataset. The

processed superpixel-enhanced training data are fed into a
random forest classifier. The classifier is trained on the
augmented data, and predictions are validated against ground-
truth labels. In summary, this study provides a robust framework
for hyperspectral image classification, termed AU-Super, that
effectively addresses the challenges of label sparsity and manual
parameter tuning. The specific flowchart is illustrated in Figure 3.

4 Data sets and experimental design

All experiments were conducted using three public datasets: the
Indian Pines dataset, the Pavia University dataset, and the Salinas
dataset. These datasets have been widely used in the field of
hyperspectral image classification in recent years (Xie et al.,
2019). The spatial resolution of these datasets ranges from 5 cm
to 20 m, and the number of spectral bands varies from 100 to 270.
The land cover classes in these datasets include vegetation, buildings
and other categories.

Indian Pines is one of the first publicly available hyperspectral
datasets used for classification tasks. It was acquired in 1992 by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over an
agricultural area in Indiana, United States. The original image
consists of 220 contiguous spectral bands covering the
wavelength range 0.4–2.5 μm. Since bands 104–108, 150–163,
and band 220 are severely affected by water absorption and
cannot effectively reflect surface information, these bands were
removed in this study. The remaining 200 bands were used for
experiments. The spatial resolution of the image is 20 m. The dataset
contains 16 land cover classes, with an unbalanced distribution of
labeled samples among classes.

The Pavia University dataset was acquired in 2003 by the
Reflective Optics Spectrographic Imaging System (ROSIS-03) at
the University of Pavia, Italy. This spectrometer captures
115 contiguous spectral bands in the wavelength range
0.43–0.86 μm, with a spatial resolution of 1.3 m. In this study,
13 noise-affected bands were removed, resulting in a hyperspectral
image composed of 103 spectral bands. The image contains a total of
42,776 labeled pixels, classified into nine land cover categories.

The Salinas dataset, similar to the Indian Pines dataset, was also
acquired by the AVIRIS sensor over the Salinas Valley in California,
United States. The spatial resolution of this dataset is 3.7 m. After
removing bands 108–112, 154–167, and band 224 due to low signal-
to-noise ratios, 204 bands were retained. The image contains a total
of 54,129 labeled pixels and includes 16 different land cover classes.

The Indian Pines and Salinas datasets were provided by the
California Institute of Technology, USA, while the Pavia University
dataset was collected by the University of Pavia, Italy. The three datasets
are publicly accessible at the following link:https://www.ehu.eus/
ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.

Tables 1–3 summarize the land cover types within the three
aforementioned datasets.

The experiments were carried out with a limited number of
samples. For each class, 1 to 10 samples were selected as the training
set. Each configuration was repeated ten times, recording the average
and standard deviation of the performance metrics used to carry out
the accuracy evaluation. In each run, training samples were
randomly selected to ensure the robustness and reliability of the
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experiment, extracting N (1:10) training samples without
replacement (i.e., the same sample is not selected more than once
in a single run). Per-class classification accuracy, overall precision
(OA), average precision (AA), and kappa coefficient were used as
performance metrics for the experiments. Per-class classification
accuracy, also known as recall, is calculated as the number of
correctly classified pixels in each class divided by the total
number of pixels in that class. OA is defined as the ratio of
accurately classified pixels to the entire dataset, while the kappa
coefficient is used to assess the consistency between the ground truth
and the classification result. AA is the average of the recall values for
each class.

Several state-of-the-art (SOTA) methods were used as a
benchmark to evaluate the performance of the proposed method.
These included SuperPCA and MSuperPCA (Jiang et al., 2018),
superpixel-adaptive singular spectral analysis (SpaSSA) (Sun et al.,
2022), superpixel-based Brownian descriptor (SBD) (Zhang et al.,
2022c), superpixel-level hybrid discriminant analysis (SHDA)
(Zhang et al., 2022b), and band-by-band adaptive multi-scale
superpixel feature extraction system (BAMS-FE) (Li et al., 2023).
These methods cover key directions in current hyperspectral image
classification, such as superpixel segmentation, multi-scale
processing, small sample learning, and feature fusion. These
reference algorithms represent some of the most representative

FIGURE 3
Flowchart corresponding to the proposed method.

TABLE 1 Class labels information for the Indian Pines dataset.

Id Class names Number of pixels Label colors

1 Alfalfa 46

2 Corn-no till 1,428

3 Corn-min till 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oat 20

10 Soybean-no till 972

11 Soybean-min till 2,455

12 Soybean-clean 683

13 Wheat 205

14 Woods 1,265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93
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techniques developed in recent years in the field of hyperspectral
image preprocessing for classification.

Two more non-superpixel-based methods were included to be
used as benchmarks. One of them is a novel multi-scale 2-D singular
spectrum analysis (2-D-SSA) fusion method based on PCA and
segmented PCA (SPCA). It is based on obtaining multi-scale spatial
features by applying multi-scale 2-D-SSA on the SPCA-reduced
dimensional images to be subsequently fused with the PCA-derived
global spectral features to form multi-scale spectral-spatial feature
principal components (MSF-PCs) (Fu et al., 2022). The other was
multi-hop attention graph and multi-scale convolutional fusion
network (AMGCFN) (Zhou et al., 2023), a recent neural

network-based method that applies an end-to-end deep learning
model that usually requires large amounts of labeled samples. It is
important to note that we have intentionally avoided including more
end-to-end deep learning methods (e.g., those based on GNNs or
Transformers) for two reasons. First, they require a large number of
labeled samples, which is inconsistent with the focus of this study,
namely, small-sample and superpixel-based enhancement. In this
sense, including these models may lead to unfair comparisons.
Second, this work focuses on traditional classifiers (e.g., Random
Forest) combined with preprocessing and data augmentation
strategies, aiming to improve learning performance on small
samples rather than designing new classifiers.

All experiments in this study were conducted on a computer
system equipped with an Intel i7-13700K processor. Feature
extraction procedures for algorithms such as SuperPCA,
MSuperPCA, SpaSSA, SBD, SHDA, and MSF-PCs were
performed using MATLAB 2022b platform, while BAMS-FE
algorithm was implemented by integrating Python 3.10 and
MATLAB 2022b. Finally, AMGCFN was executed in Python
3.10 environment with the help of PyTorch 1.11 open-source
library. The classification tasks were performed in Python
3.10 using the scikit-learn library 1.3.0, employing Random
Forest (RF) as the classifier for training and prediction. The
hyperparameters of all comparative algorithms were strictly
configured according to the predefined configurations in their
original publications or published source codes, ensuring the
fairness and consistency of the experimental comparisons.

5 Results

5.1 AU-super performance. General
quantitative analysis

Experiments were conducted under multisampling
configurations with 1, 3, 5, and 10 randomly drawn samples per
class for training. For reasons of space and clarity, the results are
partially presented in Tables 4–6. Indeed, while Tables 4 and 6 show
the results for five training samples per class, Table 5 shows the
results for a single training sample per class. There are two main
reasons for doing this:

i. This work seeks to compare different preprocessing methods
for classifying HIS data with different numbers of training
samples. Therefore, the three tables cover two typical scenarios
(with one and five samples per class) to demonstrate the
stability and adaptability of the compared methods in their
performance under different conditions.

ii. The Salinas dataset was selected to represent the results of the
one-sample-per-class comparison due to its high spectral
separability, which generally produces exceptional
classification results. In this sense, with the standard five-
sample configuration, classification accuracy often
approaches saturation, which can obscure performance
differences between methods and make fair comparisons
difficult. To improve sensitivity and more accurately assess
the performance of each method under limited sample
conditions, we specifically selected the one-sample-per-class

TABLE 2 Class labels information for the Pavia University dataset.

Id Class names Number of pixels Label colors

1 Asphalt 6,631

2 Meadows 3,682

3 Gravel 1,345

4 Trees 947

5 Painted metal sheets 1,330

6 Bare soil 18,649

7 Bitumen 2099

8 Self-blocking bricks 3,064

9 Shadows 3,682

TABLE 3 Class labels information for the Salinas dataset.

Id Class names Number of
pixels

Label
colors

1 Broccoli green weeds 1 2,099

2 Broccoli green weeds 2 3,726

3 Fallow 1976

4 Fallow rough plow 1,394

5 Fallow smooth 2,678

6 Stubble 3,959

7 Celery 3,579

8 Grapes untrained 11,271

9 Soil vineyard develop 6,203

10 Corn senesced green
weeds

3,278

11 Lettuce romaine 4weeks 1,068

12 Lettuce romaine 5weeks 1,927

13 Lettuce romaine 6weeks 916

14 Lettuce romaine 7weeks 1,070

15 Vinyard untrained 7,268

16 Vinyard vertical trellis 1,807
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configuration for the accuracy evaluation performed on the
Salinas dataset (Table 5).

Overall, and when integrated with the RF classifier, the proposed
AU-Super method showed solid performance, consistently
outperforming existing techniques to achieve remarkable OA and
AA scores across all datasets.

Regarding the Indian Pine dataset (Table 4), AU-Super ranked
first in terms of per-class classification accuracy in up to 11 classes
out of 16, followed by BAMS-FE and MSuperPCA, with a notable
difference of more than five percentage points. AU-Super’s
performance was particularly excellent (100% recall) in detecting
agricultural crops such as grass-pasture, hay-windrowed, oat and
wheat, indicating its promising application in agriculture. The only
class that showed a very low recall rate (below 60%) was no-till corn,
although the other benchmark methods also performed poorly for
this class.

In the case of the Salinas dataset (Table 5), it is worth noting that
the algorithm proposed in this work achieved even better
performance (OA = 99.65%) only working with one training
sample per class, reaching first place in up to 14 of the
16 classes, albeit tied seven times with BAMS-FE. However, its
performance only surpassed the BAMS-FE method by a difference
of 1.52 percentage points in terms of overall accuracy for the
16 classes involved. This dataset focuses more on field crops such
as broccoli, celery, lettuce, and vineyards, also including agricultural
practices such as fallows and stubble, all of them showing a great

spectral separability. Therefore, considering the excellent
performance of AU-Super on this dataset, its application could
be recommended for agricultural monitoring using HIS data.

The Pavia University dataset contains land covers quite different
to those contained in the Indian Pine or Salinas datasets. Actually,
this dataset is more focused on addressing urban land covers such as
asphalt, gravel, shadows, or painted metal sheets, which can be very
useful for segmenting roads and buildings within the framework of a
road infrastructure safety assessment (Brkić et al., 2023). AU-Super
performed best in five of the nine classes, with recall rates above 90%
with just five training samples across up to six classes, including
meadows, painted metal sheets, bare ground, bitumen, self-blocking
bricks, and shadows, and only partially failed to correctly detect trees
(recall = 79.33%). BAMS-FE came in second, but very close to AU-
Super, with a difference of just 0.15 percentage points in overall
accuracy. The other benchmark methods performed significantly
worse, failing to even reach 80% overall accuracy. It is important to
highlight the ability of BAMS-FE to discriminate between asphalt
and bare soil (recall rates of 92.24% and 99.40%, respectively), which
suggests that this method can be promisingly used in tasks related to
road segmentation for pavement distress monitoring (Chen
et al., 2024).

Regarding the stability of the proposed method’s performance
when modifying the randomly drawn training sample set to
configure ten repetitions, the results in Tables 4–6 demonstrate
that the standard deviations of per-class classification accuracy
values are quite low. This finding can be applied to the rest of

TABLE 4 Per-class classification accuracy for different feature extraction algorithms using random forest as a classifier on the Indian Pines dataset with five
training samples per class. The values following the symbol ± represent the standard deviation computed over ten independent runs. Metrics are presented
as a percentage (%). The best results are highlighted in bold.

Class no. AU-super MSuperPCA SpaSSA SHDA SBD BAMS-FE AMGCFN SuperPCA

1 98.22 ± 0.10 100.00 ± 0.00 77.80 ± 0.13 97.80 ± 0.01 97.80 ± 0.01 99.02 ± 0.01 98.29 ± 0.03 100.00 ± 0.00

2 56.21 ± 0.10 64.79 ± 0.10 36.44 ± 0.12 73.72 ± 0.10 46.05 ± 0.10 62.46 ± 0.12 58.48 ± 0.09 50.71 ± 0.10

3 93.06 ± 0.10 65.84 ± 0.15 41.74 ± 0.11 72.78 ± 0.17 68.39 ± 0.15 70.18 ± 0.18 66.48 ± 0.12 60.77 ± 0.16

4 81.13 ± 0.11 87.56 ± 0.11 71.14 ± 0.15 84.07 ± 0.13 80.82 ± 0.22 90.95 ± 0.09 93.81 ± 0.08 68.32 ± 0.16

5 100.00 ± 0.00 85.60 ± 0.08 56.74 ± 0.14 80.08 ± 0.07 80.56 ± 0.16 78.13 ± 0.07 78.52 ± 0.09 88.77 ± 0.09

6 99.06 ± 0.13 92.64 ± 0.15 50.88 ± 0.08 93.66 ± 0.06 90.73 ± 0.08 94.52 ± 0.09 88.37 ± 0.09 79.18 ± 0.15

7 96.63 ± 0.07 96.30 ± 0.02 94.78 ± 0.10 96.52 ± 0.02 92.17 ± 0.21 99.78 ± 0.01 100.00 ± 0.00 96.30 ± 0.02

8 100.00 ± 0.00 100.00 ± 0.00 85.17 ± 0.07 94.13 ± 0.11 85.00 ± 0.17 100.00 ± 0.0 98.11 ± 0.03 93.15 ± 0.12

9 100.00 ± 0.00 100.00 ± 0.00 86.67 ± 0.12 100.00 ± 0.0 95.00 ± 0.22 100.00 ± 0.0 97.67 ± 0.08 100.00 ± 0.00

10 88.37 ± 0.13 83.82 ± 0.05 38.46 ± 0.12 72.43 ± 0.15 65.45 ± 0.15 81.61 ± 0.06 76.57 ± 0.08 70.32 ± 0.14

11 88.02 ± 0.10 77.49 ± 0.12 47.56 ± 0.15 66.90 ± 0.10 59.00 ± 0.13 79.49 ± 0.10 70.24 ± 0.10 45.21 ± 0.10

12 83.11 ± 0.08 60.98 ± 0.12 36.52 ± 0.09 80.53 ± 0.18 61.85 ± 0.17 72.24 ± 0.11 60.01 ± 0.13 46.72 ± 0.11

13 100.00 ± 0.00 99.52 ± 0.00 85.55 ± 0.09 99.52 ± 0.00 99.52 ± 0.00 99.88 ± 0.00 97.47 ± 0.03 99.55 ± 0.00

14 89.81 ± 0.14 89.38 ± 0.10 74.22 ± 0.12 94.21 ± 0.06 86.42 ± 0.10 93.94 ± 0.07 85.05 ± 0.10 62.16 ± 0.09

15 99.55 ± 0.00 93.40 ± 0.10 69.57 ± 0.10 86.75 ± 0.14 61.15 ± 0.12 91.81 ± 0.09 95.91 ± 0.06 89.10 ± 0.14

16 100.00 ± 0.00 96.42 ± 0.05 94.09 ± 0.06 100.00 ± 0.0 98.01 ± 0.02 100.00 ± 0.0 97.95 ± 0.03 89.32 ± 0.12

OA 86.50 ± 3.28 79.99 ± 2.92 52.55 ± 4.08 79.13 ± 2.91 68.61 ± 4.24 81.34 ± 3.39 75.61 ± 3.40 62.55 ± 2.60

AA 92.07 ± 4.93 87.11 ± 7.14 65.46 ± 10.83 87.07 ± 8.06 79.25 ± 12.51 88.38 ± 6.34 85.18 ± 7.10 77.47 ± 9.41
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the benchmark methods. Thus, all the tested methods can extract
valuable information for the RF classifier from a small number of
training samples, regardless of the composition of this sample set. In
this way, even the end-to-end deep learning model AMGCFN
provided competitive results despite the small number of labeled
samples available to train the network, achieving OA values of

75.61%, 86.36% and 82.88% for the Indian Pines, Salinas, and Pavia
University datasets, respectively.

Overall, when integrated with the RF classifier, the proposed
AU-Super method demonstrates stable performance and
consistently outperforms existing techniques. To provide a clearer
comparison, Figure 4 presents line plots of OA and AA under

TABLE 5 Per-class classification accuracy for different feature extraction algorithms using random forest as a classifier on the Salinas dataset with only one
training sample per class. The values following the symbol ± represent the standard deviation computed over ten independent runs. Metrics are presented
as a percentage (%). The best results are highlighted in bold.

Class no. AU-super MSuperPCA SpaSSA SHDA SBD BAMS-FE AMGCFN SuperPCA

1 100.00 ± 0.00 100.00 ± 0.0 51.87 ± 0.19 99.40 ± 0.02 100.00 ± 0.0 100.00 ± 0.00 97.81 ± 0.03 55.29 ± 0.13

2 100.00 ± 0.00 99.94 ± 0.00 77.67 ± 0.18 80.60 ± 0.16 99.04 ± 0.04 100.00 ± 0.00 99.54 ± 0.01 31.15 ± 0.08

3 100.00 ± 0.00 99.99 ± 0.00 48.72 ± 0.18 78.07 ± 0.18 46.69 ± 0.11 100.00 ± 0.00 95.93 ± 0.08 69.03 ± 0.19

4 100.00 ± 0.00 90.81 ± 0.09 80.49 ± 0.24 97.33 ± 0.06 99.93 ± 0.00 99.83 ± 0.00 92.97 ± 0.08 55.33 ± 0.22

5 99.83 ± 0.10 65.37 ± 0.20 45.20 ± 0.19 85.63 ± 0.19 97.52 ± 0.09 99.06 ± 0.00 82.51 ± 0.19 46.99 ± 0.19

6 100.00 ± 0.00 93.75 ± 0.10 90.86 ± 0.03 88.04 ± 0.14 99.92 ± 0.00 99.89 ± 0.00 95.21 ± 0.04 40.94 ± 0.17

7 99.91 ± 0.13 53.00 ± 0.08 68.17 ± 0.22 88.32 ± 0.12 99.01 ± 0.00 100.00 ± 0.00 97.45 ± 0.04 29.21 ± 0.07

8 99.40 ± 0.23 42.89 ± 0.15 40.90 ± 0.22 59.85 ± 0.22 55.17 ± 0.33 93.14 ± 0.13 57.20 ± 0.28 16.44 ± 0.07

9 100.00 ± 0.00 82.68 ± 0.16 79.68 ± 0.25 94.59 ± 0.05 99.49 ± 0.01 99.98 ± 0.00 100.00 ± 0.00 37.50 ± 0.12

10 100.00 ± 0.00 53.62 ± 0.21 31.47 ± 0.15 81.18 ± 0.16 57.95 ± 0.24 96.61 ± 0.02 84.51 ± 0.14 38.59 ± 0.16

11 100.00 ± 0.00 58.78 ± 0.22 44.43 ± 0.24 96.41 ± 0.09 97.15 ± 0.01 97.99 ± 0.02 95.76 ± 0.06 49.33 ± 0.20

12 100.00 ± 0.00 72.61 ± 0.14 75.03 ± 0.17 89.77 ± 0.13 98.68 ± 0.06 100.00 ± 0.00 95.38 ± 0.10 40.75 ± 0.12

13 98.36 ± 0.01 98.24 ± 0.00 86.06 ± 0.20 92.24 ± 0.14 97.82 ± 0.00 98.03 ± 0.00 96.92 ± 0.04 98.25 ± 0.00

14 97.43 ± 0.05 96.31 ± 0.03 85.88 ± 0.18 80.80 ± 0.26 94.20 ± 0.08 97.95 ± 0.01 94.23 ± 0.07 54.59 ± 0.13

15 99.53 ± 0.23 89.86 ± 0.14 67.05 ± 0.28 72.40 ± 0.19 72.82 ± 0.30 99.52 ± 0.00 89.87 ± 0.15 31.90 ± 0.12

16 100.00 ± 0.00 99.07 ± 0.00 52.64 ± 0.24 68.65 ± 0.21 80.45 ± 0.29 100.00 ± 0.00 94.64 ± 0.06 39.36 ± 0.12

OA 99.65 ± 3.34 74.51 ± 5.55 61.53 ± 4.18 79.59 ± 4.30 81.29 ± 6.64 98.13 ± 2.66 86.36 ± 4.81 36.21 ± 3.32

AA 99.50 ± 4.09 81.06 ± 9.40 64.13 ± 19.8 84.58 ± 14.5 87.24 ± 9.69 98.88 ± 1.14 91.87 ± 8.58 45.92 ± 13.0

TABLE 6 Per-class classification accuracy for different feature extraction algorithms using random forest as a classifier on the Pavia University dataset with
five training samples per class. The values following the symbol ± represent the standard deviation computed over ten independent runs. Metrics are
presented as a percentage (%). The best results are highlighted in bold.

Class no. AU-super MSuperPCA SpaSSA SHDA SBD BAMS-FE AMGCFN SuperPCA

1 89.14 ± 0.03 44.39 ± 0.08 43.86 ± 0.14 74.10 ± 0.01 70.28 ± 0.10 92.24 ± 0.06 76.75 ± 0.12 39.50 ± 0.08

2 94.53 ± 0.06 80.24 ± 0.08 48.53 ± 0.11 73.41 ± 0.10 76.65 ± 0.13 86.15 ± 0.10 80.55 ± 0.11 81.46 ± 0.08

3 89.13 ± 0.04 78.85 ± 0.10 39.37 ± 0.10 84.60 ± 0.17 84.18 ± 0.11 88.28 ± 0.10 86.03 ± 0.10 78.55 ± 0.08

4 79.33 ± 0.02 60.57 ± 0.07 65.71 ± 0.14 68.34 ± 0.13 59.46 ± 0.11 85.50 ± 0.09 76.39 ± 0.12 32.29 ± 0.07

5 100.00 ± 0.00 98.25 ± 0.02 96.21 ± 0.04 97.12 ± 0.07 94.31 ± 0.04 99.69 ± 0.00 99.75 ± 0.00 98.65 ± 0.01

6 90.15 ± 0.15 82.40 ± 0.10 64.35 ± 0.13 84.26 ± 0.06 72.79 ± 0.22 99.40 ± 0.02 94.16 ± 0.08 84.26 ± 0.07

7 100.00 ± 0.00 98.40 ± 0.06 52.63 ± 0.10 96.97 ± 0.02 86.82 ± 0.03 100.00 ± 0.00 94.68 ± 0.10 89.80 ± 0.06

8 96.27 ± 0.10 93.39 ± 0.06 57.91 ± 0.12 74.03 ± 0.11 82.00 ± 0.15 97.21 ± 0.04 82.56 ± 0.13 63.55 ± 0.09

9 100.00 ± 0.00 99.29 ± 0.01 70.67 ± 0.08 90.61 ± 0.06 76.51 ± 0.05 92.23 ± 0.08 86.60 ± 0.09 80.57 ± 0.08

OA 90.80 ± 2.28 76.11 ± 3.78 53.37 ± 5.75 75.76 ± 5.07 75.62 ± 4.15 90.65 ± 4.25 82.88 ± 4.87 70.86 ± 2.99

AA 93.61 ± 4.53 81.31 ± 6.26 59.47 ± 11.01 82.49 ± 8.82 78.89 ± 10.61 93.41 ± 5.39 86.39 ± 9.37 72.07 ± 6.77
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different numbers of training samples, showing that classification
accuracy exhibits a steady growth trend as the number of samples
increases. In addition, the cross-dataset performance differences
reveal meaningful insights. On the Indian Pines dataset, AU-Super
achieves significantly higher overall accuracy than other methods,
with an OA improvement of more than 10% compared to traditional
approaches such as SSGSA and SSEDA. This indicates that the
method can better preserve spatial–spectral consistency in
agricultural scenes with severe spectral mixing and subtle inter-
class differences, thereby producing more reliable classification
results. On the Salinas dataset, AU-Super outperforms the best
baseline method, BAMS-FE, by approximately 1.5% in OA,
suggesting that the method is particularly effective when class
spectral separability is high. This result also demonstrates that
superpixel-based label expansion and feature augmentation
strategies can further amplify inter-class differences, allowing the
method tomaintain high accuracy even under extreme small-sample
conditions (e.g., only one training sample per class). On the Pavia
University dataset, the OA difference between AU-Super and
BAMS-FE is less than 0.2%, indicating that the two methods
achieve very similar performance. This observation suggests that
in urban scenes with highly heterogeneous class boundaries, the
complex spatial structures may offset part of the advantages of the
enhancement strategies, making the classification capabilities of
different methods comparable.

5.2 AU-super performance vs. number of
training samples per class

To validate the effectiveness of the proposed method under few-
shot training scenarios, this section compares AU-Super with three
recently proposed SOTA algorithms for HIS classification based on a
small number of training samples: MSuperPCA [30], BAMS-FE [36],
and MSF-PCs [42]. Note that, as discussed above, the MSF-PC method
is a non-superpixel-based algorithm, although it was specifically
designed to work with a very small number of training samples. To
perform a comprehensive evaluation across different training sample
sizes, experiments were conducted using a range of training samples per
class between 1 and 10. Each configuration was repeated ten times, and
the average classification accuracy metrics (OA, AA and kappa) were
recorded as the final results presented in Tables 7–9.

These results indicate that AU-Super consistently outperforms
other benchmark methods, especially on the University of Pavia
dataset, demonstrating its superiority when working with small
datasets. Furthermore, they reveal a clear pattern indicating that
the model’s classification performance improves significantly as the
number of training samples increases, thereby achieving
higher accuracy.

There is a consensus that the effectiveness of a model is
positively correlated with the number of labeled samples when
applying machine learning approaches. However, manual labeling
of HSI data is time-consuming and expensive due to the limited
spatial resolution, which makes it difficult to have a large amount of
labeled data to train the classifier. In this context, current research is
clearly focused on the development of preprocessing and
classification methods capable of producing good results from a
small number of labeled training samples (Wang et al., 2023). In this
sense, AU-Super has proven to be very efficient in obtaining
excellent classification results using a relatively small training
sample size, reaching OA and AA values above 80% with only
three or four samples per class.

5.3 Ablation experiment

Since the developed algorithm consists of two main
components, an ablation experiment was performed to evaluate
their complementarity with the full method. Indeed, the first part of
the algorithm performs automatic initialization for optimal
superpixel scaling, while the second part is dedicated to data
augmentation. The results of the ablation experiment were
obtained using the Indian Pines dataset. In Table 10, “Super”
refers to the case where the optimal superpixel size was set
manually, i.e., without implementing the automation module of
the full algorithm. Similarly, in Table 10, “AU-Super-0” refers to the
method without applying the data augmentation module. It should
be noted that the training patterns were the same as those used
in Section 5.4.

Furthermore, the results in Table 10 show that AU-Super
exhibits stable and superior classification performance even with
extremely limited training samples. When only one sample per class
is used, AU-Super achieves an overall accuracy (OA) of 59.91%,
which is significantly higher than the 40.20% obtained when the

FIGURE 4
Overall accuracy (OA) and average accuracy (AA) of different methods under 10 training samples per class.
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automatic scale selection module (Super) is removed. This indicates
that the automated superpixel scale selection plays a crucial role in
improving the model performance. Similarly, removing the data
augmentation module (AU-Super-0) also leads to a decrease in
classification accuracy, further confirming that the superpixel-based
augmentation strategy effectively improves model training. As the
number of training samples gradually increases to 10, the overall
accuracy of AU-Super steadily increases to 93.60%, notably
outperforming the comparative methods. These findings
demonstrate that the two core modules of AU-Super offer
significant complementary advantages in small sample sizes,
effectively mitigating performance limitations caused by
insufficient samples and improving the accuracy and robustness
of hyperspectral image classification.

5.4 Summary of the experimental results

This work develops an automated method to select the optimal
HSI superpixel scale based on the BAMS feature extraction
framework (Li et al., 2023), using the EV metric (Moore et al.,
2008) to measure the color homogeneity of a superpixel. This
method has been devised to automatically determine the best
superpixel segmentation scale based on the spectral features and
spatial structure of the HSI image, avoiding tedious manual
parameter tuning. Furthermore, considering that pixel-level
labeling is much more difficult than image-level labeling, an
unsupervised method is proposed to expand superpixel labels. In
this sense, when segmenting the image with superpixels, the pixel-
level labels become superpixel-level labels, effectively reducing the

TABLE 7 Accuracy assessment of the four methods tested as a function of the number of training samples per class for the Random Forest classifier on the
Indian Pines dataset. Nsmeans the number of samples per class used for training. Metrics are presented as a percentage (%). The best results are highlighted
in bold.

Ns AU-super BAMS-FE MSF-PCs MsuperPCA

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

1 59.91 74.41 55.77 55.23 71.93 50.12 47.03 70.61 42.47 50.95 67.94 46.15

2 76.59 84.95 73.59 73.76 83.41 70.14 58.45 73.76 53.94 64.47 78.17 60.70

3 79.57 84.83 76.76 73.84 85.02 70.73 60.51 79.31 56.00 77.44 82.83 74.42

4 83.27 90.76 81.02 79.32 86.40 77.46 72.85 84.17 69.39 79.99 86.59 77.46

5 86.50 91.95 84.70 80.69 90.11 78.60 75.75 83.59 72.47 85.16 89.84 82.14

6 88.65 94.03 87.10 83.48 89.46 81.23 77.64 87.79 74.56 84.62 90.85 81.66

7 90.43 94.39 89.14 85.42 92.23 83.56 75.33 86.37 71.92 88.45 89.71 86.98

8 90.39 95.40 89.13 84.91 91.50 82.93 83.05 91.21 80.83 84.62 90.85 82.66

9 92.16 95.85 91.09 89.12 93.66 87.61 81.99 88.83 79.49 89.67 92.82 88.19

10 93.60 96.62 92.75 91.55 94.78 90.35 87.06 92.78 92.87 86.32 89.28 84.44

TABLE 8 Accuracy assessment of the four methods tested as a function of the number of training samples per class for the Random Forest classifier on the
Salinas dataset. Ns means the number of samples per class used for training. Metrics are presented as a percentage (%). The best results are highlighted in
bold.

Ns AU-super BAMS-FE MSF-PCs MsuperPCA

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

1 95.14 98.15 94.60 87.65 90.03 85.35 95.18 92.87 94.58 61.23 74.33 58.31

2 95.93 98.11 95.47 91.51 94.52 88.91 96.08 94.15 95.58 83.44 86.87 81.81

3 99.02 98.89 98.91 93.72 95.57 90.85 97.07 95.88 9,671 90.87 91.10 89.89

4 99.63 9,937 99.59 95.32 96.67 91.84 97.97 97.64 97.72 95.66 96.01 95.09

5 99.55 99.46 99.50 98.17 98.65 92.11 96.98 96.32 96.60 95.64 96.54 95.17

6 98.59 99.5 98.43 98.67 98.84 94.64 98.76 98.41 98.60 94.96 96.49 94.4

7 99.37 99.15 99.30 98.71 99.85 96.13 98.73 97.95 98.57 97.31 97.28 97.01

8 99.44 98.82 99.38 98.88 97.40 93.22 98.47 98.43 98.28 97.87 97.88 97.63

9 99.55 99.51 99.49 99.32 98.14 99.45 98.02 97.06 97.77 0.98 98.49 97.77

10 99.60 99.44 99.56 99.08 98.42 99.53 98.46 98.66 98.27 99.2 98.61 99.11
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effects of noise and false labels when working at the pixel scale (Yi
et al., 2022). One of the strengths of the proposed method lies in the
introduction of data augmentation techniques, which has resulted in
further improved superpixel labels, as demonstrated in the ablation
experiment. Indeed, not only is more complete information on
spatiospectral features preserved, but the overall characteristics
and spatial distribution of land covers are also better reflected. In
addition, the idea of applying a superpixel label expansion method
has proven useful for summarizing information from multiple
similar pixels, thereby reducing the uncertainty of individual
pixel labels and increasing the stability of the classification model
regardless of the number of training samples used.

What are the reasons why the proposed method outperformed
other benchmark methods in providing suitable spectral and spatial

features for supervised classification? First, by adaptively selecting
the optimal superpixel scale, the method avoids tedious manual
parameter tuning and effectively solves the problem of superpixel
scale selection in hyperspectral image classification. Moreover,
superpixel labeling expansion and data augmentation techniques
(Table 10) increase the diversity of the training samples, which
mitigates the problem of small patterns and improves the model’s
ability to capture spatial context.

Figures 5–7 show the classification results for the three different
datasets when ten samples per class were selected for training. In
each figure, (a) and (b) show the pseudo color image and the ground
truth, while (c) to (f) present the classification results using different
algorithms on the same dataset: (c) AU-Super, (d) BAMS-FE, (e)
MSF-PCs, (f) MsuperPCA. By comparing the classification images

TABLE 9 Accuracy assessment of the four methods tested as a function of the number of training samples per class for the Random Forest classifier on the
Pavia University dataset. Ns means the number of samples per class used for training. Metrics are presented as a percentage (%). The best results are
highlighted in bold.

Ns AU-super BAMS-FE MSF-PCs MsuperPCA

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

1 61.06 64.06 51.25 56.80 69.09 48.36 38.80 56.32 28.89 30.11 33.37 20.19

2 71.24 83.18 65.17 69.68 75.82 62.30 72.21 71.47 63.36 50.76 60.11 41.32

3 82.77 87.51 78.09 71.30 80.24 68.35 65.23 75.07 57.47 58.85 68.16 49.73

4 82.75 91.10 78.41 75.59 85.01 76.81 79.62 86.32 74.32 71.02 78.42 63.74

5 88.05 92.35 83.52 82.85 87.55 74.99 82.9 87.91 78.48 66.32 75.66 58.31

6 88.19 93.46 84.92 84.92 88.50 76.01 85.19 90.55 80.87 76.14 81.91 69.91

7 90.73 95.33 88.07 86.87 90.57 84.19 85.17 88.64 80.90 75.59 82.43 69.22

8 92.57 94.63 90.29 88.05 91.57 87.61 86.47 89.08 82.43 75.31 80.80 68.55

9 93.39 93.09 90.08 92.73 91.72 89.66 87.97 91.95 84.59 81.94 86.89 76.88

10 95.49 95.33 94.06 94.23 92.37 91.43 88.52 91.56 85.08 83.4 87.38 78.69

TABLE 10 Accuracy assessment metrics corresponding to the complete (AU-Super) and the ablated two components (Super, without automatically
calculated superpixel scaling, and AU-Super-0, without augmentation) of the proposed algorithm as a function of the number of training samples per class
(Ns) for the Random Forest classifier on the Indian Pines dataset. Metrics are presented as a percentage (%). The best results are highlighted in bold.

Ns AU-super Super AU-super-0

OA AA Kappa OA AA Kappa OA AA Kappa

1 59.91 74.41 55.77 40.20 63.10 42.37 61.02 68.87 56.14

2 76.59 84.95 73.59 63.25 78.50 60.88 74.75 81.62 68.41

3 79.57 84.83 76.76 76.42 85.12 73.90 76.6 85.00 73.80

4 83.27 90.76 81.02 80.07 86.29 77.18 76.89 85.87 74.21

5 86.50 91.95 84.70 81.88 88.31 80.71 80.11 87.87 77.7

6 88.65 94.03 87.10 85.65 90.52 81.88 85.99 91.22 80.65

7 90.43 94.39 89.14 89.29 91.63 83.15 87.69 92.44 87.11

8 90.39 95.40 89.13 90.72 91.46 87.22 89.85 91.87 89.00

9 92.16 95.85 91.09 91.22 93.79 88.09 91.09 93.77 90.08

10 93.60 96.62 92.75 92.74 94.77 91.71 89.37 94.43 88.01
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of these four methods on the Indian Pines, Salinas datasets and Pavia
University, it can be observed that AU-Super demonstrates stronger
boundary preservation capability and spatial consistency across
most classes. Particularly, in regions with vague land cover
boundaries or limited samples, AU-Super accurately reconstructs
true class shapes and significantly reduces salt-and-pepper noise.
For example, in forest areas (Figure 4), road regions (Figure 5), and
vegetable plots (Figure 6), AU-Super exhibits higher classification
consistency and more natural spatial distribution. These results fully
validate its superior generalization capability and spatial feature

representation under limited sample conditions. As shown in
Figures 5–7, AU-Super achieves the highest overall accuracy
(OA) on all three datasets (Indian Pines: 0.936 > 0.9155/0.8706/
0.8632; Salinas: 0.9960 > 0.9908/0.9846/0.9920; Pavia University:
0.9549 > 0.9423/0.8852/0.8340). Visually, in areas such as forests,
roads, and vegetable plots, AU-Super classification results
demonstrate clearer class boundaries, more continuous spatial
distribution, and significantly reduced salt-and-pepper noise.
These observations are consistent with its highest OA values, and
together, the quantitative and qualitative results validate its excellent

FIGURE 5
Results corresponding to ten samples randomly extracted from each class to train the RF classifier for the Indian Pines dataset. (a) Pseudo-color
image, (b) ground truth, (c) AU-Super classification, (d) BAMS-FE classification, (e) MSF-PCs classification, (f)MsuperPCA classification. The quantitative
classification results are represented by the OA values as follows: (c) 0.936, (d) 0.9155, (e) 0.8706, and (f) 0.8632.
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generalization capability and spatial feature representation under
limited sample conditions.

Overall, experimental results on the Indian Pines, Pavia
University, and Salinas datasets show that AU-Super significantly
outperforms several SOTAmethods addressing deep learning-based
feature extraction and dimensionality reduction techniques in terms
of classification accuracy. In particular, the proposed method shows

excellent performance in OA, AA, and kappa coefficient when
working with a very limited number of labeled samples. For
example, as can be seen in Table 7, with the expansion of the
training set size, and as expected, the overall classification accuracy
(OA) of the Indian Pines dataset gradually improves, increasing
from an initial value of 0.5991 (one training sample per class) to
0.9360 (ten training samples per class). Of course, increasing the

FIGURE 6
Results corresponding to ten samples randomly extracted fromeach class to train the RF classifier for the Salinas dataset. (a) Pseudo-color image, (b)
ground truth, (c) AU-Super classification, (d) BAMS-FE classification, (e) MSF-PCs classification, (f) MsuperPCA classification. The quantitative
classification results are represented by the OA values as follows: (c) 0.9960, (d) 0.9908, (e) 0.9846, and (f) 0.9920.
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number of training samples has a significant positive impact on
model performance. But AU-Super is especially efficient, compared
to other baseline methods in cases with a limited number of training

samples (e.g., from 1 to 5 samples). This fact is also evident in the
case of the datasets from the Universities of Salinas and Pavia
(Tables 8 and 9), where it is important to highlight that the

FIGURE 7
Results corresponding to ten samples randomly extracted from each class to train the RF classifier for the Pavia University dataset. (a) Pseudo-color
image, (b) ground truth, (c) AU-Super classification, (d) BAMS-FE classification, (e) MSF-PCs classification, (f)MsuperPCA classification. The quantitative
classification results are represented by the OA values as follows: (c) 0.9579, (d) 0.9423, (e) 0.8852, (f) 0.8340.
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improvement in classification accuracy is particularly noticeable,
indicating that the model can better learn the features of each
category by increasing the training data when samples are scarce.
These results not only confirm the positive impact of increasing
training samples on model performance but also highlight the
superiority of the proposed method in scenarios with limited samples.

When the number of randomly drawn training samples increases to
its maximum value of ten, AU-Super achieves overall classification
accuracies of 0.9360, 0.9960, and 0.9549 for the Indian Pines, Salinas,
and University of Pavia datasets, respectively, demonstrating that the
proposed method can achieve very high classification accuracies across
different land covers. The algorithm’s performance in terms of overall
accuracy is particularly notable in the case of urban scenarios
(i.e., University of Pavia dataset), where AU-Super outperformed its
best competitor by more than 5 percentage points. This result validates
the effectiveness of the proposed method for hyperspectral image
classification in complex urban scenarios.

Using the University of Pavia dataset as an example for further
analysis, it is clear that certain categories are prone to confusion
when the training samples per class are between 1 and 4, especially
when their sample size is small. However, as the number of training
samples increases, the confusion phenomenon is significantly
mitigated, and the model’s classification ability improves. For
example, when the number of training samples increased to 9,
the overall accuracy reached 0.9239 and the kappa coefficient
0.9008 (Table 9), indicating a high degree of agreement between
the model’s predictions and the actual classifications, with the
classification performance stabilizing. Nevertheless, some
misclassifications still occurred, such as the misclassification of
meadows as gravel (misclassification rate of 0.06) and the
misclassification of trees as bare soil (misclassification rate of
0.012) (confusion matrix not shown). These misclassifications
can be related to spectral similarity between categories, uneven
distribution of training samples, or spatial overlap between
categories. By selecting ten training samples for each category,
the misclassification rate decreases significantly, and the
classification accuracy for each category improves significantly,
further optimizing the model’s overall performance (see
Figure 7). In this study, AU-Super-RF demonstrates clear
advantages under small-sample conditions, which aligns with the
motivation of addressing limited training data. As the number of
available samples increases, the relative performance gap compared
with conventional methods may gradually narrow. Nevertheless, the
proposed method maintains higher stability and robustness across
datasets. Future work could further investigate its applicability
across a broader range of training sample sizes to provide more
comprehensive evidence.

In summary, experimental results on several benchmark
hyperspectral datasets (Indian Pines, Salinas, and Pavia
University) have shown that AU-Super significantly outperforms
existing conventional methods in terms of classification accuracy
and stability, especially in complex remote sensing classification
scenarios characterized by small samples and high noise.
Nevertheless, the generality of the method warrants further
consideration. Although AU-Super-RF has been validated on
three benchmark datasets, its applicability to large-scale or
heterogeneous remote sensing imagery deserves additional
attention. When applied to regional-scale data or to sensors with

varying spectral and spatial resolutions, adjustments in superpixel
search ranges and parameter fine-tuning may be required to ensure
optimal performance. Future work will therefore focus on extending
the applicability of AU-Super-RF to more diverse remote sensing
contexts, which will further demonstrate its practical value.

6 Conclusion

In this work, a novel preprocessing method, called AU-Super, is
proposed to improve hyperspectral image classification based on
random forest classifier. It includes three complementary stages: i)
adaptive superpixel scale selection, ii) superpixel label expansion, and
iii) data augmentation. Experimental results, conducted on three widely
known hyperspectral datasets, have shown that the proposed method
achieved higher classification accuracy compared to SOTA methods.
The excellent performance of AU-Super was especially notable when
applied with limited labeled samples. This demonstrates that the
method can effectively overcome the challenges of hyperspectral
image classification, such as high dimensionality, sparse and limited
labeling, and spatiospectral variability. Future research could focus on
further optimizing the superpixel scale selection strategy to improve the
method’s adaptability to different types of hyperspectral images. In
addition, more advanced spatial-spectral fusion techniques could be
explored to improve the model’s ability to capture complex spatial
relationships. Finally, the method could be extended to classify
multitemporal hyperspectral data to enable the classification of
dynamic land cover changes. Although the proposed strategy is
designed for hyperspectral classification, its modular structure
suggests potential applicability to other spatial-spectral analysis tasks,
which will be explored in future work. This study is currently limited to
public datasets with single-date imagery. Future research will consider
extending the framework to multi-temporal data, active learning
settings, or integrating deep learning modules for enhanced spectral
feature representation. Future research will consider extending the
framework to multi-temporal cross-modal data fusion (Yao et al.,
2023), active learning for partially observed modalities, and
integrating deep cross-modal representation learning modules to
enhance feature extraction and alignment.
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