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Size matters: the influence of pixel
resolution on DSCOVR/EPIC
reflectance and cloud metrics

Alfonso Delgado-Bonal*?*, Alexander Marshak® and
Yuekui Yang*!

Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD, United States, ?Goddard
Earth Sciences Technology and Research I, University of Maryland Baltimore County, Baltimore, MD,
United States

Satellite-derived reflectance and cloud retrievals are highly sensitive to spatial
scale. Coarser pixels exaggerate cloud fraction, bias optical thickness and height
estimates because unresolved subpixel variability violates plane-parallel
assumptions. Here, we use DSCOVR/EPIC Level-1 reflectance (317-780 nm)
and Level-2 cloud products (binary cloud mask, effective cloud height, ice/liquid
optical thickness) to quantify these effects. Full-disk images were down-sampled
to eight resolutions of 1,024, 512, 256, 128, 64, 32, 16, and 8 pixels across the disk
at ~12, 25, 50, 100, 200, 400, 800, and 1,600 km per pixel, respectively.
Reflectances were aggregated by simple averaging: cloud masks by five
subpixel thresholds (=1, =25, =50, >75, and 100% cloudy), and cloud height
and optical thickness by mean values when >50% of subpixels were valid.
Global means of reflectance, cloud fraction, cloud height, and optical
thickness were then calculated at each scale and threshold. While reflectance
averages remained constant to within 1% across all scales, the cloud fraction rose
steeply under permissive thresholds as resolution coarsened. Mean cloud height
and optical thickness also increased, reflecting the dominance of taller, thicker
clouds in coarse-pixel averages. These results quantify resolution-driven biases in
EPIC cloud products and underscore the value of high-resolution observations
and heterogeneity-aware retrieval methods for robust cloud characterization.

KEYWORDS

spatial resolution, cloud fraction, plane-parallel biases, cloud optical thickness, droplet
effective radius, earth observation instruments, exoplanet observations, disk-
integrated data

1 Introduction
1.1 Spatial resolution of Earth observations

Spatial resolution profoundly affects satellite-derived measurements of cloud fraction.
Coarse spatial resolution tends to overestimate cloud cover because partially cloud-filled
pixels are counted as fully cloudy. For example, when degrading imagery from 15 mto I km
resolution, the mean cloud fraction in trade-wind cumulus scenes was observed to
quadruple, while the total number of detected clouds dropped by a factor of 26 (De
Vera et al., 2024). This occurs because many small clouds that are individually resolved at
15 m become merged into large cloudy pixels at 1 km. Jones et al. (2012) consistently found
that a pixel size of approximately 80 m or finer is needed to measure cloud fraction with
0.01 accuracy, whereas sensors (~1 km resolution) typical incur substantial biases. These
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findings echo early studies: even back in the 1970s, researchers noted
that coarse-resolution imagers (kilometer-scale) overestimated
cloud cover compared to high-resolution data (Shenk and
Salomonson, 1972). Using a high-resolution imager (e.g., Landsat
at 30 m) generally yields lower and more accurate cloud fraction
than a coarse imager (e.g., MODIS at 1 km) viewing the same scene
because the coarse sensor sees diffuse cloudiness whereas a fine
sensor sees clear gaps.

Similar scale-dependence was found in cloud parameters.
Pierrehumbert (1996) examined outgoing long-wave radiances
over deep convective systems in the western tropical Pacific and
found that when measurements are averaged over coarse footprints
(tens to hundreds of kilometers), peak brightness temperatures are
systematically underestimated compared to ~1 km observations
because small, warm-cloud elements are smoothed out.
Oreopoulos and Davies (1998) showed that converting high-
resolution optical-depth retrievals into scene albedo at kilometer-
scale resolution introduces a positive bias: fine-scale variability in
optical thickness is lost, raising the mean albedo.

If a that
homogeneously filled by cloud (a plane-parallel assumption),

retrieval  algorithm assumes each pixel is
unresolved subpixel variability can introduce systematic errors
known as plane-parallel biases (Cahalan et al., 1994; Oreopoulos
and Cahalan, 2005). Broken or heterogeneous clouds typically reflect
15%-20% less sunlight than a plane-parallel (uniform) cloud of
equivalent mean optical thickness, due to 3-D radiative effects such
as side illumination and internal shadowing (Loeb et al., 1998). As a
result, algorithms that ignore subpixel cloud heterogeneity tend to
provide biased estimates of cloud radiative properties when the
resolution is coarse. Loeb and Coakley (1998) demonstrated that
even overcast stratocumulus decks, when observed at 4 km
resolution (AVHRR), showed systematic biases in retrieved cloud
optical depth depending on sun-view geometry. This indicates that
subpixel variations in cloud top height or density (which are
smoothed out at low resolution) can lead to biased reflectances
and hence biased optical depth retrievals. On the other hand,
radiation at small scales also smooths horizontally fluctuating
extinction fields in clouds, thus retrieving a smoother cloud field
(Marshak et al., 1995; Davis et al., 1997).

More recent studies have used large-eddy simulations and multi-
resolution data to quantify such biases. Zhang et al. (2016) showed
that ignoring subpixel reflectance variations leads to significant
biases in satellite retrievals of cloud optical thickness and droplet
effective radius (r.). The impact of 3D radiative effects on cloud
droplet size retrievals was first analyzed by Marshak et al., 2006. In
the MODIS (1 km) bispectral method, subpixel variability in visible
channel reflectance can cause an overestimation of r. because the
algorithm assumes a single uniform cloud in each pixel.
Heterogeneous clouds with bright and dark parts violate this
assumption. Zhang et al. (2012) described what they term the
“plane-parallel r. bias” whereby subpixel variability in cloud
optical thickness at MODIS-like (~1 km)
systematically inflated droplet effective

scales leads to
radii. Because the
inversion from reflectance to r. assumes a homogeneous cloud
layer, the nonlinear relationship between reflectance and optical
thickness causes the mean reflectance of a heterogeneous pixel to
correspond to an artificially higher optical thickness (and thus a

larger r.) than the true subpixel mean. They showed that retrievals at
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3.7 um generally exceed those at 2.1 pum in scenes with strong
internal reflectance variance. Such biases are most severe for pixels
with strong internal reflectance variance (often quantified by a
heterogeneity index—Di Girolamo et al,, 2010).

1.2 Earth as an exoplanet: inferring planetary
properties from low-resolution views

On the other hand, researchers have explored how Earth’s
appearance changes when viewed at extremely low spatial
resolutions as an disk-integrated
These Earth
instruments to simulate the data a distant observer might see,
essentially treating Earth as a single “pixel” (or a few pixels) in

analog for exoplanet

observations. studies  leverage observation

order to test what planetary properties could be retrieved.

One landmark example is the analysis of Earth by the EPOXI
(2005-2013), which repurposed the Deep Impact
spacecraft. Cowan et al. (2009) obtained multi-band light curves
of the full Earth (at gibbous phase when half of the Earth is
that  Earth’s
reflectance varies by ~15-30% with rotation, primarily due to the

mission

illuminated) and demonstrated disk-averaged
changing view of oceans versus continents. By applying principal
component analysis to simulated “exoEarth” light curves, they found
that 98% of the daily color variation can be explained by just two
dominant components. These two eigen-components were
interpreted as representing cloud-free land versus ocean; indeed,
using the time-varying signals, Cowan et al. (2009) reconstructed
rough longitudinal maps where one component tracked high-
reflectance land (e.g, Africa and Eurasia) and the other
corresponded to dark ocean water. Despite Earth’s substantial
method could

distinguish surface types. This result suggests that with time-

cloud cover during the observations, the
resolved, multi-wavelength photometry, it is feasible to detect
oceans or continents on an Earth-like exoplanet by their
rotational “signature” in the disk-integrated brightness. Notably,
the study found the strongest land-ocean contrast in the near-
infrared bands, indicating that those wavelengths might be optimal
for identifying an exoplanet’s ocean glint or vegetation signals (Wen
et al.,, 2025).

Another key study by Robinson et al. (2011) focused on
validating physics-based Earth models against actual disk-
integrated data. They used EPOXI observations to calibrate a 3-D
spectral model of Earth, asking how low a resolution could be to still
reproduce the observed brightness and spectra. The conclusion was
that the model required a minimum of roughly 100 pixels across
Earth’s disk (along with incorporating multiple cloud layers) to
match the real light curves and spectra within a few percent. In other
words, treating Earth as a 1024-pixel image versus a 32-pixel image
is not trivial: at very coarse resolutions (e.g., 32 pixels for the whole
planet), important spatial information is lost, and the model fit to
actual data deteriorates. The ~100-pixel threshold found by
Robinson et al. (2011) corresponds to approximately 1°-2° spatial
resolution, implying that to infer detailed climate properties (like
cloud fraction, surface albedo) of an Earth-like planet, one would
need observations fine enough to resolve on the order of hundreds of
kilometers on the planet’s surface. This provides a scaling law of
resolution, retrievals of planetary

sorts: below a certain

frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1683919

Delgado-Bonal et al.

characteristics become significantly less reliable, even if multiple
wavelengths are used.

Finally, modern Earth-observing instruments have been
explicitly used as “Exoplanet Earth” experiments. In previous
research, the DSCOVR satellite’s EPIC camera, which views the
full sunlit Earth from Lagrange-1, has been leveraged to generate
single-pixel time series. Jiang et al. (2018) compiled 2 years of EPIC
multiband images and compressed them into synthetic disk-
integrated fluxes (one data point per image) to test what could
be learned about an unknown planet. Impressively, by analyzing the
variability in these EPIC light curves, they could recover Earth’s
rotation period, identify recurrent cloud patterns, infer the presence
of differentiated surface types (land/ocean), and even deduce Earth’s
orbital parameters like the year length. They also explored how the
observed signal changes with phase angle and what minimum
sampling rate is needed to discern diurnal cycles. Their work
demonstrated that disk-integrated Earth spectral observations
that
photometric time series, if measured in multiple wavelengths

contain rich information and even a single-point

over time, can reveal multiple fundamental properties of the
This
characterization (e.g., identifying an Earth-like planet’s clouds

planet. serves as a proof-of-concept that exoplanet
and continents) is possible with low-resolution data, given
sufficient temporal coverage and spectral bands.

In this study, we use DSCOVR/EPIC observations to quantify
how spatial resolution and sub-pixel aggregation criteria influence
global reflectance and cloud-property retrievals. We describe the
data and methodology in Section 2 and present the results of our

analysis in Section 3.

2 Methodology

DSCOVR’s Earth Polychromatic Imaging Camera’s (EPIC)
Level 1 data consist of calibrated top-of-atmosphere radiances
(and derived reflectances) measured across ten narrow spectral
bands spanning 317 nm (UV) to 780 nm (near-IR). The Level 1B
products have been corrected for instrumental effects (e.g., dark
current, flat field, stray light) and geolocated to provide per-pixel
radiometric measurements of the sunlit Earth disk from the
L1 Lagrange point (Marshak et al., 2018; Cede et al., 2025).

EPIC Level 2 cloud products build directly on the calibrated
Level 1 radiances to deliver three core cloud parameters: (1) a binary
cloud mask; (2) effective cloud height; (3) cloud optical thickness at
each 10 x 10 km (nominal) pixel across the entire sunlit Earth disk
(Yang et al., 2019; Yang et al., 2025). The cloud product algorithm
adopts a surface-type-based threshold method for cloud masking by
using the reflectance at the 388, 680, and 780 nm and O2 A- and
B-band channels (764 nm and 688 nm, respectively).

EPIC infers the effective cloud height by exploiting the
differential absorption of the oxygen A-band at approximately
764 nm. Clouds at higher altitudes lie above more of the
atmospheric column and so exhibit stronger relative absorption
features. By comparing the measured A-band depth to a suite of
radiative-transfer look-up tables spanning pressures from the
surface to the tropopause, the algorithm assigns an “effective”
cloud pressure (and thus height) to each cloudy pixel, with an
accuracy of a few hundred meters under clear viewing conditions.
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Finally, EPIC retrieves separate optical-thickness values for
liquid and ice clouds by matching the measured reflectances in
the visible and near-IR channels (e.g., 680 nm versus 780 nm),
providing the most likely thermodynamic phase for each cloudy
pixel (Yang et al., 2019). These Level 2 products enable quantitative
studies of cloud fraction, vertical structure, and radiative impact at
high temporal cadence and full-disk coverage (Delgado-Bonal et al.,
2020; Delgado-Bonal et al, 2021; Delgado-Bonal et al, 2022;
Delgado-Bonal et al., 2024).

Because DSCOVR follows a Lissajous orbit about the Sun-Earth
Lagrange 1 point, the instantaneous distance between EPIC and
Earth varies by several percent over its ~6-month libration cycle
(Marshak et al., 2021). As shown in Figure 1, this Earth-EPIC
distance has ranged from roughly 1.38 x 10° km to 1.62 x 10° km
since the start of operations in 2015. In our study, to ensure
consistency across resolutions, each EPIC frame is first cropped
precisely to the terrestrial disk, thereby excluding off-Earth
background and ensuring that the analysis focuses on valid pixels.

To simulate coarser resolutions, we down-sampled each cropped
image to eight target sizes (1,024, 512, ..., 8 pixels per side, or ~12,
25, 50, 100, 200, 400, 800, 1,600 km, respectively). We define a
“superpixel” as a contiguous N x N block of original image pixels
aggregated into one lower-resolution cell. For our reflectance bands,
we preserved the dominant spectral features by averaging the valid
pixels within each superpixel, retaining that mean value only when
more than 50% of its constituent pixels contained valid data. For the
cloud fraction binary mask, we implemented five distinct threshold
rules that designate a superpixel as “cloudy” if at least one pixel is
cloudy, more than 25% of the pixels are cloudy, or >50%, >75%, or
100% - all the pixels of its constituent high-resolution pixels are
cloudy. This allowed us to explore the sensitivity of cloud-fraction
estimates to different sub-pixel classification assumptions. We then
computed “cloud fraction” as the ratio of cloudy to total valid pixels
for each combination of observation, resolution, and threshold rule.

When we resample the Level-2 EPIC cloud-height and optical-
thickness fields onto coarser grids, each superpixel was formed by
grouping together a block of the original high-resolution pixels.
Within each block, we distinguished valid cloud retrievals (pixels
with height or thickness values) from clear-sky or background
pixels, which are recorded as NaN. We then counted how many
subpixels carry valid retrievals: if at least 50% of the block is valid, we
computed the superpixel’s value as the arithmetic mean of those
retrievals, effectively ignoring the NaNs. For instance, if three of four
subpixels report cloud height and one is clear-sky (NaN), the
superpixel height is simply the average of the three cloud heights.
Conversely, if fewer than half of the subpixels contain valid
information (for example, one cloudy pixel and three clear), then
the entire superpixel was set to NaN, preventing clear-sky-
dominated areas from skewing our aggregated statistics. After
calculating the superpixels, we averaged the full disk for each
resolution.

3 Results

EPIC acquires all ten spectral bands at a native nadir sampling of
approximately 8 km x 8 km, but it performs a 2 x 2 onboard pixel-
averaging (binning) for every band except the 443 nm (blue) channel
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to stay within the spacecraft’s downlink budget. For example,
Figure 2 illustrates how a more aggressive down-sampling affects
the binary cloud mask of one EPIC image using the 50% threshold
rule. This corresponds to a ground sampling distance of: roughly
~6400 km at 2 x 2 resolution; 3200 km at 4 x 4; 1,600 km at 8 x 8;
800 km at 16 x 16; 400 km at 32 x 32; 200 km at 64 x 64; 100 km at
128 x 128; 50 km at 256 x 256; 25 km at 512 x 512; finally, just 12 km
at 1,024 x 1,024. Thus, as we move from the coarsest (2 px) to the
finest (1,024 px) grid, the effective pixel size shrinks by more than
three orders of magnitude, from continental scales (~6400 km)
down to mesoscale features (12 km).

3.1 Reflectances

Unlike atmospheric properties (cloudy/clear), top-of-atmosphere
reflectance is fundamentally a continuous, smoothly varying field.
When studying the implications of spatial scaling, averaging or
majority-voting blocks of pixels have very little impact on its global
mean. EPIC’s radiometric calibration produces relatively noise-free
reflectance maps that vary gradually on scales of tens to hundreds
of kilometers. Even in extreme down-sampling from 1,024 x
1,024 down to 8 x 8 pixels (from 12 x 12 km’ to 1600 x
1600 km?), the spatial smoothing inherent in coarse gridding simply
blurs fine detail but preserves the overall brightness. Since each
superpixel value is ultimately an average of many highly correlated
neighbors, the disk-integrated mean reflectance hardly budges.

Figure 3 presents the reflectance time series in multiple spectral
bands for selected days in 2020. The daily amplitude (vertical
variability) mostly reflects the changing land-ocean composition

Frontiers in Remote Sensing

within each scene, while each wavelength also exhibits its own
seasonal cycle. To illustrate the impact of spatial aggregation, we
show results at four resolutions: 512 px, 128 px, 32 px, and 8 px.

Figure 4 provides a close-up comparison of the globally integrated
reflectances on two summer days. Across every wavelength, the various
pixel resolutions yield virtually identical values, with only the 8px line
differing by less than 1%. As Earth rotates, EPIC samples change surface
characteristics, which in turn alters both the intensity and spectral
composition of the reflected radiation field. As seen in the figure, this
natural temporal modulation of the radiation measurements is by far
more impactful than the resolution effects.

Beyond spatial-resolution effects, several geophysical and
observational factors introduce substantial variability in EPIC
radiances. First, changes in solar zenith angle throughout the day
modulate atmospheric path length and scattering geometry, directly
altering observed reflectances (Marshak et al, 2021). Second,
fluctuations in atmospheric constituents such as aerosols and water
vapor can significantly perturb radiance fields. Elevated aerosol loading
increases scattering in the UV and visible, while variable precipitable
water vapor primarily affects absorption in near-infrared bands (Cede
et al,, 2025; Yang et al,, 2019). Third, clouds are inherently the largest
source of radiance variability; their fractional coverage, vertical extent,
and optical thickness can alter disk-integrated reflectances by tens of a
percent on diurnal timescales (Delgado-Bonal et al., 2020; Delgado-
Bonal et al, 2021; Delgado-Bonal et al, 2024). Finally, surface
bidirectional reflectance distribution function (BRDF) anisotropy,
driven by land-cover type and sun-sensor geometry, introduces
additional modulation in the signal, particularly over bright deserts
and vegetated regions (Loeb and Coakley, 1998; Oreopoulos and
Davies, 1998).
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FIGURE 2
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Binary cloud mask heatmap for down-sampled resolutions using the 50% threshold rule from 1,024 px to 8 px. Pixel size is approximately 10 km at

native resolution and 1,600 km at 8 px.

The relative contribution of these factors depends on
wavelength, time of day, and scene type. For example, solar
zenith effects dominate shortwave variability over the ocean,
whereas aerosol and water vapor absorption are more important
in polluted or humid regions. Cloud variability generally exceeds
surface BRDF effects in magnitude, but the latter can still bias
apparent albedo when not properly accounted for. Disentangling
these contributions is therefore essential for interpreting radiance
time series and for isolating scale-driven biases from true
geophysical variability.

Frontiers in Remote Sensing

3.2 Cloud fraction

Although reflectance changes linearly under spatial aggregation
such that the mean of means remains almost unchanged, cloud
metrics exhibit pronounced non-linearity because they derive from
binary, threshold-based classifications. Higher spatial resolution
effectively disentangles mixed clear-sky and cloudy pixels,
exposing low-coverage regions that coarse sensors subsume into
wholly cloudy pixels. Consequently, while aggregated reflectance
curves remain nearly invariant across resolutions, cloud fraction and
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FIGURE 3

Mean top-of-atmosphere reflectance as a function of spatial resolution for five EPIC spectral bands (340, 443, 551, 680, and 780 nm). Each line
shows the aggregated reflectance at super-pixel sizes of 512, 128, 32, and 8 pixels (~25, 100, 400, and 1,600 km), illustrating how coarsening the grid
preserves the spectral signal. The vertical variability within each day is mostly due to the changes in the land/ocean fraction of each image as the
Earth rotates.
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Close-up view of Figure 1 showing the five wavelengths at selected spatial resolutions. Reflectances remain nearly invariant under resolution scaling,

with only the coarsest sampling (8 px) exhibiting noticeable deviations from the other resolutions
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Cloud-fraction vs Resolution for (2022-12-21 00:17:52 UTC)
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FIGURE 5

Cloud-fraction values as a function of spatial resolution in log-scale for a single EPIC observation (2022-12-21). Five threshold rules are shown

("1 pixel,” "25%," "50%," "75%," and "100%") indicating the minimum number or fraction of cloudy sub-pixels required to classify a super-pixel as cloudy.
This plot highlights how both grid coarsening and threshold choice jointly affect the estimated cloud fraction. Resolutions of 1,024, 512, 256, 128, 64, 32,
16, and 8 pixels correspond to ~12, 25, 50, 100, 200, 400, 800, and 1,600 km, respectively.

related cloud property estimates display a strong dependence
on pixel size.

Real clouds exhibit sharp edges and small-scale variability:
broken cumulus fields, thin cirrus veils, and sub-pixel clear-sky
holes. At high resolution, EPIC picks up those clear-sky breaks, so
the overall cloud fraction is driven down by the numerous small
clear pixels. However, as resolution degrades, each coarse superpixel
inevitably contains at least one cloudy measurement, and under any
threshold rule that admits partial cloudiness, that superpixel
becomes classified as 100% cloudy. Thus, cloud fraction and
related metrics (height and optical thickness) climb steeply at
coarse resolution, even though the true, sub-pixel cloud fraction
has not changed.

Figure 5 shows cloud fraction as a function of spatial resolution
and threshold choice, highlighting the profound impact of both pixel
size and the aggregation rule on what we call “cloudy.” In our
analysis, the “one-pixel” threshold (where any presence of cloud in a
superpixel marks it as fully cloudy) produces the highest cloud
fractions at all resolutions, reflecting the most permissive criterion.
At the finest resolution (1,024 x 1,024), this threshold already yields
a cloud fraction well above 0.7, rising to unity as the coarse grid
approaches a few pixels across the disk. By contrast, the “100%”
threshold (i.e., requiring every sub-pixel to be cloudy) delivers the
lowest estimates, demonstrating that only completely overcast
superpixels survive at coarse scales. Intermediate thresholds
(25%, 50%, and 75%) span this envelope but themselves exhibit
strong resolution dependence—at fine resolution, they converge
towards similar values (as individual pixels are small and often
uniformly cloudy or clear), yet as resolution degrades, the curves
diverge, with lower thresholds climbing more steeply toward unity.
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These patterns mirror classic studies of cloud-fraction
sensitivity. As Hobbs and Rangno (1998) and later Jones et al.
(2012) have shown, coarse pixels inevitably contain at least some
cloudy sub-pixels, so permissive thresholds severely overestimate
cover. Meanwhile, the conventional majority-vote rule of a 50%
threshold lies between these extremes but still overestimates by tens
of a percent at kilometer-scale grids.

Physically, these differences arise because cloud fields are highly
heterogeneous on sub-kilometer scales (Davis et al., 1999; Gerber
et al.,, 2001). Broken cumulus and thin cirrus interweave clear sky
and cloud, so even a modest aggregation window will almost always
include some cloudy footprints. With a 25% rule, only a few cloudy
pixels suffice to classify the entire superpixel as cloudy, artificially
merging broken fields into nearly overcast scenes. Conversely, the
“100%” rule demands truly homogeneous clouds and thus preserves
the small clear gaps that coarse mean methods would otherwise
smooth over. This tension between aggregation and true sub-pixel
variability underlies the plane-parallel biases in optical property
retrievals noted, for example, by Loeb and Coakley (1998) and
Zhang et al. (2016).

3.3 Cloud height and cloud optical thickness

Figure 6 shows a panel with daily mean cloud-effective height
(top row) and cloud optical thickness (bottom row) as functions of
spatial resolution, separated into low clouds (tops below 5,000 m
whose most likely thermodynamic phase is liquid) and high clouds
(tops above 5,000 m whose most likely thermodynamic phase is ice).
The results indicate a systematic tendency for both quantities to
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FIGURE 6

Daily mean cloud-effective height and cloud optical thickness as functions of spatial resolution, shown separately for low (<5 km; left panels) and

high clouds (>5 km; right panels). A 50% threshold rule was applied, retaining a coarse pixel only when at least half of its subpixels contained valid
retrievals. As spatial resolution degrades from ~12 km (1,024 px) to ~400 km (32 px), low clouds exhibit a pronounced resolution dependence: the mean
cloud-top height rises by nearly 1 km, and the mean optical thickness increases substantially, indicating that subpixel mixing and preferential
sampling bias retrievals toward taller and optically thicker clouds. By contrast, high-cloud heights and optical thicknesses remain comparatively stable
across most resolutions, with only the coarsest sampling showing greater variability.

increase as resolution becomes coarser. For low clouds, degrading
the resolution from approximately 12 km to 400 km raises the
retrieved mean cloud height by nearly 1 km and produces a marked
increase in optical thickness. High clouds exhibit more stability, with
mean values remaining closer across most resolutions, but at the
coarsest sampling, the distributions display slightly higher scatter
and a modest upward shift in optical thickness. Similar resolution-
driven biases have been documented when comparing ASTER
(15 m), MISR (275 m), and MODIS (1 km) cloud retrievals,
underscoring that coarse sampling systematically alters the

statistical ~distribution of cloud properties (Zhao and Di
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Girolamo, 2007; Marchand et al., 2010; Mitra et al., 2021; Li
et al.,, 2016).

The underlying causes of these biases lie in both sampling effects
and nonlinear averaging. Under the 50% thresholding rule used in
our analysis, a coarse pixel is retained only if at least half of its
subpixels contain valid cloud retrievals. Thin or spatially sparse low
clouds often fail this criterion when aggregated and are therefore
excluded at coarse resolution. In contrast, larger contiguous regions
of thick or tall clouds are more likely to meet the threshold and thus
dominate the retained sample. This preferential sampling skews the
distribution toward the tallest and most optically dense clouds as
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Cloud-effective height for two EPIC images of the same day as a function of spatial resolution with a 50% threshold rule. The EPIC field of view at
17 UTC captures the Americas in the center of the image, while 11 a.m. is dominated by Africa (see Figure 3). Left: low-cloud heights; right: high-cloud
heights. The x-axis shows superpixel size (321,024 px), and the y-axis gives cloud height in meters. Scaling properties change drastically at 64 pixels

(~200 km per pixel).

resolution degrades (Zhao and Di Girolamo, 2007; Marchand et al.,
2010; Mitra et al., 2021).

Nonlinear radiative effects further amplify this shift. When clear,
thin, and thick cloud subpixels are averaged together within a coarse
pixel, the reflectance-optical thickness relationship is not linear.
Because reflectance responds disproportionately to large optical
depths, the coarse-pixel mean corresponds to a T higher than the
simple average of its subpixels—a manifestation of the well-known
plane-parallel bias (Davis et al., 1997; Zhang et al., 2012; Cornet
et al, 2018). A similar radiative weighting occurs for cloud height,
where tall cloud elements within a pixel can dominate the signal and
pull the effective height upward. Together, preferential sampling and
nonlinear averaging explain why both height and optical thickness
rise at coarse resolution.

A second, equally important outcome is the increase in
variability of the retrieved properties as the resolution decreases.
For low clouds, the scatter in both height and optical thickness grows
substantially with pixel size, reflecting the fact that coarse pixels
blend highly heterogeneous cloud fields in different proportions
from scene to scene. In one coarse pixel, a few deep convective
towers may drive the retrieval, while in another, more homogeneous
stratiform clouds dominate. This mixing produces greater scene-to-
scene fluctuations because each coarse retrieval collapses diverse
cloud populations into a single value.

To better illustrate the scaling behavior and scene-to-scene
variability, Figure 7 shows how cloud effective heights vary with
spatial resolution for two EPIC snapshots taken on the same day at
different times. The 17 UTC scene (centered on the Americas) and
the 11 UTC scene (dominated by Africa) are each plotted with low-
cloud heights on the left and high-cloud heights on the right.
Superpixel sizes range from 32 to 1,024 px, corresponding
roughly from 400 km down to 12 km per pixel along the x-axis,
while the y-axis reports the disk averaged height in meters. We
observe a clear change in scaling behavior below 64 px (~200 km),
depending on the scene that EPIC observes, for both low and high
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clouds. These contrasts highlight that retrievals made at spatial
scales coarser than roughly 200 km per pixel are prone to significant
aggregation artifacts, but we also note that part of the difference
between the two cases may reflect underlying variations in
meteorological conditions, cloud regimes, and viewing geometry
across the Americas and Africa. Thus, the distinct behaviors seen in
Figure 7 likely result from an interplay between resolution-driven
sampling effects and regional scene characteristics.

4 Conclusion

Our analysis reveals that while global-mean top-of-atmosphere
reflectance remains essentially invariant (+1%) when down-sampled
from 1,024 x 1,024 to 8 x 8 pixels—owing to the smoothly varying
nature of reflectance fields—retrieved cloud properties exhibit
pronounced, resolution-dependent biases. As spatial resolution
coarsens, cloud fraction changes sharply depending on the
selected threshold rule. Our multi-threshold curves quantify how
the choice of threshold, and thus the assumed homogeneity of a
superpixel, influence cloud fraction with resolution. For applications
ranging from climate model evaluation to exoplanet analog studies,
these findings underscore that both spatial scale and classification
rule must be reported. Ultimately, high-resolution observations
(tens of meters) remain essential to benchmark and correct the
biases inherent in kilometer-scale cloud products.

When we set a 50% threshold for cloud-effective height and
optical thickness, the mean values increased as resolution coarsened:
coarser grids preferentially retain taller, thicker cloud features while
discarding thin or invalid subpixels (ignoring small clouds), skewing
the global averages upward by several hundred meters in height and
tens of percent in optical thickness.

Biases in coarse-resolution cloud fields can substantially distort
estimates of Earth’s energy balance and cloud radiative forcing. Low-
level liquid clouds primarily cool the planet by reflecting incoming
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solar radiation (negative shortwave forcing) but also contribute a
lesser greenhouse warming by trapping outgoing longwave
radiation. Overestimating cloud-top height enhances the layer’s
longwave emissivity,
outgoing longwave radiation that is trapped. Overestimating

thereby exaggerating the amount of

cloud optical thickness directly leads to inflated albedo values,
which in turn exaggerates the magnitude of shortwave cooling.
As a result, top-of-atmosphere radiative fluxes derived from
coarse-resolution products will be biased toward both stronger
cooling and stronger warming effects than reality. Similarly,
overestimating the height and thickness of high-altitude cirrus
amplifies their positive longwave forcing, further skewing

modeled radiative balances.
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