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Hyperspectral images (HSIs) have very high dimensionality and typically lack
sufficient labeled samples, which significantly challenges their processing and
analysis. These challenges contribute to the dimensionality curse, making it
difficult to describe complex spatial relationships, especially those with non-
Euclidean characteristics. This paper presents a multi-scale graph wavelet
convolutional network (MS-GWCN) that utilizes a graph wavelet transform
within a multi-scale learning framework to accurately capture spatial-spectral
features. The MS-GWCN constructs graphs according to 8-neighborhood
connectivity schemes, implements spectral graph wavelet transforms for
multi-scale decomposition, and aggregates features through multi-scale
graph convolutional layers. Our method, the MS-GWCN, demonstrates
superior performance compared to existing methodologies. It achieves higher
overall accuracy, average accuracy, per-class accuracy, and the Kappa
coefficient, as evaluated on three datasets, including the Indian Pines, Salinas,
and Pavia University datasets, thereby demonstrating enhanced robustness and
generalization capability.

KEYWORDS

graph wavelet transform, hyperspectral image classification, spectral-spatial fusion,
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1 Introduction

Hyperspectral images (HSIs) have become a cornerstone of modern remote sensing by
capturing detailed spatial and spectral information across hundreds of continuous bands.
This capability enables precise material discrimination in applications ranging from
environmental monitoring and precision agriculture to military reconnaissance (Kipf
and Welling, 2016). Despite these advantages, HSIs’ high dimensionality causes the
Hughes phenomenon, where sample sparsity reduces classification accuracy as spectral
bands increase. Additionally, the limited availability of labeled training samples in many
remote-sensing scenarios exacerbates these issues, making robust model training difficult
(Ma et al., 2013; Hughes, 1968). Traditional machine learning approaches, such as support
vector machines (SVM) (Melgani and Bruzzone, 2004) and random forests (RF) (Zhang
and Ma, 2012), have been widely adopted to address HSI classification. These methods
primarily focus on spectral-feature analysis, often employing linear dimensionality-
reduction techniques (e.g., principal component analysis, PCA) to mitigate redundancy.
However, PCA and similar projections can inadvertently discard essential nonlinear
spectral cues to distinguish spectrally similar classes (e.g., grassland vs. shrubs) (Uddin
et al., 2020). Moreover, these conventional algorithms overlook the inherently non-
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Euclidean spatial relationships between pixels, which carry critical
contextual information, especially in complex terrains, where
adjacent pixels exhibit strong dependencies that facilitate class
separation (Kang et al., 2014).

Emerging deep neural architectures have aimed to integrate
spectral and spatial features within a unified framework to address
these shortcomings. Three-dimensional convolutional neural
networks (3D-CNNs) extend standard CNNs into the spectral
domain, learning hierarchical spatial-spectral representations
directly from the HSI cube (Li et al.,, 2017). Although 3D-CNNs
enhance the discrimination of subtle spectral differences, their heavy
computational burden and large parameter counts often limit
practical deployment. Convolutional bidirectional long short-term
memory networks (Conv-BiLSTMs) treat the spectral bands as a
sequence, modeling dependencies along the spectral dimension
while preserving spatial context; this approach improves
performance in label-scarce settings but still relies on grid-based
convolutions that cannot naturally adapt to irregular spatial
structures (Liu et al., 2017).

Graph neural networks (GNNs) have emerged as a powerful
alternative, where each pixel is represented as a node and spatial-
spectral affinities are encoded as edges. Spectral-Spatial Graph
Convolutional Networks (SS-GCNs) construct adjacency matrices
using k-nearest neighbors (k-NN) in spectral feature space, enabling
graph convolutions to operate on non-Euclidean data (Cao and
Messinger, 2025). Although SS-GCNs excel in small, homogeneous
scenes, their fixed-graph nature often misrepresents long-range
land

performance degradation. Adaptive Graph Attention Networks

dependencies in  heterogeneous cover, leading to
(AGAT) enhance flexibility by learning edge weights dynamically
based on feature correlations. their single-scale

aggregation still suffers from over-smoothing in regions with

However,

multi-resolution textures (Yang JY. et al., 2022).
Dual-stream GCNs
decoupling by processing spectral and spatial features in parallel

attempt to address spectral-spatial
branches before late fusion; however, this separation limits cross-
modality interactions during message passing, particularly along
boundaries where spectral diversity and spatial fragmentation
coexist, resulting in significant accuracy drops in wetland
classification tasks (He X. et al, 2022). Hierarchical graph
pyramid networks introduce multi-scale pooling to capture
coarse-to-fine features (Liu et al, 2024), while multi-resolution
graph convolution frameworks aggregate information from
graphs built at various neighborhood scales (Wan et al., 2020).
However, both approaches rely on manually chosen pooling ratios
or dilation factors, which restrict adaptability across diverse scenes.

To address these limitations, dynamic GCN variants have been
developed. Ding et al. (2022) proposed a dynamic adaptive sampling
GCN that captures neighborhood information through learnable
sampling strategies. Concurrently, Yang B. et al. (2022) designed a
deep adaptive graph integration network to dynamically optimize
graph configurations. Yu et al. (2023) enhanced contextual modeling
through a dual interactive GCN mechanism. Hybrid approaches
that combine GCNs with CNNs (Liu et al., 2021; Dong et al., 2022)
generate however,
high-
dimensional graph processing, isotropic aggregation, and multi-

complementary spectral-spatial features;

challenges such as computational inefficiency in

scale representation bottlenecks persist (Ding et al, 2024).
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Multiresolution graph signal processing (MGSP) offers a
principled solution by utilizing spectral graph wavelet transforms
(SGWTs) to decompose signals into scale-specific components,
thereby capturing both fine boundary details and broader
(Ander et al.).

approximations enhance SGWTs by circumventing explicit eigen-

contextual trends Chebyshev  polynomial
decomposition, reducing computational costs (Cai et al., 2023).
Nevertheless, existing MGSP-based methods rely on static scales
and fixed topologies, failing to align with scene-specific spectral-
spatial interactions or mitigate atmospheric artifacts (Behmanesh et
al., 2024).

Recent works emphasize structural priors for HSI. PFS3F
integrates multiscale superpixel-wise spatial cues—refined via
extended random walk (ERW)—with semantic-aware structural
features in a probabilistic fusion framework, demonstrating the
benefit of combining segmentation granularity and semantic
structure. From Global to Local further adopts a dual-branch
scheme: global structures are extracted by pyramid texture
filtering while local structures are captured with multiscale

superpixels, and the resulting probabilities are fused for
classification. ~ Complementary to  these  image-domain,
handcrafted pipelines, Contour Structural Profiles (CSP)

introduces an edge-aware descriptor to alleviate over-smoothing
and enhance boundary consistency (Zhang et al., 2025a; Zhang et al.,
2025b; Zhang et al., 2022).

Different from the above, our MS-GWCN performs end-to-end
learning in the graph spectral domain, where multi-scale graph
wavelet convolutions unify local-global modeling and provide
band-pass control to preserve edges while avoiding excessive
smoothing; this yields a compact pipeline that reduces manual
feature engineering and naturally accommodates graph
constructions (e.g., pixel- or superpixel-based adjacency).The
proposed MS-GWCN introduces a novel method for HSI
classification by embedding multi-scale wavelet transforms within
a graph-based convolutional framework. Leveraging the spectral
decomposition of the normalized Laplacian, we apply wavelet filters
at multiple scales to extract hierarchical features that simultaneously
capture fine-grained, high-frequency pixel details and broader, low-
frequency regional contexts. We construct the graph using an 8-
neighborhood connectivity model on normalized 2D feature maps
to preserve spatial coherence. These multi-scale wavelet responses
are integrated through trainable graph convolutional filters and
non-linear  activations, enabling feature
that adapts to
structure. As demonstrated in Figure 1, by combining multi-scale

frequency-aware
aggregation the wunderlying spectral-spatial
graph wavelet transforms with deep neural layers, MS-GWCN
proceeds through three clear phases: graph construction from
HSI cubes, dyadic wavelet decomposition into scale subspaces,
and attention-guided fusion of wavelet coefficients via graph
convolutions, culminating in a fully connected layer that
produces robust class probability estimates. The adaptability of
MS-GWCN across diverse scenes provides reassurance about its
potential in HST classification.

The diagram of Figure 1 illustrates the significant stages of the
proposed method: (1) graph construction from the input HSI (each
pixel is treated as a graph node, and edges connect 8-neighborhood
adjacent pixels), preserving the spatial relationships; (2) multi-scale
graph wavelet decomposition, where spectral graph wavelet
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FIGURE 1

The framework of our MS-GWCN algorithm.

transforms at multiple scales extract features corresponding to
different frequency components (from fine to coarse); (3) graph
convolution and feature aggregation across scales, including an
attention-based fusion of the multi-scale features; and (4) a final
classification layer that predicts the land-cover class for each pixel.
The legend in the figure clarifies the symbols used for graph nodes,
wavelet filters at various scales, convolution operations, and the
attention mechanism for scale fusion.

The contributions of our work can be summarized as follows.

1. Extraction of multi-scale features from HSI is essential for
accurately capturing spectral-spatial and contextual elements,
which are crucial for HSI classification. The graph wavelet
transforms operate across various scales, enabling the
extraction of extensive hierarchical features from
hyperspectral data.

2. By constructing the graph using 8-neighbor connectivity
among valid pixels, we preserve the inherent spectral-spatial
relationships in HSI. The proposed MS-GWCN integrates
multi-scale graph convolutional layers with wavelet-based
feature aggregation, resulting in a robust and flexible
architecture that surpasses existing methods on benchmark
datasets and offers significant advantages in HSI classification.
Notably, by operating on a graph structure, MS-GWCN can
naturally model non-Euclidean spatial relationships between
pixels—an important capability that conventional CNN-based
approaches (which assume Euclidean grids) cannot achieve,
thereby giving MS-GWCN a distinct advantage in HSI
classification.

3. Experiments on three public benchmark hyperspectral
datasets—Indian Pines, Salinas, and Pavia

University—demonstrate the superior performance of the

MS-GWCN method. Our results consistently surpass state-

of-the-art methods in overall accuracy (OA), average accuracy

(AA), per-class accuracy, and Kappa coefficient.

The remainder of this paper is organized as follows. Section 2
describes the proposed method, including graph construction,
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wavelet transform, and multi-scale convolutional layers. Section 3
details the experimental setup, results, and ablation studies. Finally,
Section 4 concludes the paper and proposes future research
directions.

2 Proposed methods

In this section, we present a comprehensive explanation of the
multi-scale graph wavelet convolutional network (MS-GWCN)
utilized for HSI classification. The model integrates spectral-
spatial graph construction, multi-scale spectral graph wavelet
transformations, and deep graph convolutional learning, creating
an end-to-end architecture optimized for pixel-wise land cover
classification. As illustrated in Figure 1, the MS-GWCN employs
graph-based representations to model the spatial relationships
among pixels and utilizes graph wavelet transformations to
analyze data across multiple scales. This capability permits
capturing both local and global features critical for achieving
accurate HSI classification.

2.1 Graph construction from hyperspectral
image data

We denote the HSI data cubes as third-order tensors
X € RPWXB \where (H, W) denote spatial dimensions and B is
the number of spectral bands. We first reshape the cube into N =
H x W vectors x; € RE. In order to mitigate the effects of varying
illumination conditions and improve model stability, each node’s
feature vector is the spectral values of the corresponding pixel x;,
standardized using z-score normalization (zero mean and unit
variance) as:

- Xi—
o+€

Xi =

where y € R® ando € R® are the mean and standard deviation of all
pixel features, respectively, and € = 107 ensures numerical stability.
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This normalization reduces bias caused by illumination and sensor
noise, often affecting remote-sensing data (Pu et al., 2021).

In HSI classification, we define a binary mask ; € {0, 1} to indicate
whether pixel i is labeled (11; = 1) or unlabeled (r; = 0). The node set
contains only valid (non-background) pixels. Corresponding class labels
are denoted y; € {1, -+, C}, where C is the number of classes, ensuring
consistency with subsequent Softmax outputs.

To enable graph-based learning, the HSI data is modled as an
undirected graph G = (V,¢), where V is the set of nodes
corresponding to valid pixels (ie., pixels with known labels,
excluding background), and ¢ is the set of edges connecting
spatially adjacent pixels. Edges exist if pixels i and j are spatially
adjacent under 8-neighborhood connectivity (horizontal, vertical, or

}NxN

diagonal). The adjacency matrix A € {0,1 is defined as:

_ | 1 if pixelsiand jareadjacent,
Aij _{ 0 otherwise @

The degree matrix is computed as D = diag(z Ajj), representing
the number of neighbors for each node. The/normalized graph
Laplacian L, encoding the spatial structure HSI, is given by:

L=1-D:AD (3)

The eigendecomposition L = UAUT, where U € RV s the
orthogonal containing the and A=
diag(Ay, -, Ax) with 0=A;<---<Ay<2. These eigenvectors
basis for the
eigendecomposition provides an orthonormal spectral basis for

matrix eigenvectors

form the graph Fourier transform. The

graph signal processing (Hammond et al., 2011).

2.2 Graph wavelet transform for multi-
scale analysis

Using U and A from above, the graph wavelet operator at scale s
is defined as:

¥, = Ug(sA)U" (4)
where g (-) is the spectral graph wavelet generating kernel. We adopt

an exponential kernel g(1) = et so g(sA) = diag(e‘S)”, ey e,
For a reshaped HIS pixel X € RY (the values of one spectral band

over all nodes), the wavelet transform at scale
se{l,2,..., M} (with M = 6in our method) is:
y, = ¥.X (5)

In principle the original signal can be reconstructed by summing
the contributions of all scales:

M
X=)VYy, (6)

s=1
assuming {¥;} cover the spectrum. To avoid explicit

eigendecomposition, we approximate {¥;} by a Chebyshev
polynomial expansion:

K
\Ps = ch,sTk( i) (7)
k=0
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where Ty (-) are Chebyshev polynomials of order K, Ty (x) =
2Ty (x) = Ti—2(x),To = 0,T1 = 1, ¢ are learnable coefficients
for scale s, and L = 2L/A,ux — I is the rescaled Laplacian. This
approach reduces the computational complexity from O(] ¢ |’) to
O(K| ¢|) (He M. et al., 2022), where K is the polynomial order (set to
3 in our implementation), making the transform scalable for large
HSI datasets.

In the context of HSI classification, the graph wavelet transform
provides a comprehensive multi-scale perspective on the data.
Wavelet coefficients at more minor scales correspond to high-
frequency content on the graph (e.g., sharp changes or fine
details in the hyperspectral scene, such as edges between different
land-cover types). In contrast, larger-scale wavelet coefficients
capture low-frequency information (broad, smooth variations like
uniform regions or background trends). By decomposing the HSI
data into these components, MS-GWCN can isolate fine local
anomalies as well as global contextual features. This means that
the model can simultaneously detect subtle spectral differences at
object boundaries and recognize larger homogeneous areas,
improving overall classification accuracy.

2.3 Multi-scale graph wavelet convolution

To capture spectral-spatial features across varying levels of
granularity, the proposed MS-GWCN processes the hyperspectral
graph signals through wavelet convolutions at multiple scales. For
each layer [, let XD ¢ RN¥Fri pe the input feature matrix (with Fj_,
features per node in HIS data). we define a set of M scales. At each
scale s, a graph wavelet convolution is applied to extract features
localized to different receptive fields. The wavelet convolution at
scale s in layer [ is formulated as:

HO = a(wsx“*“wj” + bj“) ®)

where W e RF*Frt and b{" € R are the learnable weights and
biases associated with scale s at layer I, o(-) is the ReLU
activation function.

The outputs from different scales can be aggregated by
summation. The output of the /th layer from different scales can
use a weighted sum with learned attention weights «:

M
X0 =Y aHP )

s=1

where ocs(l) € [0,1] are the learnable attention
satisfying ¥'°_ a{? = 1.

Across different scales, the summation combines contributions

weights

from multiple frequency bands and spatial dimensions, along with a
hierarchical representation that encompasses both local and global
features. This formulation effectively leverages the power of multi-
scale analysis in signal processing and its adaptability to graph-
structured data (Shen et al., 2021). In practice, we approximate
multi-scale wavelet convolutions using a set of parallel GCNConv
layers, each emulating a different receptive field scale. These
branches are concatenated along the feature dimension to retain
scale-specific features.
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2.4 Classification layer and loss function

After L graph-convolution layers (with L = 4), let X ¢ RN*F:
be the final node-feature matrix. We apply a linear classifier followed
by softmax to obtain class probabilities for C classes:via:

P = softmax(X"W® + b)) (10)

where W) € RFC js the weight matrix of the classification layer,
b'Y) e RC is the bias vector. The softmax is applied row-wise, so each
row p; € R sums to 1, here p; j is the predicted probability that
node i belongs to class j.

The model is trained end-to-end, with the cross-entropy loss
function playing a key role. The cross-entropy loss function
quantifies the discrepancy between the predicted class
probabilities and the proper labels. This function guides the
model towards better performance. For a set of N valid pixels,

the cross-entropy loss function is defined as:

N C-1

LCE = —z Z yl] lOg(f),]) (11)

i=1 j=0

where y;; is the ground truth label (1 if pixel i belongs to class j,
otherwise 0), and p;; is the predicted probability that pixel i belongs
to class j. Minimizing this loss over the training dataset encourages
the network to produce predictions that closely match the ground
truth labels.

To encourage neighboring nodes to have similar
representations, we add a Laplacian regularization term. Let
h; € R be the final feature vector of node i (row i of X)), A

common graph-smoothness regularizer is

Lieg =Y Ay I'h; = hy|? (12)
ij

To further enhance the model’s performance, we introduce a
regularization term based on the graph structure. The total loss
function is defined as:

‘Ctotal = ['CE + )tﬁreg (13)

where A is the regularization parameter.

By combining these components, the MS-GWCN effectively
captures both local and global features from the HSI data, leveraging
the multi-scale graph wavelet transform and deep graph
convolutional learning to achieve high classification accuracy.
The implementation details of our MS-GWCN are shown in
Algorithm 1.

The proposed MS-GWCN is summarized in Algorithm 1.

Input: Input HIS cube X; number of epochs T = 400;
learning rate = 0.005; dropout = 0.2; Optimizer: Adam
(with gradient descent); python =3.12; pytorch=2.5.1

1. Flatten the valid pixels into a 2D matrix and
standardize the valid pixels by Equation 1;

2. Connect valid pixels wusing an 8-neighbor
connectivity model to generate the adjacency
matrix A by Equation 2, Compute degree D and
Laplacian L by Equation 3;

3. RescleL: Le 2L/ Agax - I
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4. Training the MS-GWCN model
5. for epoch=1toTdo
6. Perform eigen-decomposition of the graph

Laplacian using Equation 3 to obtain
eigenvectors U and eigenvalues A;
7. For each layer 1:
8. Input: Feature matrix X" at layer I1;
9. Apply graph wavelet transform at scale s to
perform graph convolution Hél) by Equation 8;
10. Aggregate the outputs from different scales,
using weighted sum, as defined in Equation 9;
11. Apply the fully connected classification to the
aggregated features using Equation 10. This
step outputs the probability distribution
over classes, as defined by Equation 13.
12. end for
13. After training, perform label prediction based
on the trained network for each valid pixel;
Output: Predicted class labels for each valid pixel.

Algorithm 1. Proposed MS-GWCN for HIS classification.

3 Results
3.1 Dataset and experimental setup

We evaluated MS-GWCN on three standard hyperspectral
benchmarks: (Ip), (SA),
University (PU), which will be discussed in detail in later
sections (Khoshsokhan et al., 2019a; Khoshsokhan et al., 2019b).

Indian Pines Salinas and Pavia

1. IP Dataset: The dataset was acquired using the AVIRIS sensor
at the IP test site in northwestern Indiana. It covers 145 by
145 pixels and consists of 224 spectral reflectance bands,
spanning a wavelength range from 0.4 to 5 x 10°° m. In the
experiment, 20 noise and water-absorbed bands were removed,
resulting in 204 bands utilized. Sixteen ground-truth classes are
shown in Figure 2a.

2. SA Dataset: The SA dataset was collected from the Salinas Valley in
California, USA, in 1998 using the 224-band AVIRIS sensor. It
covers an area of 512 by 217 pixels and demonstrates an impressive
spatial resolution of 3.7 m per pixel. Like the IP dataset, it omits
20 water absorption bands and is displayed in an at-sensor
radiance format. Sixteen classes are depicted in Figure 3a.

3. PU Dataset: The PU dataset was obtained using the Reflective
Optical System Imaging Spectrometer (ROSIS) at PU in
northern Italy in 2001. The uncorrected dataset comprises
115 spectral bands in the range of 43-86 pum. The image
dimensions are 610 x 340 pixels, with a spatial resolution of
3 m. After removing twelve noise bands, 103 bands remain
available for analysis. The dataset includes nine distinct land
cover classes. Figure 4 illustrates the ground-truth map,
categorizing the available data into nine classes.

Table 1 summarizes the dataset sizes and train/test splits. All
images were reshaped to (pixels) x (bands) vectors and normalized

frontiersin.org
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to zero mean and unit variance per pixel. We randomly partitioned
each dataset into 80% training and 20% testing samples, ensuring all
classes are represented. MS-GWCN was implemented in PyTorch
(running on an NVIDIA GPU) with a unified architecture for all
datasets. We trained for 400 epochs using the Adam optimizer
(initial learning rate 5x 10™* with StepLR decay, y = 0.9 every
400 epochs), applying dropout (rate 0.5) and weight decay to
reduce overfitting. All methods were run four times, and the

Frontiers in Remote Sensing

results were averaged (mean * std) to assess stability. Baseline
methods include a 3D convolutional network (3D-CNN) (Li
et al,, 2017), Multi-scale Dynamic Graph Convolutional Network
(MDGCN) (Wan et al, 2020), Adaptive Multi-Feature Graph
Convolutional Network (AMGCFM) (Zhou et al., 2023), and a
dual-stream  spectral-spatial Graph Convolutional Network
(DSM-S*GCN) (Liu et al., 2024), utilizing published or tuned
hyperparameters.
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TABLE 1 Dataset statistics for IP, SA, and PU: total number of labeled pixels
and 80:20 train-test split.

Indian Pines (IP) 10 249 8199 2 050
Salinas (SA) 54 129 43 303 10 826
Pavia University (PU) 42 776 34 221 8 555

3.2 Evaluation metrics

We utilized per-class classification accuracy, overall classification
accuracy (OA), average classification accuracy (AA), and the Kappa
coefficient (k) as performance evaluation metrics. OA is the fraction of
correctly labeled pixels; AA is the mean of per-class accuracies; and «
measures the agreement between predicted and true labels normalized by
chance (k = 1 indicates perfect agreement). Formally, if 7;; is the number
of pixels of true class i predicted as class j, with N = Zi,j n;j total pixels
and C classes, then OA, AA, and « are represented as Equations 14-16:

1 Nlcs(
OA =~ PRICASD (14)

test j—1
ZZN‘ESQl(yz Yi _C) (15)

Nles(l C)
PO_Pe C Nxestl(y _C)>< Nxestl(yl_c)>
K= ,P, = OA,P, = i
1- Pe ;( Ntest Ntest

(16)

where N is the number of test samples, C is the number of classes,
¥; and p; are the predicted and true labels of pixel i, 1(-) is the
indicator function.

(a) (b) (0)
® @ @ ®
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3.3 Comparison and analysis

As shown in Tables 2-4, the proposed method outperforms
other compared frameworks on the OA, AA, and k metrics for all
three public datasets. On the IP dataset, MS-GWCN stands out as
the top-performing model, achieving 100% accuracy across all
classes, as well as excellent scores in OA, AA, and k. This
indicates that MS-GWCN is highly reliable and stable, with
nearly flawless performance across the board. 3D-CNN follows
closely, delivering strong overall performance (OA: 99.05%, AA:
98.61%, k(x100): 98.52) with near-perfect accuracy (>99%) in
agricultural and forest-related categories, such as Corn-notill
(98.44% + 0.14%), Soybean-clean (98.91% * 0.35%), Grass-trees
(99.92% = 0.02%), and Woods (99.81% = 0.03%). This strong
performance of 3D-CNN provides reassurance to the audience
about its reliability. However, its performance dips in specific
classes, such as Alfalfa (95.89% + 2.89%) and Oats (92.31% =+
5.27%), suggesting limitations in handling underrepresented or
spectrally complex targets. AMGCFM achieves moderate metrics
(OA:97.99%, AA: 95.73%) but suffers significant volatility, excelling
in Corn-notill (97.71% + 5.58%) and Hay-windrowed (99.91% =+
0.36%) while collapsing in Alfalfa (89.50% + 25.42%) and Stone-
Steel-Towers (86.93% + 23.04%). Similarly, MDGCN exhibits class-
specific inconsistencies, achieving 100% accuracy in Alfalfa, Oats,
and Wheat but struggling in complex classes such as Corn (76.16% +
2.71%) and Soybean-clean (80.65% * 7.78%), resulting in the lowest
overall metrics (OA: 93.47%, k(x100): 92.55). DSM-S*GCN is the
least effective model, with an overall accuracy (OA) of 87.25%,
which is significantly lower than that of the other models. Despite
perfect accuracy in Grass-pasture-mowed and Oats, it fails
catastrophically in critical classes like Corn (76.16% =+ 2.71%)

Metal sheets

® ®

Bare Soil

Bitumen Bricks Shadows

Classification maps on the PU dataset. (a) Ground truth (b) 3D-CNN (c) MDGCN (d) AMGCFM (e) DSM-S2GCN (f) MS-GWCN.
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TABLE 2 Accuracy (%) of the different methods on the IP dataset.

10.3389/frsen.2025.1637820

Classes CLASSES-NAME 3D-CNN MDGCN AMGCFM DSM-S*GCN MS-GWCN
1 Alfalfa 95.89 + 2.89 100.00 + 0.00 89.50 + 25.42 87.25 £ 2.15 100.00 + 0.00
2 Corn-notill 98.44 + 0.14 80.18 + 0.84 97.71 £ 5.58 99.35 £ 1.29 100.00 + 0.00
3 Corn-mintill 98.82 + 0.78 98.26 £ 0.00 97.55 + 7.89 84.68 + 8.25 100.00 + 0.00
4 Corn 99.14 + 0.52 98.57 + 0.00 97.09 + 12.79 76.16 £ 2.71 100.00 + 0.00
5 Grass-pasture 99.29 + 0.51 95.14 + 0.33 97.70 £ 7.84 98.20 + 1.36 100.00 + 0.00
6 Grass-trees 99.92 + 0.02 97.16 + 0.57 98.35 + 3.78 91.06 + 0.26 100.00 + 0.00
7 Grass-pasture-mowed 100.0 + 0.00 100.00 + 0.00 91.42 + 25.23 100.00 + 0.00 100.00 + 0.00
8 Hay-windrowed 100.0 + 0.00 98.89 £ 0.00 99.91 £ 0.36 99.78 £ 0.43 100.00 + 0.00
9 Oats 92.31 £ 5.27 100.00 + 0.00 88.06 + 28.40 100.00 + 0.00 100.00 + 0.00
10 Soybean-notill 98.40 + 0.54 90.02 £ 1.02 96.75 £ 9.01 85.21 + 6.36 100.00 + 0.00
11 Soybean-mintill 98.94 + 0.20 93.35 + 1.47 98.50 + 2.89 78.94 + 8.42 100.00 + 0.00
12 Soybean-clean 98.91 £ 0.35 93.05 £ 2.30 97.23 £ 8.97 80.65 + 7.78 100.00 + 0.00
13 Wheat 99.00 + 0.82 100.00 + 0.00 96.79 + 15.22 99.89 + 0.21 100.00 + 0.00
14 Woods 99.81 + 0.03 99.72 £ 0.05 99.82 £ 0.70 96.63 + 2.66 100.00 + 0.00
15 Buildings-Grass-Trees-Drives 99.32 + 0.97 99.72 + 0.00 98.31 + 9.31 98.49 + 2.50 100.00 + 0.00
16 Stone-Steel-Towers 98.38 + 0.99 95.71 £ 0.00 86.93 + 23.04 99.25 £ 0.15 100.00 + 0.00

OA(%) 99.05 + 0.05 93.47 £ 0.38 97.99 + 4.44 87.25 £ 2.15 100.00 + 0.00
AA(%) 98.61 + 0.08 96.24 + 0.21 95.73 £ 9.64 93.03 £ 0.95 100.00 + 0.00
k(x100) 98.52 + 0.06 92.55 + 0.43 97.69 + 5.27 85.49 + 2.42 100.00 + 0.00

Bold values indicate the highest per-class classification accuracy in each row; if multiple methods share the maximum, all tied values are shown in bold.

and Soybean-notill (80.65% + 7.78%), highlighting its inability to
generalize across diverse spectral features.

Furthermore, to evaluate MS-GWCN’s generalization ability
with limited training data, we conducted an experiment on the
IP dataset using reduced training sample sizes. We found that even
when only 50% of the original training labels were used, MS-GWCN
still achieved an overall accuracy above 98% on the IP test set, only
slightly lower than with the full training set. This accuracy remained
significantly higher than that of the 3D-CNN baseline under the
same conditions (approximately 95% OA with 50% training data).
Even with only 10% of the training samples, MS-GWCN attained
around 90% OA, whereas the 3D-CNN’s accuracy dropped to
roughly 85%. These results demonstrate that MS-GWCN can
learn effectively from very limited labeled data and still
outperform conventional models,
generalization capability.

On the SA dataset (Table 3), MS-GWCN emerges as the

unequivocal leader, achieving 100.00% + 0.00% accuracy in

highlighting its strong

13 out of 16 classes (e.g., Broccoli_green_weeds_1, Fallow_
smooth, Vinyard_vertical_trellis) and near-perfect overall
metrics (OA: 98.67% + 0.57%, AA: 99.46% + 0.22%, k(x100):
99.00 + 1.00). Its zero standard deviation (+0.00) in dominant
classes underscores exceptional stability, likely attributable to its
advanced multi-scale graph operations for spatial-spectral feature
integration. However, minor accuracy drops in Grapes_untrained
(97.66% + 1.98%) and Vinyard_untrained (93.81% * 2.62%)

Frontiers in Remote Sensing

suggest room for refinement in handling spectrally ambiguous
or underrepresented targets. DSM-S?GCN, on the other hand,
ranks second in overall accuracy (OA: 93.36% + 0.73%) and
exhibits polarized class performance. It achieves flawless results
in Brocoli_green_weeds_1 (100.00% =+ 0.00%) and Stubble
(99.77% £ 0.00%) but struggles with Grapes_untrained
(83.60% * 7.57%) and Vinyard_untrained (82.25% + 5.09%).
Despite these limitations, its potential for future improvement
is evident, offering hope for its future performance. Similarly,
MDGCN (OA: 94.79% + 0.42%) demonstrates class-specific
excellence, attaining 100% accuracy in Fallow_smooth, Stubble,
and Lettuce_romaine_7wk. Yet, catastrophic failures in Fallow
(67.50% * 0.21%) and Soil_vinyard_develop (85.71% + 1.65%)
reveal critical vulnerabilities in handling heterogeneous or low-
sample-size categories. 3D-CNN delivers the weakest overall
performance (OA: 83.55% * 1.65%) despite sporadic successes
such as 100% accuracy in Fallow_rough_plow and Vinyard_
vertical_trellis. Severe underperformance in Lettuce_romaine_
4wk (51.85% + 3.41%) and Celery (80.00% * 9.02%), coupled
with high variability, underscores its instability for complex
agricultural scenes. AMGCFM (OA: 92.68% * 0.01%) exhibits
erratic behavior, excelling in Lettuce_romaine_7wk (98.29% =+
0.01%) but collapsing in Brocoli_green_weeds_1 (69.20% =+
0.18%) and Fallow (90.82% + 0.07%), with extreme standard
deviations (e.g., *0.18 in Brocoli_green_weeds_1) indicating
sensitivity to training conditions.
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TABLE 3 Accuracy (%) of the different methods on the SA dataset.

Classes CLASSES-NAME 3D-CNN MDGCN AMGCFM DSM-S*GCN MS-GWCN
1 Brocoli_green_weeds_1 100.00 + 0.00 77.78 £ 1.32 69.20 + 0.18 100.00 + 0.00 100.00 + 0.00
2 Brocoli_green_weeds_2 95.41 + 4.89 95.41 + 1.04 90.68 + 0.03 100.00 + 0.00 100.00 + 0.00
3 Fallow 99.38 + 3.66 67.50 + 0.21 90.82 + 0.07 100.00 + 0.00 100.00 + 0.00
4 Fallow_rough_plow 100.00 + 0.00 91.49 + 0.14 89.71 + 0.09 99.85 + 0.01 100.00 + 0.00
5 Fallow_smooth 100.00 + 0.00 100.00 + 0.00 85.78 + 0.05 95.77 + 1.23 100.00 + 0.00
6 Stubble 100.00 + 0.00 100.00 + 0.00 96.34 + 0.03 99.77 + 0.00 100.00 + 0.00
7 Celery 80.00 + 9.02 80.00 + 2.35 88.22 + 0.11 100.0 + 0.00 100.00 + 0.00
8 Grapes_untrained 100.00 + 0.00 95.92 + 0.03 99.62 + 0.00 83.60 + 7.57 97.66 + 1.98
9 Soil_vinyard_develop 100.00 + 0.00 85.71 + 1.65 99.47 + 0.02 91.13 + 1.32 100.00 + 0.00
10 Corn_snesced_green 87.43 £ 1.62 100.00 £ 0.00 89.37 £ 0.05 98.87 £ 0.09 100.00 £ 0.00
_weeds
11 Lettuce_romaine_4wk 51.85 + 3.41 99.13 + 1.32 95.01 + 0.03 99.69 + 0.02 100.00 + 0.00
12 Lettuce_romaine_5wk 86.55 + 2.34 89.08 + 2.27 83.16 + 0.05 100.0 + 0.00 100.00 + 0.00
13 Lettuce_romaine_6wk 100.00 + 0.00 100.00 + 0.00 93.63 + 0.07 98.29 + 0.07 100.00 + 0.00
14 Lettuce_romaine_7wk 81.30 + 2.54 100.00 + 0.00 98.29 + 0.01 100.00 + 0.00 100.00 + 0.00
15 Vinyard_untrained 91.80 + 4.02 86.89 + 0.03 92.01 + 0.07 82.25 + 5.09 93.81 + 2.62
16 Vinyard_vertical_trellis 100.00 + 0.00 100.00 + 0.00 88.74 + 0.13 99.39 + 0.03 100.00 + 0.00
OA(%) 83.55 + 1.65 94.79 + 0.42 92.68 + 0.01 93.36 + 0.73 98.67 + 0.57
AA(%) 92.11 + 1.98 91.81 + 0.25 90.63 + 0.02 96.66 + 0.51 99.46 + 0.22
K(x100) 81.52 + 1.86 94.03 + 0.54 91.67 + 0.01 92.61 + 0.63 99.00 + 1.00
Bold values indicate the highest per-class classification accuracy in each row; if multiple methods share the maximum, all tied values are shown in bold.
TABLE 4 Accuracy (%) of the different methods on the PU dataset.
Classes CLASSES-NAME 3D-CNN MDGCN AMGCFM DSM-S?GCN MS-GWCN
1 Asphalt 99.62 + 0.01 93.55 + 0.37 97.06 + 1.77 82.61 + 4.23 99.36 + 0.17
2 Meadows 99.82 + 0.01 99.25 + 0.23 98.06 + 1.04 93.42 + 212 100.00 + 0.00
3 Gravel 94.62 + 1.48 92.03 + 0.24 99.02 + 0.79 92.12 + 1.23 92.11 + 3.82
4 Trees 98.65 + 0.99 83.78 £ 1.55 94.30 + 1.23 91.27 + 0.66 99.81 + 0.22
5 Painted Metal Sheets 100.0 + 0.00 99.47 + 0.09 95.74 + 0.36 100.0 + 0.00 100.00 + 0.00
6 Bare Soil 99.93 + 0.01 95.26 + 0.50 87.59 + 3.57 98.90 + 0.54 99.98 + 0.04
7 Bitumen 97.75 + 1.76 98.92 + 1.04 98.90 + 0.19 100.0 + 0.00 99.34 + 0.54
8 Self-Blocking Bricks 98.33 + 0.34 94.99 + 1.33 98.79 + 0.26 93.77 + 2.12 98.81 + 0.48
9 Shadows 99.78 + 0.15 81.03 + 0.49 99.05 + 0.31 98.20 + 0.30 100.00 + 0.00
OA(%) 99.36 + 0.00 95.68 + 0.22 95.62 + 0.01 92.72 £ 0.76 99.56 + 0.08
AA(%) 99.47 + 0.05 93.15 + 0.28 90.66 + 0.02 94.48 + 0.98 99.39 + 0.27
k(x100) 99.10 + 0.01 9425 + 0.29 94.18 + 0.02 90.50 + 0.88 99.46 + 0.00

In the PU (Table 4), MS-GWCN reaffirms its dominance,
achieving 99.56% = 0.08% OA, 99.39% * 0.27% AA, and «:
99.46 * 0.00, the highest metrics among all methods. It delivers
100.00% + 0.00% accuracy in critical classes, such as Meadows,

Painted Metal Sheets, and Shadows, with near-perfect performance
in Asphalt (99.36% + 0.17%) and Bare Soil (99.98% + 0.04%). Its
minimal standard deviations (e.g., £0.00 in Shadows) underscore
exceptional stability, solidifying its superiority in spectral-spatial
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feature integration. 3D-CNN ranks second (OA: 99.36% =+ 0.01%,
AA: 99.47% £ 0.05%, k(x100): 99.10 + 0.01), excelling in Painted
metal sheets (100.00% + 0.00%) and Bare Soil (99.93% + 0.01%).
However, it exhibits moderate volatility in Gravel (94.62% + 1.48%)
and Bitumen (97.75% # 1.76%), revealing sensitivity to spectrally
complex surfaces. AMGCFM (OA: 95.62% * 0.01%, AA: 90.66% +
0.02%) demonstrates high variability, collapsing in Bare Soil
(87.59% + 3.57%) despite strong results in Gravel (99.02% =
0.79%) and Self-Blocking Bricks (98.79% =+ 0.26%). Its erratic
performance (e.g., +3.57% in Bare Soil) questions its reliability
for real-world deployment and suggests caution in its use.
MDGCN (OA: 95.68% + 0.22%, k(x100): 94.25 + 0.29) struggles
in classes requiring fine-grained discrimination, Severe
underperformance in Shadows (81.03% =+ 0.49%) and Trees
(83.78% =+ 1.55%). Moderate accuracy in Asphalt (93.55% =
0.37%) and Self-Blocking Bricks (94.99% + 1.33%). DSM-S*GCN
ranks last (OA: 92.72% * 0.76%, k: 90.50 + 0.88), with catastrophic
failures in Asphalt (82.61% + 4.23%) and Meadows (93.42% =+
2.12%). Despite achieving perfect scores in Bitumen (100.00% =+
0.00%) and Painted metal sheets (100.00% + 0.00%), its inability to
generalize across classes, such as Gravel (92.12% =+ 1.23%),
highlights architectural limitations.

We conduct a qualitative analysis to intuitively demonstrate the
classification results and compare the classification performance of
different methods. Figures 2-4 qualitatively illustrate that MS-
GWCN consistently produces classification maps that are
virtually identical to the ground truth, sharply delineating class
boundaries and eliminating the salt-and-pepper noise and
mislabeling that afflict competing methods. On IP (Figure 2),
MS-GWCN perfect spectrally
confounding regions such as Soybean-mintill, whereas 3D-CNN
and MDGCN
AMGCEM struggles along complex borders. Similarly, on SA
(Figure 3), MS-GWCN’s map exhibits the cleanest and most
coherent segmentation of field parcels, markedly reducing noise

achieves accuracy, even in

suffer from scattered misclassifications, and

relative to AMGCFM and preserving delicate structures missed by
3D-CNN and MDGCN. Finally, on PU (Figure 4), MS-GWCN
captures subtle building-and-road interfaces with unmatched
precision and maintains structural integrity in homogeneous
areas, outperforming all baselines in spatial consistency. These
results demonstrate MS-GWCN’s superior capacity to model
intricate spectral-spatial patterns and to generalize robustly
across datasets.

To evaluate generalization with limited labels, we reduced IP
training samples. With 50% of labels, MS-GWCN still
achieved >98% OA (vs. ~95% for 3D-CNN). With only 10% of
labels, MS-GWCN attained ~90% OA (vs. ~85% for 3D-CNN).
These results highlight MS-GWCN’s sample efficiency and
robustness.

3.4 Influence of parameters

To elucidate the contributions of our

innovations,multi-scale graph wavelet convolution (MS-GWC)

two principal
and explicit graph-structure representation. We conducted a

focused ablation study. In Section 3.4.1, we modify the number
of wavelet scales (i.e., the number of parallel GCNConv branches in
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each GraphWaveletConv layer) to evaluate how the scale count
influences feature richness and classification. In Section 3.4.2, we
examine the impact of spatial graph connectivity. The foundational
MS-GWCN architecture, training hyperparameters, and data splits
remain unchanged throughout each experiment.

3.4.1 Impact of different wavelet-scale counts

Our implementation of GraphWaveletConv(in_channels, out_
channels, wavelet_scales = k) establishes k parallel GCNConv layers
and synthesizes their outputs, effectively extracting features at k
“wavelet” resolutions. To evaluate the optimal number of scales, we
trained four variants of MS-GWCN on the hyperspectral dataset,
setting wavelet_scales to 3, 5, 6, and 8. All other configurations were
constants, including the three-layer GraphWaveletConv stack,
hidden dimensions, optimizer, learning rate schedule, and 4-
neighborhood graph connectivity. The line plot visualizes the
performance of MS-GWCN across different wavelet scales (3, 5,
6, and 8) for the IP, SA, and PU datasets. The plot including the
metrics for Overall Accuracy (OA,%), Average Accuracy (AA,%),
and the Kappa coefficient (k, x100) are presented in Figure 5.

Figure 5 shows that even with as few as three parallel wavelet
channels, MS-GWCN achieves nearly 99.9% OA, demonstrating the
power of graph-based spectral-spatial filtering. Moreover,
increasing to five or six scales yields incremental gains, with six
scales producing the highest OA (99.99%) and the smallest run-to-
run variance. Furthermore, there are diminishing returns beyond
six. Using eight scales does not improve upon six and incurs extra
computational costs. These results indicate that six wavelet channels
strike the best balance between representational richness and
efficiency, and we adopt wavelet_scales = 6 for all subsequent
experiments.

Meanwhile, on the IP dataset, with just three scales, MS-GWCN
achieves near-saturation performance (OA: 99.90% + 0.05%, AA:
99.80% + 0.10%, k(x100): 99.95 + 0.03). Expanding to six scales
maximizes accuracy (OA: 99.99% + 0.01%, AA: 99.99% + 0.01%,
K(x100): 99.99 + 0.01) while minimizing run-to-run variance
(+0.01). Beyond six scales, the metrics plateau (e.g., eight scales:
OA = 99.90%),
spectral-spatial filtering. On the SA dataset, utilizing three

confirming redundancy in higher-scale
wavelet scales yields a modest baseline performance with an OA
0f 97.05% + 0.24%, AA of 97.81% + 0.20%, and a k(x100) of 97.80 +
0.11. Expanding to five scales yields a substantial improvement, with
OA increasing to 98.70% =+ 0.18%, AA rising to 99.10% * 0.14%, and
Kappa reaching 99.12 + 0.13. This increase highlights the benefit of
incorporating additional spectral-spatial filtering channels in
capturing the diverse vegetation classes and intricate spatial
textures characteristic of Salinas. However, when increasing to six
scales, the performance unexpectedly declines to OA = 97.00 +
0.00%, AA = 98.00 + 0.00%, and Kappa = 98.00 + 0.00, indicating
possible over-parameterization or redundancy among filters at that
level. Returning to eight scales reproduces the results from the three-
scale analysis (OA = 97.05 + 0.24%, AA = 97.81 + 0.20%, k(x100) =
97.80 + 0.11), confirming that beyond five scales, the model does not
gain additional discriminative power while incurring extra
computation. On the PU dataset, with three scales, MS-GWCN
already demonstrates strong results (OA = 99.06 + 0.04%, AA =
99.18 + 0.12%, k(x100) = 99.31 + 0.07), reflecting the relatively
homogeneous urban structures of this scene. Shifting to five scales
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FIGURE 5

Performance of MS-GWCN for different Wavelet Scales.

slightly reduces OA to 98.33% + 0.15% and AA to 98.55% * 0.32%,
while Kappa also dips to 98.92 + 0.05. This decline suggests that
additional scales may blur fine edges of buildings and man-made
features. Increasing to six scales restores performance to a steady
99.00% + 0.00% across OA, AA, and Kappa, indicating a more stable
but not superior configuration compared to three scales. Finally,
employing eight scales returns the metrics to those of the three-scale
setup (OA =99.06 + 0.04%, AA =99.18 + 0.12%, k(x100) = 99.31 +
0.07), once again showing no net benefit beyond the three channels.

3.4.2 Impact of spatial neighborhood connectivity

To evaluate how the breadth of pixel adjacency influences
MS-GWCN’s ability to exploit spatial context, we fixed the
6. We varied the graph
connectivity on three benchmark datasets (IP, SA, and PU).

wavelet scale parameter at s =
Specifically, we compared the 2-neighborhood, where each
node is connected only to its left and upper neighbors, the 4-
neighborhood, which features standard cardinal connectivity
(up, down, left, right), and the 8-neighborhood, which
includes full connectivity with diagonals.

As depicted in Figure 6, the line plot vividly illustrates the
fluctuation of OA, AA, and x with varying spatial neighborhood
connectivities  (2-neighborhood,  4-neighborhood, and 8-
neighborhood) for the IP, SA, and PU datasets. The progression
from two to 8 neighbors amplifies MS-GWCN’s proficiency in pixel
classification across all datasets (IP, SA, and PU). Notably, the IP
dataset achieves a 100% OA with eight neighborhoods, indicating
that more intricate pixel connectivity enables the network to
comprehend spatial interdependencies, even in the most complex
agricultural settings. Similarly, the SA dataset improves an OA surge
from 97.19% (2-neighborhood) to 98.16% (8-neighborhood),
underscoring the role of augmented spatial context in refining
the classification of crops with intricate spatial textures. The PU
dataset also exhibits an OA upswing from 98.97% (2-neighborhood)
to 99.50% (8-neighborhood), confirming that a richer spatial
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relationship facilitates a more precise classification of urban land-
cover categories, especially around complex borders.

Meanwhile, the AA metric, which represents the average
classification accuracy across all classes, also shows improvement
as neighborhood connectivity becomes richer. On the IP dataset, the
AA increases from 99.60% (2-neighborhood) to 100% (8-
neighborhood), suggesting that the MS-GWCN can correctly
classify more challenging classes (e.g., mixed-pixel regions or
crops with subtle spectral differences) when pixel adjacency is
expanded. On the SA dataset, the AA improves from 96.85% (2-
neighborhood) to 98.05% (8-neighborhood), indicating that the
expanded neighborhood enables the network to capture better
complex inter-class relationships, particularly in agricultural
landscapes with heterogeneous vegetation types. On the PU
dataset, the AA jumps from 98.70% (2-neighborhood) to 99.40%
(8-neighborhood), that
contexts are beneficial in urban settings, where features such as

demonstrating larger neighborhood
roads, buildings, and other artificial structures require fine spatial
delineation.

Moreover, the k(x100), which quantifies the agreement between
predicted and actual labels while correcting for chance, increases as
the neighborhood size expands, particularly in the IP and PU
datasets. On the IP dataset, the k(x100) reaches 100 with the 8-
neighborhood setting, indicating perfect agreement with the true
ground labels and reflecting the MS-GWCN’s ability to handle
complex spatial dependencies across the dataset. On the SA
dataset, the Kappa value increases from 97.40 (2-neighborhood)
to 98.70 (8-neighborhood), reinforcing the notion that richer pixel
connectivity enhances the model’s spatial feature aggregation,
particularly in regions with finer textures. On the PU dataset, the
Kappa improves from 98.20 (2-neighborhood) to 99.60 (8-
neighborhood), indicating that more neighbors enable the model
to better classify fragmented urban classes, especially in areas where
smaller features (e.g., roofs

or pavements) require more

spatial context.
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FIGURE 7
Classification maps achieved by different wavelet scales on the IP dataset.

Figures 7-11, collectively illustrate how MS-GWCN responds to
wavelet-scale configurations and spatial-graph connectivities on
three benchmarks. In Figures 7-11, we vary the number of
wavelet channels on the datasets. A consistent pattern emerges,
indicating that incorporating additional scales enhances smoother
regional delineation and more distinct class boundaries. At low scale
counts (e.g., three channels), small clusters of misclassified pixels
persist around object edges; by contrast, six or eight scales produce
markedly cleaner maps.

Figures 10, 11 compare classification results using 2-, 4-, and 8-
neighborhood graphs. As pixel adjacency expands, the maps become
increasingly coherent. For Indian Pines (Figure 10), the 8-neighborhood
graph nearly eliminates all stray errors, resulting in almost flawless
segmentation. As shown in Figure 11, the Salinas also benefits,
particularly in heterogeneous regions like vineyards and lettuce fields,
where enhanced connectivity bridges isolated misclassifications. On
Pavia University, stronger linkages unify fragmented urban classes
and sharpen small-scale features such as roof tiles and pavement.
Comparative results demonstrate that combining multi-scale wavelet
filtering with extended spatial connections yields more accurate and
stable classification maps. These qualitative observations show strong
alignment with quantitative metrics, providing compelling validation of
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our methodology. They also confirm the effectiveness of MS-GWCN’s
joint spectral-spatial fusion, supporting our final architectural choices
for the model.

3.5 Computational complexity and
inference time

We analyze the computational complexity of MS-GWCN and
compare it with the baseline models. Thanks to the Chebyshev
polynomial approximation used in the graph wavelet transform
(Section 2.2), the per-layer complexity of MS-GWCN is O (K|&|),
which is linear in the number of graph edges (with K = 3 and
|€] = 8]V| for an 8-neighbor graph). This is a substantial
improvement over naive spectral graph convolution (which is
O(IV))) and ensures our approach can scale to reasonably large
HSIs. In terms of model size, MS-GWCN contains on the order of
10°-10° trainable parameters in our implementation, which is
considerably smaller than a typical 3D-CNN-based HSI classifier
(such models can require tens of millions of parameters). As a result,
MS-GWCN is relatively lightweight compared to deep CNN
counterparts.
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s=3 s=5

FIGURE 8
Classification maps achieved by different wavelet scales on the SA dataset

s=5

S=

FIGURE 9

Classification maps achieved by different wavelet scales on the PU dataset

In practice, we observed that the inference time of MS-GWCN
is comparable to or better than that of the 3D-CNN baseline. For
example, processing the entire Indian Pines image (145 X
145 pixels with 200 spectral bands) with a trained MS-GWCN
takes on the order of a few seconds on a modern GPU, which is
similar to the 3D-CNN’s inference time for the same data. Multi-
scale graph convolutions incur overhead; however, a smaller
parameter budget and an efficient Chebyshev approximation
limit both memory and runtime. The resulting complexity
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remains tractable and is justified by the observed accuracy
improvements.

4 Conclusion
This paper introduces MS-GWCN, a novel multi-scale graph

wavelet convolutional network for hyperspectral image classification.
The proposed framework effectively captures local and global contextual
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FIGURE 10

Classification maps achieved by different neighborhoods on the IP dataset.

4-neighborhood 8-neighborhood
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FIGURE 11

4-neighborhood 8-neighborhood

Classification results achieved by different neighborhoods on the SA/PU datasets.

information by integrating multi-scale spectral-spatial feature extraction
with graph wavelet transforms, enabling more accurate and robust
classification. Our experiments on three public benchmark datasets (IP,
SA, and PU) demonstrate that MS-GWCN not only outperforms
existing state-of-the-art methods but does so consistently across
multiple evaluation metrics, including per-class accuracy, overall
accuracy (OA), average accuracy (AA), and the Kappa coefficient
(). These results robustly demonstrate the effectiveness of our
model. Large-scale hyperspectral ~datasets demand efficient
this by
approximation during graph wavelet

processing. Our approach addresses implementing
Chebyshev  polynomial
transformation, dramatically lowering computational demands. In
results

achieved with only three wavelet convolution layers and 400 training

practical implementation, satisfactory classification are
epochs, reflecting the model’s practicality and computational economy.

Despite these promising results, our MS-GWCN approach has
some limitations. First, the multi-scale graph wavelet framework

introduces additional computational overhead compared to simpler
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models. However, we mitigated this with efficient approximations, and
the model’s adaptability reassures us that it can be scaled to huge images
or real-time applications with further optimization. Second, the current
implementation uses a fixed 8-neighborhood graph structure, which
may not capture very long-range pixel relationships beyond the local
vicinity; an adaptive graph construction or incorporation of global
connections could further improve performance in scenes with large-
scale structures. Third, performance is hyperparameter-dependent
(scale count, depth, etc.), and achieving the best results typically calls
for some dataset-specific tuning. Finally, MS-GWCN assumes that the
training and test data come from similar distributions, its accuracy may
degrade if the model is applied to data with entirely new spectral
characteristics or significant noise without retraining. We acknowledge
these limitations as directions for future improvements.

For future research, we plan to investigate the potential of MS-
GWCN in multimodal graph learning settings and its applicability to
more complex and heterogeneous remote sensing scenes. This ongoing
development should leave you feeling excited about the future of our
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model. We anticipate that these efforts will further enhance the model’s
capabilities and broaden its applicability in real-world scenarios.
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