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This paper presents ConvAttentionNet, a lightweight and high performing deep
learning model developed for accurate and efficient classification of Polarimetric
Synthetic Aperture Radar (PolSAR) imagery. The proposed architecture combines
multiscale convolutional mixer blocks with a directional convolution based
attention mechanism to effectively capture spatial features and suppress
background noise. Designed to address the challenges of limited labeled data
and computational constraints, ConvAttentionNet achieves superior
performance while maintaining a compact model size. Experimental results on
three benchmark datasets (Flevoland, San Francisco, and Oberpfaffenhofen)
demonstrate that ConvAttentionNet consistently outperforms state of the art
CNN based, transformer based, and wavelet based models. It achieves an overall
accuracy (OA) of 97.24% and a Kappa coefficient of 96.98 on the Flevoland
dataset using only 1% of the training data. These results confirm the model’s
robustness, label efficiency, and generalization capabilities, making it a practical
solution for operational remote sensing scenarios with limited computational
resources. The source code for this work will be publicly available at: https://
github.com/aj1365/ConvAttentionNet.
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1 Introduction

Polarimetric Synthetic Aperture Radar (PolSAR) has become a critical modality in
remote sensing due to its ability to operate in all weather conditions, day or night, and to
capture both structural and dielectric properties of surface materials through its
polarimetric channels (Hajnsek and Desnos, 2021). These unique advantages make
PolSAR suitable for a wide range of Earth observation tasks, including land cover
classification, environmental monitoring, and disaster assessment. However, interpreting
PolSAR imagery remains a complex task, primarily due to its multidimensional nature and
the need for expert annotation. The scarcity of high quality labeled data continues to pose a
significant challenge for developing reliable supervised learning models in this domain (Yu
et al., 2011).

Traditional approaches to PolSAR data classification have included K nearest neighbors
(KNN), support vector machines (SVM), and random forests (Shah Hosseini et al., 2011;
Du et al., 2015), which often rely on handcrafted features and struggle with generalization.
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In recent years, deep learning has brought substantial progress in
this area. Convolutional Neural Networks (CNNs), in particular,
have demonstrated the ability to learn spatial hierarchies of features
directly from the input data (Zhou et al., 2016; Zhang et al., 2018).
Enhancements such as wavelet based preprocessing (Jamali et al.,
2022), dual branch architectures (Shang et al., 2022), and 3D
convolutions (Zhang et al., 2018) have further improved
classification accuracy. Recent studies have also focused on
efficiency and automatic network design. GICANet introduced
ghost convolution with a coordinate attention mechanism to
reduce redundancy and improve sensitivity to local textures
(Shang et al., 2025), while AutoPolCNN applied neural
architecture search to automatically design CNN architectures for
PolSAR classification (Liu et al., 2025). More recently, Vision
Transformers (ViTs) have been applied to remote sensing
problems, including PolSAR data classification, due to their
ability to model long range dependencies (Dong et al., 2021;
Alkhatib, 2025). Beyond ViTs, diffusion based approaches have
been proposed, such as MCDiff, which models class probabilities
using scattering characteristics and multiscale noise prediction
(Zhang et al., 2025), and complex valued diffusion models that
operate in the amplitude and phase domain to enable self supervised
learning without labeled data (Kuang et al., 2025b). State space
models have also emerged as alternatives, where ECP-Mamba
integrates multiscale contrastive learning with a Mamba
backbone to improve accuracy and efficiency (Kuang et al.,
2025a). Furthermore, complex valued CNN designs remain
active, with multi scale feature extraction networks using CV-3D
convolutions and CV-SE modules to exploit both amplitude and
phase information effectively (Jiang et al., 2025).

Recent research has demonstrated that attention mechanisms
play a critical role in enhancing PolSAR image classification by
enabling models to better manage complex scattering patterns and
emphasize informative features. For instance, the AFS-CNN
framework (Dong et al., 2020) integrates attention-driven feature
selection into an end-to-end learning pipeline, while the composite
sequential network (CSN) (Yang et al., 2021) employs POA
attention to model sequences of coherency matrices for improved
interpretation of scattering orientation. Other architectures such as
attention-based multiscale sequential networks (Hua et al., 2022)
effectively leverage multiscale spatial cues, improving segmentation
outcomes. Squeeze-and-excitation modules have also been
incorporated into multi-branch fusion frameworks (Alkhatib
et al., 2025; Hu et al., 2018) to strengthen inter-channel
relationships. LSTCNNs (Zhang et al., 2023) enhance spatial
awareness by integrating both pixel-level similarity and
neighborhood-based texture attention. Despite these
advancements, embedding attention mechanisms effectively into
feature maps remains a challenge, particularly in lightweight or low-
complexity networks. Nevertheless, these studies collectively
underscore the substantial contribution of attention mechanisms
in advancing PolSAR data classification models.

Despite these advances, two critical challenges persist: (1) the
limited availability of annotated PolSAR data, and (2) the high
computational complexity of current state of the art models,
particularly transformer based architectures (Khan et al., 2022).
ViTs, while powerful, require large scale labeled datasets and
extensive hardware resources, making them impractical for real

time or onboard applications. Conversely, lightweight CNNs,
although efficient, often compromise performance, especially in
low data regimes. As a result, there is a growing need for
architectures that maintain high classification accuracy while
being computationally efficient and robust to data scarcity.

In response to these limitations, we propose
ConvAttentionNet, a compact and efficient deep learning
model tailored for PolSAR image classification. The proposed
model integrates multi scale convolutional mixer blocks to extract
spatial features at different receptive fields and introduces a
lightweight linear attention mechanism to selectively enhance
discriminative regions. This architectural design enables
ConvAttentionNet to achieve strong classification performance
while significantly reducing the number of parameters and
floating point operations (FLOPs).

ConvAttentionNet is specifically designed to address three key
challenges: (1) effective learning from limited labeled samples, (2)
low computational overhead for real time applicability, and (3) a
favorable tradeoff between model complexity and accuracy. The
model is evaluated on three benchmark PolSAR datasets: Flevoland,
San Francisco, and Oberpfaffenhofen, and demonstrates consistent
performance gains over existing CNN based, wavelet based, and
transformer based models, even when trained with only 1% of
available labeled data. These results highlight ConvAttentionNet’s
suitability for practical deployment in operational scenarios
constrained by limited data and computational resources.

Unlike prior lightweight models developed primarily for natural
image analysis, the design of ConvAttentionNet is conceptually
motivated by the unique characteristics of PolSAR data. The
proposed convolutional mixer block integrates multi-scale
convolutions to capture the diverse scattering behaviors present
in polarimetric imagery while maintaining computational efficiency.
Moreover, the linear convolution-based attention employs
directional filters along horizontal and vertical axes, which avoids
the loss of fine spatial details typically introduced by global pooling
in conventional attention modules, as will be discussed in section
3.3.1. This architectural choice directly addresses the need to
preserve polarimetric scattering patterns while enhancing
discriminative features under limited training data. Together,
these design principles establish ConvAttentionNet as a tailored
solution for PolSAR image classification, rather than a simple
recombination of existing techniques.

The main contributions of this paper are summarized as follows:

1. Multi Scale Spatial Feature Extraction: The model employs
convolutional mixer blocks with varied kernel sizes to
effectively capture features at multiple spatial scales.

2. Dynamic Attention Mechanism: A lightweight linear attention
module enhances salient features while suppressing
background noise, improving classification accuracy.

3. Efficient and Stable Training: Residual connections ensure
stable gradient flow and allow for deeper architecture
without introducing significant computational cost.

4. Robustness in Low Data Regimes: The model achieves high
classification performance using only 1% of labeled training
data, demonstrating strong generalization capabilities.

5. Computational Efficiency: ConvAttentionNet significantly
reduces the number of parameters and FLOPs compared to
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transformer based and wavelet based models, making it
suitable for real time and resource constrained applications.

The rest of the paper is organized as follows: Section 2 presents
the proposed model architecture. Section 3 details the experimental
setup and results. Section 4 offers insights and interpretation of the
findings. Section 5 concludes the study and outlines directions for
future research.

2 Proposed methodology

The ConvAttentionNet model (Figure 1) processes an input
PolSAR image tensor I of dimensions (H,W,C) through several
phases to capture critical spatial patterns, apply attention
mechanisms, and perform the classification task.

Convolutional Stem: The input tensor I is first passed through a
convolutional layer with filter size f � 2 × 2 and stride s � 2 to
produce an initial embedding Xstem with dimensions (H′,W′, C′),
as expressed in Equation 1:

Xstem � Conv2D I, f, s( ), (1)
where H′ � H

2 , W′ � W
2 , and C′ is the number of filters used in the

Convolutional Stem. This operation down-samples the spatial
dimensions and increases the depth, preparing the data for richer
feature extraction.

Convolutional Mixer Blocks: The output Xstem from the
Convolutional Stem, with dimensions (H′,W′, C′), is then
processed through a sequence of d � 4 mixer blocks, each
designed to capture multi-scale spatial patterns. Each mixer block
may alter the channel dimensions or spatial resolution of the feature
maps, so the output of the final mixer block, Xmixer, is represented
with dimensions (H″,W″, C″) as shown in Equation 2:

Xmixer � Mixerd Xstem( ). (2)

Attention Mechanism: The outputXmixer from the mixer blocks,
now with dimensions (H″,W″, C″), is then passed through the
attention layer to generate attention scoresA. This layer, represented

by LinearAttentionMap(X), produces an attention map with the
same spatial dimensions as Xmixer (Equation 3):

A � LinearAttentionMap Xmixer( ). (3)
The attention map A modulates Xmixer through element-wise
multiplication as expressed in Equation 4:

Xmodulated � Xmixer ⊙ A, (4)
where ⊙ denotes element-wise multiplication, emphasizing relevant
spatial features in Xmixer.

Global Average Pooling and Classification: The modulated
feature map Xmodulated is then globally pooled to reduce spatial
dimensions to a single vector. Let GAP(X) represent global average
pooling (Equation 5):

Xpooled � GAP Xmodulated( ). (5)
Finally, the pooled features Xpooled are passed through a dense layer
with Softmax activation (Equation 6) to yield the land cover class
probabilities ŷ:

ŷ � Softmax Dense Xpooled( )( ). (6)

2.1 Convolutional mixer block

The Mixer Block enhances spatial feature learning with multi-
scale convolutions and residual connections. The input to each
mixer block is the output Xstem from the Convolutional Stem,
with dimensions (H′,W′, C′). Let the output of each mixer block
be Xblock.

To capture spatial patterns, we apply depth-wise convolutions
with kernel sizes 3 × 3 and 5 × 5, as well as a point-wise convolution
as expressed in Equation 7:

p1 � DC3×3 Xblock( ), p2 � DC5×5 Xblock( ),
p3 � Conv1×1 Xblock( ). (7)

These feature maps are combined by Equation 8 below:

FIGURE 1
The overall architecture of the developed ConvAttentionNet deep learning model.
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Xc � p1 + p2 + p3. (8)
A point-wise convolution, activation, and batch normalization

(Equation 9) are applied:

Xa � Activation Conv1×1 Xc( )( ). (9)

Finally, we add the activated output to the residuals, in
Equation 10:

Xo � Xa +Xblock. (10)

The outputXo combines the original input and enhanced spatial
features, capturing multi-scale spatial patterns effectively. This
output Xo becomes the input to the next mixer block or is
passed to the attention mechanism after the final mixer block.

2.2 Linear attention mechanism

The attentionmodule emphasizes specific spatial dependencies and
improves feature representation across various scales by employing
linear convolutional filters in both horizontal and vertical directions.
Furthermore, the attention map’s last sigmoid activation ensures the
module dynamically scales the features, enabling the model to prioritize
each image’s most informative areas. Specifically, the sigmoid function
normalizes the attention scores between 0 and 1, which enables the
network to suppress background responses while emphasizing salient
spatial regions. As a result, feature maps corresponding to important
scattering patterns receive higher weights, thereby enhancing their
contribution during classification. The module optimizes resource
allocation during training and inference by enabling refined spatial
attention, improving performance without appreciably increasing
computational load. To capture horizontal and vertical
dependencies, sequential convolutions are applied. First, a horizontal
convolution (Equation 11) with kernel size (6, 1) produces an
intermediate representation Xhor:

Xhor � ReLU Conv6×1 Xmixer( )( ). (11)

This is followed by a vertical convolution (Equation 12) with
kernel size (1, 6), yielding Xver:

Xver � ReLU Conv1×6 Xhor( )( ). (12)
Finally, a point-wise convolution (Equation 13) restores the

channel dimensions to the desired output size Cout, producing the
final attention score:

Xout � σ Conv1×1 Xver( )( ), (13)

where σ is the Sigmoid activation function, scalingXout between
0 and 1. The attention score Xout modulates Xmixer to enhance
important spatial regions in the feature map before classification in
ConvAttentionNet.

It should be noted that the design of ConvAttentionNet is
motivated by the statistical and physical properties of PolSAR
data. The multi-scale convolutional mixer blocks allow the
network to capture heterogeneous scattering behaviors across
different spatial resolutions, while the directional convolution-
based attention preserves anisotropic structural details without
relying on global pooling. These architectural choices ensure that

the model remains lightweight yet well aligned with the domain-
specific requirements of PolSAR data classification.

2.3 Polarimetric data of PolSAR image

In fully polarimetric (FP) SAR, the 2 × 2 complex scattering
matrix S encompasses complete polarimetric information about
backscattering from targets for each pixel. Under the backscatter
alignment (BSA) convention and using the linear (H, V)
polarization basis, this matrix takes the form, Equation 14:

S � SHH SHV

SVH SVV
[ ] 0 k � V [S]( ) � 1

2
Tr SΨ( ), (14)

The scattering vector k is derived from the scattering matrix S
through the linear transformation k � V(S) � Tr(S Ψ), where V(·)
is the vectorization operator, Ψ is the basis transformation matrix,
and Tr(·) denotes the matrix trace (sum of diagonal elements). Each
element of the matrix represents the backscattering response of the
target at a specific polarization. The diagonal elements (SHH, SVV)
represent co-polarized responses where transmit and receive
polarizations are identical, while the off-diagonal elements (SHV,
SVH) correspond to cross-polarized responses with orthogonal
transmit/receive polarizations. In monostatic radar
configurations, the reciprocity theorem enforces matrix symmetry
(SHV � SVH), reducing the independent scattering coefficients from
four to three while preserving complete polarimetric information.

The 3 × 3 coherency matrix T is formed through multi-looking
(averaging) of the outer product of the Pauli target vector kP with its
conjugate transpose:

T � 〈kPk*TP 〉

ΨP � �
2

√ 1 0
0 1

[ ] �
2

√ 1 0
0 −1[ ] �

2
√ 0 1

1 0
[ ]{ }

The resulting T matrix is Hermitian, positive semi-definite by
construction, and contains second-order statistical information
about the distributed scattering media. Its eigenvalues provide
essential information about scattering mechanisms and their
relative contributions.

This study utilizes the magnitude of all six unique elements of
the coherency matrix T � [T11, T12, T13, T22, T23, T33], along with
six additional polarimetric features derived from T (see Table 1). A

TABLE 1 Polarimetric descriptor features extracted from the coherency
matrix (T).

Feature Description

RF1 − RF6 � |Tij| Magnitude of Tij, {i, j} � 1 → 3

RF7 � 10 log10(SPAN) Polarimetric total power

RF8 � T22/SPAN Normalized ratio of power T22

RF9 � T33/SPAN Normalized ratio of power T33

RF10 � |T12|/ �������
T11 · T22

√
T12 relative correlation coefficient

RF11 � |T13|/ �������
T11 · T33

√
T13 relative correlation coefficient

RF12 � |T23|/ �������
T22 · T33

√
T23 relative correlation coefficient
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key feature is the SPAN, representing the total scattered power and is
defined as: SPAN � T11 + T22 + T33 (Cloude and Pottier, 1996).

While complex-valued networks have demonstrated superior
classification performance for PolSAR data compared to real valued
networks (Alkhatib, 2024), their increased computational
complexity, stemming from a larger parameter count, can hinder
real time applications. In order to strike an optimal balance between
accuracy and efficiency, this work employs feature descriptors
carefully selected based on their proven efficacy in enhancing
PolSAR data classification (Bi et al., 2018).

3 Experimental results

The results section presents five key analyses: (1) PolSAR dataset
specifications, (2) experimental setup details, (3) attention
mechanism impact, (4) comparative evaluation with state of the
art methods, and (5) performance under varying training data
amounts, providing comprehensive validation of our approach.

3.1 Polarimetric SAR datasets

This study evaluates the proposed model using three
PolSAR datasets. The first dataset covers the Flevoland region,
consisting of L-band four-look PolSAR data acquired by NASA/
JPL’s AIRSAR system on 16 August 1989. The image size is
750 × 1024 pixels with 12 m spatial resolution and includes
15 annotated land cover classes (Yu et al., 2011; Cao et al., 2021).
The second dataset captures the San Francisco area, containing
C-band fully polarimetric four-look data also collected by AIRSAR.
This image has dimensions of 900 × 1024 pixels at 10 m resolution
and is labeled with five terrain categories (Xing et al., 2017; Liu et al.,
2022). The third dataset covers Oberpfaffenhofen, acquired in
2002 by the L-band ESAR sensor in single-look mode. This high

resolution dataset of 3 m has a dimension of 1300 × 1200 pixels and
includes three land cover classes (Xing et al., 2017; Hochstuhl et al.,
2023). The Pauli RGB image and corresponding ground truth maps
for these datasets are presented in Figures 2a,b, 3a,b, 4a,b,
respectively.

Although the full images contain 768,000 (Flevoland), 921,600
(San Francisco), and 1,560,000 (Oberpfaffenhofen) pixels, only a
subset of these are labeled: 207,832, 802,302, and 1,311,618 pixels
respectively. The number of training and testing samples per class is
detailed in Tables 5,6,7. In PolSAR data classification (and
hyperspectral image classification as well), a patch-based strategy
is commonly used, where small image patches centered around a
labeled pixel (typically of size 11 × 11 or 12 × 12) are extracted to
incorporate spatial and polarimetric information. Each patch is
assigned the label of its center pixel.

3.2 Experimental configuration and
evaluation metrics

All experiments were conducted using Python 3.9 and
TensorFlow 2.10.0 on a Windows 10 workstation equipped with
64 GB RAM and an NVIDIA GeForce RTX 2080 GPU (8 GB
VRAM). The Adam optimizer was used with a fixed learning rate of
1 × 10−3, and training was performed using a batch size of 64 for a
maximum of 100 epochs. An early stopping strategy was adopted,
terminating training if no improvement was observed for
10 consecutive epochs, while retaining the best-performing
model weights.

To ensure fair comparison, only 1% of the labeled samples from
each dataset were used for training. These were selected in a
stratified manner to preserve the original class distribution. For
each labeled pixel, a patch of size 12 × 12 was extracted to
incorporate both spatial and polarimetric context. All
experiments were repeated 10 times under identical conditions,

FIGURE 2
Classification results of the Flevoland dataset. (a) Pauli RGB; (b) Reference Class Map; (c) 2D-CNN; (d) 3D-CNN; (e)WaveletCNN; (f) ViT; (g) Swin T.;
(h) PolSARFormer; (i) PolSARConvMixer; (j) ConvAttentionNet.
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and the reported results represent the mean and standard deviation
across all runs. Training and testing splits were fixed, while random
seeds and weight initializations varied to assess model robustness.

To quantitatively evaluate classification performance, several
widely adopted metrics were used. These include Overall Accuracy
(OA), which measures the proportion of correctly classified pixels
across the entire dataset, and Average Accuracy (AA), which

computes the mean accuracy across all classes regardless of their
frequency. Per-class accuracy was also calculated to assess model
performance for each individual land cover type.

In addition, the Kappa coefficient was reported to quantify the
agreement between predicted and true labels while accounting for
chance agreement. To further assess model behavior in the presence
of class imbalance, macro-averaged Precision, Recall, and F1-score

FIGURE 3
Classification results of the San Francisco dataset. (a) Pauli RGB; (b) Reference Class Map; (c) 2D-CNN; (d) 3D-CNN; (e)WaveletCNN; (f) ViT; (g) Swin
T.; (h) PolSARFormer; (i) PolSARConvMixer; (j) ConvAttentionNet.

FIGURE 4
Classification results of the Oberpfaffenhofen dataset. (a) Pauli RGB; (b) Reference Class Map; (c) 2D-CNN; (d) 3D-CNN; (e)WaveletCNN; (f) ViT; (g)
Swin T.; (h) PolSARFormer; (i) PolSARConvMixer; (j) ConvAttentionNet.

Frontiers in Remote Sensing frontiersin.org06

Alkhatib et al. 10.3389/frsen.2025.1680450

mailto:Image of FRSEN_frsen-2025-1680450_wc_f3|tif
mailto:Image of FRSEN_frsen-2025-1680450_wc_f4|tif
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1680450


were computed. Precision evaluates the proportion of correct
positive predictions, while Recall measures the model’s ability to
identify all relevant instances. The F1-score, as the harmonic mean
of Precision and Recall, provides a balanced indicator of model
performance across all classes.

3.3 Impact of attention

This section evaluates the performance enhancement resulting
from integrating the attention block into the baseline mixer block.
Comparative experiments were conducted on all three benchmark
datasets (Flevoland, San Francisco, and Oberpfaffenhofen) with and
without the attention mechanism. In addition, this section also
serves as an ablation study of the model components, isolating
the contribution of the proposed attention design to the overall
performance. Table 2 demonstrates consistent performance gains
across all evaluation metrics when employing the attention
mechanism. For the Flevoland dataset, the OA improves from
96.62% to 97.24%, while AA rises from 95.15% to 95.99%. The
Kappa coefficient similarly increases from 96.30 to 96.98. These
improvements confirm that the attention mechanism strengthens
the model’s discriminative power for land cover classification while
boosting generalization capability.

The San Francisco dataset exhibits the most substantial
performance improvements, with the OA increasing by 1.23%
(from 95.32% to 96.55%). The Kappa coefficient rose by
1.85 points (from 92.76 to 94.61). The AA also shows a notable
gain from 91.79% to 92.64%, indicating enhanced prediction
consistency across all land cover classes. While the
Oberpfaffenhofen dataset starts with relatively high baseline
performance (OA: 96.98%, Kappa: 94.88), the attention
mechanism produces modest improvements, elevating the OA to
97.25% and the Kappa coefficient to 95.33. These consistent
improvements across all three datasets demonstrate that the
attention mechanism effectively enhances the model’s ability to
focus on the most discriminative spatial and contextual features,
thereby boosting classification performance across diverse
environments.

3.3.1 Comparison with state of the art attention
mechanisms

To further validate the effectiveness of the proposed
convolution-based attention, a comparison was conducted against
several widely used attention modules, namely, Squeeze-and-
Excitation (SE) (Hu et al., 2018), Convolutional Block Attention

Module (CBAM) (Woo et al., 2018), Efficient Channel Attention
(ECA) (Wang et al., 2020), and Coordinate Attention (CA) (Hou
et al., 2021). The results of this experiment on Flevoland dataset are
summarized in Table 3, where both performance metrics (OA, AA,
and Kappa coefficient) and complexity measures (number of
parameters, FLOPs, and MACs) are reported.

From a performance perspective, all attention mechanisms
improved classification accuracy compared to the baseline
network without attention (OA: 94.42%, AA: 93.42%, Kappa:
93.90). Among the existing methods, SE and CA provided
consistent gains, achieving OA values of 95.90% and 95.60%,
respectively. ECA and CBAM also enhanced performance but to
a slightly lesser extent. In contrast, the proposed attention achieved
the best results overall, with an OA of 96.84%, AA of 95.49%, and a
Kappa coefficient of 96.54, clearly surpassing all other mechanisms.
This demonstrates the superior discriminative capability of the
proposed design in capturing spatial and contextual information
from PolSAR imagery.

In terms of complexity, the baseline model without attention
had the lowest number of parameters (96,424), FLOPs (6.64M), and
MACs (3.29M). SE and ECA introduced only marginal increases in
parameter count and computational cost, while CBAM and CA
required slightly more resources. The proposed attention
mechanism, although heavier (142,696 parameters, 6.74M FLOPs,
and 3.34M MACs), remains computationally efficient and
lightweight when compared to transformer-based methods
reported in later sections. Importantly, the modest increase in
complexity is justified by the substantial gains in performance,
highlighting the favorable trade-off achieved by the
proposed module.

Overall, this analysis confirms that the proposed attention
mechanism outperforms state of the art modules such as SE,
ECA, CBAM, and CA in terms of accuracy, while maintaining
competitive efficiency. A key reason for this improvement lies in the
reliance of conventional modules on global pooling operations (e.g.,
average or max pooling) to generate attention maps. Although such
pooling is effective for reducing dimensionality, it inevitably
compresses spatial information and may blur fine scattering
details that are critical in PolSAR data classification. In contrast,
the proposed mechanism avoids excessive pooling by employing
directional convolutional filters that preserve local spatial
dependencies while suppressing background noise. This balance
between discriminative power and computational efficiency makes
the proposed approach particularly well suited for PolSAR data
classification tasks, where both accuracy and resource constraints
are of primary importance.

TABLE 2 Classification results the proposed model before and after the attention block.

Dataset OA (%) AA (%) Kappa × 100

Before After Before After Before After

Flevoland 96.62 97.24 95.15 95.99 96.30 96.98

San Francisco 95.32 96.55 91.79 92.64 92.76 94.61

Oberpfaffenhofen 96.98 97.25 96.79 97.06 94.88 95.33
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3.4 Comparison with other methods

To evaluate ConvAttentionNet, we compare against seven state
of the art approaches: the conventional 2D-CNN (Zhou et al., 2016),
3D-CNN (Zhang et al., 2018), wavelet-based CNN (WaveletCNN)
(Jamali et al., 2022), Vision Transformer (ViT) (Dong et al., 2021),
Swin Transformer (Swin T.) (Liu et al., 2021), Local Window
Attention Transformer (PolSARFormer) (Jamali et al., 2023), and
PolSARConvMixer (Jamali et al., 2024). For a fair comparison, all
models used the same train/test splits and were trained with the
optimized hyperparameters reported in their original research,
ensuring each model operates under its best-known configuration.

3.4.1 Networks complexity
Table 4 provides a detailed breakdown of each neural network

model’s complexity, including the number of parameters, floating
point operations (FLOPs), and multiply-accumulate operations
(MACs). The number of parameters refers to the total learnable
weights in the network, which influences memory usage and storage
requirements. FLOPs represent the total number of floating-point
operations needed for a single forward pass, indicating the model’s
computational demand. MACs count the number of multiply-and-
accumulate operations, which are fundamental to convolution and
matrix multiplication steps in deep networks. The analysis shows
that ConvAttentionNet offers an optimal balance between
computational efficiency and performance. With

142,696 parameters, 6,737,472 FLOPs, and 3,337,632 MACs,
ConvAttentionNet significantly reduces computational demands
compared to models such as WaveletCNN, which requires
195,928,265 FLOPs and 97,964,133 MACs. This highlights
ConvAttentionNet’s ability to optimize FLOPs and MACs while
retaining high performance, making it a more efficient alternative to
more complex models like WaveletCNN and PolSARFormer, and
outperforming simpler architectures such as 2D-CNN. While the
Swin Transformer demonstrates lower FLOPs and MACs,
ConvAttentionNet achieves superior classification accuracy,
making it a more suitable choice for PolSAR applications where
accuracy is paramount. Moreover, despite its slightly higher
computational cost, the model remains practical for real world
deployment. Once trained, the inference time required to classify
an image is nearly instantaneous, regardless of the number of model
parameters, ensuring efficiency in operational scenarios.

3.4.2 Results on flevoland dataset
Figure 2 presents the classification maps obtained by different

models on the Flevoland dataset. A white box is included to highlight
a representative area where differences in performance are visually
noticeable. The corresponding quantitative results, based on only 1%
of the training data, are summarized in Table 5. The proposed
ConvAttentionNet achieves state of the art results with 97.24% OA,
95.99% AA, and a 96.98 Kappa coefficient. This represents
significant improvements over previous approaches: traditional
CNNs (2D-CNN: 87.43%, 3D-CNN: 94.51%, WaveletCNN:
93.40%), transformer-based models (ViT: 93.28%, Swin
Transformer: 93.59%), and recent PolSAR specific methods
(PolSARFormer: 95.75%, PolSARConvMixer: 95.89%).
ConvAttentionNet outperforms these by 1.49% and 1.35%,
respectively, demonstrating its superior classification capability.

In addition to overall performance, ConvAttentionNet achieves
the highest class-wise accuracy in eight of the 15 land cover
categories. As shown in Table 5, classification accuracy varies
significantly depending on two key factors: (1) the number of
available training samples and (2) the complexity of scattering
characteristics. Classes with limited training data (e.g., Buildings)
exhibit lower accuracy due to insufficient learning, while well-
represented classes with distinct backscatter patterns (e.g., Water)
achieve better classification. Notably, the Vision Transformer (ViT)
model performs poorly on the Buildings class, achieving only 9%

TABLE 3 Performance comparison of different attention mechanisms.

Attention mechanism Performance Complexity

OA AA Kappa Parameters FLOPs MACs

no attention 94.42 93.42 93.90 96,424 6,641,856 3,291,552

SE 95.90 94.46 95.42 98,836 6,649,920 3,293,856

CBAM 95.56 93.59 95.15 98,934 6,655,960 3,295,082

ECA 95.36 94.41 94.93 96,427 6,641,856 3,291,552

CA 95.60 94.84 95.19 98,960 6,720,768 3,309,984

Proposed 96.84 95.49 96.54 142,696 6,737,472 3,337,632

* Bold numbers indicate the highest values

TABLE 4 Parameters, FLOPs, and MACs of each Model used in this research.

Model Parameters FLOPs MACs

2D-CNN 25,605 374,840 187,020

3D-CNN 1,820,447 3,544,512 1,771,392

WaveletCNN 4,714,043 195,928,265 97,964,133

ViT 7,504,591 13,752,832 6,839,552

Swin T 140,431 3,568,712 1,659,832

PolSARFormer 1,351,961 25,750,832 12,871,384

PolSARConvMixer 321,551 22,393,344 11,136,768

ConAttentionNet 142,696 6,737,472 3,337,632

Frontiers in Remote Sensing frontiersin.org08

Alkhatib et al. 10.3389/frsen.2025.1680450

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1680450


TABLE 5 Experimental Results of different methods on Flevoland Dataset.

Class Train Test 2D-CNN 3D-CNN WaveletCNN ViT Swin T PolSARFormer PolSARConvMixer ConvAttentionNet

Water 292 28,957 97.73 97.52 99.10 96.93 98.23 99.23 99.20 99.61

Forest 159 15,696 66.24 94.12 91.81 98.90 93.51 96.35 96.50 91.67

Lucerne 112 11,088 91.86 96.12 97.76 97.61 93.42 96.05 97.36 98.22

Grass 102 10,099 75.86 86.47 84.85 84.19 79.52 87.41 85.15 89.81

Rapeseed 219 21,636 87.18 97.50 92.29 88.80 96.58 97.68 98.64 99.14

Beet 147 14,560 84.63 92.62 79.73 85.81 88.45 95.66 95.97 98.88

Potatoes 213 21,131 87.96 88.88 93.83 89.46 89.79 90.71 90.37 93.46

Peas 104 10,292 91.02 96.52 98.80 95.75 96.93 97.58 95.42 98.33

Stem Beans 85 8,386 87.07 96.48 97.07 97.51 93.84 94.46 99.62 98.23

Bare Soil 63 6,254 62.89 92.21 92.81 95.17 87.60 94.87 97.37 97.97

Wheat 176 17,463 82.32 91.86 97.68 93.56 93.42 92.71 91.49 98.64

Wheat 2 106 10,523 94.59 95.03 78.71 87.00 92.01 96.70 95.53 97.40

Wheat 3 220 21,802 97.84 98.39 97.67 99.38 98.01 99.16 99.80 99.50

Barley 74 7,295 95.44 96.15 96.38 98.77 99.13 98.29 97.72 98.26

Buildings 6 572 60.03 67.82 82.18 9.00 65.57 67.30 78.55 80.80

OA (%) 87.43± 4.12 94.51± 1.32 93.40± 2.04 93.28± 1.86 93.59± 1.54 95.75± 1.03 95.89± 1.16 97.24±0.79

AA (%) 84.18± 5.21 92.51± 2.56 92.04± 2.89 87.86± 5.61 91.07± 2.42 93.61± 2.98 94.58± 2.93 95.99±2.15

Kappa × 100 86.23± 3.97 94.00± 2.69 92.78± 4.59 92.65± 3.56 92.98± 3.98 95.35± 2.69 95.51± 2.23 96.98±1.12

Precision × 100 89.41±3.21 94.27±1.22 93.24±1.87 94.01±1.76 93.96±1.88 95.08±1.05 95.54±1.16 97.21±0.67

Recall × 100 84.18±5.21 92.51±2.56 92.04±2.89 87.86±5.61 91.07±2.42 93.61±2.98 94.58±2.93 96.00±1.92

F1-Score × 100 84.18±5.21 93.21±2.18 92.41±2.27 88.22±4.86 92.23±2.16 94.21±2.04 94.91±2.19 96.53±1.45

* Bold numbers indicate the highest values
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TABLE 6 Experimental Results of different methods on San Francisco Dataset.

Class Train Test 2D-CNN 3D-CNN WaveletCNN ViT Swin T PolSARFormer PolSARConvMixer ConvAttentionNet

Bare Soil 137 13,564 84.45 78.78 79.32 79.96 68.16 75.29 82.45 90.56

Mountain 627 62,104 93.06 91.71 80.04 88.77 88.85 90.93 94.95 92.83

Water 3,296 326,270 97.13 99.26 99.42 99.06 99.02 99.33 99.12 98.75

Urban 3,428 339,367 96.96 96.53 98.14 97.40 95.80 96.25 94.09 97.36

Vegetation 535 52,974 40.78 68.62 55.42 64.66 60.76 76.88 84.82 83.72

OA (%) 92.76± 3.21 95.11± 1.84 94.08± 2.57 94.93± 1.75 93.77± 2.13 95.45± 1.69 95.41± 1.45 96.55±1.02

AA (%) 82.48± 4.15 86.98± 3.29 82.47± 4.75 85.97± 2.90 82.52± 3.42 87.74± 3.01 91.09± 2.56 92.64±1.89

Kappa × 100 88.61± 3.04 92.31± 2.48 90.55± 3.78 92.00± 2.66 90.18± 2.79 92.87± 2.33 92.87± 2.19 94.61±1.45

Precision × 100 80.81±3.64 88.73±2.05 89.29±1.72 87.59±2.11 86.37±2.89 88.98±1.56 88.61±1.43 89.69±1.10

Recall × 100 82.47±4.15 86.98±3.29 82.47±4.75 85.97±2.90 82.52±3.42 87.74±3.01 91.08±2.56 92.64±1.89

F1-Score × 100 79.90±3.89 87.83±2.72 85.35±3.41 86.71±2.48 84.26±2.93 88.29±2.27 89.64±2.01 91.01±1.67

* Bold numbers indicate the highest values
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accuracy. This can be attributed to the extremely limited number of
labeled samples (only 6), which is insufficient to train a data-hungry
model like ViT effectively. Urban areas present particular challenges,
as their complex scattering mechanisms lead to high intra-class
variability and inter-class overlap, often resulting in
misclassification. In contrast, homogeneous classes with simple
scattering properties (e.g., Bare Soil and Water) show
significantly higher accuracy due to their more separable feature
distributions.

Beyond overall and class-wise accuracy, ConvAttentionNet also
achieves the highest precision (97.21%) across all methods. Precision
is a critical metric in applications where false positives must be
minimized, such as identifying urban areas or water bodies in
remote sensing workflows. The higher precision indicates that
ConvAttentionNet is more selective and consistent in its
predictions, reducing misclassifications across similar land cover
types. This reinforces the model’s ability to avoid over-
generalization and maintain robust discriminability, especially in
cluttered or ambiguous regions.

3.4.3 Results on San Francisco Dataset
Figure 3 presents the classification maps for the San Francisco

dataset, with corresponding quantitative metrics shown in Table 6.
The proposed ConvAttentionNet achieves superior performance
with 96.55% OA, 92.64% AA, and a 94.61 Kappa coefficient,
outperforming all comparison methods. Recent advanced
approaches like PolSARConvMixer (95.41% OA, 91.09% AA) and
PolSARFormer (95.45% OA, 87.74% AA) show competitive but
lower accuracy. Compared to CNN-based methods,
ConvAttentionNet demonstrates noticeable gains over both 3D-
CNN (95.11% OA) and 2D-CNN (92.76% OA). Transformer
architectures achieve good results (ViT: 94.93% OA, 89.21% AA;
Swin Transformer: 93.77% OA, 82.52% AA) but exhibit quite
weaker class-wise discrimination, particularly in the case of Swin
Transformer’s 82.52% AA versus ConvAttentionNet’s 92.64%.

In terms of class-wise performance, ConvAttentionNet gives
good accuracy for Bare Soil (90.56%) and Urban (97.36%) while
provides competitive results for Mountain (92.83%) and
Vegetation (83.72%). In comparison, alternative models
(WaveletCNN and PolSARConvMixer) perform better in
specific classes such as Water and Mountain. Nonetheless,
ConvAttentionNet provides more consistent classification
accuracy across all land cover categories. This balanced
performance is visually confirmed in Figure 3, where
ConvAttentionNet generates more spatially coherent
segmentation maps, particularly in heterogeneous urban areas
and textured vegetated regions. Overall, the results demonstrate
ConvAttentionNet’s robust handling of both the spatial
complexity and polarimetric diversity characteristic of the San
Francisco scene, even when trained with limited reference data.

Additionally, ConvAttentionNet achieves the highest recall
score (92.64%) among all evaluated models. Recall is particularly
important in remote sensing applications where missing instances of
critical classes—such as urban infrastructure or vegetative
cover—can lead to underreporting and operational blind spots.
The high recall indicates that ConvAttentionNet effectively
captures true positives across all classes, ensuring that fewer
relevant pixels are overlooked. This capability is essential in tasks

such as environmental monitoring, where complete coverage is
often more valuable than selective accuracy.

3.4.4 Results on oberpfaffenhofen dataset
Figure 4 shows the classification maps generated by different

models for the Oberpfaffenhofen dataset, with Table 7 providing
quantitative performance metrics. The proposed ConvAttentionNet
achieves superior performance across all evaluation metrics,
attaining 97.25% overall accuracy (OA), 97.06% average accuracy
(AA), and a Kappa coefficient of 95.33. PolSARConvMixer
demonstrates strong but comparatively lower performance with
96.26% OA and 93.64 Kappa. Conventional CNN-based
approaches (2D-CNN, 3D-CNN, and WaveletCNN) exhibit more
limited capabilities, with Kappa values ranging from 88.80 to
90.83 and correspondingly lower accuracy measures. Transformer
architectures (ViT and Swin Transformer) are comparable to CNNs,
achieving Kappa values of 89.82 and 90.04, respectively, but fail to
surpass the proposed method’s classification effectiveness.

ConvAttentionNet achieves the highest classification accuracy
for two of the three land cover classes, attaining 95.26% for Build-Up
Areas and 98.06% for Wood Land. In the Open Areas category, 3D-
CNN performs best with 98.63% accuracy, followed by
WaveletCNN (98.53%) and Swin Transformer (98.11%).
ConvAttentionNet achieves a competitive result of 97.87%,
ranking fourth among the compared methods. The proposed
model demonstrates substantial improvements over competing
architectures, outperforming PolSARFormer (a CNN-transformer
hybrid) by 5.35 Kappa values and Swin Transformer by 5.29 Kappa
values. These quantitative advantages are visually supported by the
classification maps in Figure 4, confirming ConvAttentionNet’s
enhanced capability to simultaneously capture spatial contextual
features in heterogeneous urban areas and polarimetric scattering
characteristics across natural land covers.

In addition to traditional accuracy measures, ConvAttentionNet
achieves the highest F1-score (96.81%), outperforming all other
methods including PolSARConvMixer (95.67%), PolSARFormer
(92.99%), and ViT (92.47%). The F1-score reflects the harmonic
mean of precision and recall, and is especially useful when class
imbalance or asymmetric misclassification costs are present. Its high
value for ConvAttentionNet indicates not only that the model avoids
both false positives and false negatives effectively, but also that it
consistently performs well across all classes. This is particularly
important for PolSAR data classification where both missed
detections and false alarms can degrade overall mapping
reliability. The result highlights the model’s capacity to deliver
balanced and dependable predictions, even under varying spatial
and polarimetric complexity.

3.5 Model performance across varying
training data percentages

To assess the generalization ability of the proposed
ConvAttentionNet model under constrained training conditions,
a comprehensive evaluation was performed against all baseline
methods using training subsets varying from 1% to 5% per class.
As shown in Figure 5, ConvAttentionNet consistently delivers
superior performance across all training ratios. A clear upward
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TABLE 7 Experimental Results of different methods on Oberpfaffenhofen Dataset.

Class Train Test 2D-CNN 3D-CNN WaveletCNN ViT Swin T PolSARFormer PolSARConvMixer ConvAttentionNet

Build-Up Areas 3,280 324,771 83.38 83.95 85.96 92.64 85.26 87.16 93.59 95.26

Wood Land 2,467 244,206 97.34 95.02 94.78 85.30 94.41 93.95 97.00 98.06

Open Areas 7,369 729,525 96.59 98.63 98.53 97.61 98.11 97.32 97.20 97.87

OA (%) 93.43±2.89 94.28±2.12 94.68±2.06 94.05±2.25 94.20±2.13 94.14± 2.00 96.26±1.58 97.25±1.21

AA (%) 92.44±3.11 92.53±2.87 93.09±2.53 91.85±3.02 94.20±2.26 92.81± 1.95 95.93±1.88 97.06±1.45

Kappa × 100 88.80±2.76 90.13±2.31 90.83±2.24 89.82±2.51 90.04±2.44 89.98± 2.56 93.64±1.67 95.33±1.36

Precision × 100 91.87±2.54 93.79±1.76 94.50±1.68 93.50±1.91 93.44±1.73 93.19±1.66 95.43±1.31 96.56±1.02

Recall × 100 92.44±3.11 92.53±2.87 93.09±2.53 91.85±3.02 92.60±2.45 92.81±1.95 95.93±1.88 97.06±1.45

F1-Score × 100 92.03±2.67 93.07±2.19 93.73±1.92 92.47±2.31 92.97±2.14 92.99±2.22 95.67±1.74 96.81±1.17

* Bold numbers indicate the highest values
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trend in classification accuracy is observed as more training data
becomes available.

Further analysis indicates that CNN-based models tend to
outperform Transformer-based architectures such as ViT and
Swin when training data is scarce, likely due to the data-hungry
nature of Transformers. However, as training data increases, ViT
begins to surpass the performance of 3D-CNN in terms of overall
accuracy. Notably, ConvAttentionNet achieves gains in OA of
approximately 1.60%, 2.01%, and 1.79% under 1%–5% training
conditions, respectively, as illustrated in Figure 5.

3.6 Model performance across different
values of patch size

In this section, the influence of the image patch spatial
characteristics of the various datasets on the ConvAttentionNet
model’s performance in classifying PolSAR imagery is analyzed,
with particular attention to identifying the optimal patch size for
each dataset. The patch size defines the amount of spatial
information extracted from the 3D patch, which is then used to
label the center pixel. A larger patch may capture excessive
neighboring information, possibly incorporating pixels from
different classes, which can degrade feature extraction.
Conversely, a patch that is too small may result in the loss of
critical spatial information, thereby reducing the model’s ability to
learn discriminative features effectively. To investigate this effect,
experiments were conducted with patch sizes of {6 × 6, 8 × 8,
10 × 10, 12 × 12, 14 × 14, and 16 × 16}.

As shown in Table 8, the optimal patch size for the
ConvAttentionNet model varies across the three datasets. For the

Flevoland dataset, the highest accuracy (97.88%) was achieved with a
patch size of 14 × 14, while for the San Francisco dataset, the
maximum accuracy (96.28%) occurred at 14 × 14 also. In
contrast, the Oberpfaffenhofen dataset reached its peak
performance (97.46%) at a smaller patch size of 10 × 10. These
results highlight that the optimal patch size is not universal but
instead depends on the spatial characteristics of the dataset.

It is also worth noting that the spatial resolution of each dataset
may play a role in determining the optimal patch size. The
Oberpfaffenhofen dataset has the highest spatial resolution (3 m),
which allows finer details to be captured within smaller patches,
making 10 × 10 sufficient to extract discriminative features. In
contrast, both the San Francisco dataset (10 m resolution) and
the Flevoland dataset (12 m resolution) achieved their best results
with a patch size of 14 × 14. This outcome suggests that higher-
resolution datasets tend to require smaller patch sizes to preserve
local details, whereas lower-resolution datasets benefit from larger
patches to capture sufficient contextual information for accurate
classification.

4 Discussion

The experimental results across all datasets confirm that
ConvAttentionNet strikes a strong balance between model
simplicity and classification effectiveness. One of the most
notable aspects of the model is its lightweight architecture. With
only 142,696 trainable parameters and modest computational
requirements (6.7 million FLOPs and 3.3 million MACs),
ConvAttentionNet significantly reduces the burden on processing
resources. This compact design enables fast inference and makes the

FIGURE 5
Overall Accuracy with respect to training percentages: (left) FL, (Middle) SF, and (right) Oberpfaffenhofen

TABLE 8 Overall Accuracy (%) of ConvAttentionNet across different patch window sizes for the three datasets.

Window size

Dataset 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14 16 × 16

Flevoland 92.43 94.87 96.12 97.35 97.88 97.40

San Francisco 91.62 93.15 94.82 95.12 96.28 95.10

Oberpfaffenhofen 93.01 94.25 97.46 96.88 96.10 95.72
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model particularly suitable for real world deployment, especially in
environments with limited computational power or memory.

Despite its efficiency, ConvAttentionNet consistently delivers
strong classification performance. It achieves the highest overall
accuracy, average accuracy, and Kappa coefficient across the
Flevoland, San Francisco, and Oberpfaffenhofen datasets. These
results reflect not only the model’s effectiveness but also its
ability to generalize well across different land cover types, spatial
resolutions, and polarimetric complexities.

A key factor behind this strong performance is the model’s
ability to learn from very limited training data. Even when trained
on just 1% of labeled pixels, ConvAttentionNet outperforms more
complex models that typically require much larger datasets to
perform well. This is especially important in PolSAR
applications, where labeled samples are scarce and difficult to
obtain. As the proportion of training data increases, competing
methods improve in accuracy, as expected, but ConvAttentionNet
maintains its lead across all proportions. This demonstrates the
model’s robustness and data efficiency.

The architectural design also plays a crucial role in the model’s
success. By incorporating multi-scale convolutional mixer blocks,
ConvAttentionNet can capture both fine-grained and broader
spatial features, enabling the representation of complex spatial
patterns and scattering mechanisms found in PolSAR images.
This multiscale feature fusion is particularly important given the
heterogeneous scattering responses across different land cover types.
The convolutional attention mechanism further refines this process
by directing the model’s capacity toward the most informative
regions, improving class discrimination and suppressing
background noise. Unlike conventional modules that rely on
global pooling, the proposed attention employs directional
convolutions along horizontal and vertical axes, allowing the
model to preserve fine structural details and model anisotropic
scattering behaviors more effectively. This domain-driven design
choice not only improves classification robustness but also ensures
computational efficiency, making ConvAttentionNet well suited for
deployment in resource-constrained environments.

Like any model, ConvAttentionNet faces challenges in
classifying underrepresented or structurally complex categories.
The model consistently achieves high accuracy for classes with
distinct and homogeneous scattering characteristics, such as
Water, Rapeseed, and Wheat in the Flevoland dataset, or Wood
Land and Build Up Areas in the Oberpfaffenhofen scene. These
classes benefit from both clearer polarimetric signatures and more
abundant labeled samples. In contrast, performance tends to
degrade for classes like Buildings in Flevoland or Vegetation in
San Francisco. The Buildings class suffers from limited training data
and high intra class variability due to heterogeneous man made
structures, while Vegetation exhibits significant polarimetric and
spatial overlap with other natural classes, complicating
discrimination. These cases illustrate how both class imbalance
and scattering complexity can impact classification performance.
Despite these challenges, ConvAttentionNet maintains robust
generalization, outperforming other models even in difficult
categories and across varied datasets—demonstrating the
effectiveness of its multiscale feature extraction and convolutional
attention mechanisms.

Overall, ConvAttentionNet provides a compelling combination
of accuracy, efficiency, and generalization. Its design choices allow it
to perform well across a range of remote sensing scenarios while
remaining practical for operational use.

5 Conclusion

We present ConvAttentionNet, a computationally efficient
model designed to enhance PolSAR data classification accuracy
while maintaining practical deployability. The model achieves
overall accuracies of 97.2% on the Flevoland dataset and 96.6%
on San Francisco, surpassing PolSARFormer by 1.4% and 1.1%,
respectively. It also attains the highest average accuracy
(AA) scores—96.0% for Flevoland and 92.6% for San
Francisco—outperforming recent baselines such as
PolSARConvMixer and Swin Transformer. ConvAttentionNet’s
architecture integrates multi-scale convolutional mixer blocks with
a lightweight convolution-based attention mechanism to
effectively capture spatial features at varying resolutions,
thereby improving both fine-grained classification and noise
robustness. With only 142,696 parameters, 6.7 million FLOPs,
and 3.3 million MACs, the model demonstrates exceptional
computational efficiency compared to heavier alternatives like
WaveletCNN (195.9 million FLOPs, 97.9 million MACs).
Although slightly more demanding than Swin Transformer
(5.2 million FLOPs), ConvAttentionNet delivers significantly
higher accuracy, making it highly suitable for real world
PolSAR applications. Notably, while the model incorporates an
attention mechanism, it does not employ transformer-style self-
attention. Instead, it utilizes a convolutional attention module
based on directional filters, which enables effective spatial
weighting with minimal computational overhead.

Despite its promising results, ConvAttentionNet has several
limitations that point to future research directions. The current
model relies on real valued polarimetric descriptors, which do not
fully capture the complex phase information inherent in PolSAR
data; future work will explore complex valued representations to
better exploit this information. Additionally, the static attention
mechanism may not optimally adapt to variations in scene
complexity or input resolution, motivating the development of
adaptive attention modules that dynamically respond to
contextual features. Although the model is computationally
efficient, further optimization through pruning, quantization, or
knowledge distillation is necessary for deployment in highly
constrained environments. Beyond these architectural
improvements, future work will also investigate self supervised
learning to reduce reliance on annotated data and multimodal
fusion to enhance robustness and generalizability across diverse
remote sensing scenarios.
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