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This study investigates the vertical distribution and seasonal climatology of
absorbing iron-oxide minerals, specifically hematite and goethite, in atmospheric
dust using the updated MAIAC EPIC version 3 algorithm. Leveraging data from July
2015 to December 2023, the key innovation is the improved Level 2 product which
now incorporates Aerosol Layer Height (ALH), enabling the first-ever long-term
characterization of their vertical and seasonal distribution globally. Our analysis
reveals distinct seasonal and spatial patterns across major dust-emitting regions.
Critically, we find that the spectral absorption properties, such as the imaginary
refractive index (k) and Single Scattering Albedo (SSA), are strongly proportional to
the mass fraction of iron oxides, highlighting the potential of SSA at UV wavelengths
as a valuable tool for global monitoring. Furthermore, we confirm that hematite
exhibits significant seasonal vertical variability; its concentration is high near the
surface in winter but extends up to 2—4 km into the free troposphere in summer, a
finding consistent with independent CALIOP observations. The resulting
comprehensive climatology provides novel observational constraints for Earth
System Models (ESMs), particularly for accurately modeling dust-radiative forcing.
The developed methodology is readily applicable to other UV-NIR satellite
platforms, such as PACE, GEMS, and TEMPO, demonstrating its broad utility for
future atmospheric composition monitoring efforts.

KEYWORDS

climatology, hematite, goethite, iron oxides, imaginary refractive index, single scattering
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1 Introduction

Global aerosol climatology, based on satellite monitoring (Mishchenko et al., 2002;
Remer et al., 2008), provides a comprehensive description of aerosol characteristics and
their temporal changes worldwide. This climatology has been used in enhancing our
understanding and modeling of the climate forcing associated with aerosols. It encompasses
both direct radiative forcing by aerosols and indirect radiative forcing due to aerosol effects
on cloud properties (Gautam et al., 2011; Ginoux et al., 2012; Hsu et al., 2012; Kumar et al.,
2015; Lee et al., 2016; 2018; Pu et al., 2020; Sogacheva et al.,, 2020). The primary goals of
global aerosol climatology (Mishchenko et al., 2002) are to: (1) analyze satellite radiance
observations and field measurements to infer the global distribution of aerosol properties
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and their seasonal and interannual variations; (2) support advanced
modeling studies of aerosol formation, processing, and transport.
The ultimate aim is to develop an advanced global aerosol
climatology for the entire period of available satellite data,
making it suitable for studies of the direct and indirect effects of
aerosols on climate and ensuring its wide accessibility (Mishchenko
et al.,, 2002).

Over the past 4 decades, global aerosol climatology derived from
satellite monitoring has primarily focused on the aerosol optical
depth (AOD), obtained from instruments like the Total Ozone
Mapping Spectrometer (TOMS) (Torres et al., 2002), Advanced
Very High-Resolution Radiometer (AVHRR) (Zhao et al., 2008),
Moderate Resolution Imaging Spectroradiometer (MODIS), and
Multi-angle Imaging SpectroRadiometer (MISR) (Lee et al,
2016). Due to the limited lifespan of individual instruments,
typically ranging from 5 to 15 years, recent studies have
combined AOD data from multiple satellite sensors to create
continuous records (Sogacheva et al, 2020) or examined the
consistency of AOD between MODIS and VIIRS (Lyapustin
et al,, 2023; Levy et al.,, 2015). In addition to AOD, research has
examined the spatial and temporal distributions and trends of
aerosol size parameters, such as the fine-mode fraction (FMF)
and Angstrom exponent (AE), as well as absorption properties
including single scattering albedo (SSA), Aerosol Index, and
absorbing aerosol optical depth (AAOD) (Banerjee et al.,, 2021;
Herman and Celarier, 1997; Kumar et al., 2014; 2015; Schutgens
et al, 2020; Torres et al, 2007). Furthermore, the vertical
distribution of aerosols has been analyzed using measurements
from the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP), such as aerosol layer height (ALH) (Song et al., 2021).

Since 2018, the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithm has been incorporated into the
operational Level 2 products for MODIS, Visible Infrared
Imaging Radiometer Suite (VIIRS), Earth Polychromatic Imaging
Camera (EPIC), and Ocean Color Imager (OCI) instruments,
providing both aerosol (e.g., AOD) and surface information (e.g.,
Bidirectional Reflectance Distribution Function (BRDF) and
bidirectional reflectance factors (BRF)) (Lyapustin et al., 2011a;
Lyapustin et al., 2011b, Lyapustin et al, 2012; Lyapustin et al.,
2018). Utilizing the aerosol multiple scattering signal in ultraviolet
(UV) channels, Lyapustin et al. (2021a) developed a new algorithm
for “joint retrieval of AOD and spectral aerosol absorption”
parameterized by refractive index imaginary part at 680 nm (k),
and spectral absorption exponent (SAE), assuming an ALH of 1 and
4 km to represent boundary layer and transported aerosol modes, for
the Deep Space Climate Observatory (DSCOVR) EPIC instruments
(Marshak et al., 2018). This algorithm uses the spectral imaginary
refractive index k from 340 to 680 nm, a crucial input for calculating
spectral SSA. Go et al. (2022) extended this spectral aerosol
absorption algorithm into a dust speciation algorithm, assuming
an ALH of 1 km, which retrieves the volume fraction of hematite (a-
Fe,0;) and goethite (a-FeOOH) in the atmospheric column, based
on the Maxwell-Garnett effective medium approximation theory.
Most recently, the MATAC EPIC version 3 operational algorithm has
advanced the “joint retrieval algorithm”, which simultaneously
retrieves AOD, ko, SAE, and ALH by combining UV-blue (340,
388, 443 nm) and oxygen-A and -B (680, 687, 764, 779 nm) bands
(Lyapustin et al., 2025).
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This study builds on a series of papers examining iron-oxide
content in atmospheric mineral dust (Go et al., 2022). While
previous work utilized the version 2 MAIAC EPIC dataset with
an assumed ALH of 1 km and was limited to one-year climatology
for 2018, the current study leverages the complete record of version
3 MAIAC EPIC data since 2015 and leverages the improved MAIAC
version 3 ALH retrieval (Lyapustin et al., 2025), allowing for the
construction and analysis of an updated climatology for absorbing
dust mineral species hematite and goethite.

Dust aerosols consist of soil particles suspended in the
atmosphere (Kok et al, 2023; Scanza et al, 2015), and the
spectral properties of atmospheric dust—both absorbing and
scattering—are determined by its mineral composition (Di Biagio
etal., 2023). Several Earth system models (ESMs) have incorporated
regionally and temporally variable spectral refractive indices for
dust, which are parameterized based on soil mineralogy components
(Perlwitz et al., 2015a; Perlwitz et al., 2015b), including those from
Claquin et al. (1999) and Journet et al. (2014). Iron-oxide species,
such as hematite and goethite, exhibit significant absorption in the
UV-visible spectrum, making them crucial for estimating the
shortwave direct radiative effect (DRE) of dust (Castellanos et al.,
2024; Go et al,, 2022; Li et al., 2021). A similar analysis of the black
and brown carbon content in biomass-derived smoke from the EPIC
is provided in a companion paper (Choi et al., 2024).

To investigate the spatial and temporal variability of dust
mineral composition—including iron-oxide species—on a global
scale, several satellite missions have been developed. One key
mission is the Earth Surface Mineral Dust Source Investigation
(EMIT) (Green et al.,, 2020), launched to the International Space
Station (ISS) in July 2022. EMIT provides surface soil spectra from
dust-emitting regions worldwide (Connelly et al., 2021). Prior to
EMIT, various studies focused on detecting small submicron clay-
sized (<2 um diameter) and silt-sized (2-50 pm diameter) minerals
using MODIS visible and short-wave infrared (VSWIR) spectra over
Southeast Asia (Sanwlani and Das, 2022). Other efforts applied
extensive visible, near-infrared, shortwave-infrared, and thermal
infrared (VNIR-SWIR-TIR) data acquired by the multi-spectral
Thermal
Radiometer (ASTER) for geothermal exploration in East Africa

Advanced Spaceborne Emission and Reflection
(Hewson et al., 2020), and performed mineral identification and
mapping with the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS-NG) (Tripathi and Govil, 2019).

One operational satellite mission “algorithm” is the MAIAC
EPIC iron-oxide species algorithm, which has been active since June
2015, focusing on UV-visible channels (Go et al., 2022). Another
relevant algorithm is the Generalized Retrieval of Aerosol and
Surface Properties (GRASP) component processing, which was
used with the Polarization and Directionality of the Earth’s
Reflectances and the Polarization and Anisotropy of Reflectances
(POLDER-3/PARASOL)
operational from March 2005 to October 2013 and covering
visible to near-infrared (NIR) channels (Li et al, 2019; 2022).
GRASP products enable the direct retrieval of aerosol speciation,

for Atmospheric Science satellite,

including component fractions, without the need for intermediate
retrieval of aerosol optical characteristics. In comparison to low-
Earth orbit (LEO) satellites such as GRASP POLDER-3/PARASOL,
EPIC can characterize the diurnal variability of aerosol loadings.
Since 2015, EPIC has been observing the sunlit side of Earth at
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Lagrangian Point 1 (L1) and remains the only spacecraft or Earth-
observing platform offering comprehensive coverage from sunrise to
sunset—once every hour during the summer and once every 2 hours
in the winter.

The remainder of this paper is organized as follows: Section 2
provides a brief description of the MAIAC EPIC version 3 algorithm
and its accuracy. Section 3 details the seasonal, monthly, and vertical
distributions of atmospheric mineral dust iron-oxide species for
designated dust regions or representative sites. Section 4 discusses
the results in the context of satellite aerosol retrieval and mineral
dust characterization. Finally, Section 5 presents the conclusions.

2 Description of the MAIAC EPIC
version 3 data

As mentioned in the introduction, this study builds on a series of
papers examining iron-oxide content in atmospheric mineral dust
(Go et al., 2022). While previous work utilized the version 2 MAIAC
EPIC dataset with an assumed ALH of 1 km and was limited to one-
year climatology for 2018, the current study leverages the complete
record of version 3 MAIAC EPIC data since 2015 and contains a
developed ALH retrieval (Lyapustin et al., 2025), allowing for the
construction and analysis of an updated climatology for absorbing
dust mineral species hematite and goethite.

2.1 EPIC instruments

Located approximately 1.5 million kilometers from Earth
towards the Sun, which is called Lagrange 1 orbit (L1), EPIC
of Earth
10 narrowband spectral channels ranging from 317.5 to
779.5 nm. The DSCOVR orbit at L1 enables global, multi-
temporal daytime measurements, with up to 10 observations per

observes the entire sunlit hemisphere using

day during boreal summer and 6-7 observations per day in winter at
mid-latitudes, while tropical latitudes show minimal seasonal
variations in observational frequency. EPIC’s spatial resolution
ranges from 8 to 16 km at nadir but deteriorates towards the
edges of each image. For detailed information on EPIC
measurements, see Marshak et al. (2018).

2.2 Updated MAIAC EPIC version
3 processing algorithm

The MAIAC EPIC version 3 processing algorithm begins by
gridding the EPIC L1B datasets into a 10 km x 10 km spatial
resolution for each spectral channel. Building on the MAIAC
MODIS algorithm (Lyapustin et al, 2018), the standard MAIAC
algorithm performs cloud detection, atmospheric correction, and
aerosol optical depth (AOD) retrieval using regionally designated
background aerosol models (background AOD; Lyapustin et al., 2021b).

Additionally, a newly developed “joint AOD-k,-SAE-ALH
retrieval” algorithm for absorbing smoke or dust aerosols can be
applied to both land and ocean pixels (Lyapustin et al., 2021a;
Lyapustin et al., 2025). The “joint AOD-ky-SAE-ALH retrieval”
algorithm expresses the spectral imaginary refractive index (k) of
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aerosols at wavelengths (A) from the UV to red channels, known as
“spectral absorption,” using a conventional power law equation:

ky = ko (M Ag) 4" (1)

where Ay = 680 nm. The real refractive index is assumed to be
spectrally invariant from the UV to red channels, with values of
1.51 for smoke and 1.52 for dust (Lyapustin et al., 2021a). In MATAC
EPIC version 3, the Levenberg-Marquardt nonlinear optimization
algorithm (Levenberg, 1944; Marquardt, 1963) is
simultaneously retrieve four parameters (AOD at 443 nm, ko, SAE,
and ALH) by fitting EPIC measurements across UV to NIR
wavelengths, including the oxygen-A and -B bands (Lyapustin

used to

et al,, 2025). The algorithm employs pre-computed look-up tables
(LUTs) wusing scalar code SHARM (Lyapustin, 2005). The
atmospheric path reflectance is then replaced with vector solution
from code IPOL (Lyapustin et al., 2018). MAIAC LUTs are built
assuming pseudospherical correction in single scattering. The
maximum AOD at 443 nm in the algorithm is set to 6. Vertically,
aerosols are simulated as a box-shaped profile with a 2 km thick layer
at varying altitudes, with the reported ALH representing the midpoint
of this layer (Lyapustin et al., 2025). To minimize systematic biases in
“spectral absorption,” retrieval is performed only over detected
absorbing smoke or dust pixels where the AOD at 443 nm, based
on the background aerosol model with fixed regional properties,
exceeds 0.4. It is important to note that while the initial condition
for dust retrievals is constrained by a background AOD at 443 nm >
0.4, the retrieved dust AOD at 443 nm may be less than 0.4 due to
variations in microphysical properties and the simultaneous retrieval
of “spectral absorption” and ALH. For detailed information on “joint
AOD-k,-SAE-ALH retrieval” algorithm, see Lyapustin et al. (2025).

Subsequently, a dust speciation algorithm (Go et al,, 2022) has
been implemented to infer the contents of hematite and goethite. This
methodology is based on the Maxwell-Garnett effective medium
approximation and follows the approach of Schuster et al. (2016)
with some modifications. In dust mineralogy, the imaginary index
magnitudes of both hematite and goethite (10"'-10°) are more than
100 times those of other soil mineral components (107°-107%) at
wavelengths of <1 um, which means that hematite and goethite
dominate absorption while other minerals can be considered non-
absorbing. The hematite imaginary index (0.2 at 700 nm to 0.8 at
460 nm) is generally about 3 times higher than that of goethite (~0.1)
(Bedidi and Cervelle, 1993) in the red-near infrared (NIR), the
discrepancy further increasing toward blue-UV. At 350-450 nm,
the imaginary index of hematite peaks at 1.0-1.2, whereas it changes
little for goethite, remaining at ~0.1. This significant difference in
spectral absorption between hematite and goethite, particularly across
the DSCOVR bands utilized by the MAIAC algorithm, facilitates their
separate retrievals. Detailed description of calculating hematite and
goethite from EPIC can be found from Go et al. (2022). A simplified
explanation is provided below.

2.3 Dust speciation algorithm in MAIAC EPIC
version 3

The Maxwell-Garnett approximation can be used to calculate
the average dielectric function (ey) under the assumption that

frontiersin.org
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atmospheric aerosols are heterogeneous particles with different
complex dielectric functions. The theory assumes that randomly
heterogeneous mixtures consist of two inclusions embedded in a
homogeneous matrix (Bohren and Huffman, 1983). The host (g,) is
modeled as a homogeneous dust or matrix containing inclusions of
hematite and goethite. The forward model employs the
Maxwell-Garnett effective medium approximation to simulate
the complex dielectric function of the total column, using the
known refractive index values for hematite, goethite, and the host

(Equations 2-5):

£1—€p &€
3(f151+2£h + fzsz+2£h>

_ e1—€p ¢
1 f1£1+2£h f2£Z+2£;,

emg =& |1+ = eyMGr T IEMG> 2

where f and f are the volume fractions (unitless) of inclusions 1
(hematite) and 2 (goethite), respectively. Here, although internal
mixing is clearly an assumption for minerals, because minerals are
generally externally mixed (other than iron oxides; Formenti et al.,
2014), ESMs within each particle mode and AERONET retrievals
also assume internal mixing, and thus the retrieval can be directly
fitted into ESMs or compared with AERONET data in the future.

The volume fraction of the host is ((1 — f1 — f,)). Therefore,
the refractive index of the mixture is a function of two inclusions and
the homogeneous host:

mmi:c(/\j) = F(fl’fbml(’\f)’mZ(AJ)’nh(Ai))
= nm,‘x(lj) + lkm,x(llj) (3)

where the real and imaginary parts of the aerosol mixture derived
from the relationship eyg = My;,> are respectively as follows:

\J’ Y, EmGy” + 8;/1&1‘2 + EMmGr 4)

Miix =

Vemer? + emci — Emcyr
k. = I MG, MG, MGr )
2
The inversion minimizes the following cost function (Equation 6)
by iteratively updating the volume fraction
of inclusions ([ f1, f2]):

(TR I

krrr(Aj)

j=1

The k(1) is same as Equation 1, and index A; represents the
four EPIC wavelengths of 340, 388, 443, and 680 nm. Unlike
Schuster et al. (2016), only the imaginary term of the mixture
refractive index was minimized. However, the real parts of the
refractive index values of inclusions 1 and 2, and the host are
significant in Equations 2-5, as the imaginary term of the
mixture (kpix(A;)) is calculated from both real (emc,) and
imaginary (emc;) parts of the complex dielectric function.
Therefore, realistic values of the real part of the refractive index
values of the host are still required, as well as those of the imaginary
part. Di Biagio et al. (2019) concluded that the real part of the
refractive index for dust aerosol is generally source- and wavelength-
independent with a range of 1.48-1.55 and a sample mean of 1.52,
based on a study of 19 mineral dust aerosols generated from soil
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samples from the main global dust source regions. Following Di
Biagio et al. (2019), values of 1.52, 1.52, 1.51, and 1.5 at 340, 388, 443,
and 680 nm were used for the real part of the refractive index of the
host 15 (1)), respectively. The imaginary part of the refractive index
of the host has been set to zero kj, (1;) = 0, whose absorption can
be neglected.

2.4 MAIAC EPIC version 3 accuracy
assessment

A global-scale evaluation of dust iron-oxide species column
amounts derived from MAIAC EPIC is challenging due to the
lack of global-scale in situ or ground-based measurement data.
Instead, comparisons are made with AERONET (for AOD and
spectral SSA) and CALIOP (for ALH). Spectral SSA values for each
wavelength were computed from the retrieved k, and SAE, using
aerosol optical properties (such as aerosol volume size distribution
and the real part of the refractive index) assumed in the MAIAC
EPIC aerosol retrieval. The comparison results for AOD, spectral
SSA, and ALH suggest that the MAIAC EPIC-derived dust iron-
oxide species data are reasonably accurate. Figures 1, 2 present these
comparison results for AOD, spectral SSA, and ALH. A more
detailed validation of the global products will be published
separately.

Figure 1 shows a comparison of MATAC EPIC version 3 global
AQOD for the blue band (443 nm) and SSA for both the blue (443 nm)
and red (680 nm) bands. For each AERONET site, the MAIAC EPIC
spatially averaged AOD retrievals within a 20 km radius of the site
(Sayer et al, 2013) were compared with AERONET direct Sun
measurements within a +30-min window of the satellite overpass
time. For SSA comparison, AERONET inversion level 2.0 datasets
within a £3-h window (Sayer et al., 2013) of the satellite overpass
time were used.

The SSA comparison results (Figures la,b) for both the blue
(443 nm) and red (680 nm) bands, which reflect spectral aerosol
absorption, show strong agreement with AERONET measurements
over major aerosol-affected regions, including areas impacted by
smoke and dust. Notably, central Africa (e.g., the Sahara and Sahel
regions, dominated by dust aerosols) shows that 83.1% of co-located
data points (n = 1,556) at 443 nm fall within +0.05 of the AERONET
data, while 39.8% of the data points fall within the same range
at 680 nm.

In terms of AOD validation (Figures 1c,d), the correlation
coefficient (R) for AOD exceeds 0.75 over major AERONET
sites. Lower R values observed over the western United States
and Europe are statistical artifacts, due to generally low AOD
values in these regions (e.g., the maximum AOD at the Tucson
AERONET site in the western United States in 2022 was less than
0.5). The consistently low Root Mean Square Error (RMSE) values in
the United States and Europe further support this explanation.

Figure 2 presents a comparison of MAIAC EPIC ALH with
CALIOP measurements for dust-detected aerosols from 1 July
2015 to 31 December 2023. For this comparison, the attenuated
backscatter-weighted height (Z,,) was calculated from the CALIOP
datasets using the method described by Torres et al. (2005), Torres
et al. (2013):
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FIGURE 1
Comparison of MAIAC EPIC global and AERONET. (a) SSA at 443 nm (blue) and (b) SSA at 680 nm (red). The colors represent the fraction of validation
points within expected errors (EE) for the SSA (+[AERONET SSA +0.05]; Ahn et al., 2021; only when AERONET AOD >0.6). (c) Correlation coefficients (R) of
AOD at 443 nm. (d) Root-mean-square error (RMSE) of AOD at 443 nm. Global AERONET version 3 (level 2) from 1 July 2015 to 31 December
2023 was used.
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In Equation 7, Bsc(i) represents the attenuated backscatter (or
total backscatter coefficient at 532 nm) at height H(i), with »n being
the number of layers between the surface and 10 km. As shown in
Figure 2, MAIAC EPIC ALH exhibits a global RMSE of
approximately 1.2 km and a mean bias error (MBE) of less than
0.8 km for dust-detected aerosols. The comparison indicates that
MAIAC EPIC ALH is well-aligned with CALIOP measurements,
especially for aerosols near the surface (e.g., over Africa, where ALH
is typically less than 2 km), both over land and ocean.

3 Climatology of atmospheric dust
iron-oxide species

This section outlines the process used to generate the climatology
from the MATAC EPIC version 3 level 2 datasets. The complete EPIC
measurement datasets from July 2015 to December 2023 were utilized.
However, it’s important to note that EPIC was offline for
approximately 9 months starting on 27 June 2019, due to issues
with the satellite’s attitude control system (National Environmental
Satellite, Data, and Information Service, 2023). Additionally, the
MAIAC EPIC data for June 2015 was excluded, as it may not
have been fully initialized in the MAIAC algorithm during its first
month of processing (Lyapustin et al., 2018).

Frontiers in Remote Sensing

3.1 Generating the climatology from the
MAIAC EPIC version 3 datasets

The MAIAC EPIC level 2 product is provided at a 10 km
resolution in a zonal sinusoidal projection. Cloud-free MAIAC
°x 0.5 " and
used to compute daily, monthly, and seasonal averages of aerosol

data were aggregated to a spatial resolution of 0.5

properties. During the daily averaging process, pixels with solar
zenith angles (SZA) greater than 60° or viewing zenith angles (VZA)
greater than 60° were excluded. Additionally, pixels with a spatial
fraction (i.e., the number of retrievals relative to the total number of
radiance measurement counts) of less than 0.2 were filtered out. The
daily average datasets were then subsequently averaged again to
generate the monthly climatology. Finally, the seasonal climatology
was calculated, ensuring that only pixels with more than 10 points
were included to avoid irregularities. These filtering criteria
(including the 0.5 ° x 0.5 ° resolution, SZA/VZA threshold of 60°,
and minimum retrieval counts) were adopted to ensure the
statistical robustness of the climatological means and to maintain
high data quality by excluding observations under extreme viewing
geometries.

Unlike model-based climatology, satellite-based climatology
excludes retrievals over cloud-covered areas or glint pixels over
the ocean. Furthermore, the current joint retrieval algorithm
parameters are applied only to AOD values greater than 0.4 at
443 nm, which is critical for accurate comparison with models.
Therefore, the total number of average points for each 0.5° grid is
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presented  with in Supplementary

Figures S1-S3).

climatology (column d

3.2 Seasonal distribution of mineral dust
iron-oxide species

Figures 3-5 summarize the seasonal climatology of hematite
and goethite mass concentrations from MAIAC EPIC retrievals.
To enhance the clarity of the spatial distribution, we referenced
Ginoux et al. (2012) and overlaid the major dust source regions on
a map featuring both hematite and goethite. Additional maps
including AOD, SSA, and dust event frequency are shown in
S1-S3. In regional

the Supplementary Figures summary,
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differences in hematite versus goethite dominance reflect both
source mineralogy and atmospheric transport pathways. The
detailed meteorological context (e.g., Harmattan winds, ITCZ
and Shamal the
Supplementary Material.

variability, circulation) is provided in

3.2.1 Bodélé depression

The Bodélé Depression (location 7 in Figure 3) is the most
extensive dust source in the world with its diatomite sediments
(Todd et al, 2007). In our analysis, the spatial distribution of
hematite and goethite differs significantly from SSA or from
AOD (Supplementary Figure S1) and varies across seasons.
Although AOD at 443 nm remains consistently high (above 2.0)
near the Bodélé Depression, the iron-oxide mass fraction in this
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Distribution of the column mass concentration (mg/m?) of hematite (left) and goethite (right) per season [(a,b) January, February, March, (c,d) June,
July, August, September, (e,f) October, November] MAIAC AOD443 > 0.4 over Sahara—Sahel-Middle East obtained from 1 July 2015 to 31 December 2023.
The white solid circled sources are numbered as follows: 1, Senegal River Basin; 2, Aoukar depression; 3, upper Niger River Basin; 4, Lake Chad; 5,river
drainage basin of the Ennedi and Ouaddai highlands; 6, Mourdi depression; 7, Bodélé depression; 8, Grand Erg of Bilma; 9, river drainage basin of the

Aiir; 10, Erg El Djouf; 11, Sebkhet te-n-Dgamcha; 12, Tiris Zemmour region; 13, Grand Erg Occidental; 14, Grand Erg Oriental; 15, Libyan Desert; 16, Nile
River Basin; 17, Qattarah depression; 18, Mesaoria plain in Cyprus; 19, Chott el Jerid; 20, Chott Melrhir; 21, Chott el Hodma; 22, Chott ech Chergui; 23,
Morocco coastal plains; and 24, Andalusia in Spain. The white dashed circled sources are numbered as follows: 4, Danakil Desert of Ethiopia; 5, Lake Tana
of Ethiopia; 6, northeast Sudan; 7, Hadramawt region; 8, Empty Quarter; 9, highlands of Saudi Arabia; 10, Jordan River Basin of Jordan; 11, Mesopotamia;
12, Urumia Lake of Iran; 13, coastal desert of Iran; 14, Hamun-i-Mashkel; 15, Dasht-e Lut Desert of Iran; 16, Dasht-e Kavir Desert of Iran; 17, Qobustan in
Azerbaijan; 18, Atrek delta of Turkmenistan; 19, Turan plain of Uzbekistan; and 20, Aral Sea.

region is consistently low compared to surrounding areas (Todd
etal., 2007; Di Biagio et al., 2019). Our climatology analysis indicates
that dust over the Bodélé Depression is primarily composed of
goethite, with an average mass concentration exceeding 45 mg/m?,
particularly in the source region (location 7). Hematite content is
even lower, averaging around 20 mg/m?’, with the lowest hematite
levels appearing

slightly westward of the peak goethite

concentrations.

3.2.2 North Africa (Sahara—Sahel)
The Western Sahara is another significant contributor of
dust aerosols to the atmosphere, particularly during the summer
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months (June to September). During this period, a substantial
dust plume extends from the Sahara to the subtropical eastern
Atlantic, as observed in AOD climatology (Supplementary
Figure S1), with an average AOD exceeding 1.0. A prominent
dust hotspot is observed over West Africa, near the Tiris
Zemmour (location 12; approximately 18-21°N, 7.5-0°W)
during the summer (Knippertz and Todd, 2012). Notably, our
iron-oxide species climatology (Figure 3) reveals that while the
dust AOD over the
(June-September) is primarily composed of hematite (over
50 mg/m’ on average), the dust near the hotspot region along
the Tiris Zemmour (location 12) and Erg El Djouf (location 10)

Western Sahara in the summer
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45°N

FIGURE 4

Distribution of the column mass concentration (mg/m?) of hematite (left) and goethite (right) per season (March, April, May) MAIAC AOD443 >
0.4 over Taklamakan desert obtained from 1 July 2015 to 31 December 2023. The white solid circled sources are numbered as follows: 1, Tarim Pendi; 2,
Qaidam Pendi; 3, Hexi corridor in Gansu Province; 10, Turpan Pendi; 12, Junggar Pendi; and 13, Balkhash-Alakol depression.

contains significantly lower hematite content, averaging

approximately 30 mg/m”.

3.2.3 Middle east and central Asia

The Shamal dust storm, occurring from June to September, is a
seasonal event across the Middle East and the Arabian Peninsula
(Yu et al, 2016). The highest concentrations of hematite and
goethite (Figure 3) are found in Iraq (location 11; greater than
40 mg/m” for both minerals), rather than in the southern Arabian
Peninsula. Additionally, goethite (more than 50 mg/m?) is more
dominant than hematite in Iraq (location 11), especially during
June-September, with an average AOD of more than 0.5. In
Central Asia, which includes western Kazakhstan, Uzbekistan,
and Turkmenistan (as shown in Figure 3), both hematite and
goethite are dominant compared to surrounding regions
throughout all seasons.

3.2.4 Taklamakan and gobi deserts

The Tarim Basin (Figure 4) is surrounded by mountain
ranges about 5 km high to the west, south, and north, causing
dust storms to typically blow in from the east at low levels and
become trapped in the basin. Dust is generally transported by
easterly winds, circulating within the Tarim Basin. These
geographical characteristics give the climatology over the
Taklamakan Desert an ellipsoidal shape (location 1). The
AOD
2.0 during this period, with regional hematite and goethite

average over the Taklamakan Desert exceeded
contents greater than 50 mg/m’. Shen et al. (2006) measured
the hematite-to-goethite ratio in bulk samples of aeolian dust
from Dunhuang (40.3°N, 94.5°E), Yulin (38.2°N, 109.4°E), and
Tongliao (43.1°N, 122.1°E), reporting values of 0.57 + 0.26,
0.59 + 0.16, and 0.46 * 0.13, respectively. Figure 4 indicates
that the climatological analysis of the hematite-to-goethite mass
ratio aligns closely with Shen et al. (2006), depending on the

specific region.

3.2.5 Australia

In Australia (see Figure 5), the retrieval shows that the
continental soil is predominantly hematite especially over Eastern
Australia with average hematite contents over 45 mg/m> The mass
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contents of goethite were evenly low both spatially and seasonally
with less than 30 mg/m”.

3.3 Monthly variations of atmospheric
mineral dust iron-oxide species in
2018 over 14 sites

To recall, Go et al. (2022) showed the monthly variations (5th,
50th, and 95th percentiles) of hematite (red shading) and goethite
(gray shading) mass fraction (wt. %) calculated from MAIAC EPIC
over 15 selected sites for 2018. The study used ground soil sample
data from Di Biagio et al. (2019) to undertake a qualitative
assessment of the hematite and goethite fraction derived from
EPIC. While the previous publication (Go et al., 2022) relied on
version 2 MATAC EPIC dataset based on assumption of ALH = 1 km
and limited to 1 year of 2018 climatology, the current work uses the
full record of version 3 MAIAC EPIC data with ALH to construct
and analyze the updated climatology of absorbing dust mineral
species (e.g., hematite, goethite).

In this section, the analysis, monthly variations (5th, 50th, and
95th percentiles) of hematite (red shading) and goethite (gray
shading) mass fraction (wt.%) calculated from MAIAC EPIC
over 15 selected sites for 2018, is repeated with the version
3 MAIAC EPIC data which ALH of EPIC
measurements. This study focused on 14 sample sites across

includes

various desert regions, including northern Africa, the Sahel,
eastern Africa, the Middle East, eastern Asia, and Australia
(Figure 6). One site in North America (Arizona site) was
excluded from the dust retrieval in the update from MAIAC
EPIC version 2 to 3. Consequently, 14 sites are analyzed in
this section.

Figure 6 shows monthly variations (5th, 50th, and 95th
percentiles) of hematite (red shading) and goethite (gray shading)
mass fraction (weight percentage; wt %) with the AOD at 443 nm
larger than 0.6. Note that the previous study (Go et al., 2022) was
limited to retrievals with the AOD at 443 nm larger than 1.0. The
main results remain the same as in Go et al. (2022): (1) there is large
variability of hematite and goethite over the Sahara, Sahel, and
Middle East; (2) there are similar hematite mass fractions over the
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FIGURE 5

Distribution of the column mass concentration (mg/m?) of hematite (left) and goethite (right) per season (a,b) March, April, May, (c,d) June, July,
August, (e,f) September, October, November, (g,h) December, January, February) MAIAC AOD443 > 0.4 over Australia obtained from 1 July 2015 to
31 December 2023. The white solid circled sources are numbered as follows: 1, Victorian Big Desert; 2, Riverina; 3, Barwon-Darling Basin; 4, Lake Eyre
Basin; 5, Simpson Desert; 6, lee side of Great Dividing Range; 7, Barkly Tableland; 8, Kimberley Plateau; 9, North West Cape; 10, Darling Front Range;

and 11, Nullarbor Plain.

Frontiers in Remote Sensing 09 frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1676851

Go et al.

10.3389/frsen.2025.1676851

5 Libya 5 Algeria 5 Tupisia 5 Morocco 5 Saudij Arabia
S S S Sh S
= [ (=3 [ [
€3 E3 E3 E3 £3
c c c [ c
B g g g g
gZ 52 52 52 52
(] o o o o
@ @ @ @ @
ol cl cl cl cl
= = = = =
0 0 0 0 0
J FMAM])] JASOND J FMAM] JASOND J] FMAM])] JASOND JFMAM] J] ASOND JFMAM])] JASOND
Mauritani. i f i
5 auritania 5 Njger 5 Mali 5 Bodele, 5 Kuwait,
g4 g4 g4 S £4
c = = c [~
2 = 2 2 3
g3 £3 B3 ©3 g3
< = = < =
g 3 g g g
52 §2 52 £2 §2
o \ o o o o
4 w wn w w
g1 81 a1 a1 a1
= = = = =
0 0 0 0 0

JFMAM] JASOND JFMAM] JASOND

JFMAM) JASOND
Gobi

JFMAM] JASOND
Taklimakan,

JFMAM] JASOND

5 Ethiopia 5 Australia 5
E4 E4 g4
c c c
° 2 ke}
= =1 =1
3 ©3 £3
= 5 5
(=4 c c
g 5 g
s 2 s 21| s 2
o o ]
@ b7} @
81 cl ol
= = =

N

Mass Concentration [%]
-

0 ‘ ol Y
JFMAM] JASOND JFMAM] JASOND

FIGURE 6

0
JFMAM] JASOND

0 -
JFMAM] JASOND

Monthly variations (5, 50", and 95" percentiles) of hematite (red shading) and goethite (gray shading) mass fraction (wt.%) calculated from MAIAC
EPIC at each site for 2018. The x-axis represents each month from January to December. Solid lines at the centers of shaded areas indicate median values
for hematite (red) and goethite (black). Each site represents an area of +1° for the MAIAC EPIC data (pixels with AOD at 443 nm > 0.6) except for Australia
(+3°). Dashed lines indicate hematite (red) and goethite (black) mass fraction with +10% uncertainty (Di Biagio et al., 2019). For the Algeria site, the

two dashed lines coincide (Di Biagio et al., 2019). The missing dashed lines for goethite at Mauritania, Bodélé, Ethiopia, Kuwait, the Gobi, Arizona, and
Australia indicate the goethite mass fraction was zero. Di Biagio et al. (2019) did not provide data for the Taklamakan site.

Sahel (~20°N) (or the Niger-Mali-Mauritania corridor; south of
20°N) as the soil measurements of Di Biagio et al. (2019); (3) at the
Niger site, the MAIAC algorithm showed the iron-oxide mass
fraction to be 2.8% during the Harmattan season (November-
March), which aligns with the findings of Lafon et al. (2004).
However, during the local erosion season (May-July), the
MAIAC retrieval did not achieve an iron-oxide mass fraction of
5.0% as reported by Lafon et al. (2004). This discrepancy could
potentially be attributed to rainfall events during the local erosion
season (May-July) at the Niger site; (4) a consistently low hematite
mass fraction (<1.4%) was observed over the Bodélé Depression; (5)
over Saudi Arabia and Kuwait, the goethite contents tend to increase
and the relative amounts of hematite and goethite are reversed at the
beginning of the Shamal season due to the northwesterly winds; and
(6) over the Gobi and Taklamakan deserts, a hematite:goethite mass
ratio of ~0.55 was observed in spring, which is consistent with the
study of Shen et al. (2006).

Nevertheless, there are several differences as compared with the
results obtained with an assumed height of 1 km (Go et al., 2022).
Firstly, the absolute mass fractions of hematite and goethite in this
study are lower than expected because we are using an atmospheric
layer height (ALH) typically between 1 km and 4 km. This narrower
ALH range reduces the variability of hematite and goethite
compared to the assumption of a 1 km height. Secondly,
Australia has higher mass fraction of hematite of >4% during
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winter in this study, which is closer to the soil measurements (Di
Biagio et al., 2019).

3.4 Vertical distribution of the monthly
climatology for hematite and goethite
over 14 sites

Supplementary Figures S5, S6 show that the wvertical
distributions of hematite and goethite from MAIAC EPIC: in
winter (December-January), hematite is strongly concentrated
near the surface with an exponential-like profile, while in spring
(May-June) its maximum extends upward to 3-4 km, consistent
with CALIOP dust extinction profiles (Song et al., 2021); by contrast,
goethite shows weaker vertical gradients and remains more evenly
distributed across altitudes. A summary of peak aerosol layer heights
is provided in Supplementary Table S1. This pattern likely reflects
the different densities of hematite (5,260 kg/m?), goethite (3,800 kg/
m?) and other minerals (2,500 kg/m?), along with the gravitational
settling of heavier particles.

One might consider that the vertical distribution of hematite,
especially in winter (December-January), could result from
algorithmic systematic biases. For instance, if the SSA retrieval
depends on aerosol layer height, SSA values at UV-visible
wavelengths might be lower with a lower aerosol layer height.
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FIGURE 7

Empirical relationship between SSA and the mass fraction of iron oxides (MCre_oxy) from EPIC data over 14 major sites. Each square represents the
mean value for 1 month of data. Total data periods from 1 July 2015 to 31 December 2023 have been used. The color represents the wavelengths (340 nm:
navy, 388 nm: blue, 443 nm: light blue, 551 nm: yellow, 680 nm: orange, 780 nm: red) of dust SSA from MAIAC EPIC.

However, no such biases or tendencies were observed in our MAIAC
EPIC version 3 retrievals. Therefore, the vertical distribution of the
monthly climatology for hematite and goethite appears to be
reasonable.

4 Discussion from satellite retrieval
algorithm perspective

4.1 Relationship between spectral single
scattering albedo and iron oxides contents

The sample-to-sample variability of the imaginary part of the
refractive index k or the SSA in the shortwave is related to the
mineral dust composition (Di Biagio et al., 2019; Moosmiiller et al.,
2012). Moosmiiller et al. (2012) studied the relationship between the
aerosol iron content and SSA at two wavelengths (405 nm in the
violet and 870 nm in the near IR spectral region) to estimate the
spectrally resolved shortwave absorption of dust based on its
composition. In this study, the result points toward the potential
use of SSA remote sensing to measure aerosol iron content and vice
versa. The study concluded that mineral dust single scattering
albedo at 405 nm and 870 nm is linearly correlated with iron
content. Di Biagio et al. (2019) investigated the dependence of
the imaginary part of the refractive index k and the SSA on the
particle iron content over the 370-950 nm range and concluded that
there was a better correlation of k and SSA with the mass fraction of
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iron oxides (MCr,_oxo) as compared with the mass fraction of iron
(MCress), because dust optical properties in the visible wavelengths
are mostly sensitive to the fraction of iron oxides, rather than the
iron in the crystal structure of silicates. There is no statistically
significant correlation between k or SSA and the mass fraction of any
other dust compounds (other than iron oxides), such as clays,
calcite, quartz, and feldspars, as well as with the mass fractions of
indicate that
particularly in the form of iron oxides (hematite and goethite), is

other elements. Therefore, these results iron,
the main driver of shortwave absorption by dust. As such, it is not
sufficient to measure the hematite mass fraction only when
estimating dust absorption.

The analysis from Di Biagio et al. (2019) and Moosmiiller et al.
(2012) are based on the laboratory measurements. Here, in contrast,
we analyzed the empirical relationships between kg or SSA and the
mass fraction of iron oxides derived from the MAIAC EPIC
satellited-based retrieval data over 14 major sites (Figure 7;
Supplementary Figures S6, S7). The analysis is unique as it is
from satellite-based measurements data which provides the global
spatial coverage where the ground-based measurements data are
sparse. Also, it may give a clue toward the potential use of SSA
remote sensing to measure aerosol iron oxides content and
vice versa.

The data period from July 2015 to December 2023 is used
(Figure 7; Supplementary Figures S6, S7). Supplementary Figure S6
shows that kg is proportional to the mass fraction of iron oxides,
although the slope and offset varies depending on the sites. In
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TABLE 1 Coefficients of determination (R?), p-values, and standard errors for the linear regression between Single Scattering Albedo (SSA) and the mass
fraction of iron oxides (MCr..oxx%) at different wavelengths (340—-780 nm) for major dust sources in Figure 7.

Sites Wavelengths R? p-value Standard Sites Wavelengths R?2 p-value Standard
(number of (nm) error (number of (nm) error
points) points)
Tunisia (82) 340 0469 | <0.001 0.004616 Bodélé (87) 340 0.003 0.6291 0.005367
388 0573 <0.001 0.00329 388 0.022 0.1728 0.003787
443 0.713 <0.001 0.00201 443 0216 = <0.001 0.002283
551 0949  <0.001 0.000459 551 0911 <0.001 0.000493
680 0959 | <0.001 0.000253 680 0970 = <0.001 0.000259
780 0960  <0.001 0.000229 780 0971 <0.001 0.000233
Morocco (84) 340 0254  <0.001 0.008255 Ethiopia (63) 340 0440  <0.001 0.008228
388 0328 <0.001 0.005898 388 0502 <0.001 0.006022
443 0467  <0.001 0.003558 443 0.605  <0.001 0.003757
551 0879  <0.001 0.000748 551 0888 <0001 0.000878
680 0870  <0.001 0.000468 680 0846  <0.001 0.000531
780 0.871 <0.001 0.000426 780 0850 = <0.001 0.000479
Libya (87) 340 0.124  <0.001 0.009635 Saudi Arabia (87) 340 0.012 0311 0.010902
388 0.184 | <0.001 0.006779 388 0.038 0.0712 0.007754
443 0320 <0.001 0.004075 443 0.121 <0.001 0.004707
551 0829 | <0.001 0.000886 551 0713 <0.001 0.001048
680 0.884  <0.001 0.000484 680 0885  <0.001 0.000489
780 0.884 | <0.001 0.000442 780 0887 = <0.001 0.000447
Algeria (87) 340 0039 00678 0.009639 Kuwait (87) 340 0.196  <0.001 0.0039
388 0086  0.0058 0.00671 388 0358  <0.001 0.00278
443 0210 <0.001 0.00402 443 0604  <0.001 0.001695
551 0.793 <0.001 0.000892 551 0955 | <0.001 0.000382
680 0924  <0.001 0.000388 680 0975 <0001 0.000216
780 0918  <0.001 0.00037 780 0979 <0.001 0.000182
Mauritania (87) 340 0094 00038 0.009054 Gobi (80) 340 0.095 0.0054 0.00994
388 0.165 <0.001 0.006346 388 0.153  <0.001 0.00707
443 0311 <0.001 0.00381 443 0287 <0001 0.004254
551 0832 <0.001 0.000826 551 0832  <0.001 0.000873
680 0876 | <0.001 0.000476 680 0855 <0.001 0.000549
780 0876  <0.001 0.000438 780 0865  <0.001 0.000487
Niger (87) 340 0.185 <0.001 0.00519 Taklimakan (80) 340 0479 = <0.001 0.002942
388 0311 <0.001 0.003661 388 0653  <0.001 0.002045
443 0519 | <0.001 0.002218 443 0.821 <0.001 0.001197
551 0928  <0.001 0.000492 551 0983  <0.001 0.000243
680 0964 = <0.001 0.000248 680 0949  <0.001 0.000287
780 0966  <0.001 0.000222 780 0947 = <0.001 0.000266

(Continued on following page)
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TABLE 1 (Continued) Coefficients of determination (R?), p-values, and standard errors for the linear regression between Single Scattering Albedo (SSA) and
the mass fraction of iron oxides (MCe.oxs) at different wavelengths (340—780 nm) for major dust sources in Figure 7.

NIGH Wavelengths R?> p-value Standard Sites Wavelengths R? p-value Standard
(number of (nm) error (number of (nm) error
points) points)
Mali (87) 340 0020  0.1839 0.005597 Australia (93) 340 0735 | <0.001 0.003589
388 0.110 | 0.0017 0.003859 388 0787  <0.001 0.002584
443 0357 <0.001 0.002284 443 0.844 | <0.001 0.0016
551 0922 <0.001 0.000499 551 0917  <0.001 0.000534
680 0968  <0.001 0.00026 680 0769  <0.001 0.000407
780 0968  <0.001 0.000235 780 0765  <0.001 0.000375

addition, for a given kggp, iron-oxide contents increase with  S7) between k, or SSA and iron oxide mass fraction (MCre oxv,) Offer a
increasing SAE of the dust. Figure 7 shows that the SSA at each  valuable additional constraint for advancing aerosol model simulations.
wavelength from the UV (340 nm) to near-IR (780 nm) is
proportional to the mass fraction of iron oxides. However, the
sample-to-sample variability of the SSA is larger for the UV 4.2 Limitations and future work
wavelength (340 nm) as compared with the near-IR wavelength
(780 nm). Furthermore, the slopes between the SSA 340 nm and To demonstrate the significance of the linear relationships
mass fraction of iron oxides are different for different sites. between SSA vs. iron oxides (Figure 7) and k vs. iron oxides

To assess whether the slope of the linear relationship between  (Supplementary Figure S6), statistical metrics such as R?, p-value,
kego or SSA 340 nm and the mass fraction of iron oxides is solely  and standard error are provided in Table 1 and Supplementary
dependent on the LUT assumption of the species retrieval, the = Table S2, respectively. However, some aspects still require further
slope between the kggp or SSA 340 nm and mass fraction of iron  investigation.
oxides have been further analyzed. Supplementary Figure S7 lower In particular, the fits between SSA and iron oxides in Figure 7
right side shows the LUT of the mass fraction of iron oxides  occasionally show intercepts lower than 1, suggesting that aerosol
determined according to the SAE (y-axis) and keggo (x-axis). The  absorption exists even when the iron oxide concentration is zero.
same LUT is applied to the remaining 14 sites, and the scatter plot ~ This observation may be explained by two possible factors. First, it
shows the distribution of the monthly mean retrieval points  could result from mixing with other aerosol types during atmospheric
(x-axis = kego; y-axis = SAE; z-axis = iron oxide mass fraction).  transport, as the algorithm is specifically designed for pure dust
In Ethiopia and Australia, the scatter points occur in a higher range  conditions (Go et al., 2022). In cases of mixed aerosol columns, the
of iron-oxide mass fraction (z-axis), whereas the other sites showed  retrieval accuracy may be compromised. Second, this may reflect
a lower range of iron-oxide fraction. Also, the SAE varies widely = inherent uncertainties in the algorithm itself. However, it is worth
from 1.0 to 3.0 and keg ranges from 0.0015 to 0.002. The slope  noting that when we carefully selected the pure dust cases globally, the
between the SSA 340 nm and iron-oxide mass fractions in Figure 7 linear relationships between “SSA vs. iron oxides” was apparent with
can be determined by examining the gradient of the scatter plot of  offset of 1.0, as shown in Figure 7 of Go et al. (2022).
the retrieved points. This gradient is measured along the direction Quantifying the uncertainty of iron oxides remains highly
perpendicular to the iron-oxide contour line as kq increases, evenif ~ challenging, as they can be influenced by multiple factors. First,
the LUT used for dust retrieval is the same. The data from Bodélé  error may be propagated from input MAIAC EPIC products (AOD,
has the flatest slope in Figure 7. The slope also depends on the  spectral SSA, and ALH). These accuracies are discussed in detail in
hematite content, as can be inferred from that the SAE value  Lyapustin et al. (2025). Key sources of algorithmic uncertainty may
increases with increasing hematite content. The large variability of  include assumptions such as: (1) the limited volume size distribution
the retrieved SSA 340 nm physically indicates that UV light is  with pure dust assumption, (2) the use of a box-shaped vertical aerosol
relatively sensitive to aerosol absorption, in other words, more  profile with fixed thickness, (3) a fixed, wavelength-independent real
sensitive to the hematite:goethite mass fraction ratio. Further refractive index, (4) the application of the Maxwell-Garnett
analysis regarding the slope and sample-to-sample variability of = approximation assuming internal mixing, and (5) neglecting
the SSA at each wavelength is beyond the scope of this study.  absorption by the host material (ie., setting the imaginary part of
However, the results (Figure 7; Supplementary Figures S6, S7)  the refractive index to zero). Despite the complexity, more detailed
indicate that the linear relationship between k, or SSA and the  uncertainty quantification should be a focus of future research.
mass fraction of iron oxides (MCge_oy9;) from the EPIC data could
be used as an additional constraint in aerosol model simulations.

In summary, leveraging global DSCOVR EPIC satellite data, 5 Conclusion
Section 4 validates that hematite and goethite are the primary agents
of dust shortwave absorption, establishing fundamental relationships. Utilizing the full eight-year record of the updated MAIAC
The derived linear relationships (Figure 7; Supplementary Figures S6,  EPIC version 3 data (2015-2023), including Aerosol Layer
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Height (ALH), this study constructed a comprehensive

minerals, hematite and

goethite. The improved algorithm successfully characterized

climatology of absorbing dust

their seasonal and vertical distribution across major regions,
revealing, for instance, hematite’s notable shift from the surface
in winter to the free troposphere (2-4 km) in spring, consistent
with CALIOP profiles. Crucially, remotely sensed spectral
absorption properties (k and SSA) were confirmed to be
strongly proportional to iron oxide mass fraction across
14 global sites, where the enhanced sensitivity of UV SSA
highlights its potential as a valuable global monitoring tool.
This high-frequency data and detailed climatology offer critical
observational constraints for Earth System Models. The
developed methodology is readily applicable to future satellite
missions (PACE, GEMS, TEMPO), supporting synergy with
surface composition data (EMIT).
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