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TheDeep SpaceClimateObservatory (DSCOVR), launched in 2015, is the first Earth-
observingmission to a Sun-Earth first Lagrange point (L1) orbit, about 1.5 million km
from Earth on the Sun-Earth line. The goal of the mission is to provide continuous
solar wind measurements for accurate space weather forecasting and observe the
sunlit side of the Earth for enhancing climate science. The Earth Polychromatic
Imaging Camera (EPIC) is one of the two Earth-observing instruments on DSCOVR.
It takes images of nearly the entire sunlit side of the Earth in 10 spectral channels at a
relatively high temporal resolution to monitor the changing planet. EPIC’s view
contains polar regions that are barely visible from geostationary satellite (GEOs),
providing observations of the global reflected spectral radiation. Among other
capabilities of EPIC, such as observing atmospheric and surface properties, the
well calibrated reflected global spectral radiation observed by EPIC and EPIC-based
broadband shortwave (SW) radiance and flux can be used to monitor the changing
planet of the Earth. However, to assess the long-term change of the Earth in terms
of its spectral brightness and reflected SW radiation, the natural variability of global
spectral reflectance and SW radiation must be quantitatively determined. This work
provides quantitative estimates of the variability of global spectral reflectance and
SW radiance and flux on different time scales. Themain finds of this work are: (1) the
hourly variability of global average reflectance in red and NIR bands is much larger
than the variation in UV and blue bands, and the 24-h variability in boreal summer is
significantly larger than in winter; (2) the presence of Antarctica and the Arctic is
primarily responsible for seasonal variation in spectral reflectance and SW radiance
and flux; (3) the global average SW radiance is highly anisotropic, particularly over
land, and assumption of Lambertian reflection will overestimate the SW flux by
20%–30%. Furthermore, the responsible physical mechanisms are provided.
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1 Introduction

Earth observations from space have been conventionally based on low Earth orbit
(LEO) and geostationary (GEO) satellites. A common near-polar orbit LEO satellite flying
about 700 km above the Earth has an orbital inclination angle close to 90° with a period of
about 100 min, crossing the equator at a similar local time each day. Terra and Aqua LEO
satellites used to cross the equator at approximately 10:30 a.m. and 1:30 p.m., respectively
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(although their orbits have been slowly drifting and no longer
maintain the time of equator crossing) (Xiong et al., 2005; Xiong
et al., 2009). It takes 1–2 days for Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard of Terra and Aqua satellite to
provide global coverage (Salomonson et al., 1989; Salomonson et al.,
2006). At an altitude of about 36,000 km above the Earth’s equator,
the GEO satellites rotate in the same direction and angular velocity
as the Earth rotates about its axis. At a much higher altitude than a
LEO satellite, instruments on geostationary satellites can capture
images covering latitudes from 70°S to 70°N (beyond this, the
satellite’s perspective becomes too oblique, and the coverage
becomes significantly distorted even) of a fixed region of the
Earth. Thus, both LEO and GEO satellites have sampling
limitations to monitor the global reflectance in time and space
(Song et al., 2018). Hereafter, “global” refers to “global daytime”
throughout the paper.

On 11 February 2015, Deep Space Climate Observatory
(DSCOVR) was launched to a Lissajous orbit around the Sun-
Earth Lagrange-1 (L1) point with a six-month period,
approximately 1,500,000 km from Earth. The satellite is slightly
off the Sun-Earth line with a Sun-Earth-Vehicle (SEV) angle,
varying from 4.5° to 12°, with occasions when the SEV angle
reached ~2° (e.g., Marshak et al., 2021; Su et al., 2021; Wen and
Marshak et al., 2023). This orbit allows the Earth looking
instruments on DSCOVR to view nearly the entire sunlit side of
the Earth.

The Earth Polychromatic Imaging Camera (EPIC) onboard the
DSCOVR satellite takes images of the entire sunlit side of Earth in
10 narrowband channels with wavelengths ranging from ultraviolet
(UV) and visible (VIS) to near-infrared (NIR) every 65 min (about
22 images per day) (in boreal summer) to 111 min (about 13 images
per day) (in boreal winter) (Herman et al., 2018; Marshak et al.,
2018), respectively, providing a new perspective to the Earth
observation system. More detailed information about EPIC
instrument can be found in Herman et al. (2018) and Marshak
et al. (2018).

The EPIC channels are used for a wide range of atmospheric and
surface property retrievals allowing estimates of atmospheric
composition, land and vegetation types as well as a range of

cloud characteristics (e.g., Herman et al., 2018; Carn et al., 2018;
Yang et al., 2013; Xu et al., 2017; Davis et al., 2018; Lyapustin et al.,
2021; Lu et al., 2023). Many users have helped verify the quality of
the data by comparison with other measurements and model results
and have identified some quality screening. Marshak et al. (2017)
found terrestrial glint over land seen from DSCOVR/EPIC and
interpreted the observations of bright flashes as specular reflections
off nearly horizontally oriented tiny ice platelets floating in the air. Li
et al. (2019) extended terrestrial glint analysis to over both ocean and
land. Effort was made to explore the variability of EPIC-observed
global spectral reflectance by Yang et al. (2018). Jiang et al. (2018)
used EPIC observations to study the Earth as an exoplanet. Su et al.
(2018) converted EPIC narrowband radiance to broadband radiance
for estimating shortwave fluxes. Wen et al. (2019) studied EPIC-
observed relationship between blue and NIR global reflectance.
Carlson et al. (2022) compared EPIC-based planetary albedo with
GISS ModelE2 results for climate analysis. All of these analyses
showed the unique contributions which EPIC made to Earth
observations.

The Earth’s surface is covered by the ocean, land, and snow/ice.
The ocean is dark and not effective at reflecting incident solar
radiation, while land is dark in UV/blue and bright in red and NIR
channels. The cryosphere, particularly in polar regions, is
characterized by snow and ice which is highly reflective from UV
to NIR wavelengths and shows significant seasonal variation (Kato
et al., 2006; Loeb et al., 2007). For the entire globe, clouds are highly
reflective and represent an important and highly complex
component in Earth’s atmosphere system.

SBDART radiation code (Ricchiazzi et al., 1998) is used to
compute characteristic reflectance for different reflectors,
assuming Lambertian surfaces as demonstrated in Figure 1.
Figure 1a shows that the ocean is dark and its reflectance
decreases with wavelength (e.g., Jin et al., 2004). Bare soil
(hereafter referred to as land) is brighter than the ocean; its
reflectance increases with wavelength from UV to VIS and NIR.
The spectral reflectance of green vegetation mirrors the absorption
spectrum of chlorophyll, which strongly absorbs light in the blue and
red wavelengths, less in the green, and essentially none in the NIR
region, resulting in a unique spectral reflectance feature that differs

FIGURE 1
(a) Typical spectral reflectance of different reflector types without atmosphere; (b) TOA reflectance for clear atmosphere for different surfaces; (c)
TOA reflectance for cloudy atmosphere with cloud optical depth of 10 for different surfaces. Solar zenith angle is 30° for all cases. 10 EPIC wavelength
locations are indicated by orange ticks on x-axis.
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significantly from any other reflector types. The reflectance of
clouds, without considering atmospheric scattering and
absorption, is almost wavelength neutral. Snow/ice is bright with
some wavelength dependence in the absence of atmospheric
interactions (Wiscombe and Warren, 1980).

Scattering from molecules and aerosols as well as absorption
from gases can significantly modify the top-of-atmosphere (TOA)
spectral reflectance (Figure 1b). The increase of spectral reflectance
from 300 to 340 nm for all four surface types is mainly due to
competition of ozone absorption and molecular Rayleigh scattering.
As wavelength increases, molecular scattering cross section
decreases, and the TOA reflectance resembles underlying surface
reflectance except for some gas absorption features. In general,
snow/ice is the brightest among four surface types. Land-ocean
contrast (reflectance over land minus reflectance over ocean) is
largest in the NIR channel and smallest in the UV/blue channels.
Note that although vegetation in NIR is much larger than non-
vegetation land, for global average, land-ocean (including vegetation
and non-vegetation land) contrast is mainly governed by a non-
vegetation land because green vegetation covers less than 5% of
EPIC images (Wen et al., 2019).

TOA cloudy sky reflectance can be influenced by surface type.
For a given cloud optical depth (COD) of 10, a brighter surface leads

to a larger TOA reflectance. Clouds over land are brighter than
clouds over ocean in visible and NIR wavelengths. Clouds over land
are brighter than clouds over green vegetation for visible
wavelengths, and less reflective in NIR. These relationships can
be used to infer fundamental Earth observations in a
quantitative manner.

Figure 2 shows EPIC natural color images taken at different
times during a single day, demonstrating different features of the
sunlit side of the Earth as it rotates about its axis. Near 0 UTC,
almost the entire image is covered by the Pacific Ocean. As Earth
rotates, the Eurasian continent appears near 6 UTC, followed by the
African continent, the Atlantic Ocean, and America. Antarctica is
bright and it is in the field-of-view (FOV) of EPIC all day in the
Northern winter (the boreal winter) as Earth’s axis is tilted
approximately 23.5° away from the Sun, contributing significantly
to global average spectral reflectance.

Figure 3 shows images of spectral reflectance in UV (388 nm),
blue (443 nm), green (551 nm), red (680 nm) and NIR (780 nm)
acquired on 1 January 2017 focused over the African continent and
including parts of Antarctica. These images demonstrates that
clouds are bright (more reflective) for all of these wavelengths.
Land-ocean contrast is small for UV and blue bands as seen in
Figures 3a,b. As wavelength increases, the land-ocean contrast

FIGURE 2
EPIC natural color images at different UTC time acquired on 1 January 2017. They demonstrate different features of the sunlit side of the Earth as it
rotates about its axis. Note Figure (a) is centered over the Pacific Ocean; Figure (b,c) are centered over the Indian Ocean with Australia to the east and
Africa to thewest; Figure (d) is centered over the continent of Africa; Figure (e) is focused over the Atlantic Ocean and eastern South America and Figure (f)
is centered over east Pacific with both North and South America visible. Antarctica is visible all day.
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increases. The African continent is somewhat visible in the green
band (Figure 3c) but is bright in the red (Figure 3d) and even
brighter in the NIR band (Figure 3f). Note that Antarctica is very
bright in all wavelengths. As the Earth’s axis is tilted towards the Sun
in the Northern summer (the boreal summer), EPIC sees more
landmass, and the global average reflectance in red and NIR is
expected to be larger compared to the boreal winter. Thus, the
rotation of the Earth and the change of Earth’s tilt angle as the planet
moves around the Sun bring about the variability of Earth’s spectral
reflectance as well as reflected shortwave (SW) radiance and flux.

As EPIC is a major instrument on DSCOVR for monitoring the
changes of planet Earth throughout its lifecycle, it is essential to
understand the natural variabilities of EPIC observations on
different time scales. In this paper, we quantify the variability of
spectral reflectance and SW flux from EPIC and identify associated
physical mechanisms. The data sets used in this study are described
in Section 2, the analysis methods are described in Section 3, the
results are presented in Section 4, and the summary and discussion
are given in Section 5.

2 Data

In this paper, we analyze EPIC reflectance. Onboard the
DSCOVR satellite, EPIC provides 10 narrowband spectral images

of the entire sunlit face of Earth using a 2048 × 2048 pixel CCD
(charge-coupled device) detector. EPIC’s 10 channels cover the
spectral range from UV to NIR: 317, 325, 340, 388, 443, 552,
680, 688, 764, and 780 nm with filter width from 0.84 to 2.7 nm
(see Table 1 in Herman et al., 2018). As the satellite orbits around the
L1 point, EPIC observes reflected solar radiation from the Earth in
near backscatter directions. EPIC takes 13–22 images daily. The
pixel size is about 8 km at nadir (angular resolution of 1.07 arc-
second, Burt and Smith, 2012; Herman et al., 2018) with an effective
resolution of 10 km when the point spread function is included. To
maximize time cadence while reducing transmission time, the
images of all wavelength channels, except 443 nm, have been
reduced to 1,024 × 1,024 pixels (Herman et al., 2018; Marshak
et al., 2018). The EPIC level-1 (L1B) data are analyzed for global
average spectral reflectance for all 10 wavelengths.

Cloud properties are retrieved by using reflectances at 388, 680,
and 780 nm together with the two oxygen channels (Yang et al.,
2018). The EPIC level-2 (L2) pixel-level cloud data include cloud
mask, cloud optical depth, and cloud effective heights. Both EPIC
L1B and L2 cloud data sets are publicly available at the NASA
Langley data center.

The EPIC-based SW flux data are also analyzed. In the
derivation of SW flux, narrowband-to-broadband regressions are
applied to the EPIC measurements to derive the “EPIC broadband”
reflectance for each EPIC pixel. The pixel-level broadband radiance

FIGURE 3
Five images (graphs (a–e)) of Earth taken on January 1, 2017, at different wavelengths: 388nm, 443nm, 551nm, 680nm, and 780nm, showing that (1)
reflectance in UV and bluemainly influenced by clouds, (2) reflectance in longer wavelengths is impacted by both clouds and land surface, (3) Antarctica is
bright in all five wavelengths. An additional black and white image in graph (f) displays a gridded map of Earth with continents in gray.
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is calculated from the reflectance, and the global mean SW radiance
at each EPIC image time is obtained by simple average pixel-level
SW radiance over the entire sunlit disk of the EPIC image of the
Earth. The global daytime average SW flux is calculated using the
EPIC-based broadband global mean broadband radiance and global
anisotropic factor. The details of the algorithm is described in Su
et al. (2018).

3 Analysis methods

We analyze EPIC-observed global average reflectance across all
relevant wavelengths. The EPIC pixel-level reflectance is defined as

rλ � πIλ
F0,λ

(1)

where Iλ is the EPIC measured radiance for a given pixel, and F0,λ is
the TOA spectral solar irradiance at wavelength λ. In practice, the
reflectance value (rλ in Equation 1) is calculated by multiplying the
EPIC L1B data given in counts per second (count · s−1) by the
reflectance calibration factor. The reflectance calibration factors for
EPIC channels are described byHerman et al. (2018) andGeogdzhayev
and Marshak (2018) and can be found at the DSCOVR/EPIC website
(https://epic.gsfc.nasa.gov/science/calibration/uv and https://epic.gsfc.
nasa.gov/science/calibration/visnir).

Song et al. (2018) introduced a scattering function, Pλ(Ω0,Ω),
whereΩ0 andΩ is the direction of incidence (e.g., the Sun relative to
the Earth) and scattering (e.g., the direction of DSCOVR spacecraft
relative to the Earth), respectively. For EPIC images, the scattering
phase function is estimated by the global average spectral reflectance
of the planet Earth defined as

�Rλ Ω0,Ω( ) � ∑N
i�1rλ,i
N

(2)

where rλ,i is the reflectance for ith pixel andN is the total number of
pixels in an EPIC image. The near-hourly disk average reflectance
for each EPIC image is further used to calculate the daily and
monthly mean of the global spectral reflectance. Note that the
simple average spectral reflectance is proportional to the average
reflected spectral radiance (�Iλ(Ω0,Ω)) towards EPIC as shown in
Equation 3

�Rλ Ω0,Ω( ) � π�Iλ Ω0,Ω( )
F0,λ

(3)

As shown in Section 1, spectral reflectance differs dramatically
over different surfaces (e.g., land, ocean, snow/ice) and is
additionally influenced by the presence of clouds. To understand
the variability of global average spectral reflectance, one needs to
know the role of each reflector. We classify six reflector types. They
are (1) clear ocean, (2) clear land, (3) cloudy ocean, (4) cloudy land
outside of polar circles between −66.5° and +66.5°, (5) Antarctica
(−90° to −66.5°) and (6) the Artic (66.5°–90°). We use the
International Geosphere-Biosphere Programme (IGBP) map
(Loveland and Belward, 1997) to distinguish land from ocean
and EPIC L2 cloud mask data to determine whether a pixel is
clear or cloudy.

In the EPIC cloud product, a pixel is classified as clear with
high confidence, clear with low confidence, cloudy with low
confidence, or cloudy with high confidence. Cloud fraction
calculated using cloud mask with low or high confidence gives
a global average cloud fraction of ~65%, consistent with cloud
fraction from GEO-LEO composite data sets (Yang et al., 2018;
Delgado-Bonal et al., 2020). The same criterion is applied for
cloud masking in this study. We also use CODs in the EPIC
L2 cloud data. Without enough information to confidently
determine cloud thermodynamic phase, two COD values are
retrieved and reported for each cloudy pixel by assuming
liquid and ice phases, respectively (Yang et al., 2018). Both
COD values are used in this study to offer a range of
physically observed results.

Unlike simple average for reflectance which is proportional to
the global average radiance (Equation 2), surface area weighted
average is needed for the global daytime average cloud fraction.
Since each pixel in an EPIC image has the same angular resolution
(1.07 arc-second) viewed from EPIC, or the same area (Δs) in the
plane that is tangent the Earth and perpendicular to the Earth-
spacecraft direction, the true area projected to the surface of the
Earth is Δs

cos (θ), where θ is the viewing angle. The global daytime
average cloud fraction (CF) is defined as

CF � ∑Nc
i�1

1
cos θi( )

∑N
j�1

1
cos θj( )

(4a)

where Nc and N are number of cloudy pixels and total pixels in an
EPIC image, respectively. The numerator is proportional to the area
of clouds projected to the Earth surface, and the denominator is
proportional to the daytime area of the Earth’s surface. Similarly, the
area weighted average needed to calculate global daytime average
COD (�τ) is

�τ � ∑Nc
i�1

τi
cos θi( )

∑Nc
i�1

1
cos θi( )

(4b)

where τi is COD of ith pixel and Nc is the total number of cloudy
pixels in an EPIC image. We find that the simple pixel average
underestimates annual mean cloud fraction by ~3% and
overestimates COD by ~5% for both assumed liquid and ice clouds.

For an EPIC image, the global average reflectance can be
expressed as a weighted sum of reflectance component from each
reflector. Assuming that there are N pixels in an EPIC image and let

TABLE 1 Average spectral reflectance at 388, 443, 551, and 780 nm for
different reflectors in January (blue color) and July (red color) 2017.

Ref
(388nm)

Ref
(443nm)

Ref
(551nm)

Ref
(780nm)

Clear
Ocean

0.240, 0.224 0.177, 0.166 0.093, 0.089 0.058, 0.057

Cloudy
Ocean

0.385, 0.345 0.357, 0.319 0.292, 0.256 0.290, 0.253

Clear
Land

0.236, 0.215 0.194, 0.176 0.162, 0.150 0.272, 0.273

Cloudy
Land

0.357, 0.366 0.334, 0.348 0.292, 0.309 0.375, 0.397

Polar
Circle

0.457, 0.386 0.450, 0.363 0.380, 0.289 0.381, 0.306
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N1, N2, N3, . . . be pixels for type 1, 2, 3, . . . reflector components
(N � ∑iNi), then the sunlit disk average reflectance can be
expressed as

〈R〉 � 1
N

N1
∑N1

i�1ri
N1

+N2
∑N2

i�1ri
N2

+N3
∑N3

i�1ri
N3

+ . . .[ ]
� f1R1 + f2R2 + f3R3 + . . . (5a)

where ri is the pixel-level reflectance, fj � Nj/N and Rj � ∑Nj
i�1ri
Nj

is
the fractional coverage and mean reflectance of jth reflector
component in an EPIC image.

Each term on the right-hand side of Equation 5a is the
reflectance component from corresponding reflector type to the
global average reflectance. Equation 5a may be written as
Equation 5b

〈R〉 � ∑ Lj (5b)
and

Lj � Rjfj (5c)

where Lj is the reflectance component from jth reflector to the global
average reflectance. Note that 〈R〉, Rj, fj, and Lj are determined
from each EPIC image and are functions of time.

Figure 4 shows the reflectance component as a function of
fractional coverage of each reflector type for January and July
2017, where each dot in the figure represents global average
reflectance for one EPIC image. The reflectance component from
each reflector is highly linearly correlated with the fractional
coverage of that reflector in an EPIC image, as shown in
Figure 4. We seek the best linear fit to the reflectance component
vs. fractional coverage. We find that a straight line passing through
the origin with the slope equal to the mean of average reflectances of
m EPIC images (m dots in January 2017 in Figure 4) gives the best
straight-line fit similar to the least-squares fit straight line passing
through the origin by comparing the root-mean-square-error
(RMSE) of the fits. Statistically, the reflectance component of jth

reflector can be approximated as

�Lj � �Rjfj (6a)

FIGURE 4
Four scatter plots show the relationship between fractional coverage (fj in Equation 5c) and the reflectance component (Lj in Equation 5c) to the
global mean for different reflectors in January 2017. Each plot represents different wavelengths: (a) 388 nm, (b) 443 nm, (c) 551 nm, and (d) 780 nm.
Scattered points depict data for clear ocean, clear land, cloudy ocean, cloudy land, and Antarctica. Linear equations with root mean square error (RMSE)
values for each environment are provided in the legends, showing how reflectance varies with fractional coverage across different spectral bands.
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where �Rj is the mean of the average reflectance ofm EPIC images in
the time period concerned (such as m dots in Figure 4 for January
2017). The linear relationship can be used to interpret the observed
reflectance variability. Summing up reflectance component
(Equation 6a) yields the global average reflectance

�〈R〉 � �R1f1 + �R2f2 + �R3f3 + . . . (6b)
Note that Wen et al. (2019) used a least-squares fit to estimate

the relationship between fractional coverage and reflectance
component from different reflectors. They found that the slope
of the fit was equal to a weighted mean reflectance for each reflector.
Here, the slope is simply the mean of the global reflectance from a
series of EPIC images, such as monthly mean of global reflectance.
The linear relations (Equations 6a, 6b) are used to interpret
observations in Section 4.

Table 1 summarizes the average reflectance, or the slope of the
linear fit, for UV, blue, green, and NIR bands for different reflectors
for January (Figure 4) and July 2017, respectively. For clear and
cloudy ocean, the average reflectance decreases with wavelength. For
clear and cloudy land, the average reflectance decreases with
wavelength from UV to green band, followed by an increase to
the NIR band. There is a strong seasonal variation in average
reflectance over cloudy ocean for all four wavelengths. From
January to July, there is a strong decrease of ~0.04 in average
cloudy ocean reflectance for all four wavelengths (~11% for UV
and ~15% for NIR band). Note the average reflectance of Antarctica
(polar circle in January) is significantly larger than the average
reflectance of the Arctic for all four wavelengths. This likely reflects
the mixture of ice, melt ponds, open water and exposed land which
can be observed in the Arctic while Antarctica is more homogeneous
in snow and ice cover over land.

Because the slope of the linear fit is equal to the average
reflectance of each reflector type, it can be used to understand
the land-ocean contrast observable in Figure 3. For this discussion,
the land-ocean contrast is defined as the difference between clear
land and clear ocean average reflectance for a given wavelength. The
observations clearly show that the average UV (388 nm) reflectance
for clear land (0.236 in January, 0.215 in July) is almost the same as
that for clear ocean (0.240 in January, 0.224 in July) resulting in a
land-ocean contrast close to zero. This is in agreement with the
unnoticeable land-ocean contrast in the UV channel (Figure 3). For
the blue band at 443 nm, the land-ocean contrast is about 0.01–0.02,
slightly larger than that for the UV band, and land and ocean
become visible. As the wavelength increases, the difference between
clear land and clear ocean average reflectance increases, resulting in
an increase in land-ocean contrast. The land-ocean contrast of
0.214 for the NIR band at 780 nm is about three times as large
as that (0.07) for the green band at 551 nm.

Because the Earth revolves around the Sun in an elliptical orbit
and the incident of solar irradiance at the Earth varies asD−2, where
D is the Earth-Sun distance in AU (Astronomical Unit), there is a
~6.7% peak-to-peak change in incident solar irradiance over a year
(Kopp et al., 2005; Kopp, 2023) and this variation consequently
impacts the annual variation in reflected SW radiance and flux (Su
et al., 2020). For a given Earth atmosphere system, a shorter Earth-
Sun distance results in a larger incident solar irradiance, thus, a
larger reflected SW radiance and flux compared to a larger Earth-
Sun distance. However, the Earth’s SW albedo and broadband

reflectance characteristics will remain the same. To correct the
direct effect of Earth-Sun distance variation on the reflected SW
radiance and flux variability, the SW radiance and flux are
normalized to the mean Earth-Sun distance by multiplying D2.
The normalized SW radiance and flux are proportional to the
broadband reflectance and albedo for incident of solar irradiance
at mean Earth-Sun distance at 1 AU.

4 Results

EPIC global reflectance and EPIC-based SW radiance and flux
are analyzed to characterize associated variabilities on different time
scales. The relationships of global reflectance across EPIC
wavelength channels are investigated as presented below.

First, we present the hourly variation of the global average
spectral reflectance on a 24-h time scale in January (boreal
winter) and July (boreal summer) in 2017 (Figure 5).

There are ~13 and ~22 images taken by EPIC each day in
January and July, respectively. For January, there are 13 clusters of
spectral reflectance. Each cluster represents images taken at a similar
UTC time during the month. For July, the observations are almost
continuous because EPIC takes images almost hourly (every
65 min). Solid lines are fit through the average reflectance for
each of 13 reflectance clusters for January and the average for
each hour interval for July. Thus, the solid lines show the
average variation of daytime spectral reflectance.

In the UV and blue bands, the global reflectance increases with
wavelength, reaching a maximum at 340 nm, followed by a decrease
towards blue wavelength at 443 nm. This is the result of competition
of the decrease of the ozone absorption cross section in the Higgins
bands and molecular scattering optical depth as wavelength
increases. Reflectance in the UV and blue band, except stronger
ozone absorbing 318 nm band, is significantly larger than reflectance
in red and NIR. This is mainly due to much stronger molecular
scattering in UV and blue bands compared to the red and NIR
bands. The global average reflectance in the NIR band (780 nm) is
significantly larger than the red band (680 nm) reflectance. The
reflectance in the oxygen bands (A-band at 764 nm and B-band at
688 nm) is much smaller than the nearby reference with a minimum
in the oxygen A-band among all 10 wavelength bands. The average
green band (551 nm) reflectance is comparable with NIR reflectance
in January and significantly smaller than NIR reflectance in July. The
24-h average reflectance is significantly larger in January than in July
for all wavelengths.

The hourly variability of global reflectance depends on
wavelength and season (e.g., January vs. July) (Figure 5). The
hourly UV (all 4 UV bands) and blue reflectance vary with time
like a sinusoidal function, increasing from 0 UTC reaching a
maximum near 4-5 UTC, followed by a decrease to a minimum
near 11–13 UTC with a subsequent increase reaching a local
maximum near ~16 UTC in January and ~18 UTC in July,
followed by a decrease towards 24 UTC for both January and
July. The hourly reflectance of red and NIR bands varies
similarly with time, increasing from 0 UTC, reaching a broad
maximum near ~10 UTC, followed by a decrease towards
24 UTC for both months, with a much more pronounced
maximum for July. The reflectance of the green band and the
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two oxygen bands varies similarly with time, increasing from 0UTC,
reaching a broad maximum near ~6 UTC, followed by a decrease
towards 24 UTC for both January and July.

Figure 5 shows that the average 24-h variability is much larger in
green (551 nm) and longer wavelengths compared to UV and blue
bands and much larger in July than in January for all wavelength
bands, both in the absolute value (Rmax − Rmin) and in the relative
one ((Rmax − Rmin)/Rmin). In January, the average 24-h variability is
between ~5% and ~8% for the UV and blue bands and between
~13% and ~26% for longer wavelengths. In July, the average 24-h
variability is ~8%–~11% for the UV and blue bands and ~13%–
~37% for longer wavelengths. The NIR reflectance has the largest
average 24-h variability among all wavelength bands.

The standard deviations within a 1-h interval in July and a ~1.8-
h interval in each of 13 observation groups in January are used to
measure the variability of spectral reflectance for a given time-
interval over the month. The standard deviations (the error bars in
Figure 5) are significantly larger in January than in July. We found
that the standard deviations of fractional coverage of cloudy ocean
and cloudy land are comparable for both January and in July (not

shown here). The main reason for a much larger standard deviation
for “near-hourly” spectral reflectance in January is due to much
larger average spectral reflectance in January compared to July for
cloudy ocean, which makes the largest contribution to the global
average reflectance (see Table 1). It is clear that for a given average
cloudy ocean reflectance (�Rcldocn) the change of the reflectance
component of cloudy ocean (Δ�Lcldocn) due to the change of cloud
fraction (Δfcldocn) is Δ�Lcldocn � �RcldocnΔfcldocn. With similar
variability in the fraction of cloudy ocean (Δfcldocn) for both
months, much larger variability of near-hourly reflectance in
January is primarily due to much larger average reflectance of
cloudy ocean compared to July. This suggests that the global
daytime average COD in January is significantly larger than in
July, as presented in Figure 9.

Because each component of spectral reflectance is linearly
related to the fractional coverage (see Figure 4), the hourly
variation of global average reflectance may be explained by the
variation of fractional coverage of each reflector. The upper panels of
Figure 6 show the average hourly variations of coverage of cloudy
ocean, cloudy for both ocean and land, clear land, and cloudy (both

FIGURE 5
(a) shows hourly variation of global spectral reflectance for boreal winter (January 2017); (b) is similar to the (a) panel but for boreal summer (July
2017). Each dot represents the global average reflectance for one EPIC image. Solid lines are averages for the month. 24-h average (avr), and variation
(dr = max-min) of average reflectance (solid line) with percent variation ((max-min)/min) are indicated. The average standard deviation (sd) of spectral
reflectance and associated percent variation (average of sd/mean) of near-hourly data are also indicated.
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land and ocean) and clear land for January (left) and July (right),
respectively. The lower panels of Figure 6 show the average hourly
global reflectance of UV, blue, and NIR bands for January (left) and
July (right), respectively. The average global reflectances are
calculated using the average variation of fractional coverage of
different reflectors and associated average reflectance using
Equation 6b. The calculated average reflectances resemble those
from observations (Figure 5).

The following provides detailed analyses to interpret
observations for January when Antarctica is in the field of view
of EPIC and the Arctica is not in the sunlit side of the Earth. Similar
analyses applicable to July observation are omitted for simplicity.

For the UV bands, the average reflectance for cloudy land is
similar to that for cloudy ocean, and the average reflectance for clear
land is similar to that for clear ocean (see Figures 1b,c). The global
average reflectance in UV can be approximated by

�〈R〉≈ �Rcloudyfcloudy + �Rclearfclear + �RAntfAnt (7a)

where �Rcloudy is the average reflectance of clouds, �Rclear is the average
reflectance of clear region, �RAnt is the average reflectance of
Antarctica, fcloudy is cloud fraction, fclear is the fraction of clear
region, fAnt is the fraction of Antarctica in an EPIC image. In
January, fAnt varies slowly with time (while in July fAnt � 0), and
fcloudy + fclear ≈ const (since fcloudy + fclear+fAnt � 1 and
fAnt ≈ const). Equation 7a becomes

�〈R〉≈ �Rcloudy − �Rclear( )fcloudy + �Rclearconst + �RAntfAnt (7b)

Thus, the hourly UV reflectance is approximately a linear
function of cloud fraction (fcloudy) (see Equation 7b). The
sinusoidal variation of global average reflectance in the UV band
is evidently a result of the similar sinusoidal variation of global
daytime cloud coverage, both over the ocean and land (see black
lines in the upper panels of Figure 6). To a large extent, the hourly
variation of global cloud cover may also be used to explain the
variation of the blue band reflectance.

FIGURE 6
(a) The upper panel shows the hourly variations of average fractional coverage for cloudy ocean, cloudy for both land and ocean, land (both clear
and cloudy), and land (clear and cloudy) plus cloudy ocean, and the lower panel show hourly variation of global spectral reflectance calculated from
average fractional coverages (Equation 6b) for January 2017. (b) similar to (a) but for July 2017.
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For the NIR band, clouds and clear land are bright for both green
vegetation and non-green vegetated land (e.g., desert and bare soil in
Figures 1–3), while clear ocean is dark. The global average
reflectance in NIR can be approximated by

�〈R〉≈ �Rcld−oceanfcld−ocean + �Rcld−landfcld−land + �Rclr−landfclr−land
+�RAntfAnt (8a)

where �Rcld−ocean , �Rcld−land , �Rclr−land �Rclr−land is the average
reflectance of cloudy ocean, cloudy land, and clear land, and
fcld−ocean, fcld−land, fclr−land is associated fractional coverage,
respectively. Here, the small reflectance component of the clear
ocean is ignored. From Equation 8a, the average global reflectance is
approximately the sum of three components, as

�〈R〉≈ �Rcldfcld + �Rclr−landfclr−land + �RAntfAnt (8b)
where �Rcld, �Rclr−land is the average reflectance of clouds and clear
land, and fcld, fclr−land is associated fractional coverage,
respectively. Because the fraction of the Antarctica continent in
the disk of the Earth in EPIC images varies slowly with time during a
month, the variation of global average reflectance in NIR is mainly
determined by the variation of global cloud fraction and clear land
coverage (see Equation 8b).

The data show that fractional coverage of cloudy ocean is
maximum near 0 UTC when the Pacific Ocean is in the middle
of the EPIC image for both January and July (see Figure 2). As the
Earth rotates, the fractional coverage of cloudy ocean decreases with
time, reaching a broad minimum around ~10–12 UTC, when the
African continent is in the middle of the EPIC images, followed by
an increase towards the original value at 24 UTC. Opposite to the
variation of cloudy ocean coverage, the land fraction is minimum
near 0 UTC. As the Earth rotates, EPIC starts seeing the Asian and
Eurasian continents, and the land fraction reaches a maximum near
~10 UTC when the African continent is in the middle of the EPIC
images. Combining the two bright reflectors in NIR (cloud and
land), the data show that the fractional coverage of the combination
of the two bright reflectors is minimum at 0 UTC and increases with
time, reaching a maximum near ~10 UTC, followed by a decrease
towards 24 UTC. Note that the rate of increase of the fractional
coverage of the two bright reflectors is much faster in July than in
January. This is because Earth’s axis of rotation tilts towards the Sun,
and EPIC sees more Northern Hemisphere (N.H.), which contains
significantly more landmass than the Southern Hemisphere (S.H.)
(e.g., ~68% of the Earth’s land in the N.H. vs. ~32% in the S.H.). The
same mechanism is responsible for the variation of spectral
reflectance in the red band.

To validate the use of the variation of fractional coverages for
interpreting the variation of corresponding global average spectral
reflectance, their correlation coefficients are examined. Table 2
shows the correlation coefficients between the global average
reflectance in the UV and blue bands and the global cloud
fraction; it also highlights the correlation between reflectance in
the NIR band and land fraction plus cloud fraction over ocean for
both January and July. High correlation coefficients suggest that
daytime variation of the global spectral reflectance can be explained
by the variation of fractional coverage of relevant reflectors
(i.e., cloud cover for UV/blue, land fraction (both clear and
cloudy) plus cloud fraction over ocean for NIR).

Because EPIC takes about 13 images per day in boreal winter and
22 images per day in boreal summer, different sampling size could
affect the monthly averages. To answer this question, we have
performed an analysis for EPIC observations in July 2017.
Instead of using all 22 images of a day, we used every other
image to calculate the monthly mean spectral reflectance. We
found that the difference in monthly average spectral reflectance
is insignificant whether the analyses are based on the original
22 images or sub-sampled 11 images. Thus, the sampling size of
13 or 22 does not have a significant impact on calculating the
monthly average because the sampling size is large enough and the
sampling time interval is close to being even such that major features
of the Earth are captured by EPIC.

To understand the behavior of EPIC global spectral reflectance,
it is useful to perform correlation analyses for all 10-channel
reflectances. Using near-hourly global average spectral
reflectances, the correlation matrices for any pair of EPIC
spectral reflectances are clculated. The correlation matrices are
presented in Figure 7a for January, April, July, and October of
2017 to represent Northern winter, spring, summer, and autumn.
Figure 7a shows that there are two distinct wavelength groups in the
matrices: the shorter wavelength group from 318 nm to 443 nm (UV
and blue channels) and the longer wavelength group from 551 nm to
780 nm. Any pair of global average spectral reflectance within the
same spectral group is highly correlated. However, any pair of global
average spectral reflectance across the two spectral groups is poorly
correlated.

Figure 7b shows seasonal variation of the correlation coefficient
between spectral reflectance of NIR (780 nm) and UV (340 nm),
NIR and blue (443 nm), and NIR (780 nm) and red (680 nm). It is
evident that reflectance in NIR is well correlated with red band
reflectance, with correlation coefficients above ~0.9 throughout the
year. However, the NIR reflectance is poorly correlated with the UV
and blue band reflectance. The NIR-blue correlation coefficient is
slightly larger than the NIR-UV correlation coefficient. From
January to February, there is a slight increase in correlation
coefficient for both pairs of reflectance (i.e., NIR-blue and NIR-
UV), followed by a strong decrease, reaching a minimum in May,
then an increase from May to October, followed by a slight decrease
from October to December.

Figure 7b shows seasonal variation of the correlation coefficient
between spectral reflectance of NIR (780 nm) and UV (340 nm),
NIR and blue (443 nm), and NIR (780 nm) and red (680 nm). The
data show that reflectance in NIR is well correlated with red band
reflectance, with correlation coefficients above ~0.9 throughout the

TABLE 2 Correlation coefficients between global average reflectance in the
UV (Ref(388 nm)) and blue (Ref(443 nm)) bands and global cloud fraction
(CF); and between reflectance in the NIR band (Ref(780 nm)) and land
fraction (LF) plus ocean CF for January (blue color) and July (red color),
2017.

Global CF

Ref(388 nm) 0.94, 0.99

Ref(443 nm) 0.98, 0.90

LF + Ocean CF

Ref(780 nm) 0.97, 0.99
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year. However, the NIR reflectance is poorly correlated with the UV
and blue band reflectance. The NIR-blue correlation coefficient is
slightly larger than the NIR-UV correlation coefficient. From
January to February, there is a slight increase in correlation
coefficient for both pairs of reflectance (i.e., NIR-blue and NIR-
UV), followed by a strong decrease, reaching a minimum in May,
then an increase from May to October, followed by a slight decrease
from October to December.

As explained in Section 1, the land-ocean contrast is small for
the UV and blue bands. The global average reflectance in UV and
blue bands is primarily determined by global average cloud fraction.
Thus, spectral reflectances in UV and blue bands are highly
correlated. Reflectance in red and NIR bands is mainly
determined by global average cloud fraction and clear land
coverage. Thus, the reflectance in red is highly correlated with
reflectance in NIR. Because land-ocean contrast in the green is
significantly larger than in the UV and blue bands, and large land-
ocean contrast at surface can significantly impact the TOA land-
ocean contrast for the two oxygen bands, the reflectance in those
bands is well correlated with the red and NIR bands compared to the
UV and blue bands.

The variation of land cover viewed by EPIC explains the
variability of the correlation coefficients between UV/blue and
NIR bands. The daily average land fraction (excluding the polar
circles) observed by EPIC increases from the minimum (~0.18) in
January to the maximum (~0.32) in May, followed by a decrease
towards December. The clear land fraction increases from the
minimum (~0.06) in January to the maximum (~0.14) in May,
followed by a decrease towards December. From minimum of
0.06 to maximum of 0.14, there is about a 130% ((max-min)/
min) increase in clear land fraction. The cloudy land fraction
follows the same trend as clear land fraction variation, with a

minimum ~0.12 in January and ~0.18 in May, about a 50%
increase in cloudy land fraction. Because the major difference
between UV/blue and NIR reflectance comes from clear land, the
minimum correlation coefficient between UV/blue and NIR is
primarily due to the minimum clear land fraction in May as
viewed by EPIC.

Near hourly EPIC global spectral reflectance is averaged to
obtain the daily mean. The daily global reflectance data are
analyzed below.

Figure 8 presents the daily variation of spectral reflectance in
blue (443 nm) and NIR (780 nm) bands. The global average
reflectance is decomposed into components from different
reflectors (clear and cloudy ocean, clear and cloudy land, the
Arctic and Antarctica) based on Equation 5a. The data clearly
show that the variation of the reflectance component for each
reflector type follows closely with the fractional coverage of each
reflector type for both blue and NIR reflectance. There are two
maxima in reflectance for both bands, a primary in December/
January (peaked near December 16) and a secondary in May
(peaked near May 20). The maxima are primarily caused by the
presence of bright Antarctic and Arctic areas, respectively. There are
two minima near March 30 and September 17, close to equinox day.
The minima are primarily due to very small fraction of the polar
regions in the sunlit side of the Earth near equinox days.

In the December maximum, the reflectance component from
Antarctica is ~0.032 for the blue band and ~0.027 for the NIR band,
contributing ~10% to the global reflectance for both bands. In the
May maximum, the reflectance component from the Arctic is
~0.028 for the blue band and ~0.023 for the NIR, also
contributing ~10% to the global reflectance for both bands. Note
that Antarctica is significantly brighter than the Arctic (Table 1). A
similar percentage contribution of the two polar regions to the global

FIGURE 7
(a) Correlation matrices for EPIC global average reflectance across 10 wavelength bands for January, April, July, and October 2017; (b) seasonal
variation of the correlation coefficients for selected pairs of wavelengths in 2017.
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reflectance is related to the fact that there are more clouds in boreal
winter than summer, resulting in a larger average reflectance in the
winter than in the summer, consequently a similar percentage
contribution to the global reflectance from the two polar regions.

It is evident that presence of bright Antarctica and the Arctic
surfaces on Earth and the Earth’s axial tilt change throughout a year
cause the largest variation in spectral reflectance in a year. This
phenomenon has been observed through CERES SW flux
measurements (Loeb et al., 2007). Without the snow/ice covered
polar regions, the variability of the global reflectance would be much
smaller (see Figure 8).

As mentioned earlier, spectral reflectance for a given UTC time
is more variable in boreal winter (January) than in boreal summer
(July). The data show that the variability of cloud fraction for a given
UTC time in boreal winter is similar to boreal summer (not shown
here). However, the average spectral reflectance of cloudy ocean in
boreal winter is found to be significantly larger than in boreal
summer (see Table 1), suggesting significantly larger COD in
January than in July.

The daily average of cloud fraction and CODs (both assuming
liquid and ice phases) are presented in Figure 9. The daytime average
cloud fraction decreases from ~64% in January to a minimum in the
middle of April, followed by an increase to the maximum of ~67% in

FIGURE 8
Three-panel graph showing data from 2017. Panel (a) displays daily mean reflectance and associated reflectance components at 443 nm, and panel
(b) at 780 nm, both over days from January first. Reflectance components include those from clear and cloudy ocean, land, Arctic, and Antarctica. Panel
(c) shows fractional coverage of associated reflectors. Each reflectance component and fractional coverage are color-coded: blue for water, green for
land, purple for the Arctic, and gray for Antarctica.

FIGURE 9
Line graph showing cloud fraction and cloud optical depth (COD)
for 2017. Black line represents cloud fraction with a mean of 0.63 and
standard deviation of 0.03. Red andblue lines representCOD,withmeans
of 11.5 and 8.6, and standard deviations of 1.4 and 1.2, assuming
liquid and ice respectively. The x-axis shows days of the year, and left
y-axis and right y-axis display cloud fraction andCODvalues, respectively.

FIGURE 10
Monthly average EPIC global spectral reflectance. In the legend,
the wavelength is followed by the annual mean, the annual variability
(max-min), and percent variability [(max-min)/min] in the parenthesis.
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December. There is a large seasonal variation in daytime average
CODs, both assuming liquid and ice phase. The COD, assuming
liquid phase, decreases from ~14 in January to ~11 at the end of
March, climbing up to ~12 in the mid of June, dropping to ~9 in
early August, followed by an increase to ~14 in December. The
COD, assuming ice phase, varies in a similarly way as that assuming
liquid phase. A significantly large average COD, consequently

significantly a large average reflectance component from clouds,
in boreal winter is likely the major cause of larger variability of
spectral reflectance for a given UTC time (the standard deviation
in Figure 5).

Monthly global average EPIC spectral reflectance data are
calculated from the daily mean. The following provides analyses
on monthly average data.

FIGURE 11
(a) shows the change of daily average land fraction, including clear and cloudy land and excluding polar circles, over a year (with months indicated);
(b) demonstrates the sunlit side of the Earth at ~11 UTC on 1 January 2017, showing continents of Africa, part of Eurasian and South America, and
Antarctica in the FOV of EPIC; similar to (b) but on 10 May 2017 (c), and the Arctic is in the FOV of EPIC.

FIGURE 12
(a) EPIC-based global average broadband SW flux (red) and radiance (blue); (b) associated global average anisotropic factor.
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Monthly average EPIC spectral reflectances are presented in
Figure 10. There are three important features in monthly average
reflectance. First, there are two maxima in spectral reflectance in
December/January and May, and two minima in April and
September, except for ozone absorbing bands at 318 and 325 nm.
Second, the reflectances are well correlated between any pairs of
wavelengths. Third, the variability of monthly average reflectance
throughout a year is much larger than the variability of 24-h
variations in a day.

For understanding the seasonal variation of the spectral reflectance,
we examine the daily average reflectance and associated contribution
from different reflector types in the blue and NIR bands (see Figure 8).
The data show that there are two maxima (December/January and
May) due to the presence of Antarctica and the Arctic in all spectral
reflectance and two minima in April and September due to very small
fraction of the snow/ice covered polar regions in the sunlit side of the

Earth. These maxima and minima are the major cause of the seasonal
variability of the EPIC spectral reflectances. It is interesting to note that
the maximum in May for the NIR band is slightly higher than
reflectance in January (though less than reflectance in December)
because the land fraction also reaches its maximum in May
(see Figure 11).

As mentioned in Section, Su et al. (2018) calculated SW radiance
and flux based on EPIC observed narrow-band reflectance allowing
us to quantify associated variabilities. The following presents
analyses on EPIC-based SW radiance and flux.

Figure 12 presents examples of the global average sunlit side SW
flux, SW radiance, and anisotropic factor. The global average
anisotropic factor (�ρ) is defined as

�ρ � π�Isw
�Fsw

(9a)

FIGURE 13
(a) 24-h variation of EPIC-based global broadband SW radiance, (b) broadband SW flux, (c) anisotropic factor for January 2017; (d–f) are similar to
(a–c), but for July 2017; (g) EPIC images acquired on 16 July 2017.
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where �Isw and �Fsw are the daytime average SW radiance and flux,
respectively (see Su et al., 2018). The daytime average SW flux can be
obtained by

�Fsw � π�Isw
�ρ

(9b)

The anisotropic factor is a measure for the degree of anisotropy
of reflected SW radiation in terms of its angular dependence. For a
Lambertian reflector, the reflected radiance field is isotropic (or
angular independent), and the anisotropic factor is equal to unity.

Although Figure 12 only shows six-day observation in July 2017, a
24-h cycle is clear for SW radiance, SW flux, and anisotropic factor. In
addition, Figure 13 shows hourly variation of SW flux, radiance, and
anisotropic factor for January and July 2017 with EPIC images to
demonstrate the position of continents and oceans at some specific
UTC time. For January, starting from 0 UTC, SW flux and radiance
increase with time, reaching a broadmaximum~5UTC, followed by a
decrease towards 24 UTC. The average 24-h variability (max-min in
the red line) is about 10% for both SW flux and radiance.

The hourly variability of SW flux, radiance, and anisotropic
factor changes with season. A broad maximum in SW radiance near
~5–10 UTC is more pronounced in July compared to January.
Similar to narrowband reflectance, SW radiance and flux are larger
in January than in July. It is interesting to note that the anisotropic
factor is smallest ~0 UTC when the Pacific Ocean is in the middle of
EPIC images, with a secondary minimum ~15 UTC when the
Atlantic Ocean is in the middle of EPIC images (see EPIC
images in Figure 13). A broad maximum in anisotropic factor
near ~5–10 UTC is more pronounced for July. There is a local
maximum in anisotropic factor near ~19 UTCwhen the continent of
America is in the middle of EPIC image. To summarize, the
minimum anisotropic factor is associated with the Pacific Ocean
and Atlantic Ocean is in the middle of the EPIC images, and
maximum anisotropic factor is associated with the large
landmass in the middle of the EPIC images.

The absolute variability (max-min) of the broadband SW
radiance and flux in January is similar to that in July. The
relative variability in January is slightly smaller than in July
mainly because broadband SW radiance and flux are larger in
January. Similar to narrowband reflectance, the variability of
broadband SW radiance and flux measured by the standard
deviation for a given time is significantly larger for January than July.

The anisotropic factor is ~1.2–1.25 in January and ~1.22–1.30 in
July. Thus, the global average broadband SW radiance is highly
anisotropic. For a Lambertian reflector (�ρ � 1), the broadband SW
flux is simply equal to π�Isw. The assumption of a Lambertian
reflector will overestimate the global SW flux by ~20–30%.

Similar to the narrowband reflectance, the variability of
broadband SW radiance and flux for a given UCT time,
measured by the standard deviation, is significantly larger in
January than in July. Again, this is likely due to a larger average
reflectance in cloudy ocean in the boreal winter month than in the
summer month, while the variability of cloud fraction is similar for
the 2 months.

The monthly average SW flux and radiance data are presented in
Figure 14. There are three important features in the monthly average
SW flux and radiance. First, there are two maxima in SW flux and
radiance, one in December/January and the another in May/June,
and two minima, one in March/April and the other in August/
September. Second, the May/June maximum for SW flux is
significantly smaller than the December/January one compared to
the SW radiance. Third, year-to-year variability of the monthly
average SW flux is smaller than variability of SW radiance.

The two maxima in EPIC-derived SW flux are similar to those
observed by CERES albedo (Loeb et al., 2007). They are mainly due
to the appearance of the bright Antarctica and Arctic regions on the
sunlit side of the Earth. The larger variability in broadband SW
radiance is primarily due to some occasions when the DSCOVR
satellite was very close to the Sun-Earth line (the SEV angle reached
only ~2° in years 2020 and 2021), resulting in bright and wavelength

FIGURE 14
(a) Monthly mean of EPIC-based global SW radiance for 2017–2023; (b) like (a) but for SW flux. Seven-year average and standard deviation are
presented in black color. The values of average SW radiance, flux, the average standard deviation about the seven-year monthly mean, and variability
(max-min in black line) and are indicated.
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dependence of sunlight reflected by water clouds (or the glory
phenomenon) (Marshak, et al., 2021; Wen and Marshak, 2023).

The scattering angle effect can be seen from the relative variation
of radiance to the mean. For SW radiance, the average variability
(sd/avr) is ~1.7%. For EPIC-derived SW flux, the average variability
is ~1%, significantly smaller than the relative variability for SW
radiance, suggesting that the ADMmodel to convert SW radiance to
flux has effectively accounted for those extreme situations when
EPIC observations approached near-backscattering angles. This
offers support to the work by Su et al. (2021).

5 Summary

EPIC global spectral reflectance and EPIC-derived SW radiance
and flux offer tremendous insight into the Earth’s reflectance and
associated variability on different time scales. Rotation of the Earth
about its axis, uneven distribution of landmass, and wavelength
dependence of different reflector types are the main cause for the
variability of spectral reflectance on a 24-h time scale. The hourly
variability of global average reflectance in red and NIR bands is much
larger than the variation in UV and blue bands. The 24-h variability
(max-min) in boreal summer (July) is larger (ranging from several
percent larger in UV/blue bands to about 10% in NIR band) than in
winter (January). For a given time, the variability of spectral
reflectance is significantly larger in boreal winter than in summer.
Based on near-hourly EPIC observations (22 images a day), we found
that the global average reflectances are well correlated within the two
wavelength groups: UV/blue and green/red/NIR, including two
oxygen bands. Starting from January, the UV/blue and NIR
correlation coefficient decreases with time, reaching a minimum in
May followed by an increase to the maximum in December. This
seasonal behavior is clearly due to the change of land fraction seen
from EPIC as the direction of the Earth’s rotation axis varies
throughout the year.

The data show that the presence of Antarctica and the Arctic is
crucial for the daily averaged spectral reflectance variation throughout
the year. Without snow/ice covered polar regions, the variability of
daily average spectral reflectance would be much smaller. On a
seasonal time scale, the variability of monthly average reflectance
has similar variability across all 10 EPIC wavelengths mainly, due to
the presence of Antarctica and the Arctic. This impact of the polar
region of reflectance is critically important because this is not simply a
reflection of which portions of the Earth are observed by EPIC, but it is
a direct measurement of total radiation reflected back to space. Thus,
these results are fundamental to understanding the seasonal energy
balance of the Earth. As the Arctic and Antarctica may change (e.g.,
Kato et al., 2006; Weatherhead et al., 2010), these changes will also
relevant to how this seasonal and multi-decadal energy balance
may change.

The 24-h variability of SW radiance and flux in January are similar
to that in July. The sunlit side average SW radiance is highly anisotropic.
In the course of a day, the anisotropic factor varies from 1.2 to 1.27 in
boreal winter and 1.22 to 1.30 in boreal summer, with aminimumwhen
the PacificOcean is the center of the EPIC image and amaximumwhen
the land (i.e., the Africa and Eurasian continents) is dominant in the
EPIC image. The assumption of Lambertian reflection for SW radiance
will overestimate the SW flux by 20%–30%. The seasonal variability of

SW radiance and flux is mainly due to the presence of Antarctica and
the Arctic regions. However, the variability of monthly average SW
radiance is significantly larger than SW flux. This is because the change
of scattering angle contributes in part to the variability of SW radiance
but not to SW flux.

Over the past 10 years, DSCOVR/EPIC mission has been
successfully proving near hourly multi-channel Earth images to
inform global climate science. Algorithms have been developed to
use EPIC observations to retrieve ozone and SO2 amounts, aerosol
and cloud optical depths and heights, and surface properties.
10 year’s worth of L2 and well calibrated L1 EPIC radiance
datasets have been archived in NASA Langley Research Center
Atmospheric Science Data Center (https://search.earthdata.nasa.
gov/). DSCOVR/EPIC, together with other NASA missions (e.g.,
CERES, MODIS, VIIRS), will advance climate and atmospheric
sciences in the years to come.
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