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With the progression of remote sensing technologies, extracting road networks
from satellite imagery has emerged as a pivotal research domain in both
Geographic Information Systems and Intelligent Transportation Systems.
Recognizing the difficulty in balancing lightweight network design with
extraction accuracy, the challenge of synergistically preserving global road
connectivity and local details, and the hardship in effectively integrating low-
level features with high-level representations to achieve full coupling between
road details and semantic understanding in road extraction from remote sensing
images, this study introduces a Hierarchical Perception Lightweight Network for
road extraction (HPLNet). This innovative network integrates shallow perception
part and deep perception part, aiming to optimize the trade-off between
inference efficiency and extraction accuracy. In shallow perception,
directional stripe convolutions capture road details, while deep perception
integrates a spatial-channel semantic awareness network to bridge local and
global information, boosting road semantic feature extraction. Moreover, to
extend the model’s reception at both pixel and semantic levels, each network
component strategically introduces parameter-free channel shift operations.
HPLNet attains state-of-the-art efficiency in balancing parameter footprint
and inference latency: its parameter count is merely 22% of that of U-Net,
while its inference speed is 18% faster than FCN. Concurrently, it delivers
competitive segmentation metrics on the Massachusetts dataset, achieving an
IoU of 64.32% and an F1 score of 79.96%. Experimental results demonstrate that
the proposed network achieves superior performance in both segmentation
accuracy and model complexity, thereby offering an efficient solution for real-
time deployment on edge devices.
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1 Introduction

Extracting roads from high-resolution remote sensing images is of significant practical
value across various domains, including map delineation, urban planning Qian et al. (2021);
Liu and Wang (2011); Qi et al. (2020), traffic monitoring Cruz et al. (2022); Shao et al.
(2023); Seid et al. (2020), environmental monitoring Xu et al. (2018); Wan et al. (2019);
Dong (2012), and disaster responseWu et al. (2018); Huang et al. (2021);Wang et al. (2015).
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In resource-constrained environments, lightweight network models
enable more efficient operations by reducing computational
resource consumption, thus enhancing the efficiency and real-
time performance of road extraction. This holds critical
significance for rapid road information acquisition in practical
applications, particularly for enabling timely and accurate road
network extraction under scenarios with limited computational
capabilities Zhou et al. (2021).

In the early stages of road extraction research in remote sensing
imagery, the research methodology focuses on morphological based
methods and machine learning methods to extract roads Liu et al.
(2015); Wang et al. (2016); Lian et al. (2020a); Yuan et al. (2021),
these methods are limited to single-channel grayscale images, on the
one hand, limited by the fixed arithmetic scale, it is difficult to cope
with the real-time processing demand in complex scenes; on the
other hand, in the process of multi-scale road feature resolution, due
to the lack of hierarchical computation optimization mechanism,
resulting in exponential degradation of the efficiency of feature
extraction, and at the same time the intervention of manual
annotation further aggravates the risk of error accumulation.
Deep learning has led to the development of semantic
segmentation neural networks using deep convolution, which
perform well across various image tasks. These methods typically
use an encoder-decoder structure Badrinarayanan et al. (2017). The
encoder extracts image features layer by layer, and the decoder
integrates these features for accurate pixel classification.
Convolutional neural networks (CNNs) like those in Ronneberger
et al. (2015a); Badrinarayanan et al. (2017); Chaurasia and
Culurciello (2017); Chen et al. (2018), are effective for image
semantic segmentation. U-Net Ronneberger et al. (2015a)
combines a contracting and an expansive path to extract context
and location information, restoring image details through
upsampling. However, CNN-based methods suffer from
inefficient, affected by shadows, and sensitive to occlusions,
leading to poor continuity and extensibility in road extraction. To
enhance the quality of road network topology, methods based on
graph structures are receiving increasing attention. Graph
Convolutional Networks (GCNs), initially applied to knowledge
graphs, have recently been employed for feature extraction from
natural images. Cui et al. (2021) proposed a novel road extraction
method combining superpixel segmentation and GCN, which retains
more spatial detail information and effectively improves the
completeness of the extracted roads. However, graph-based
segmentation methods are computationally complex and
parameterized, and their effectiveness is often affected by the
quality of the initial road segmentation results. In recent years,
the remarkable achievements of the Transformer architecture in
the realm of natural language processing have spurred its
adoption in computer vision tasks, including image classification
and segmentation. The Transformer model utilizes the self-attention
mechanism and positional coding, which is well adapted to the
connectivity and continuity characteristics of road networks, thus
achieving excellent performance in tasks such as image segmentation
and feature extraction. RoadViT integrates MobileViT for encoding
advanced contextual information, employs a pyramid decoder for
merging features across multiple scales, and enhances the quality of
remote sensing images through data augmentation techniques.
However, these methods currently face the following challenges.

1. In resource-constrained scenarios for road extraction from
remote sensing images, the design of a lightweight network is
essential. However, the challenge remains in maintaining
extraction accuracy under strict lightweight constraints,
presenting a critical trade-off between model efficiency and
performance in practical remote sensing applications.

2. The long and narrow coverage of roads spans large areas,
making them susceptible to influences from shadows and tree
occlusions. Maintaining the lightweight design and accuracy of
road extraction networks, the challenge remains in how to
preserve both the global connectivity of roads and their
excellent local details during extraction.

3. Decomposing road fine-grained details and high-level semantic
understanding, and fully coupling these two remain a challenge.
The key lies in balancing the extraction of pixel-level details and
contextual semantic information, which demands an effective
mechanism to integrate low-level features with high-level
representations in remote sensing road extraction.

To address the challenges, a hierarchical perception lightweight
network for road extraction (HPLNet) is proposed here. As
illustrated in Figure 1a, we have developed a lightweight network
design that efficiently optimizes the parameter count, achieves
competitive FLOPs, and preserves robust road extraction
accuracy. As illustrated in Figure 1c, we adopt a hierarchical
perception strategy, employing a convolution-based feature
extraction strategy to extract Feas when pixel features are
abundant, and a lightweight attention mechanism-based feature
extraction strategy FeaD when semantic features are prominent.
As illustrated in Figure 1b, to address the challenges of road
extraction accuracy, global connectivity, and local detail
preservation, we utilize the layer-wise extracted features Feas and
FeaD to guide local detail and global connectivity, respectively. This
approach enables excellent extraction performance in terms of
accuracy, topological continuity, and fine-grained detail.

The contributions of this paper are outlined as follows.

• We propose a lightweight road network that captures raw pixel
details through shallow perception and obtains semantic
information through deep perception, thereby achieving a
balance between lightweight network design and feature
extraction accuracy.

• We introduce a lightweight attention mechanism to collect
long-distance road information and combine it with striped
convolution to restore local road details, cleverly solving the
difficult problem of balancing global connectivity and
local details.

• We propose a parameter-free channel shift operation that
achieves sufficient feature extraction at both deep and shallow
perceptions, thereby achieving deep information coupling.

2 Related work

2.1 Road segmentation networks

Traditional road extractionmethods are categorized into semi-
automatic and fully automatic types Lian et al. (2020b). Niu (2006)
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presented a method integrating boundary gradients. It uses a
geometric deformable model to minimize an objective function
related to optimization problems based on road contours, linking
the optimization problem to the propagation process of regular
curves to address topological changes during curve deformation.
However, this approach requires manual intervention, reducing
work efficiency. Later, Yager and Sowmya (2003) employed SVM
methods to extract road features from remote sensing images, but
with relatively low accuracy. With the advancement of deep
learning technology, a plethora of research efforts have
developed segmentation networks using deep learning
techniques, aiming to identify and extract roads from satellite
imagery. Mnih and Hinton (2010) pioneered the integration of
CNN models for road extraction in remote sensing images. Saito
et al. (2016) employed a CNN in conjunction with channel-wise
suppressed softmax to effectively train the network for feature
extraction and prediction, yielding information about buildings
and roads. In 2018, Zhou et al. (2018) introduced DlinkNet, which
augmented the receptive field while maintaining high-resolution
feature maps by incorporating cascaded dilated convolutions into
the LinkNet architecture. The follow-up DlinkNetPlus Li et al.
(2019) further optimized the model by reducing parameters and
enhancing extraction precision. Mei et al. (2021) proposed
CoANet, which addressed road connectivity and adaptability to
road shapes by integrating a connection attention module with a
strip convolution module, thereby mitigating the effects of
occlusions. However, these networks often fall short in fully
accounting for both global and local information during image
processing, leading to limitations in segmentation accuracy and
the retention of fine details. Li et al. (2021) presents DC-Net, a
method fusing hollow convolution and ASPP. Its encoder-decoder
structure, combined with multi-scale feature extraction, enables
superior accuracy, enhanced connectivity, and improved
occlusion resistance. Cheng et al. (2025) proposed a cascaded
efficient road extraction network (CE-RoadNet) that combines
smooth null convolutional residual blocks and introduces an
attention-guided feature fusion (AGFF) sub-module for
dynamically fusing features at different levels. Zhu et al. (2024)
based on Swin Transformer, Wang designed Spatial Self-Attention
(SSA) and Spatial MLP (SMLP) modules to extract road feature

information more effectively. Zhou et al. (2021) proposed
separable GCNs. two GCNs are used to capture global
contextual information in space and channel to enhance the
representation of road features. The road networks within
remote sensing imagery are expansive yet intricate, a challenge
that traditional methods struggle to address in terms of capturing
global context and precise localization. The Transformer
architecture, with its innovative self-attention mechanism, has
proven effective in harnessing comprehensive information and
contextual cues, facilitating parallel processing. Yang and
colleagues Yang et al. (2022) leveraged the Swin Transformer
for road extraction in remote sensing images, refining context
acquisition and devising a supplementary module for foreground
context information to bolster the interpretation of indistinct road
segments. Wu et al. (2022) propose an improved semantic
segmentation method based on ResNet. By introducing
coordinate convolutions before and after encoding to enhance
spatial edge information and a global information enhancement
module to improve context perception, we address the problems of
spatial feature loss, detail loss, and mis-extraction caused by
convolutional pooling operations in deep learning road
extraction. Yang and associates Yang Z. et al. (2023) introduced
the RcfsNet, which capitalizes on multi-scale context extraction
and a full-stage feature fusion module to elevate the quality of road
segmentation in satellite images.

Deep learning-based road extraction methods have made
significant progress in improving extraction accuracy, yet they
still suffer from limitations in comprehensively integrating global
contextual information and local fine-grained details. This
fundamental gap leads to compromised segmentation precision
and insufficient detail preservation, particularly in complex
scenes with occlusions or topological discontinuities.
Furthermore, approaches like DLinkNet and CoANet often
achieve performance gains by increasing network depth and
architectural complexity, which inevitably results in a steep rise
in parameter counts and computational overhead. Similarly,
Transformer-based models, despite their strong global modeling
capabilities, impose substantial computational burdens due to their
quadratic complexity in sequence length, making them infeasible for
real-time applications in resource-constrained environments.

FIGURE 1
TheMotivation of Our Network Design. (a)Comparison of the segmentation results of ourmethod with othermodels on theMassachusetts dataset:
the test image size is 1024 × 1024 pixels and the area of each bubble is proportional to the FLOPs(floating-point operations) of the correspondingmodel.
(b) From left to right: satellite image, ground truth, prediction of RcfsNet and prediction of our method. (c)Network design. Blue arrow: Shallow features
serve as pixel guidelines to guide the capture of road connectivity features through the shallow perception part. Purple arrow: Deep features serve as
semantic guidelines to guide the capture of road extensibility features via the deep perception part.

Frontiers in Remote Sensing frontiersin.org03

Cui et al. 10.3389/frsen.2025.1668978

mailto:Image of FRSEN_frsen-2025-1668978_wc_f1|eps
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1668978


2.2 Coupling local and global information

In the realm of remote sensing imagery for road extraction,
extensive research has explored the fusion of CNNs and
Transformers to derive more comprehensive features. This hybrid
approach leverages the spatial information capturing prowess of
CNNs and the sequential data processing and long-range
dependency handling capabilities of Transformers. Lu et al. (2020)
designed a globally aware deep network (GAN) for road detection that
includes a spatial awareness module (SAM) and a channel awareness
module (CAM). Jamali et al. (2024) combined residual learning with
UNet and ViT in ResUNetFormer while using Neighbourhood
Attention Transformer for local feature enhancement. Wang and
team Wang R. et al. (2023) fused CNN and Transformer
architectures within the UNet framework, incorporating a dual
upsampling module to enhance feature extraction and overall
performance. Wang C. et al. (2023) advanced road extraction
capabilities in remote sensing imagery by integrating Transformer-
based ESTM and GDEM for context modeling, along with introducing
the REF loss function in conjunction with a hybrid self-attention
mechanism. Zhang et al. (2023b) introduced a Transformer-centric
technique incorporating modules for intricate road feature extraction
and the integration of global and local contexts. Yang Z.-X. et al. (2023)
developed SSEANet, a novel framework that simultaneously trains
CNNs and Swin-Transformers, enhancing their cross-supervised
performance through the application of consistency loss. Gui et al.
(2025) combined CNN and Transformer, the use of depth-separable
convolution in the encoder and the introduction of a linear convolution
module in the decoder enable efficient capture and fusion of multi-scale
features. Zhong B. et al. (2025) proposed FERDNet, which combines the
Multi-angle Feature Enhancement Module (MFE) and the High-Low
Level Feature Information Compensation Module (ICM) to enhance
themodel’s ability to extract road features. The abovemethod combines
local and global considerations of contextual features and detail features,
thereby performing excellently in terms of intersection ratio, F1 score,
and connectivity retention.

Coupling local and global road extraction networks harnesses the
complementary strengths of CNNs and Transformers enabling
comprehensive multi-scale feature extraction. While Transformer-
based models have demonstrated superior global contextual
reasoning, integrating them into such networks entails substantial
drawbacks: excessive GPU memory consumption and quadratic
computational complexity, which hinder real-time inference in
resource-constrained scenarios. Furthermore, existing architectures
adopt parallel branching strategies for global-local feature
aggregation, merging contextual and fine-grained information
without a principled mechanism guided by hierarchical feature
importance and positional sensitivity. This indiscriminate fusion lacks
adaptive integration logic, this leads to exponential growth in parameters
due to redundant cross-feature interactions, as well as compromised
computational efficiency due to unnecessary information mixing.

2.3 Lightweight design

In the quest for segmentation precision, the majority of road
extraction networks have inadvertently led to an increase in model
complexity, resulting in a substantial rise in network parameters. This

surge impacts the model’s efficiency and its practical deployability.
Wei and colleagues Wei et al. (2020) introduced a framework that
concurrently extracts both road surfaces and centerlines, utilizing an
FCN for initial segmentation and further refining details with iterative
lightweight FCN applications. Wang et al. (2024) enhanced
segmentation accuracy by focusing on feature extraction through
context fusion and self-learning sampling, effectively reducing
redundancy and model complexity via dual feature fusion. Xiao
et al. (2022) advocate for the RATT-UNet in mining road
extraction, incorporating a RATT module that integrates residual
connections with attention mechanisms to decrease the parameter
count. Sun et al. (2022) tackle the issue of excessive parameters by
introducing the LRSR-net, which leverages an extended joint
convolution module to offset pooling layer losses and trim down
the parameter list. Sultonov et al. (2022) crafted two lightweight
networks for extracting road networks from drone imagery, melding
UNet with depthwise separable convolutions, ConvMixer layers, and
an initialization module. Han et al. (2023) proposed the target-aware
LOANet, utilizing a lightweight dense connected network in its
encoder. Zhao et al. (2025) designed S-MobileNet, combining 3D
convolution, time series models, LSTM, and attention pooling
mechanisms to extract and aggregate individual and group
behavior characteristics. The LMSFFNet, presented in Yi et al.
(2023), strikes a balance between execution speed and
segmentation precision with a MobileViT backbone and a
lightweight multi-scale context fusion module, thereby reducing
parameter count and bolstering feature extraction capabilities. Liu
et al. (2023) introduced LRDNet, a novel lightweight road detection
method that employs a Multi-Scale Convolutional Attention Network
(MSCAN) and a coupled decoder head to enhance detection speed
andmitigate issues like occlusion and edge artifacts through expansive
receptive field feature extraction and parallel decoding.

Lightweight road extraction networks have demonstrated the
capability to enhance segmentation accuracy while reducing
architectural complexity and parameter overhead, thereby
boosting model efficiency and practical applicability in real-world
scenarios. However, the pursuit of architectural parsimony create a
critical challenge: existing methods struggle to balance model
lightness with superior segmentation performance, as they
typically sacrifice feature discriminability for computational
economy. Maximizing parameter utilization efficiency to enable
lightweight networks to simultaneously preserve global continuity
and local details in remote sensing road extraction remains a
critical challenge.

3 Methods

In this section, we will provide a detailed description of the
construction of the Hierarchical Perception Lightweight Network
for Road Extraction.

3.1 Overview of the network architecture

HPLNet employs a hierarchical perception strategy to effectively
capture both global extensibility and local connectivity
characteristics of roads. The global extensibility, which reflects
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the semantic-level representation of road networks, is preserved in
deep-level features, while the local connectivity, corresponding to
detailed road structures, is maintained in shallow-level features.
Based on this, we decompose the road input into hierarchical
representations composed of shallow-level pixel features and
deep-level semantic features, with the output features being the
coupled shallow-level and deep-level road features, as shown in
Equation 1.

Out � g f In( )( )
f In( ) � FeaS, FeaD( ){ (1)

where Out represents the output, In represent the Input, g(·)
represents a function that couples from deep and shallow
features to obtain an output, f(·) represents the function that
acquires deep and shallow features throughout the encoding and
decoding process, FeaS and FeaD represent the shallow pixel
features and deep semantic features.

FeaS and FeaD are generated by the function f(·) during the
encoding and decoding processes, FeaS includes shallow encoding
features Feae,iS and shallow decoding features Fead,iS , while FeaD
includes deep encoding features Feae,iD and deep decoding features
Fead,iD . The decoupling and coupling strategies for FeaS and FeaD
are crucial to effectively leveraging both types of information for
road extraction. We propose that employing distinct extraction
strategies tailored to each type of information is necessary,
followed by a fusion process that effectively integrates these
multi-level representations.

To achieve comprehensive extraction of both FeaS and FeaD, we
propose a hierarchical feature learning framework with specialized
extraction parts: The Shallow Perception Part employs convolution-
focused operations to capture local road characteristics,
complemented by a channel-shift mechanism to enhance feature
diversity. This branch specializes in learning low-level visual
patterns (e.g., edges, textures, and corners) that are crucial for
precise pixel-level road localization, thereby generating detailed
segmentation outputs; The Deep Perception Part utilizes
attention-focused mechanisms to model global road topology,
similarly integrated with channel-shift operations. Positioned in
deeper network layers, this branch processes high-level semantic
information to understand complex road structures and
connectivity patterns. As shown in Figure 2, the hierarchical
architecture performs each corresponding encoding and decoding
operation n times in the shallow perception part and deep
perception part. In this study, we set n � 2 to systematically
decouple and recouple road features in the network structure,
thereby gradually refining local details and global context.

The encoding process for both shallow and deep features is
defined in Equation 2,

Feae,iS � Es Initial_conv In( ); θe,iS( ) i � 1

Es Feae,iS ; θ
e,i+1
S( ) 1< i≤ n

⎧⎨⎩
Feae,iD � Ed Feae,iS ; θ

e,i
D( ) i � 1

Ed Feae,iD ; θ
e,i+1
D( ) 1< i≤ n

⎧⎨⎩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

where Feae,iS represent shallow encoding features, Feae,iD represent
deep encoding features, Es represent shallow encoding operation
(3× three conv and channel shift), Ed represent deep encoding
operation (ASCA and channel shift), Initial_conv(·) represent

initial convolution on input, In represent input image, θe,iS , θ
e,i
D

represent parameters for shallow and deep encoding.
The decoding process is defined in Equation 3,

Fead,iD � Dd Feae,iD ; θ
d,i
D( ) i � n

Dd Fead,iD + Feae,iD ; θ
d,i−1
D( ) 1< i≤ n

⎧⎨⎩
Fead,iS � Ds Fead,iD + Feae,iS ; θ

d,i
S( ) i � n

Ds Fead,iS + Feae,iS ; θ
d,i−1
S( ) 1< i≤ n

⎧⎨⎩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3)

where Fead,iD represent deep decoding features, Fead,iS represent
shallow decoding features, Dd represent deep decoding operation
(ASCA and channel shift), Ds represent shallow decoding operation
(strip conv and channel shift), Feae,iD represent deep encoding
features, Feae,iS represent shallow encoding features, θd,iD , θd,iS

represent parameters for deep and shallow decoding.
Road segmentation results (out) is shown in Equation 4,

Out � Final_conv Fead,i−1S( ) (4)

whereOut represents the output and Final_conv is the function that
obtains the final output by convolution and sigmoid.

3.2 Adaptive spatial-channel attention
module (ASCA)

Road extraction demands precise modeling of both local details
and global structures to capture the inherent continuity of road
networks. Self attention mechanisms effectively model such
contextual dependencies via pairwise spatial correlations but incur
prohibitive quadratic complexity, rendering them impractical for large
scale road imagery. For real time applications, lightweight design is
imperative to balance efficiency and performance. To overcome this
bottleneck, we propose a Lightweight Adaptive Spatial-Channel
Attention module, building on the dual aggregation framework in
Chen et al. (2023) with targeted efficiency optimizations. We replace
the original alternating dual-aggregation Transformer blocks with a
sequential spatial channel attention architecture, significantly
reducing computational overhead without sacrificing
representational capacity. The ASCA module operates in two
sequential stages to model spatial and channel dependencies,
enabling efficient capture of both local details and global context
for comprehensive road feature extraction.

Specifically, as shown in Figure 3a, the features are first linearly
projected via convolution and one branch reshapes the features into
the feature maps Ys ∈ Rh×HW×C, which is decomposed to as the
spatial-based vectors,i.e., Query (Qs ∈ Rh×HW×C), Key
(Ks ∈ Rh×HW×C) and Value (Vs ∈ Rh×C×HW) matrices, where h
represents the number of attention heads and C represents the
number of feature channels. The spatial self-attention mechanism is
then applied to extract spatial information from the image to obtain
the spatial-wise self-attention feature maps Ys, with the spatial self-
attention mechanism defined as Equation 5,

Ys � softmax
QsK

T
s

α
( )Vs, (5)

where the learnable scaling parameter α is used to modulate the
inner product before applying the softmax function.
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Unlike the global feature information captured by the previous
branch, the other branch uses depth-wise separable convolution to
extract local feature. To compensate for the dimensionality
singularity of the information attended to by the two branches,
we perform channel-wise interaction and spatial-wise interaction on
the two types of perceived information. The spatial and channel
weights are adaptively integrated into the two branches and after
pixel-wise addition and projection convolution, the final output
is obtained.

In Figure 3b, similar operations are performed. One branch
reshapes the features into Yc ∈ Rh×HW×C, which is decomposed to as
the Query (QT

s ), Key (Ks) and Value (Vc) matrices. The channel
self-attention mechanism is then used to extract channel
information from the image, with the channel self-attention
mechanism defined as Equation 6:

YT
c � softmax

QT
c Kc

β
( )VT

c , (6)

FIGURE 2
Overall architecture of the proposed HPLNet. The network employs shallow perception to extract and upscale local features for fine-grained
segmentation and deep perception with an adaptive spatial-channel attention mechanism to enhance global feature representation and
segmentation accuracy.

FIGURE 3
An overview of Adaptive spatial-channel attention module. The module is a lightweight design that sequentially integrates a dual-aggregation
attention interaction mechanism to extract global features. Outs denotes the output result of (a) and Outc denotes the output result of (b).
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where the learnable scaling parameter β is used to modulate the
inner product before applying the softmax function.

To address the dimensionality singularity of the information
attended to by both branches, ASCA is able to aggregate spatial and
channel features by means of (a) and (b) cascades, resulting in a
robust feature representation. Figure 3a illustrates the modeling of
the distant spatial context, which strengthens the spatial
representation within each feature map. Figure 3b, on the other
hand, demonstrates an improved construction of channel
dependencies. The modeling of the global channel context shown
in Figure 3b reciprocally aids in capturing spatial features and
expanding the receptive field as depicted in Figure 3A. The
channel interactions and spatial interactions are described by
Equation 7:

SI M,N( ) � M ⊙ Maps N( ),
CI M,N( ) � M ⊙ Mapc N( ), (7)

where CI denotes channel interactions and SI denotes spatial
interactions. M, N are the input features, M,N ∈ RH×W×C, ⊙
denotes elemental-wise multiplication, and Maps and Mapc

denote the spatial and channel feature maps of N, respectively.
The spatial and channel weights are adaptively integrated into

both branches and after pixel-wise addition and projection
convolution, the final output is obtained. This process can be
described by the following Equation 8:

Outs In( ) � CI Ys, Ydw( ) + SI Ydw , Ys( )( )Wp,
Outc Outs( ) � SI Yc, Ydw( ) + CI Ydw , Yc( )( )Wp,

(8)

where In denotes the input feature, Ys denotes the feature that has
undergone spatial self-attention, Yc denotes the feature that has
undergone channel self-attention, Ydw is the feature that has
undergone depth-separable convolution, and Wp is the linear
projection that is used to fuse all the features, Outs denotes the
output result of Figure 3a and Outc denotes the output result
of Figure 3b.

The computational complexity of self-attention mechanism is
positively correlated with the square of the number of pixel patches,
we have taken compensatory measures in this module so that we can
greatly reduce the vector dimensions and the number of parameters
in the self-attention mechanism, thus achieving a lightweight design.
In conclusion, through the integration of a lightweight dual-
aggregation attention mechanism, we facilitate the mapping of
global and local perception information interactions across both
spatial and channel dimensions. This approach effectively extracts
comprehensive global features of roads, enhancing the overall
understanding and representation of the data.

3.3 Channel shift operation module

In response to the prevalent challenges of road disconnection
and complex orientations in remote sensing imagery, we introduce a
lightweight and parameter-free module: the Channel Shift
Operation Module Zhang et al. (2023a). The core idea is to
explicitly enlarge the effective receptive field of a neuron by
spatially shifting its corresponding feature channels. This
mechanism enhances the model’s ability to perceive local

contextual details by creating a set of spatially variant feature
representations. It encourages the subsequent attention module to
operate on a richer feature space, where subtle structural and
textural cues from neighboring regions are explicitly
incorporated, thereby strengthening the feature discrimination
power without introducing any learnable parameters or
additional computational burden. The channel shift operation is
shown in Figure 4, the operation is defined as Equation 9:

Π � πd
U, π

d
D, π

d
L , π

d
R{ }, d<Tm, (9)

where Π represents the specific operation function, Tm is a preset
threshold that limits the degree of channel shift to avoid loss of
spatial locality in the image. πdi denotes the channel shift operation (i
indicates four directions of channel shifting and d indicates the
magnitude of shift in a certain direction).

In addition, considering the lightweight design, we group the
channels before performing the inter-group alignment, and the
shifted channel groups are those close to the middle position. ŝ
indicates the channel characteristics after performing the channel
shift operation, refer to Equation 10:

ŝ� { 0, . . .︷�︸︸�︷π0O

C−4c( )
2

, Si, . . .
︷�︸︸�︷πdU

c

,Si+c+1, . . .
︷���︸︸���︷πdD

c

,Si+2c+1, . . .
︷���︸︸���︷πdL

c

,Si+3c+1, . . .
︷���︸︸���︷πdR

c

,Si+4c+1, . . .
︷���︸︸���︷π0O

C−4c( )
2

,} (10)

where π0
O indicates no channel shift operation or a shift

magnitude of zero, πd
i indicates that the channel is displaced

in four directions: up, down, left, and right, with a magnitude of
d, (C−4c)2 and c indicates the number of channels with or without
channel shift operation.

To investigate the impact of varying shift channels and
shift pixels, we conducted a series of experiments, the results
of which are summarized in Figure 5. Specifically, under a
consistent training protocol, we systematically compared the
training loss and intersection over union (IoU) metrics. Our
parameter selection strategy involved identifying the
configuration that simultaneously minimized the training loss
and maximized the IoU, thereby optimizing the model’s
performance. In the end, we set the number of shift channels
is two and the amplitude d of the channel shift to two pixel in
order to capture this difference.

3.4 Strip convolution module

The inherent linearity of road networks demands a large
receptive field for accurate representation. Standard
convolutional kernels, however, are square and thus
geometrically incongruent with road structures. This
misalignment introduces significant noise from irrelevant
background pixels, which can degrade feature quality. To
address this limitation, we introduce strip convolutions Sun
et al. (2019), kernels designed to be geometrically congruent
with the linear geometry of roads. By focusing exclusively on the
linear structures, strip convolutions effectively filter out
peripheral noise, thereby improving the precision and
robustness of road feature extraction.
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Specifically, let k ∈ R2r+1 denotes the 1D convolution filter of
size 2r + 1 and yI ∈ RH×W be the result of 1D transpose
convolution of input x ∈ RH×W and the filter k at direction
I � (Ih, Iw). We have

yI i, j[ ] � x ⊗ k( )I � ∑r
t�−r

x i + Iht, j + Iwt[ ] · k r − t[ ], (11)

where ⊗ is the convolution operation and I is the direction indicator
vector of the 1D filter, which takes four values
(0, 1), (1, 0), (1, 1), (−1, 1) for horizontal, vertical, forward
diagonal and backward diagonal transpose convolution,
respectively, shown in Figure 6 and Equation 11.

3.5 Loss function

In this work, we use the BceDiceLoss Mei et al. (2021), which
synergistically integrates the merits of BCE Loss and Dice Loss. The
loss function is shown as Equation 12:

LBceDice � LBCE + LDice

LBCE � − 1
N

∑N
i�1

yi log ŷi( ) + 1 − yi( )log 1 − ŷi( )[ ]
LDice � 1 − 2|A ∩ B|

|A| + |B|

(12)

whereN is the total number of samples, yi is the true label of the i-th
sample, and ŷi is the predicted probability of the i-th sample being
positive, A represents the predicted segmentation region, B
represents the true segmentation region, |A ∩ B| is the area (or
pixel count) of the intersection of A and B, and |A| and |B| are the
areas (or pixel counts) of A and B, respectively.

This composite loss function effectively attends to both the pixel
prediction error and the region similarity. As a result, it significantly
enhances the performance of the model in image segmentation
tasks, enabling more accurate and robust segmentation results.

4 Experiments

In this section, we present the datasets, evaluation metrics and
experimental setup. Subsequently, we assess our method on remote
sensing datasets. Furthermore, we conduct ablation studies to
validate our key innovations.

4.1 Datasets

We chose to validate the effect of our proposed HPLNet in three
datasets. The three datasets are described below:

DeepGlobe Demir et al. (2018): This dataset consists of high-
resolution images with a spatial resolution of 50 cm/pixel, each
image having a size of 1024 × 1024 pixels. The images cover three
regions: Thailand, Indonesia and India. The dataset provides
detailed pixel-level annotations, distinguishing between road and
background classes. The dataset consists a total of 6,226 images are
included. Following the methodology inMei et al. (2021), we divided
these images into a training set with 4,696 images and a test set with
1,530 images.

FIGURE 4
The channel shift operation is shown in the figure. π0

O represents the original feature without movement, πdL , π
d
R, π

d
U and πdD represent the features

obtained after the channel is shifted left, right, up and down, respectively. d indicates the magnitude of shift in a certain direction.

FIGURE 5
Hyperparameter selection chart, left vertical axis [Training IoU],
right vertical axis [Training Loss], Horizontal axis (numbersc, d), where
numbersc represents the number of channels shift, and d represents
the magnitude of the channel shift.

Frontiers in Remote Sensing frontiersin.org08

Cui et al. 10.3389/frsen.2025.1668978

mailto:Image of FRSEN_frsen-2025-1668978_wc_f4|eps
mailto:Image of FRSEN_frsen-2025-1668978_wc_f5|tif
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1668978


Massachusetts Mnih (2013): The Massachusetts Road Dataset
contains aerial imagery of Massachusetts with a resolution of 1 m/
pixel. It includes 1,108 training images, 49 test images and
14 validation images. Each image has a resolution of 1500 ×
1500 pixels.

CHN6-CUG Zhu et al. (2021): The CHN6-CUG
dataset selected six representative cities in China and marked
roads including railways, highways, urban roads, and rural
roads. It contains 4,511 marked images with a size of 512 ×
512, divided into 3,608 images for model training and
903 images for testing and result evaluation, with a resolution
of 50 cm/pixel.

4.2 Evaluation metrics

To comprehensively evaluate the model’s lightweight design
and segmentation performance, we assess the model size and
complexity using Param (parameter count) and FLOPs (floating-
point operations). We also evaluate performance using widely
accepted metrics, such as Intersection over Union (IoU) and
F1-score.

• Param (Parameter Count): This refers to the total number of
learnable parameters in the model, providing an indication of
the model’s size and complexity.

• FLOPs (Floating-Point Operations): This measures the
number of floating-point operations required to perform
the model’s calculations, reflecting the computational
complexity and operational efficiency of the model.

• Inference time: Inference time refers to the time required for
the method to complete calculations and generate output
results after receiving input data.

• Intersection over Union (IoU): This metric measures the
overlap between predicted segmentation and true labels in
image segmentation tasks.

• F1-Score: The harmonic mean of precision and recall, used to
evaluate the performance of binary classification models.

4.3 Experimental setup

Our proposed model was implemented using PyTorch 1.13 on
anNVIDIA 4090 with 24 GB of memory. The training batch size was
set to 22, the optimizer used was AdamW, the initial learning rate
was set to 0.001 and the weight decay coefficient was set to 0.01. We
did not perform any preprocessing operations such as image
normalisation, scaling, or class balancing, nor did we perform
any cropping. The network is adaptive to the size of the image
input. The input and output sizes of Deepglobe are 1024 pixels ×
1024 pixels. The input and output sizes of Massachusetts are
1500 pixels × 1500 pixels and 1024 pixels × 1024 pixels,
respectively. Additionally, we did not perform data augmentation
operations such as rotation, flipping, scaling, or brightness
adjustment.

4.4 Comparison with mainstream models

4.4.1 Comparison on public datasets
To comprehensively evaluate the segmentation performance of

our model on the DeepGlobe and Massachusetts datasets, we have
selected several visual results from both the compared models and
our proposed method. The models included in the comparison are
FCN Long et al. (2015), U-net Ronneberger et al. (2015b), DlinkNet
Zhou et al. (2018), CoANet Mei et al. (2021), RcfsNet Yang Z. et al.
(2023), SDsegNet Lin et al. (2024), VisionMamba-Unet-2
(VMUnet-2)Zhang et al. (2024), DeNet Guo et al. (2025),
CSWin-UNet Liu et al. (2025) and PMFSNet Zhong J. et al. (2025).

4.4.2 Qualitative comparison in DeepGlobe dataset
As shown in Figure 7, the segmentation results of FCN and

U-net for both cyan and black roads clearly demonstrate the subpar
performance of these two methods. Dlinknet also has connectivity
issues in the partitioning results. CoANet exhibits an over-
segmentation issue in the segmented images. RcfsNet suffers
from mis-segmentation in the first image, and in the second and
fourth images, it fails to segment long-distance road regions. SDSeg

FIGURE 6
The strip convolution block. This block encompasses four distinct orientations: lateral, longitudinal, left oblique and right oblique.
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produces incorrect segmentations in the third image and misses
segments in the fourth image. VMUnet-2 shows missed
segmentations in the first and fourth images, along with incorrect
segmentations in the third image. DeNet retained the edges in the

segmentation results, but there were still some minor errors and
disconnections in connectivity in the fine details. PMFSNet still has
some issues with segmentation and connection breaks in the details.
In contrast, HPLNet yield more accurate and visually appealing

FIGURE 7
Qualitative comparison with other state-of-the-art methods in DeepGlobe dataset. White: true positive, black: false positive, cyan: false negative.
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segmentation results, outperforming the other methods in terms of
overall segmentation quality.

4.4.3 Quantitative comparison in
DeepGlobe dataset

As shown in Table 1, the IoU values and F1 scores shown in the
table agree well with the results of our qualitative analysis. On the
Deepglobe dataset, FCN and U-net perform poorly in terms of IoU
and F1-score, and the rest of the compared methods have IoU values
above 0.60, with HPLNet lagging behind RcfsNet by 0.0079, which
may be attributed to the fact that RcfsNet utilises multiscale
contextual extraction and the full-stage feature fusion module
with a significant increase in the parameters obtains better
segmentation results; In the results of CSWin-Unet, there are
some issues with incomplete segmentation. Compared to the
sliding window attention mechanism, the ASCA we introduced is
better suited to the task of road segmentation. Notably, HPLNet
attains the highest F1 score, surpassing the method ranking second,
RcfsNet, by 0.0032. This indicates that our approach strikes an
optimal balance between accuracy and comprehensiveness, thereby
demonstrating greater reliability in semantic segmentation tasks.

4.4.4 Qualitative comparison in
Massachusetts dataset

As shown in Figure 8, in the upper segmented image, the FCN
produces numerous cyan roads in its segmentation result, exhibiting
a pronounced under-segmentation issue. Meanwhile, the
segmentation outcomes of Dlinknet, CoANet, RcfsNet, DeNet
and PMFSNet display black roads in the central region of the
image, indicating severe over-segmentation. Notably, only our
proposed method can accurately segment the curved paths within
the black bounding box. For the lower image, FCN continues to
suffer from under-segmentation, while the segmentation result of
U-Net contains an abundance of extraneous pixels. Within the black
bounding box, CoANet, RcfsNet, VMUnet-2, and PMFSNet fail to
successfully segment the upward road. In contrast, both Dlinknet

and our HPLNet manage to segment the road. A comprehensive
comparison of the segmentation results between Dlinknet and
HPLNet reveals that HPLNet captures finer details, especially in
the bottom-right corner of the image.

4.4.5 Quantitative comparison in
massachusetts dataset

As shown in Table 2, the IoU values and F1-score presented in
the table align closely with our qualitative analysis. Specifically, FCN
exhibits the lowest IoU and F1-score values, while our HPLNet
achieves the highest F1-score and IoU on the Massachusetts dataset.
This quantitative evidence validates the superior visual
segmentation quality demonstrated by HPLNet. Compared with
DeNet, HPLNet achieves improvements in IoU and F1-score,
compared with RcfsNet, HPLNet achieves improvements of
0.0121 in IoU and 0.0091 in F1-score, which vividly showcase its
preeminent performance in road segmentation. These quantitative
results not only affirm the reliability of our proposed method in
precisely matching road segmentation outputs with ground - truth
labels on the Massachusetts dataset but also strongly emphasize its
effectiveness in handling semantic segmentation tasks.

4.4.6 Model size and complexity evaluation
To evaluate the efficiency of our proposed method, we

conducted a comparative analysis with several state-of-the-art
models, focusing on key metrics including parameter count,
floating-point operations (FLOPs), and inference latency. All
experiments were performed under a unified input setting of
1024 × 1024 images, with detailed results summarized in Table 3.
The models included in the comparison are FCN, U-net, DlinkNet,
CoANet, RcfsNet, SDsegNet, VisionMamba-Unet-2 (VMUnet-2),
DeNet, CSWin-UNet and PMFSNet.

As seen in Table 3, SDSeg, utilizing a diffusion model, has the
highest FLOPs and the slowest inference time among the methods
considered. RcfsNet, which uses multi-scale context extraction and full-
stage feature fusion, has the largest number of parameters. VMUnet-2,
based on theMamba framework, has the lowest FLOPs, benefiting from
the efficiency of its state-space model. Although RcfsNet achieves the
highest segmentation accuracy, it does so at a high computational cost,
requiring 76.74M parameters and 182.36G FLOPs. PMFSNet achieves
the lowest FLOPs and the fastest inference speed by simplifying the
computational complexity of the hierarchical structure based on unet
and the self-attention mechanism, but this operation will lead to a
decline in the segmentation effect. However, our method is designed to
significantly reduce the number of parameters and FLOPs, accelerated
inference time, while only slightly decreasing the IoU on the DeepGlobe
dataset. Taking into account the complexity of the method and the
segmentation accuracy, HPLNet effectively combines high
segmentation accuracy with a lightweight design. It offers the
benefits of a compact model with superior accuracy, making it
particularly suitable for mainstream remote sensing image road
extraction tasks.

4.5 Ablation study

We conducted an ablation study to assess the impact of each
module on the size and complexity of the method in qualitative and

TABLE 1 Quantitative comparison of our proposed HPLNet with some
advanced road extraction methods on DeepGlobe dataset. Numbers in
bold indicate the best values, while numberswith the underline indicate the
second good values in each column.

Methods IoU (%) F1-score (%)

FCN 44.12 53.63

U-net 46.10 63.37

DlinkNet 64.37 77.16

CoANet 63.31 78.72

RcfsNet 67.40 79.64

SDseg 60.07 75.05

VMUnet-2 65.62 79.24

DeNet 63.04 77.33

CSWin-Unet 64.92 78.42

PMFSNet 65.06 78.83

HPLNet (Ours) 66.61 79.96
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quantitative experiments on both the DeepGlobe and Massachusetts
datasets. After introducing or not introducing ASCA, band
convolution and channel shift operations, the obtained method is
as follows: A, B, C, D, E, and F. Method-A is the baseline model and

does not contain any modules; in method-B, we introduced the
ASCA module. Method-C contains strip convolution with shallow
decoding and ASCA; Method-D shows the replacement of the deep
and shallow 3× three convolutions with strip convolution

FIGURE 8
Qualitative comparisonwith other state-of-the-artmethods inMassachusetts dataset. White: true positive, black: false positive, cyan: false negative.

TABLE 2 Quantitative comparison of our proposed HPLNet with some
advanced road extraction methods on Massachusetts dataset. Numbers in
bold indicate the best values, while numberswith the underline indicate the
second good values in each column.

Methods IoU (%) F1-score (%)

FCN 39.62 56.75

U-net 51.28 67.80

DlinkNet 61.46 76.13

CoANet 61.86 76.44

RcfsNet 63.11 77.38

SDseg 51.05 67.59

VMUnet-2 58.12 73.51

DeNet 64.19 78.19

CSWin-Unet 63.50 74.89

PMFSNet 63.14 77.41

HPLNet (Ours) 64.32 78.29

TABLE 3Quantitative comparison between our proposedHPLNet and some
advanced extraction methods in terms of FLOPs, parameters and inference
time. Numbers in bold indicate the best values, while numbers with the
underline indicate the second good values in each column.

Methods FLOPs(G) Params(M) Inference time(s)

FCN 101.96 18.64 0.0729

U-net 124.48 13.39 0.0944

DlinkNet 36.31 31.10 0.0940

CoANet 277.41 59.15 0.1192

RcfsNet 182.36 76.74 0.1860

SDseg 541.16 34.15 1.3176

VMUnet-2 11.17 14.40 0.0827

DeNet 159.09 25.52 0.1407

CSWin-Unet 98.68 23.57 0.0973

PMFSNet 46.44 0.99 0.0517

HPLNet (Ours) 20.11 2.88 0.0602
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throughout the modelling process; Method-E contains the channel
shift operation and ASCA; Method-G contains the channel shift
operation and the strip convolution for shallow decoding.

Qualitative comparison is shown in Figure 9, the ASCA
introduced in Method-B, Method-C and Method-E plays a
positive role in preserving the global information of the images,
including maintaining stronger road connectivity, reducing some
false segmentations, and improving segmentation of finer road

branches. Method-C builds on Method-B by using strip
convolution instead of the 3 × 3 convolution in the shallow
decoding part, further enhancing the model’s ability to capture
road connectivity and extension features. Method-D replaces the
3 × 3 convolution in the network architecture with the striped
convolution, however, the introduction of striped convolution
reduces the number of parameters but negatively affects the
segmentation results, validating the advantages of our designed

FIGURE 9
HPLNet visualisation results on DeepGlobe and Massachusetts datasets. (A) none, (B) ASCA, (C) strip convolution with ASCA, (C) strip convolution
with ASCA. (D) strip convolution, (E) channel shift operation and ASCA, (F) channel shift and strip convolution. HPLNet (ours): HPLNet visualisation: strip
convolution, channel shift operation and ASCA, GT: ground truth.
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approach of introducing striped convolution only in the decoding
part of shallow perception.

Quantitative comparison is shown in Table 4, indicate that the
introduction of the ASCA increases the parameter count slightly, but
the total number of parameters remains smaller than in previously
compared models, demonstrating the lightweight nature of this
attention mechanism. Meanwhile, the introduction of the channel
shift operation further reduces the FLOPs and the number of
parameters by adding zero padding after the shift to reduce the
attention and convolution computation on the corresponding
channel. In addition, the introduction of strip convolution leads
to a reduction in the number of parameters and FLOPs. This
achieves an optimal trade-off between model performance
and efficiency.

In contrast to methods C and F, ASCA exerts a significantly
more pronounced influence on segmentation performance.
Furthermore, a comparison between methods B and E
underscores the efficacy of the introduced channel shift operation
in refining segmentation results, along with its ability to detect and
rectify trailing branches.

5 Discussion

As shown in Figure 10, HPLNet demonstrates remarkable
performance in edge segmentation. However, in a small number
of images, lightweight attention perception strategy (ASCA)
imposes constraints on maintaining global contextual
connectivity, leading to subtle limitations in capturing long-range
dependencies and structural consistency. Therefore, further
improvements are needed to extract long-range dependencies
from the road while maintaining a lightweight network design.

Furthermore, the generalization capability of a method is
intrinsically linked to its practicality, reliability, and scalability.
Consequently, we conducted generalization experiments to
ascertain that the method’s performance remains robust and does
not degrade significantly when deployed in real-world scenarios
characterized by potentially different data distributions. Specifically,
we performed these evaluations on the CHN6-CUG dataset to

empirically validate the effectiveness of our proposed HPLNet in
maintaining performance across varying conditions. We selected all
methods except FCN and U-net and conducted random image
selection experiments on the validation set of the CHN6-CUG
dataset, using weights trained on the DeepGlobe dataset.

The results of the generalisation experiments are presented in
Figure 11. In the first image, both the comparison method and
HPLNet failed to perform continuous segmentation of the trees
obscuring the black box. VMUnet-2 and our method segmented the
largest area of road within the box, but in comparison, VMUnet-2
still had incorrect segmentation in the lower left corner. In the
second image, other methods produced poor results. Dlinknet,
CoANet, SDseg, and DeNet failed to segment the road within the
black box, while RcfsNet, VMUnet-2, and CSWin-UNet segmented
only a small portion. Our method, however, effectively segmented
the number and shape of the roads.

The aforementioned generalization experiments provide
compelling evidence for the robustness and superior
generalization performance of our proposed HPLNet. Notably,
while several competing methods exhibit sensitivity to
distribution shifts, HPLNet consistently manifests a greater
capacity to sustain accurate segmentation accuracy, particularly
under the challenging conditions illustrated in the second image.
Although HPLNet considers lightweight design, this further proves
the feasibility and reliability of HPLNet in practical applications,
especially in real-world scenarios where data distribution varies.

6 Conclusion

This paper proposes a lightweight hierarchical perception
network to address the challenge of balancing model lightness
and extraction accuracy in road extraction under resource-
constrained scenarios. Our core contributions are reflected in
three aspects:

HPLNet designs a collaborative architecture of shallow
perception and deep perception modules. Shallow perception
efficiently captures raw pixel details through striped convolution,
while deep perception uses a lightweight attention mechanism to

TABLE 4Quantitative results of ablation experiments, where CSO stands for Channel Shift operationmodule, Conv represents convolution, Strip represents
strip convolution and ASCA denotes the Adaptive spatial-channel attention module. Numbers in bold indicate the best values, while numbers with the
underline indicate the second good values in each column.

Methods CSO Conv ASCA Deepglobe Massachusetts FLOPs(G) Params(M)

IoU(%) F1-score(%) IoU(%) F1-score(%)

A × 3 × 31 × 64.44 78.37 62.88 77.21 4.55 0.63

B × 3 × 3 √ 64.85 78.68 63.13 77.40 5.41 3.01

C × Strip √ 65.43 79.10 63.85 77.94 5.04 2.88

D × Stripp2 × 60.00 75.00 61.83 76.41 2.80 0.10

E √ 3 × 3 √ 65.23 78.96 63.59 77.74 5.41 3.01

F √ Strip × 62.30 76.77 61.20 75.93 4.25 0.51

HPLNet (Ours) √ Strip √ 66.61 79.84 64.32 78.29 5.10 2.88

aThe use of 3 × 3 corresponds to the convolution method in shallow feature encoding.
bStripp indicates that strip convolution is used instead of 3× three convolution for deep and shallow perception parts.
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extract semantic information, achieving a good balance between
lightweight network design and feature extraction accuracy under
strict resource constraints. Second, to solve the problem of long-
distance road extensions and local details being easily obscured, we
cleverly combine long-distance information collection with local
detail restoration. Specifically, shallow perception uses stripe

convolution to capture long-distance road information from four
directions to ensure accurate detail restoration, while deep
perception introduces a lightweight spatial-channel attention
mechanism to maintain network lightness while cooperatively
retaining the global connectivity and local details of the road,
balancing the extraction difficulties of the global and local.

FIGURE 10
HPLNet visualisation results on DeepGlobe datasets.

FIGURE 11
Qualitative comparison of generalisation experiments with other state-of-the-art methods in the CHN6-CUG dataset.
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Finally, to achieve deep coupling between shallow pixels and deep
semantics, HPLNet adopts a hierarchical feature extraction strategy
and introduces channel shift operations without additional
parameter overhead, further ensuring the adequacy of shallow
and deep feature extraction and achieving deep coupling of
information.

Experimental results onmainstream benchmark datasets such as
DeepGlobe and Massachusetts demonstrate that, compared to
various advanced methods, the proposed HPLNet achieves a
better balance between inference efficiency and extraction
accuracy, and its effectiveness is further validated through
generalization experiments on the CHN6 dataset.

Future work will focus on two directions: first, designing a
more extreme lightweight network architecture that significantly
reduces the number of model parameters and computational
complexity while maintaining high accuracy; second, developing
a road extraction method that can simultaneously take into
account local details and global information to improve
adaptability to complex and diverse remote sensing
image scenes.
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