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AMAP, University Montpellier, IRD, CNRS, CIRAD, INRAE, Montpellier, France

Introduction: Central African forests are key reservoirs of carbon and biodiversity.
Developing a detailed, spatially explicit typology of forest types is essential for
monitoring and conservation. However, this task remains challenging due to
limitations inherent to optical satellite imagery, especially disturbances caused by
two major sources of noise: (i) atmospheric effects and (i) Bidirectional
Reflectance Distribution Function (BRDF) distortions, which introduce spectral
inconsistencies across image collections. Even after standard corrections,
residual errors often persist, masking the subtle ecological signals required for
accurate classification. In this study, we evaluate whether recent deep learning
models can implicitly learn to account for such distortions, potentially reducing
the need for traditional preprocessing steps.

Methods: We produced a 10-m resolution vegetation typology map of the highly
heterogeneous TRIDOM landscape (~180,000 km?) spanning Cameroon, Gabon,
and the Republic of Congo, using Sentinel-2 imagery. We compared the
performance of Convolutional Neural Networks (CNNs), Vision Transformers
(ViTs), and self-supervised ViTs trained with DINOv2.

Results: Our results show that CNNs achieved the highest classification accuracy
(OA = 0.91, Kappa = 0.84), outperforming both ViTs and DINOv2-based models
(OA = 0.70) on preprocessing images. When uncorrected imagery was used, CNN
accuracy dropped to 0.76 (Kappa = 0.59), while ViTs exhibited also a decline
(Kappa falling from 0.54 to 0.24).

Discussion: These findings highlight the partial ability of deep learning models to
compensate for image noise, but emphasize that traditional preprocessing
remains necessary for reliable classification. Our results also demonstrate that
CNNs consistently outperform self-supervised Vision Transformers in large-scale
forest mapping, providing accurate classification of forest typologies. This work
offers new insights into the robustness and current limitations of deep learning
architectures when applied to complex tropical landscapes.

deep learning, sentinel 2, vegetation map, tropical forest, BRDF, atmospheric effects
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1 Introduction

Central African forests are second in extent only to the Amazon
and constitute one of the planet’s most important reservoirs of
2016).

carbon and biodiversity (Zhang et al, Accurately

characterizing  these ecosystems and monitoring their
spatiotemporal dynamics is crucial for guiding effective
conservation  efforts and  developing informed forest

management policies.

A fundamental step toward this goal is the development of a
detailed and spatially explicit typology of forest types. However, this
task remains particularly challenging due to the extraordinary
ecological heterogeneity of Central African forests. Defining and
mapping forest typologies is essential not only for biodiversity
assessments and carbon stock monitoring, but also for the design
of targeted, evidence-based environmental interventions.

However, the large-scale distribution patterns of tropical forest
types in the region remain poorly documented. This knowledge gap
is largely attributable to two major constraints: First, many forested
areas are hard to access and census, which limits field data collection.
Second, the cloud cover and canopy heterogeneity of tropical forests
constitute challenges for satellite-based approaches in detecting
subtle variations in forest structure and composition. Technically,
these challenges are compounded by a low signal-to-noise ratio in
optical imagery and by artifacts arising from imperfect pre-
processing of satellite data (Hoekman et al., 2020; Jha et al,, 2021).

Some studies have attempted to overcome these limitations by
relying on floristic and functional composition to characterize forest
types. For example, Réjou-Méchain et al. (2021) have extrapolated
forest inventory plots to predict functional composition across the
Congo Basin. However, the coarse spatial resolution of their
predictions (10 km x 10 km) remains insufficient to capture the
fine-scale mosaic of vegetation formations. Other regional-scale
approaches have employed low-resolution satellite imagery
(250 m-1 km) to map forest typologies across Central Africa
(Mayaux et al., 2004; Viennois et al., 2013; Gond et al., 2015),
but these methods also fall short in representing local ecological
variability, partly due to the limited informativeness of the spectral
signal, as previously discussed.

Distinguishing between formations such as swamp forests in
peatlands and riparian zones (edaphic forests), open-canopy forests
(e.g. (e.g.,
Gilbertiodendron or Okoumé), regenerating or degraded forests,

Marantaceae forests), monodominant stands
and open ecosystems like savannas and Miombo woodlands is
essential for refining classification schemes. Achieving this level
of detail requires the integration of very high-resolution (VHR)
imagery with field-based data to improve both the understanding

and modeling of forest dynamics.

1.1 Challenges in optical satellite data for
forest mapping

The advent of new-generation satellite sensors has made it
possible to monitor ecosystems at large scale and high spatial
resolution (10 m). Freely available Sentinel-2 data offer repeated
observations over time, unlocking new potential for fine-scale forest
typology mapping and gaining deeper insights into tropical forest
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structure and composition (You et al, 2022; Quang et al., 2022;
Wasniewski et al., 2020). However, persistent cloud cover and haze
often restrict usable optical time series to just a few cloud-free
observations per year, mostly during the dry season. This limitation
hampers the detection of subtle variations in canopy reflectance
(Morton et al., 2014).

This challenge is further compounded by the fact that optical
satellite imagery is inherently affected by various sources of noise,
which can obscure ecological signals critical for accurate mapping.
Two major sources of noise affect optical satellite imagery used for
regional mapping: (i) atmospheric effects, which introduce spectral
distortions, and (ii) Bidirectional Reflectance Distribution Function
(BRDF) effects due to varying acquisition geometries among a set of
images. Despite automated correction algorithms, residual errors
often persist, blurring the subtle biological signals conveyed by
spectral features (Roy et al., 2017; Marujo et al., 2023). Without
adequate correction, this cripples reliable mapping and ecological
interpretation of forest types.

1.2 The rise of deep learning in
forest mapping

Forest mapping relying on traditional machine learning depends
on handcrafted feature selection. However, these features remain
very sensible to noise, acquisition effects, and heterogeneity that
characterize tropical forests (You et al., 2022; Waéniewski et al.,
2020). Deep learning, with its ability to learn descriptors from data
itself is more robust than traditional machine learning to this kind of
effect (Kim, 2016). As such, researchers have relied more and more
on deep learning methods to robustly map land cover and forest
types (Sothe et al., 2020).

The development of Convolutional Neural Networks (CNNs)
has significantly enhanced forest mapping (Kattenborn et al., 2021).
For instance, UNet (Ronneberger et al., 2015) is well suited for large
data input and the detection of small objects. It has therefore shown
good performances when applied on remote sensing tasks
(Ronneberger et al., 2015; Wagner et al., 2019). However, it is
important to note that this approach has so far only been applied
to relatively small areas (Wagner et al., 2019).

More recently, Vision Transformers models [ViTs, (Dosovitskiy
et al., 2020)] have taken deep learning a step further by capturing
long-range dependencies in images, leading to improved
classification accuracy (Fayad et al., 2024). Indeed, the attention
mechanism built in ViTs enables them to better handle the structure
of an image rather than focusing mostly on texture like CNN.
Moreover, ViTs synergize well with Self-Supervised Learning
(SSL), that allow them to learn relevant features from unlabelled
data. This combination of attention and SSL have made ViTs the
state-of-the-art models for most computer vision tasks (Oquab
et al.,, 2023).

Despite this progress, few studies have applied these powerful
models to map tropical forest typology at large scale using satellite
data (Picard et al.,, 2025). In one such effort, Picard went one step
further in predicting six major forest types in northern Republic of
Congo by leveraging two state-of-the-art architectures EfficientNet-
B3 (a CNN) and a ViTs trained on Sentinel-2 images pre-processed
for atmospheric and BRDF effects.
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FIGURE 1

(A) Study area, protected areas, and swath of Sentinel 2 images (map background was taken from OpenStreetMap); (B) Sentinel-2 final mosaic
unprocessed (color composite: Red-Nir-Green); (C) Sentinel-2 final mosaic processed and (D) Black polygons: training and testing polygons were
sampled over Sentinel-2 images and red polygons: validation polygons were sampled independently over very high-resolution images.

The ability of deep learning models to automatically extract relevant
features raises the question of whether they can also learn to account for
atmospheric and geometric distortions implicitly. In this study, we
investigate the extent to which such models can internalize these
corrections, potentially simplifying the data preprocessing pipeline
while maintaining or even improving classification accuracy.

We apply this approach to a highly heterogeneous forest landscape
located at the intersection of Cameroon, Gabon, and the Republic of
Congo, known as the TRIDOM landscape (as defined by WWF). This
region poses a considerable challenge for high-resolution mapping due
to its ecological complexity along with atmospheric and instrumental
effects contributing to spectral variability. To address this, we compare
deep learning models trained under two different paradigms: standard
supervised learning (using CNN and Vision Transformers (ViT)
architectures) and Self-Supervised Learning (SSL)
(DINOV2 approach). This comparative design allows us to evaluate
whether  SSL-based models, generalizable
representations from unlabeled data, are better equipped to

by learning more

overcome the limitations imposed by atmospheric and acquisition-
related distortions.
The objectives of this study are threefold:

(i) Predict forest types at high spatial resolution (S2 pixel) and
over a wide area using deep learning methods, including a
CNN, Vision Transformers (ViTs), and ViT DINOv2 SSL
based foundation models;

(ii) Evaluate and compare the performance of these two kinds of
model architectures;
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(iii) Evaluate whether these new methods can dispense with
traditional satellite image pre-processing steps, such as
atmospheric and BRDF corrections.

2 Materials and methods

2.1 Study area

Our study area is located in the South of the Cameroun
(Figure 1A) and sits astride Gabon, Congo and Central African
Republic. It covers an area of 178,930 km* and encompasses two
wildlife reserves (Dja, Ngoyla), four National Parks (Lobéké,
Boumba Bek, Nki and Mefou) and one fauna sanctuary
(Mengame). Proximity to the equator induces a bimodal rainfall
regime, with two dry seasons centered in January (main season) and
July (small season), totaling four to five dry months, and two wet
seasons centered in October and April. Mean annual precipitation is
about 1500 mm with a 3-months dry season during December
to February (Precipitations <100 mm). The average temperature is
25 °C (Leroux, 1983).

2.2 Satellite data pre-processing
Using Google Earth Engine, we inspected the Sentinel 2 archive

available during the dry season (low cloud cover) and downloaded
27 tiles spread over 2 swaths, that is 14 tiles for the first swath
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FIGURE 2
(A) Illustrative caption of the 18 landcover classes and (B) distribution of classes in terms of percentage of training polygons per class. FTF (Terra

Firme forests).

acquired on 26/12/2015 and 13 tiles for the second swath acquired a
week later, on 02/01/2016. We selected these products at the L1C
level, which corresponds to top-of-atmosphere (TOA) reflectance of
orthorectified images. This choice allows for in-house correction of
atmospheric effects and bidirectional reflectance distribution
function (BRDF), both of which significantly influence image
reflectance, First, the
Overland image processing software (developed by Airbus
Defense and Space; (Doxani et al., 2023; Feret and Barbier, 2025)
was used for atmospheric correction and noise reduction. Second,

especially in forested environments.

bidirectional effects were corrected using the Ross-thick Li-sparse
model (Lucht et al., 2002) calibrated for tropical forests. Specifically,
we used a set of model coefficients fitted using S2 images of tropical
forests after Overland correction, using a dataset of 183 granule-level
images distributed over 6 acquisition orbits and 37 swath-level
acquisitions (Ploton et al. in prep).

Finally, instrumental artifacts, appearing as bands following the
acquisition trajectory (“swaths’), can be visible in S2 images
(Figure 1B), especially on non-Lambertian surfaces such as
forests. These artifacts are mainly due to the non-uniform
spectral response at the edges of the S2 detectors, as well as
differences in viewing angles between even and odd detectors
(Clerc et al., 2021). To correct for these artifacts, we (i) rotated
the images according to the S2 track angle, (ii) applied a column-
wise centering specific to the band of the resulting matrices, thereby
normalizing the spectral response of pixels along the track, and (iii)
rotated the matrices back to their original orientation. Last, we used
the overlap area between images of the two swaths to perform band
wise linear intercalibrations of images from both swaths. The
27 images were then assembled into a final mosaic at a spatial
resolution of 10 m. Hill-shading was calculated from the shuttle
radar topography mission (SRTM; 30-m resolution) image and
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interpolated to 10 m. This layer was added to the final mosaic,
which therefore contains the 10 spectral bands of S2 and the
Hillshade layer. Finally, we converted the final mosaic to 8 bits
to reduce the image size from 40 GB to 17 GB (Figure 1C).

2.3 Landcover types and training dataset

We defined 18 landcover classes (Figure 2A) and built a dataset
to train classifiers focusing on 35 geographically-balanced training
areas throughout the study area (Figure 1D). In total, over
10,000 training polygons were extracted from those training areas
and distributed among landcover classes so as to reflect their
approximate proportion in the study area 2B).
Approximate landcover proportions were derived from the

(Figure

output of a first classification task using a CNN model trained
on 1000 polygons equally-distributed among classes. All polygons
were labelled by a single expert (GV) on the basis of visual photo-
interpretation of Sentinel2 images in Arcmap using criteria such as
canopy texture and spectral information based on an R-NIR-G
composite. For instance, Terra Firme forests (FTF) exhibit a high
degree of structural and phenological heterogeneity, reflecting
diverse compositions that include both deciduous and evergreen
species at different phenological stages. Visually, they appear as a
mixture of large crowns and bare, pinkish branches of leafless
emergent trees, alongside the green-leaved crowns of other
broad-leaved species. No obvious symptoms of secondary
degradation or signs of disturbance are observed in these FTFs.
Degraded forests in early post-disturbance stages are generally
composed of early pioneer species such as Musanga cecropioides that
form either a uniform cover or a typical patchwork with very high
NIR reflectance values (Figure 2), while deciduous trees are generally
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raw and processed images.

absent. Monodominant Gilbertiodendron dewevrei forests (GDF)
present a typical fine-grained texture, due to the even-size and high-
density distribution of canopy trees. Due to the specific position of
young leaves in the dominant evergreen species (hidden below older
ones and pendulous), reflectance in the NIR is low, as indicated by
dark tones on the mosaic (Figure 3). Swamp forests are easily
recognizable by the dominance of Raphia spp. palms with a
characteristic star-shaped appearance. In dry-season images,
Raphia trees presented low NIR and high Red reflectance,
making them appear pinkish. Illuminated Forest corresponds to
mountain slopes with a high spectral response in the near infrared
(NIR) channel, attributable to direct solar illumination at the time of
image acquisition. This radiometric signature is mainly due to the
incidence angle of sunlight on the canopy.

The training polygons or regions of interest (ROI) were divided
into two groups: 80% for training and 20% for validation, randomly
distributed according to the 18-class distribution.

2.4 Classification by deep learning methods
on pre-processed and processed mosaics

2.4.1 Classification with Convolutional Neural
Network (CNN)

We used OTBTF, a remote module of the Orfeo ToolBox that
provides deep learning framework targeting remote sensing image
processing (Cresson, 2018). OTBTF uses TensorFlow to perform
numerical computations. For classification, this module uses a small
CNN model with three convolutional layers. CNNs are trained on
image tiles rather than batches of individual pixels. First, we used the
PatchesExtraction application to extract tiles from the final mosaic
at each ROI location. We thus created a set of tiles of dimension 16 x
16 pixels associated with the label of the corresponding class name.

Next, we trained a deep network, providing the
TensorflowModelTrain application with tiles for training and tiles
for  validation. Inference was then performed via
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TensorflowModelServe. The very light nature of this model
allows for the inference to be done by sliding a window across
the whole mosaic with a single pixel stride, thus producing the final
classification at pixel resolution (10 m).

2.4.2 Classification with Vision Transformer (ViT)

We then performed the same task using a Vision Transformer
[ViT, (Dosovitskiy et al., 2020; Khan et al.,, 2022)] model as a backbone.
We used the “vit_base_patchl4 dinov2” model from the timm library
(Wightman, 2019), an implementation of a ViT base architecture using
DINOV2 (Oquab et al., 2023) pre-trained weights. During training, the
resulting model was fed with image tiles of dimension 10 x 10 pixels (or
20 x 20 to test influence of longer range dependencies in images)
corresponding to the location of the labelled points. We kept the same
tile size during inference, resulting in a classification at tile resolution
(100 m). The usage of a smaller stride similar to what was used in the
CNN case was found too demanding in computational resources, due to
the huge discrepancy in size between both models and the overall large
area of testing.

2.4.3 Classification with Vision Transformer with a
self-supervised learning step (ViT DINOv2 SSL)

We also trained the ViT model in Self-Supervised Learning
(SSL) mode. In a SSL setup, the model first learns features of the
dataset in an unsupervised manner via a pretext task (e.g.,
reconstruction of degraded data or pairing of two
transformations of the same data). Afterwards, the model is
trained in a supervised way using the labeled dataset. SSL has
been shown to ease domain adaptation on various computer
vision datasets as well as remote sensing data (Tresson et al,
2024; Prieur et al, 2024). In our case, we hypothesized that the
model could learn a representation of the sentinel images robust to
atmospheric and BRDF artefacts. The model was trained on
unlabeled and uncorrected images using the DINOv2 method
(Oquab et al., 2023), starting from pretrained weights provided
by the timm library (Wightman, 2019).
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2.5 Model evaluation

2.5.1 Test dataset for independent validation of
predicted maps

After building up a training and validation dataset covering
18 land cover classes (see Section 2.3), we constructed an
independent test set to assess the quality of the maps produced.
This set is based on images with a higher spatial resolution than
Sentinel-2, enabling us to generate more accurate reference labels
over the entire study area, while minimizing spatial autocorrelation
with the training data.

Specifically, we have compiled a set of 25 very high resolution
(VHR) commercial multispectral images from the SPOT 6/7 (6 m/
pixel) and Pleiades (2 m/pixel) sensor archives. These images were
acquired during the 2015-2016 dry season, guaranteeing relatively
cloud-free coverage (see image metadata in Supplementary
Material S1).

The accuracy assessment followed a standardized protocol:
(i) we excluded training area footprints from the VHR image
coverage (black polygons in Figure 1D) to ensure an independent
validation process and to minimize spatial autocorrelation with
the training data; the remaining areas then constituted our final
validation area (test, red polygons in Figure 1D) (iii) we selected
2200 validation pixels from the final test area using a stratified
random sampling strategy following map classes with a sampling
intensity proportional to the proportion of each class in the total
pixel population. The minimum sample size was set to 100, to
(e.g.,
...) in the test set; (iii) we

ensure a sufficient representativity of rare classes
Plantation, Old Fallow Land, etc.,
carried out the visual interpretation of validation samples based
on VHR imagery.

2.5.2 Validation statistics

We employed pixel-level validation to assess the performance of
the different classifiers, using global metrics such as Overall
Accuracy, Cohen’s Kappa, Macro Fl-score, and Weighted F1-
score. Kappa accounts for agreement expected by chance,
offering a more robust measure than accuracy alone. Macro
F1 gives equal weight to all classes, which is especially important
in our case, where vegetation classes are highly imbalanced. In
contrast, the Weighted F1-score takes class frequency into account,
reflecting the model’s performance across dominant and rare classes.

To gain deeper insight into the behavior of each classifier, we
also conducted a per-class analysis using F1-score, False Positive
Rate (FPR), and False Negative Rate (FNR). These fine-grained
indicators allowed us to precisely identify the strengths and
weaknesses of each model, particularly in their ability to
distinguish between visually or structurally similar forest types.

3 Results

3.1 Comparing the performance of
different models

Among the three models tested, the Convolutional Neural
Network (CNN) yielded the best overall performance (Table 1),
particularly when applied to preprocessed images, with an overall
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accuracy of 0.91 and a Kappa coefficient of 0.84. Its Macro F1-score
(0.87) and Weighted F1-score (0.90) suggest a strong balance across
all vegetation classes, including the rarest ones. The Vision
Transformer model (without additional SSL) and SSL model
performed moderately well on preprocessed images, with slightly
than the CNN and had
scores (around 0.54).

lower  scores lower Kappa

When applied to unprocessed (raw) images, the performance
of all models declined, confirming the positive effect of pre-
processing. The CNN experienced a notable drop, with a Kappa
of 0.59 and accuracy of 0.76, although it still outperformed the
other two models. The Transformer model showed particularly
poor performance on raw images, with a Kappa of just
0.24 suggesting significant generalization issues. The ViT
DINOv2 SSL model was more robust, achieving a moderate
Kappa of 0.51 on raw images, slightly lower than that
obtained on processed images (0.55).

Pixel-level analysis of class-wise F1-scores (Figure 4) highlights
the CNN’s superior performance across most classes when applied
to preprocessed images. It achieved extremely high scores (F1 >
0.98) for several dominant classes such as terra firme forest (FTF),
Gilbertiodendron forest (GBD), and savannas. Notably, it was the
only model to correctly detect two minor classes: illuminated forest
(F1 = 1.0) and old fallow land (F1 = 0.5). In any cases, illuminated
forests are not a forest type in themselves, but rather a known
artefact due to imperfectly corrected topographic illumination
effects under varying direct/diffuse illumination conditions.
Gallery forests were not predicted by any model, which can be
attributed to the absence of this class in the test dataset, as the
footprints of the very high-resolution (VHR) images do not cover
areas where gallery forests are present.

The CNN maintained a performance advantage even on raw
images, though with slightly reduced F1-scores across the board.
Both ViT models exhibited more variable
underperforming relative to CNN, particularly in detecting

behavior, often
minority classes.

The analysis of the CNN confusion matrix based on the
processed images (Table 2) shows that, despite a high Kappa
coefficient (0.84) and an overall accuracy of 0.91, several classes
remain prone to misclassification. In particular, the Built and Old
Fallow classes exhibit significant confusion, with error rates of 33%
and 67%, respectively. Gallery Forests are not detected at all and are
frequently misclassified as Plantations, Terra Firme Forest (FTF), or
Degraded Forest.

The analysis of False Positive Rates (FPR) and False Negative
Rates (FNR) per class (Figure 3) provides further insights into
classification errors. Majority classes such as terra firme forest,
degraded forest, and swamp forest were frequently over-predicted
by both transformer models, as reflected in their high FPRs, on both
preprocessed and unprocessed images. In contrast, the CNN
demonstrated consistently low FPRs, reflecting higher precision.
The ViT, struggled to correctly identify swamp and degraded forests,
with FNRs of 0.35 and 0.52 respectively, further highlighting its
limitations under challenging conditions.

Across all classifiers, FPRs were higher on unprocessed images,
reinforcing the importance of atmospheric and BRDF correction for
accurate pixel-level classification. However, this improvement was
not uniform across all classes.

frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1682132

Viennois et al.

TABLE 1 Classifiers test statistics on raw and preprocessed.

10.3389/frsen.2025.1682132

Raw mosaic Preprocessed mosaic
Accuracy Kappa MacroF1 Weighed F1 Accuracy Kappa MacroF1 Weighed F1
CNN 0,76 0,59 0,66 0,77 0,91 0,84 0,87 0,90
ViT 0,55 0,24 0,59 0,61 0,69 0,54 0,6 0,71
ViT DINOv2 SSL | 0,68 0,51 0,62 0,70 0,70 0,55 0,54 0,72

Bold values: The best performance.
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FIGURE 4

Predicted vegetation map over the study area for CNN on processed image.

3.2 Mapping forest types

Terra Firme Forest, which is a heterogen class, is the
predominant vegetation type in the region, covering 70.18% of
the study area (Table 3). It is followed by Swamp Forests, which
represent 8.81% of the landscape. These swamp forests are well
captured by the model, as illustrated in Figure 5, and are especially
concentrated in the southern portion of the study area (Figure 4).
Degraded Forests are mostly found near roads and built-up areas
and account for 4.79% of the total area.

The monodominant Gilbertiodendron dewevrei forest type
occupies 1.17% of the area and is mainly found in the vicinity of
Swamp Forests in the southern part of the site (Figure 4). In contrast,

Frontiers in Remote Sensing

Savannas are primarily located in the northern region and cover
3.74% of the landscape (Figure 4).

Figure 5 offers a detailed view of the south region of Cameroon,
highlighting a dense network of Swamp Forests extending outward
from the dominant Terra Firme Forest matrix. Scattered patches of
G. dewevrei forests are also observed along these swampy zones.

From a visual standpoint, different forest types exhibit
distinctive textures, dense canopy, canopy gaps, and degraded
zones, which CNNs manage to capture effectively. However,
Vision Transformers (ViTs) tend to struggle more with these
local variations. Conversely, ViT's perform better in identifying
large-scale structures, such as rivers or roads traversing the
landscape, where CNNs typically fall short.
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TABLE 2 Confusion matrix for the CNN model on processed image. OFL (Old Fallow Land), FTF (Terra Firma Forest), SF (Swamp Forest), GBD
(Gilbertiodendron), IF (Illuminated Forest), GF (Gallery Forest), DF (Degraded Forest) and WS (Wet savana).

Reference Plantation Built OFL Road FTF DF Savana SF GBD IF GF River WS Total

confusion
error (%)

Plantation 18 0 0 0 0 0 0 0 0 0 0 0 0 0
Built 10 72 0 0 0 0 0 0 0 0 0 0 0 13
OFL 0 0 18 0 0 0 0 18 0 0 18 0 0 67
Roads 0 0 0 18 0 0 0 0 0 0 0 0 0 0
FTF 0 0 0 0 1314 18 0 0 0 0 0 0 0 1
DF 0 0 0 0 0 198 0 0 0 0 0 0 0 0
Savana 0 0 0 0 0 0 54 0 0 0 0 0 0 0
SF 0 0 0 0 18 0 0 144 0 0 0 0 0 11
GBD 0 0 0 0 0 0 0 0 54 0 0 0 0 0
IF 0 0 0 0 0 0 0 0 0 18 0 0 0 0
GF 36 0 0 0 18 36 0 0 0 0 0 0 0 100
River 0 0 0 0 0 0 0 0 0 0 0 18 0 0
WS 0 0 0 0 0 0 0 0 0 0 0 0 18 0
Total Confusion 72 0 0 0 2.7 0.2 0 11 0 0 100 0 0
error (%)

TABLE 3 Area and proportion of forest type. 4 Discussion
Class Area (km?) %

In this study, we produced a forest typology map at a 10-m spatial

FIE 12568416 70,18 resolution, achieving with a high-level of spatial detail for automated
Swamp forest 15770,65 8,81 tropical forest classification over a region of 180,000 km* comprising
27 S2 tiles. While tropical forests are often represented as a uniform
Degraded forest 8578,41 4,79 .
green carpet in global maps and models, our results reveal a much more
Built 7421,95 4,14 heterogeneous landscape. Although Terra Firme Forest (FTF)
. . . o
Savana 669354 374 dominated the area covering approximately 70% of the area we
successfully mapped ecologically important yet less extensive
Gallery forest 520151 290 formations such as swamp forests (8.81%) and monodominant G.
Tluminated forest 2166,02 121 dewevrei forests (1.17%), typically found in isolated lowland zones of
southeastern Cameroon, consistent with earlier observations by
Gilbertiodendron 2102,75 1,17

(Letouzey, 1968; Barbier et al., 2017). The surface area of Degraded
Roads 1191,46 0,67 Forests accounts for 4.79%, slightly higher than the 3.78% covered by
Tropical Moist Forests (Vancutsem et al., 2019). It should be noted that
in our study, the FTTF class is heterogeneous in terms of both structure
and composition, with varying proportions of deciduous trees and
Plantation 775,60 0,43 phenological stages. This heterogeneity has already been highlighted in
previous studies, for instance through predictions of deciduousness

Old fallow land 857,34 0,48

Cloud 800,94 0,45

Ri 71548 0,40 . . . .
e from inventory data and Sentinel-2 imagery (Feret and Barbier, 2025)

Swamp 333,93 0,19 or foliage flushing patterns derived from MODIS (Viennois et al., 2013).
We plan to explore this internal heterogeneity in future work through

Inselberg 312,13 0,17
continuous and gradient-based mapping approaches, in order to better
Deciduous forest 23647 0.13 capture the fine-scale variation in canopy composition and phenology.
Wet savana 129,49 0,07 These continuous gradients of varying phenology and functional/
compositional composition are beyond the scope of a categorical/
Shadow 113,27 0,06 P P Y P 8

discrete classification. We are investing tremendous effort to
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FIGURE 5
Zoom on Mosaic and visual comparison of prediction models. (A) processed Image (color composite: Red-Nir-Green) (B) CNN; (C) Vision
Transformers; (D) Dino SSL and Vision T.ransformers.

improve the characterizations of these gradients, notably using drone-
based phenological observatories (www.canobs.net).

To generate these maps, we evaluated several state-of-the-art
computer vision models. Our findings demonstrate that in this
context, Convolutional Neural Networks (CNNs) outperform Vision
Transformer (ViT) architectures, even when trained in a SSL setup. Our
CNN with three layers achieved an overall accuracy of 0.91, compared
to respectively around 0.70 and 0.69 for the ViT and ViT DINOv2 SSL
models despite the latter two being considered cutting-edge in many
computer vision tasks. For comparison, the vegetation map produced
by Picard et al. (Oquab et al., 2023), which used a Vision Transformer,
trained on Sentinel-2 images pre-processed for atmospheric and BRDF
effects, reported an overall accuracy of 83% and a final spatial resolution
of 100 m. While this map offers some additional detail such as the
identification of Marantaceae forests, it covers a much smaller area
(18,000 km?) and is based on only two Sentinel-2 tiles from a single
swath. In contrast, our map was generated at a finer spatial resolution of
10 m and achieved higher classification accuracy (91%), highlighting the
effectiveness of our approach in capturing fine-scale vegetation
heterogeneity over large tropical regions.

This difference of performance between CNN and ViT with or
without DINOv2 SSL models appears rooted in the way each
architecture processes visual information. CNNs primarily capture
local texture and spectral patterns, critical ~ for
distinguishing between forest types with subtle visual differences

which are

such as Gilbertiodendron stands or Raphia-dominated swamps.

Frontiers in Remote Sensing

CNNis also tend to perform better with multispectral data, as noted
by Adomi et al. (2025) due to their ability to exploit the rich spectral
signatures across different bands. In contrast, ViT, which rely on self-
attention mechanisms, are optimized for capturing broader spatial
structures. As noted by Fogel (2024), ViTs are especially effective in
tasks that require the detection of large-scale patterns such as ecological
corridors, roads, or linear savanna patches. However, this strength
comes at the cost of reduced sensitivity to fine-scale textural variations
crucial for forest typology (Marsocci et al., 2024). ViTs are also complex
architectures with generally more parameters than CNNs. For example,
the vit_base_patch14_dinov2 model used in our experiments has
86.6 million parameters, whereas popular CNN architectures such as
ResNet-50 and EfficientNet-B4 have approximately 25 million and
19 million parameters, respectively. In contrast, the lightweight CNN
model we employed contains only around 9,000 parameters. This
difference has practical implications: in our case, applying ViTs for
pixel-level classification proved too computationally expensive.
Consequently, selecting an appropriate tiling size for ViT inference
(10 x 10 pixel tiles) involves a trade-off between achieving fine spatial
resolution in the final map and maintaining reasonable execution time.
The lightweight nature of our CNN model, on the other hand, enables
efficient inference by sliding a window over the entire mosaic with a
single-pixel stride, thereby producing a final classification at the native
pixel resolution (10 m). We have performed tests where the ViT's are
given a broader context (20 x 20 pixel tiles) but a constant 10 pixel stride
in order to give the ViTs more context while still keeping the same
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computing time and final resolution. This change, however, barely
impacted the performances of the model. It is then likely that this tile
size is still too small for the ViT to benefit from a larger context that is
best suited for this kind of architecture. These results are probably
specific to our handling of the data and might be challenged on other
use cases, particularly with the upcoming of ViT-based models trained
specifically on remote sensing data (Marsocci et al., 2024).

Our results also provide insights into the importance of image
pre-processing. While some recent studies particularly in
agricultural or multi-temporal settings suggest that deep learning
models may implicitly compensate for atmospheric or BRDF effects
(Ruflwurm and Korner, 2020; Pelletier et al., 2019), our findings
challenge this assumption in the context of tropical forest mapping
using single-date, high-resolution imagery.

Without pre-processing, CNN accuracy dropped from 0.91 to
0.76, while the Kappa coefficient fell from 0.84 to 0.59. Vision
Transformers (ViTs) also suffered, with Kappa falling from 0.54 to
0.24. This underscores the importance of maintaining consistent
spectral properties in input imagery to enable accurate
discrimination of forest types.

Interestingly, ViT DINOv2 SSL’s performance remained relatively
stable, with an kappa approximately 0.51 even on raw, uncorrected
images. This robustness may stem from the self-supervised training
approach of ViT DINOv2 SSL, which can enable the model to learn
more generalizable features even from single-date imagery, although its
exposure to diverse atmospheric and illumination conditions is limited.
This finding suggests a potential advantage of such models in handling
inter-date and inter-sensor variability.

Beyond overall performance, pixel-level analysis of F1 scores by
class provides a more nuanced view. The CNN achieved near-perfect
scores (F1 > 0.98) for dominant classes such as terra firma forest
(FTF), Gilbertiodendron forest (GBD), and savannas, highlighting
its strong discrimination ability for widespread vegetation types.
However, these classes, particularly FTF, were also frequently
overestimated by ViT with or without DINOv2 SSL as indicated
by high FPR values. In contrast, ViTs had more difficulty with
complex classes: swamp forests and degraded forests showed high
FNRs (0.35 and 0.52,

underdetection. Forest gallery also exhibited high and persistent

respectively), indicating systematic
omission errors across all models, highlighting their intrinsic
classification difficulty. Finally, certain systematic confusions (e.g.,
“Built” vs. “Old Fallow”) occurred independently of architecture,
reflecting genuine ambiguities in the spectral-structural domain.

Taken together, these results illustrate both the strengths and
current limitations of deep learning approaches for tropical forest
mapping. CNNs clearly excel at capturing fine-scale spectral and
textural differences, yet certain forest types remain systematically
misclassified, while ViTs, despite their global contextual awareness,
struggle to resolve subtle vegetation contrasts.

These results open a promising direction for future research:
incorporating temporal diversity in training datasets to enhance
model generalization in remote sensing applications. Indeed,
although foundation models such as the selected ViTs are reputed
to be robust to noise and lighting conditions due to their extensive
pretraining on large and diverse datasets, this robustness does not
necessarily extend to the fine-grained spectral and textural distinctions
required in tropical forest mapping. It will very likely be beneficial to
perform rigorous fine-tuning in the specific context of tropical forests,
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using training data acquired under varying atmospheric and
illumination conditions, before drawing more definitive conclusions.

At this stage, classifying forest types over the whole Congo Basin
region will still require applying careful pre-processing for
attenuating atmospheric and BRDF effects.

By leveraging the complementarity between CNNs and ViTs, it is
possible to combine the fine-grained textural discrimination of CNNs
with the global contextual awareness of ViTs, potentially improving
classification performance in complex tropical forest landscapes.
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