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Fine-grained few-shot ship classification under cloud occlusion is vital for
maritime safety but remains challenging due to corrupted features and limited
data utility. While the advent of large pre-trained vision-language models (VLMs)
provides promising solutions, the lack of specialized benchmarks hinders their
effective application. To address this, we introduce SeaCloud-Ship, the first
benchmark dedicated to this task. It comprises 7,654 high-resolution, high-
quality annotated images across 30 classes, featuring quantified cloud
coverage (12.5%–75%) for standardized evaluation. We innovatively propose
CARP, a cloud-aware prompting framework built upon CoOp, to combat
feature corruption, semantic misalignment, and utility decay. Our core
contributions include: (1) GCE Loss dynamically adjusting classification weights
to suppress cloud interference based on feature degradation severity; (2)
Adaptive Optimization Prompt Design (AOPD) utilizing distortion-aware
vectors for effective multi-modal feature alignment and semantic deviation
repair; (3) Dynamic Weight Adjustment Mechanism (DWAM) real-time
balancing of multi-source feature fusion by evaluating inter-modal
information gain. Extensive experiments on SeaCloud-Ship demonstrate
CARP’s superior robustness and state-of-the-art performance, establishing a
strong baseline for cloud-occluded ship classification.
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1 Introduction

Advancements in remote sensing have led to widespread Earth observation programs,
elevating Remote Sensing Fine-Grained Ship Classification (RS-FGSC) as a critical task.
However, RS-FGSC faces significant challenges, particularly severe data scarcity. Acquiring
sufficient high-quality, labeled multi-category satellite ship imagery is extremely costly,
often resulting in few-shot or zero-shot scenarios. Under these low-data conditions,
traditional deep learning models struggle to generalize effectively.

Pretrained on large image-text pairs, Vision-Language Models (VLMs) like Contrastive
Language-Image Pretrainin (CLIP) (Radford et al., 2021) offer a new paradigm for RS-
FGSC, leveraging rich cross-modal semantics to lead in various remote sensing tasks (Bao
et al., 2022; Chen et al., 2020; Jia et al., 2021; Lee et al., 2018; Li et al., 2021; Harold Li et al.,
2019; Li X. et al., 2020; Lu et al., 2019; Singh et al., 2022; Su et al., 2019; Tan et al., 2019;
Wang et al., 2025a; Wang et al., 2024a; Wang et al., 2025b; Wang et al., 2024b; Wang et al.,
2021; Zhang et al., 2024). Standard adaptation fine-tunes these VLMs often updating only
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the classification head or prompts—using annotated RS-FGSC data.
Yet for cloud-occluded few-shot RS-FGSC, this strategy encounters
key obstacles: (1) Absence of dedicated benchmarks for cloud
robustness evaluation; (2) Vulnerability to Cloud occlusion
interference distinct to satellite imagery.

To bridge the first gap, we establish SeaCloud-Ship–the first
benchmark for cloud-occluded fine-grained ship classification.
Comprising 7,654 high-resolution images across 30 categories
with quantified cloud coverage (12.5%-75%), it enables rigorous
evaluation under controlled noise conditions. We further develop
CloudGEN, a physics-based cloud synthesis method, to extend
benchmark versatility.

Regarding the second challenge, three critical sub-problems
emerge: Feature Corruption: Clouds obscure ships’ discriminative
local features, compromising reliable feature extraction from limited
samples. Semantic Misalignment: Cloud distortions warp the visual
feature space, causing severe mismatch between degraded features
and VLMs’ textual prompts. Data Utility Degradation: Cloud
contamination reduces effective training samples, intensifying
few-shot learning difficulties. Conventional fine-tuning and
prompt learning methods show significantly reduced robustness
and generalization under these combined pressures.

To address these challenges, we propose cloud-adaptive robust
prompt (CARP)—a novel prompt-learning framework built on
CoOP. Its core innovations: Mitigating feature corruption by
replacing CE loss with adaptive gradient-weighted generalized
cross entropy (GCE); Rectifying semantic misalignment via an
Adaptive Optimization Prompt Design with Distortion-aware
compensation (AOPD), using learnable cloud-occlusion-aware
vectors; Countering data utility degradation through a Dynamic
Weight Adjustment Mechanism (DWAM) that adaptively balances
visual/textual feature weights in cross-modal contrastive learning.
This framework establishes a new paradigm for cloud-occluded few-
shot fine-grained ship classification. In summary, our contributions
are as follows:

1. We introduce SeaCloud-Ship, the first benchmark dataset
specifically designed for fine-grained ship classification
under cloud occlusion conditions;

2. We propose the cloud-adaptive robust prompt (CARP)
framework to enhance cloud-occluded few-shot learning via
generalized cross entropy for cloud-noise resistance, Adaptive
Optimization Prompt Design for feature distortion
rectification, and Dynamic Weight Adjustment Mechanism
for cross-modal alignment optimization;

3. We experimentally demonstrate CARP’s superior performance
over existing models on SeaCloud-Ship, achieving state-of-the-
art results across diverse cloud coverage ratios and few-
shot settings.

2 Related work

2.1 Prompt learning in vision-
language models

Prompt learning has emerged as a dominant paradigm for
efficiently adapting large-scale vision-language models (VLMs) to

downstream vision tasks without the computational burden of full
fine-tuning. Pioneered by CLIP (Radford et al., 2021), which utilized
hand-crafted textual prompts like “a photo of a [class]” to align
image-text representations, this approach evolved significantly with
Context Optimization (CoOp) (Zhou et al., 2022b). CoOp replaced
manual prompts with learnable continuous vectors optimized
through gradient descent, substantially improving few-shot
generalization by dynamically adapting prompts to target
datasets. Subsequent research expanded this foundation along
several dimensions: CoCoOp (Zhou et al., 2022a) introduced
instance-conditional prompts to enhance generalization beyond
base categories; VPT (Jia et al., 2022) unified visual and textual
prompting within a shared optimization framework; while methods
like MaPLe (Uzair Khattak et al., 2023) and ProGrad (Zhu et al.,
2023) enforced hierarchical multimodal alignment through
constraint-based learning. Domain-specific adaptations also
emerged, such as ship-targeted prompt tuning (Lan et al., 2024)
that customizes maritime semantics, and training-free variants like
Tip-Adapter (Zhang et al., 2021) leveraging cached embeddings for
zero-shot transfer. Collectively, these methods demonstrate robust
performance across diverse vision tasks including open-vocabulary
classification and object detection, provided they operate on high-
resolution, unobstructed imagery.

However, these successes falter dramatically under cloud
occlusion in remote sensing contexts. VLMs’ reliance on
discriminative visual features renders them acutely vulnerable to
cloud-induced local information loss, which corrupts feature
extraction. Static prompt embeddings cannot dynamically
compensate for such distortions, leading to progressive
misalignment between visual and textual representations as cloud
density increases. This drift is exacerbated in few-shot settings,
where limited data impedes robust calibration against noise.
While recent multimodal alignment techniques address generic
domain shifts, they remain fundamentally unequipped to handle
structured atmospheric interference (Wang et al., 2025b; Wang
et al., 2024b). Consequently, existing frameworks fail to resolve
the core challenges of feature corruption, semantic drift, and data
scarcity in cloud-occluded fine-grained ship classification,
highlighting a critical research void.

2.2 Ship classification

Ship classification in remote sensing imagery is challenged by
fine-grained inter-class variations, complex maritime backgrounds,
and pervasive cloud occlusion—a uniquely disruptive factor that
catastrophically degrades visual features. Recent deep learning
approaches have made significant strides through two primary
strategies: domain adaptation for sensor invariance and
multimodal learning for feature enrichment. Zheng et al. (2023)
pioneered a dual-teacher framework (SCSD) that decomposes
optical/SAR supervision into interactive cross-domain and semi-
supervised tasks, substantially improving pseudo-label reliability on
unlabeled SAR imagery. This direction was extended by the Multi-
Level Alignment Network (Xu et al., 2022), which integrates pixel-,
instance-, and feature-level alignment to mitigate domain shifts in
detection tasks. For fine-grained discrimination, Huang et al. (2022)
combined CNN-Swin hybrid architectures with multi-branch
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feature extraction, setting new benchmarks on FGSC-23 and
military ship datasets. Concurrently, Lu et al. (2025) developed
the Multi-Scale Context Aggregation Network (MSCAN),
leveraging hierarchical convolution-attention fusion to suppress
coastal clutter in SAR imagery and significantly enhance small-
vessel localization. In multimodal learning, Li W. et al. (2020)
achieved cross-sensor alignment via Cross-Modal Contrastive
Learning (CMCL), constructing a shared semantic space that
maximizes inter-modal consistency while preserving sensor-
specific diversity.

Despite these innovations, cloud occlusion remains a critical
unsolved vulnerability. Existing methods predominantly optimize
for domain shifts (Xu et al., 2022; Zheng et al., 2023) or background
interference (Lu et al., 2025), while cloud corruption—which
intrinsically obliterates local discriminative features—demands
fundamentally different mitigation mechanisms. Although
unsupervised change detection (Zheng et al., 2021) offers partial
relief by exploiting temporal sequences, it fails under persistent
cloud cover common in maritime monitoring. Crucially, no current
approach addresses the tripartite challenge of cloud-induced feature
loss, semantic distortion, and data scarcity in few-shot settings. Our
work bridges this gap by integrating physics-aware cloud modeling
with prompt-based vision-language adaptation, establishing the first
unified framework for occlusion-robust fine-grained classification.

3 Methods

3.1 Preliminary

CoOp (Zhou et al., 2022b) pioneers prompt learning for vision-
language models by optimizing continuous context vectors in text
prompts to adapt models like CLIP to downstream tasks. Unlike
manual prompt engineering, CoOp automatically learns task-
specific contextual representations through backpropagation.
Given input image x and class label c, the text prompt is
constructed as:

tc � v1, v2, . . . , vM, cc[ ] (1)
Here v1, . . . , vM areM learnable context vectors (each matching

CLIP’s text embedding dimension), and cc is the class name
embedding. During training, these context vectors are optimized
to minimize prediction loss while keeping CLIP’s original image and
text encoders (f and g) frozen. Classification probability is
computed as:

p y � c|x( ) � exp cos f x( ), g tc( )( )/τ( )
∑C

c′�1 exp cos f x( ), g tc′( )( )/τ( ) (2)

where cos(·) represents cosine similarity, τ is the temperature
parameter, and C denotes the number of classes. CoOp substantially
boosts few-shot performance (e.g., increasing CLIP’s accuracy by 10%–
20% in 1–16 shot tasks) while demonstrating strong cross-dataset
generalization and maintaining parameter efficiency.

Although CoOp shows strong capabilities in zero-shot
recognition tasks for vision-language models, it faces significant
challenges in fine-grained ship recognition under cloud occlusion in
remote sensing imagery. Standard prompt learning struggles to

overcome visual feature degradation due to heavy cloud
obstruction, causing misalignment between image semantics and
textual class prompts while hindering the capture of critical fine-
grained visual features (e.g., distinguishing warships from cargo
vessels). Furthermore, cloud corruption degrades visual features,
increasing model sensitivity to label noise. Heavily occluded samples
exhibit ambiguous representations, which amplify the impact of
mislabeled data during training.

We therefore propose the cloud-adaptive robust prompt (CARP)—
a novel prompt learning paradigm for cloud-occluded scenarios.
Building upon the CoOp framework, CARP systematically addresses
cloud interference through two strategies: 1) Introducing Adaptive
Optimization Prompt Design (AOPD) and Dynamic Weight
Adjustment Mechanism (DWAM) modules to resolve visual-
semantic misalignment and fine-grained feature extraction; 2)
Replacing traditional cross-entropy (CE) loss with generalized cross
entropy (GCE) to mitigate label noise sensitivity. By incorporating a
tunable parameter q, GCE adaptively balances attention to hard samples
(potentially noisy) while maintaining high-confidence predictions for
clear samples, thereby reducing negative impacts from noisy labels.
CARP provides the first end-to-end robust prompt learning solution for
fine-grained ship recognition under cloud occlusion in remote sensing
(see structure in Figure 1).

3.2 Adaptive optimization prompt
design (AOPD)

To enhance model robustness against cloud occlusion, we propose
an Adaptive Optimization Prompt Design (structure shown in
Figure 2). This integrates a compensation vector dynamically into
the prompt learning process, forming a dual-stream prompt
architecture: one stream employs standard learnable context vectors
(Cctx) to capture task-related general semantics, while the other stream
utilizes a specifically learned occlusion compensation vector to
adaptively adjust and enhance semantic prompts in response to
potential occlusion patterns in input images.

The Occlusion Compensation Vector Vocc—a learnable parameter
with the same dimensionality as Cctx—strengthens model resilience to
visual occlusions. This mechanism optimizes prompt embedding
generation by dynamically compensating for representation
deviations in occluded regions. Its core operational principle involves:

CCloud � Cctx + Vocc (3)
Vocc ~ N 0, σ2I( ), σ � 0.02 (4)

Here, Cctx ∈ Rnctx×d denotes the original context vector, and
Vocc—a compensation parameter optimized via backpropagation
and initialized from a zero-mean Gaussian distribution—is jointly
optimized with Cctx during training. This produces the final
prompt embedding:

P � Γ CCloud( ) (5)
which dynamically handles visual occlusion scenarios, significantly
enhancing representation capability with missing visual
information. This design allows prompts to perceive and
compensate for occlusion interference, improving text-visual
feature correlation under occlusions.
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3.3 Dynamic weight adjustment
mechanism (DWAM)

When input images suffer severe cloud occlusion, degrading
visual feature reliability and impeding text-visual alignment, we
propose the Dynamic Weight Adjustment Mechanism (DWAM).
This strategy adaptively reduces visual modality weighting while
enhancing reliance on language inputs (e.g., reliable categorical
text descriptions), maintaining robust semantic alignment under
heavy occlusion. Crucially in few-shot scenarios, this adaptive
balancing efficiently utilizes limited information and prevents
overfitting to noisy data.

DWAM captures real-time multimodal gradients via
backpropagation, generating dynamic weight coefficient α from
gradient L2-norms:

α � σ
‖∇V‖2

‖∇V‖2 + ‖∇T‖2( ) (6)

where ‖∇V‖2 and ‖∇T‖2 denote image/text encoder gradient norms,
and σ(·) is the Sigmoid function. The coefficient α ∈ [0, 1] re-
weights features:

Vnew � αV, Tnew � 1 − α( )T (7)
Normalized features compute cosine similarity:

logits � exp s( ) · Vnew

‖Vnew‖2( ) Tnew

‖Tnew‖2( )⊤

(8)

This dynamically allocates representation weights based on per-
modality optimization difficulty, where s is a learnable log scale, and
V, T are original image/text features.

3.4 Generalized cross entropy (GCE)

To address label noise sensitivity from cloud occlusion, we
replace conventional cross-entropy (CE) with generalized cross
entropy (GCE). This module dynamically balances noise
robustness and training efficiency via tunable parameter q:
degenerating to standard CE when q → 0 and equaling MAE loss
at q � 1. It is defined as:

LGCE � 1
N

∑N
i�1

1 − pq
yi

q
, q ∈ 0, 1( ] (9)

where pyi is sample i’s predicted probability for its true class, andN
is batch size. Experiments confirm q � 0.3 optimally adapts to
remote sensing cloud occlusion: retaining CE’s fast convergence
while suppressing cloud-induced label noise overfitting through

FIGURE 1
Our cloud-adaptive robust prompt (CARP) architecture processes input images through a visual encoder to extract features, which feed into the
Dynamic Weight Adjustment Mechanism (DWAM) to automatically balance text and visual feature weights. Text features pass through the Adaptive
Optimization Prompt Design (AOPD) to learn occlusion vectors before entering the text encoder. The final output undergoes gradient backpropagation
via the generalized cross entropy (GCE).

FIGURE 2
(a) shows the state before improvement, and (b) shows the state
after improvement. AOPD Dual-Stream Architecture: Introducing
occlusion vectors to enhance model robustness.
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moderate loss curvature adjustment. For enhanced robustness,
gradient backpropagation halts when prediction confidence
pyi < κ (κ � 0.5):

∇ i( )
θ �

0 pyi < κ

∇θ

1 − pq
yi

q
( ) otherwise

⎧⎪⎪⎨⎪⎪⎩ (10)

Combined with AOPD’s compensation vector, this dual
robust optimization significantly boosts generalization under
degraded visual features. When q approaches 0, GCE
degenerates into the standard cross-entropy (CE), which is
sensitive to noisy samples. When q � 1.0, it is equivalent to
the mean absolute error (MAE), which enhances noise
tolerance but impairs the efficiency of gradient updates.
Experiments show that q � 0.3 achieves the optimal balance in
the cloud occlusion noise environment—it not only suppresses
the interference of label noise by adjusting the loss curvature but
also retains the discriminative ability for key ship features.
Algorithm 1 provides complete CARP pseudocode.

Require:

T: Training epochs

X: Input dataset

C: Number of classes

τ: Temperature parameter

σ: Vocc init std dev

(q, κ): GCE parameters (q ∈ (0,1], κ ∈ [0,1])
Cctx: Learned context vectors

Ensure: Vocc: Occlusion compensation vectors

s: Scaling factor

1: Initialize Cctx, Vocc ~ N (0, σ2I), s

2: for t ← 1 to T do

3: Sample (x,c) ∈ X
4: Extract visual feature V � f(x)
5: Generate prompt: tc � [Γ(Cctx + Vocc),cc]

(Equations 3, 5)

6: Extract text feature Tc � g(tc)
7: Compute weight: α � σ(‖∇V‖2/(‖∇V‖2 +

‖∇Tc‖2)) (Equation 6)

8: Adjust features: Vnew � αV, Tnew �
(1 − α)Tc (Equation 7)

9: Compute similarity: logitsc � exp(s) ·
cos(Vnew,Tnew) (Equation 8)

10: Calculate probability: pc �
exp(logitsc/τ)∑c′ exp(logitsc′/τ) (Equation 2)

11: if pc ≥ κ then

12: Compute loss: LGCE � 1
N ∑N

i�1

1−pq
yi

q ,

q ∈ (0,1] (Equation 9)

13: Obtain gradients: ∇ � ∇Cctx ,Vocc ,sL
14: else

15: Set gradients: ∇ � 0 (Equation 10)

16: end if

17: Update parameters with ∇

18: end for

Algorithm 1. Cloud-adaptive robust prompt (CARP) Training.

4 Experiments

In this section, we first introduce SeaCloud-Ship, a dataset
specifically constructed for few-shot ship fine-grained
classification under cloud occlusion conditions. Based on this
dataset, we conduct comprehensive experiments to evaluate the
performance of the proposed method under varying levels of cloud
occlusion and validate the effectiveness of the cloud-adaptive robust
prompt (CARP). The experiments cover dataset construction
details, baseline comparisons, implementation parameters, and
multi-dimensional result analysis.

4.1 Datasets

With the growing demand for cloud detection technology, an
increasing number of open-source datasets (Aybar et al., 2022; Foga
et al., 2017; Mohajerani et al., 2019; Shendryk et al., 2019) have
become available for training purposes. However, the absence of
fine-grained ship recognition datasets under cloud occlusion
conditions hinders validation of model robustness in such
scenarios. To address this, we developed SeaCloud-Ship—a
publicly accessible benchmark dataset specifically designed for
fine-grained ship classification under cloud interference, with
Figure 3 illustrating the dataset construction workflow.

4.1.1 Source screening
Due to the lack of open-source fine-grained ship datasets under

cloud occlusion, the challenges in collecting such data, the inability
to cover all common categories, and the difficulty in controlling
cloud coverage ratios to accurately validate model performance, our
data primarily derives from three public fine-grained ship
classification datasets: FGSC-23 covers 23 categories (22 ship
types and 1 non-ship category) with 4,080 samples. Partially
sourced from the HRSC2016 dataset, its main imagery comes
from Google Earth and GF-1 satellite, covering vessels under
various lighting conditions, land/sea backgrounds, and arbitrary
orientations. FGSCR-42 comprises 9,320 images across 42 common
ship categories (including naval and civilian vessels), with
approximately 200 images per class. Image resolutions range
from 50× 50 to 1,500× 1,500 pixels, reflecting multi-scale ship
features. Sources include Google Earth and mainstream remote
sensing datasets like DOTA, HRSC 2016, and NWPU VHR-10.
FGSCM-52 expands FGSCR-42 by adding 10 categories, forming
52 fine-grained ship classes (e.g., warships, civilian vessels). It
incorporates multi-scale optical remote sensing imagery (50×
50 to 1,600× 1700 pixels, 0.4–2 m resolution from GF-2/Sentinel-
2), integrating multi-source data from Google Earth, DOTA, and
HRSC 2016. This dataset enhances annotations for rare hull types
(e.g., auxiliary vessel subtypes) and adds complex scenarios (ports,
offshore areas), emphasizing feature variations under diverse
lighting, angles, and backgrounds.

4.1.2 Selection rule
To construct a cloud-interference-aware fine-grained ship

recognition benchmark with scenario generalization capabilities,
we selected source dataset samples using a three-tiered criterion:

Frontiers in Remote Sensing frontiersin.org05

Zhan et al. 10.3389/frsen.2025.1662024

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1662024


First, First, ensure the completeness of category coverage, and
prioritize the selection of multi-view and multi-scale samples to
retain fine-grained discriminative features; Second, guaranteeing
scene diversity by mandating coverage across four typical
scenarios: open waters, coastal zones, complex channels, and
extreme illumination conditions; Finally, applying quality
constraints to retain relatively high-resolution images inherently
free from cloud occlusion, thereby preventing pre-existing
interference. Through this process, 7,654 high-quality images
were selected to form the foundational dataset. Controllable
occlusion was applied via the automated cloud generation system
(CloudGEN), while strictly preserving the original directory
structure and class balance. Figure 4 demonstrates visual
comparisons under varying occlusion ratios, validating the
effectiveness of data simulation.

4.1.3 Cloud generation method
Based on the rigorously curated high-quality ship image dataset,

we developed the automated cloud generation system CloudGEN,
designed to controllably add simulated cloud layers with varying
occlusion ratios. While existing cloud generation methods approach
realistic cloud quality, genuine cloud occlusion data presents
challenges in controlling obstruction ratios and collecting
sufficient category coverage. Consequently, we employ an
automated approach for generating cloud occlusion ratios. To
authentically replicate real cloud interference characteristics in
remote sensing imagery, we utilize a Perlin noise-based physical
simulation method. By modeling optical properties under diverse
cloud thicknesses, density distributions, and lighting conditions, we
dynamically generate realistic cloud noise matching actual satellite
observations directly onto raw ship images. First, we dynamically
create naturalistic cloud textures using a fractal noise algorithm,
adjusting octaves and persistence parameters to control cloud
complexity and distribution. Second, a dichotomy-based
threshold calibration technique precisely governs cloud coverage,
ensuring accurate occlusion ratios per image. Finally, Gaussian
blurring achieves optical transitions at cloud edges, while
overlaying spectrally specific cloud colors simulates authentic
atmospheric scattering. This process batch-generates cloud-

occluded samples conforming to remote sensing imaging
principles while preserving the original dataset’s directory
structure. Figure 4 illustrates comparative results under varying
cloud occlusion ratios.

4.1.4 Statistic
The SeaCloud-Ship dataset comprises 30 fine-grained ship

categories (detailed in Table 1), spanning warships (e.g.,
destroyers, aircraft carriers, frigates), civilian vessels (e.g., yachts,
cargo ships), and specialized ships (e.g., hospital ships, tugboats). It
contains 7,654 high-quality optical remote sensing images with a
mean resolution of 512× 512 pixels, ranging from low-scale (92× 92)
to high-scale (1024× 1024). The dataset integrates multi-source
heterogeneous data, including Google Earth imagery, China’s
Gaofen satellites (GF-1/GF-2), the European Sentinel-2 satellite,
and aerial platforms like HRSC2016 and DOTA, primarily using
high-resolution optical sensors (0.4–2 m). Samples originate from
global maritime zones—Pacific, Atlantic, and Indian
Oceans—covering diverse scenarios such as open seas, coastal
waters, complex channels, and extreme lighting. The largest
category, Towing_vessel, includes 778 images, averaging 255 per
class with balanced military-civilian ratios. High-resolution classes
focus on critical military targets: aircraft carriers (Nimitz-class
averaging 812× 812 pixels) and destroyers (Arleigh Burke-class
averaging 540× 540 pixels). Civilian classes like container ships
(mean 442× 442 pixels) and sand carriers (Sand_carrier averaging
230× 230 pixels) emphasize low-resolution robustness testing. This
multi-scale, multi-source, multi-scenario framework establishes
SeaCloud-Ship as the first benchmark dataset supporting fine-
grained vessel recognition under cloud-occluded conditions.

4.2 Datasets and baselines

Datasets Building upon (Di et al., 2021; Lan et al., 2024; Zhang
et al., 2020), we construct the first cloud occlusion benchmark
dataset SeaCloud-Ship. Using CloudGEN4.1.3, we synthesize
progressive cloud occlusion (coverage levels: 12.5%, 25%, 37.5%,
50%, 62.5%, 75%), resulting in 7,654 images.

FIGURE 3
Pipeline of SeaCloud-Ship. Our dataset construction pipeline includes data collection, three levels of manual quality inspection, and final generation
via the CloudGEN.
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Baselines Four state-of-the-art prompt learning methods are
selected for comparison: (1) CoOp (Zhou et al., 2022b): classical
context optimization; (2) CoOp + MAE: incorporates masked
autoencoder pretraining on CoOp for enhanced robustness; (3)
CoCoOp (Zhou et al., 2022a): conditionally generated instance-
level prompts; (4) NLPrompt (Pan et al., 2024): language-vision
alignment method specifically designed for noisy scenarios, serving
as the strongest relevant baseline.

4.3 Implementation details

Experiments utilize the CLIP-ViT/B-16 architecture with uniform
training settings: SGD optimizer (initial learning rate 2 × 10−3,
momentum 0.9, weight decay 5 × 10−4) coupled with cosine

learning rate decay, batch size of 32 (16 samples per visual/text
modality) across 200 epochs. Generalized cross entropy (GCE)
employs noise tolerance parameter q � 0.3. The Dynamic Weight
Adjustment Mechanism (DWAM) adopts a GRU structure (hidden
dimension 64), maintains a gradient history buffer of length 10, and
dynamically weights features by constraining α ∈ [0.3, 0.7].

Context learning configuration includes 16-dimensional context
vectors (nctx � 16) with class tokens at text suffix positions;
compensation vectors follow N (0, 0.02) initialization. Full
training employs FP16 mixed precision. Hardware: NVIDIA
GeForce RTX 3080 GPU and Intel Core i9-10920X CPU.
Software: PyTorch 2.4.1/CUDA 12.1/cuDNN 8.0.5. Data
augmentation includes random cropping (scale = [0.08, 1.0]),
horizontal flipping, and ImageNet normalization. Reported
results average three independent runs.

FIGURE 4
Figures (a–d) are comparative diagrams under cloud occlusion ratios of 0%, 25%, 50%, and 75%, respectively.
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4.4 Main results

As shown in Table 2, our proposed method demonstrates
significant advantages in remote sensing image recognition under
cloud occlusion. It achieves optimal performance across all
30 comparative experiments, particularly excelling under high
occlusion (75.00%) and few-shot (1-shot) scenarios. Compared to
the best-performing baseline (CoOp + MAE), our method improves
average accuracy by 3.6%, with the maximum gain in the 16-shot/

12.50% scenario (61.03% vs. 56.56%). These results validate the
effectiveness of our cloud-feature adaptive learning mechanism.

Our method exhibits exceptional robustness across varying
occlusion levels. When occlusion increases from 12.50% to 75.00%,
the best baseline (CoOp + MAE) shows 46.16% performance
degradation under 1-shot conditions, while our method maintains
degradation within 51.97%. Notably at the critical 50.00% occlusion
threshold, our 1-shot accuracy reaches 23.63%, significantly exceeding
CoOp + MAE (18.22%) and NLPrompt (16.55%). Even under

TABLE 1 Classification statistics of the ship dataset.

Category Subclass Quantity Resolution (px)

Military Ships

Kidd Class Destroyer 68 615 × 605

Crane Ship 142 1024 × 1024

Independence Class Combat Ship 210 606 × 597

Kuznetsov Class Aircraft Carrier 68 686 × 676

Arleigh Burke Class Destroyer 580 548 × 541

Akizuki Class Destroyer 18 715 × 705

Murasame Class Destroyer 63 595 × 588

Asagiri Class Destroyer 70 652 × 643

Abukuma Class Frigate 78 683 × 672

Freedom Class Combat Ship 177 522 × 514

Whitby Island Class Dock Landing Ship 278 616 × 606

Osumi Class Landing Ship 116 770 × 758

Kitty Hawk Class Aircraft Carrier 68 875 × 858

Sacramento Class Support Ship 50 915 × 903

Izumo Class Helicopter Destroyer 63 951 × 937

Type 45 Destroyer 159 710 × 699

Midway Class Aircraft Carrier 208 545 × 538

Hyuga Class Helicopter Destroyer 24 925 × 909

Wasp Class Assault Ship 453 659 × 643

Ticonderoga Class Cruiser 607 515 × 506

Medical Ship 322 732 × 721

Nimitz Class Aircraft Carrier 553 813 × 800

San Antonio Class Transport Dock 319 721 × 710

Civilian Ships

Civil Yacht 777 115 × 114

Megayacht 186 562 × 554

Container Ship 455 443 × 436

Tank Ship 160 743 × 732

Towing Vessel 778 92 × 92

Sand Carrier 226 230 × 226

Cargo Ship 378 609 × 600
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extreme 75.00% occlusion, our 16-shot result (36.66%) outperforms
the best baseline by 1.31 percentage points.

Training sample size analysis reveals pronounced few-shot
advantages. Under 1-shot conditions, our method improves
average accuracy by 4.27% across occlusion levels; this advantage
expands to 4.82% at 16-shot. Specifically in 4-shot scenarios at 62.50%
occlusion, our method achieves 28.33% accuracy—a 3.00 percentage
point improvement (11.84% relative gain) over CoCoOp (25.33%).
These findings indicate that increased training samples enhance our
method’s ability to learn occlusion-invariant features.

4.5 Ablation experiments

As shown in Table 3, we systematically evaluate the synergistic
effects of generalized cross entropy (GCE), Adaptive Optimization

Prompt Design (AOPD), and Dynamic Weight Adjustment
Mechanism (DWAM). Experiments demonstrate that individually
introducing any module improves baseline performance, with
DWAM yielding a 3.1% gain under 75% occlusion, highlighting

TABLE 2 Performance comparison under different cloud occlusion ratios.

Shots Method Cloud occlusion ratio

12.50% 25.00% 37.50% 50.00% 62.50% 75.00%

1-shot CoOp (Zhou et al., 2022b) 25.43 23.12 20.56 18.79 15.21 12.34

CoCoOp (Zhou et al., 2022a) 22.89 21.05 19.47 17.33 14.88 11.76

CoOp + MAE 24.17 22.68 20.91 18.22 15.93 13.02

NLPrompt (Pan et al., 2024) 21.35 19.87 18.14 16.55 13.98 10.65

Ours 29.92 26.81 21.12 23.63 18.35 14.37

2-shot CoOp (Zhou et al., 2022b) 30.21 28.45 25.78 22.34 19.05 17.22

CoCoOp (Zhou et al., 2022a) 27.98 26.11 23.44 21.56 18.77 16.89

CoOp + MAE 29.56 27.79 24.92 22.11 19.33 17.55

NLPrompt (Pan et al., 2024) 26.34 24.57 22.89 20.02 17.66 15.90

Ours 34.91 31.20 26.03 22.83 19.36 18.37

4-shot CoOp (Zhou et al., 2022b) 40.23 35.67 32.11 29.88 26.54 23.01

CoCoOp (Zhou et al., 2022a) 38.76 34.55 31.09 28.77 25.33 22.12

CoOp + MAE 41.56 36.89 33.22 30.99 27.44 24.35

NLPrompt (Pan et al., 2024) 37.45 33.21 29.78 27.56 24.11 21.03

Ours 44.52 38.83 33.37 31.92 28.33 24.37

8-shot CoOp (Zhou et al., 2022b) 50.12 45.34 42.78 38.56 33.21 29.87

CoCoOp (Zhou et al., 2022a) 48.76 44.55 41.09 37.88 32.54 28.90

CoOp + MAE 51.56 46.89 43.22 39.99 34.44 30.35

NLPrompt (Pan et al., 2024) 47.45 43.21 39.78 36.56 31.11 27.03

Ours 54.28 49.41 46.92 40.87 34.66 31.21

16-shot CoOp (Zhou et al., 2022b) 55.23 50.67 47.11 44.88 39.54 33.01

CoCoOp (Zhou et al., 2022a) 53.76 49.55 46.09 43.77 38.33 32.12

CoOp + MAE 56.56 51.89 48.22 45.99 40.44 35.35

NLPrompt (Pan et al., 2024) 52.45 48.21 44.78 42.56 37.11 31.03

Ours 61.03 57.31 53.14 50.29 40.70 36.66

The bolded content represents the values with the best results.

TABLE 3 Module ablation study results based on the CoOp baseline.

GCE AOPD DWAM 25.0% 50.0% 75.0%

- - - 50.67 44.88 33.01

✓ - - 54.50 45.50 34.30

- ✓ - 56.30 46.60 33.20

- - ✓ 55.70 46.30 34.70

✓ ✓ ✓ 57.31 50.29 36.66

The bolded content represents the values with the best results.

Frontiers in Remote Sensing frontiersin.org09

Zhan et al. 10.3389/frsen.2025.1662024

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1662024


its adaptability to extreme occlusion. Further analysis reveals
functional complementarity: GCE enhances noise robustness,
AOPD optimizes occlusion feature reconstruction, and DWAM
achieves cross-modal dynamic balancing. When integrating all
modules, the model reaches 50.30% accuracy under 50%
occlusion—a 0.6 percentage point improvement over baseline,
validating the efficacy of collaborative module design.

Loss function analysis (Table 4) uncovers key mechanisms: GCE
with q � 0.3 significantly outperforms standard CE andMAE losses,
showing a 2.10 percentage point improvement over CE at 25%
occlusion. This stems from GCE’s noise tolerance, dynamically
weighting hard samples via q to suppress false signals in cloud-
occluded regions. Notably, q exhibits sensitivity thresholds: at
q � 0.5, diminished gradient smoothing causes noticeably lower
performance gains under 75% occlusion compared to the q � 0.3
configuration.

5 Conclusion

This paper addresses the critical challenge of few-shot fine-
grained ship classification in cloud-occluded remote sensing by
proposing CARP (cloud-adaptive robust prompt)—an innovative
framework that systematically tackles feature corruption, semantic
misalignment, and data utility degradation. By designing a
generalized cross entropy (GCE) loss for noise immunity,
developing an Adaptive Optimization Prompt Design (AOPD) to
repair semantic mismatches, and introducing a Dynamic Weight
Adjustment Mechanism (DWAM) for cross-modal alignment, our
method achieves breakthrough performance on the SeaCloud-
Ship dataset.

As shown in Table 2, CARP outperforms all existing methods
across 30 experimental settings, notably achieving 23.6% accuracy
under 1-shot/50% occlusion (5.38% higher than CoOp + MAE) and
setting a new state-of-the-art of 36.66% at 16-shot/75% occlusion.
Experiments confirm CARP’s superior robustness: when occlusion
increases from 12.5% to 75.0%, its performance degradation (52.2%)
is significantly lower than baselines (46.2%). The newly constructed
SeaCloud-Ship dataset addresses a critical domain gap, providing
reliable solutions for satellite imaging systems. Future work will

explore multi-modal cloud occlusion modeling and zero-shot
generalization enhancement.
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